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Abstract

Opioid substitution and syringes exchange programs have drastically reduced hepatitis C virus (HCV)

spread in France but HCV sexual transmission in men having sex with men (MSM) has recently arisen

as a significant public health concern. The fact that the virus is transmitting in a heterogeneous

population, with ‘new’ and ‘classical’ hosts, makes prevalence and incidence rates poorly informative.

However, additional insights can be gained by analyzing virus phylogenies inferred from dated

genetic sequence data. Here, using a phylodynamics approach based on Approximate Bayesian

Computation, we estimate key epidemiological parameters of an ongoing HCV epidemic in MSM in

Lyon (France). We show that this new epidemics is largely independent from the ‘classical’ HCV

epidemics and that its doubling time is one order of magnitude lower (55.6 days versus 511 days).

These results have practical implications for HCV control and illustrate the additional information

provided by virus genomics in public health.
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Background 1

It is estimated that 71 million people worldwide suffer from chronic hepatitis C virus (HCV) infections 2

[1, 2]. The World Health Organisation (WHO) and several countries have issued recommendations 3

towards the ‘elimination’ of this virus, which they define as an 80% reduction in new chronic 4

infections and a 65% decline in liver mortality by 2030 [2]. HIV-HCV coinfected patients are targeted 5

with priority because of the shared transmission routes between the two viruses [3] and because 6

of the increased virulence of HCV in coinfections [4–6]. Successful harm reduction interventions, 7

such as needle-syringe exchange and opiate substitution programs, as well as a high level of 8

enrolment into care of HIV-infected patients, have led to a drastic drop in the prevalence of active 9

HCV infections in HIV-HCV coinfected patients in several European countries during the recent 10

years [7–10]. Unfortunately, this elimination goal is challenged by the emergence of HCV sexual 11

transmission, especially among men having sex with men (MSM). This trend is reported to be 12

driven by unprotected sex, drug use in the context of sex (‘chemsex’), and potentially traumatic 13

practices such as fisting [11–13]. In area of Lyon (France), HCV incidence has been shown to increase 14

concomitantly with a shift in the profile of infected hosts [14]. Understanding and quantifying this 15

recent increase is the main goal of this study. 16

Several modeling studies have highlighted the difficulty to control the spread of HCV infections in 17

HIV-infected MSM in the absence of harm reduction interventions [12,15]. Furthermore, we recently 18

described the spread of HCV from HIV-infected to HIV-negative MSM, using HIV pre-exposure 19

prophylaxis (PrEP) or not, through shared high-risk practices [14]. More generally, an alarming 20

incidence of acute HCV infections in both HIV-infected and PrEP-using MSM was reported in 21

France in 2016-2017 [13]. Additionally, while PrEP-using MSM are regularly screened for HCV, 22

those who are HIV-negative and do not use PrEP may remain undiagnosed and untreated for years. 23

In general, we know little about the population size and practices of HIV-negative MSM who do not 24

use PrEP. All these epidemiological events could jeopardize the goal of HCV elimination by creating 25

a large pool of infected and undiagnosed patients, which could fuel new infections in intersecting 26

populations. Furthermore, the epidemiological dynamics of HCV infection have mostly been studied 27

in intravenous drug users (IDU) [16–19] and in the general population [20,21]. Results from these 28

populations are not easily transferable to other populations, which calls for a better understanding 29

of the epidemiological characteristics of HCV sexual transmission in MSM. 30

Given the lack of knowledge about the focal population driving the increase in HCV incidence, 31

we analyse virus sequence data with phylodynamics methods. This research field has been blooming 32

over the last decade and hypothesizes that the way rapidly evolving viruses spread leaves ‘footprints’ 33

in their genomes [22–24]. By combining mathematical modelling, statistical analyses and phylogenies 34

of infections, where each leaf corresponds to the virus sequence isolated from a patient, current 35

methods can infer key parameters of viral epidemics. This framework has been successfully applied to 36

other HCV epidemics [25–28], but the ongoing one in Lyon is challenging to analyze because the focal 37

population is heterogeneous, with ‘classical’ hosts (typically HIV-negative patients infected through 38

nosocomial transmission or with a history of opioid intravenous drug use or blood transfusion) 39

and ‘new’ hosts (both HIV-infected and HIV-negative MSM, detected during or shortly after acute 40
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Fig 1. Phylogeny of HCV infections in the area of Lyon (France). ‘Classical’ hosts are in

blue and ‘new’ hosts are in red. Sampling events correspond to the end of black branches. The

phylogeny was estimated using maximum-likelihood methods (PhyML) and then rooted in time

using Bayesian inference (Beast2). See the Methods for additional details.

HCV infection phase, potentially using recreational drugs such as cocaine or cathinones). Our 41

phylodynamics analysis relies on an Approximate Bayesian Computation (ABC, [29]) framework 42

that was recently developed and validated [30]. 43

Assuming an epidemiological model with two host types, ‘classical’ and ‘new’ (see the Methods), 44

we use dated virus sequences to estimate the date of onset of the HCV epidemics in ‘classical’ and 45

‘new’ hosts, the level of mixing between hosts types, and, for each host type, the duration of the 46

infectious period and the effective reproduction ratio (i.e. the number of secondary infections, [31]). 47

We find that the doubling time of the epidemics is one order of magnitude lower in ‘new’ than in 48

‘classical’ hosts, therefore emphasising the urgent need for public health action. 49

Results 50

The phylogeny inferred from the dated virus sequences shows that ‘new’ hosts (in red) tend to be 51

grouped in clades (Figure 1). This pattern suggests a high degree of assortativity in the epidemics 52

(i.e. hosts tends to infect hosts from the same type). The ABC phylodynamics approach allows us 53

to go beyond a visual description and to quantify several epidemiological parameters. 54
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Fig 2. Parameter prior and posterior distributions. Prior distributions are in grey and

posterior distributions inferred by ABC are in red. The thinner the posterior distribution, the more

accurate the inference.

As for any Bayesian inference method, we need to assume a prior distribution for each parameter. 55

These priors, shown in grey in Figure 2, are voluntarily designed to be large and uniformly distributed 56

so as to be as little informative as possible. One exception is the date of onset of the epidemics, 57

for which we use as a prior the output of the phylogenetic analysis conducted in Beast (see the 58

Methods). We also assume the date of the ‘new’ hosts epidemics to be posterior to 1997 based on 59

epidemiological data. 60

The inference method converges towards posterior distributions for each parameter, which 61

are shown in red in Figure 2. The estimate for the origin of the epidemic in ‘classical’ hosts is 62

t0 = 1977 [1966; 1981] (numbers in brackets indicate the 95% Highest Posterior Density, or HPD). 63

For the ‘new’ host type, we estimate the epidemic to have started in t2 = 2003 [2000; 2005]. 64

We find the level of assortativity between host types to be high for ‘classical’ (a1 = 0.97 [0.91; 0.99]) 65

as well as for ‘new’ hosts (a2 = 0.88 [0.70; 0.99]). Therefore, hosts mainly infect hosts from the same 66

type and this effect seems even more pronounced for ‘classical’ hosts. 67

The phylodynamics approach also allows us to infer the duration of the infectious period for each 68

host type. Assuming that this parameter does not vary over time, we estimate it to be 1.2 years 69

[0.40; 7.69] for ‘classical’ hosts (parameter 1/γ1) and 0.4 years [0.25; 0.78] for ‘new’ hosts (parameter 70

1/γ2). 71

Regarding effective reproduction numbers, i.e. the number of secondary infections caused by a 72

given host over its infectious period, we estimate that of ‘classical’ hosts to have decreased from 73

R
(1),t1
0 = 3.29 [1.2; 6.63] to R

(1),t2
0 = 1.47 [0.37; 2.67] after the introduction of the third generation 74

HCV test in 1997. The inference on the differential transmission parameter indicates that HCV 75

transmission rate is ν = 7.97 [6.01; 9.90] times greater from ‘new’ hosts than from ‘classical’ hosts. 76

By combining these results (see the Methods), we estimate the effective reproduction number in 77

‘new’ hosts to be R
(2),t3
0 = 2.9 [0.81; 6.26]. 78

To better apprehend the differences between the two host types, we compute the epidemic 79

doubling time (tD), which is the time for an infected population to double in size. tD is computed 80
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(a) (b)

Fig 3. Parameteric bootstrap illustration. Principal Component Analysis (PCA) graphs

where each dot represents a vector of summary statistics of a dataset. The 5, 000 simulated data are

in grey, and the target data is in red. Panel (a) shows the PCA graph using the HPD distribution.

Panel (b) shows the PCA graph using a uniform distribution drawn from the 95% HPD distribution.

for each type of host, assuming complete assortativity (see the Methods). We find that for the 81

‘classical’ hosts, before 1997 t
(1),t1
D ≈ 8 months ([0.1; 2.63] years). After 1997, the pace decreases 82

with a doubling time of t
(1),t2
D ≈ 1.75 years ([0; 28.55] years). For the epidemics in the ‘new’ hosts, 83

we estimate that t
(2),t3
D ≈ 51 days ([0; 2.73] years). Distributions for theses three doubling times are 84

shown in Supplementary Figure S2. 85

Supplementary Figure S3 shows the correlations between parameters based on the posterior 86

distributions. We mainly find that the R0 in ‘classical’ hosts after the introduction of the third 87

generation of HCV detection tests (i.e. R
(1),t2
0 ) is negatively correlated to ν and positively correlated 88

to γ2. In other words, if the the epidemic spreads rapidly in ‘classical’ hosts, it requires a slower 89

spread in ‘new’ hosts to explain the phylogeny. R
(1),t2
0 is also slightly negatively correlated to γ1, 90

which probably comes from the fact that for a given R0, epidemics with a longer infection duration 91

have a lower doubling time and therefore a weaker epidemiological impact. Overall, these correlations 92

do not affect our main results, especially the pronounced difference in infection periods (γ1 and γ2). 93

To validate these results, we perform a parametric bootstrap analysis by simulating phylogenies 94

using the resulting posterior distributions to determine whether these are similar to the target 95

dataset (see the Methods). In Figure 3(a), we see that the target data in red, i.e. the summary 96

statistics from the phylogeny shown in Figure 1, lies in the middle of the phylogenies simulated 97

using the posterior data. If we use the 95% HPD of the posterior but assume a uniform distribution 98

instead of the true posterior distribution, we find that the target phylogeny lies outside the cloud of 99

simulations (see Figure 3(b)). These results confirm that the posterior distributions we infer are 100

highly informative. 101

To further explore the robustness of our inference method, we use simulated data to perform 102

a ‘leave one out’ cross-validation (see the Methods). As shown in Supplementary Figure S5, the 103

relative error made for each parameter inference is limited and comparable to what is found using a 104

simpler model [30]. Two exceptions are the rate at which ‘new’ hosts clear the infection (γ2) and 105

their level of assortativity (a2). This is likely a consequence of our choice of summary statistics, 106
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which is optimised to analyse a phylogeny with a high degree of assortativity (high values of a1 and 107

a2). 108

Finally, to evaluate the impact of phylogenetic reconstruction uncertainty, we perform a supple- 109

mentary analysis using 10 additional trees from the Beast posterior distribution. In Supplementary 110

figure S6, we show that the posterior distributions estimated by our ABC method are qualitatively 111

similar with all these trees. 112

Discussion 113

Over the last years, the area of Lyon (France) witnessed an increase in HCV incidence both in 114

HIV-positive and HIV-negative populations of men having sex with men (MSM) [14]. This increase 115

appears to be driven by sexual transmission and echoes similar trends in Amsterdam [32] and in 116

Switzerland [33]. A quantitative analysis of the epidemic is necessary to optimise public health 117

interventions. Unfortunately, this is challenging because the monitoring of the population at risk is 118

limited and because classical tools in quantitative epidemiology, especially incidence time series, are 119

poorly informative with such a heterogeneous population. To circumvent this problem, we used HCV 120

sequence data, which we analysed using phylodynamics. In order to account for host heterogeneity, 121

we extended and validated an existing Approximate Bayesian Computation framework [30]. 122

From a public health point of view, our results have two major implications. First, we find a 123

strong degree of assortativity in both ‘classical’ and ‘new’ host populations. The virus phylogeny 124

does hint at this result (Figure 1) but the ABC approach allows us to quantify the pattern and to 125

show that assortativity may be higher for ‘classical’ hosts. The second main result has to do with 126

the striking difference in doubling times. Indeed, the current spread of the epidemics in ‘new’ hosts 127

appears to be at least comparable to the spread in the ‘classical’ hosts in the early 1990s before the 128

advent of the third generation tests. That the duration of the infectious period in ‘new’ hosts is in the 129

same order of magnitude as the time until treatment suggests that the majority of the transmission 130

events may be occurring during the acute phase. This underlines the necessity to act rapidly upon 131

detection, for instance by emphasising the importance of protection measures such as condom use and 132

by initiating treatment even during the acute phase [34]. A better understanding of the underlying 133

contact networks could provide additional information regarding the structure of the epidemics and, 134

with that respect, next generation sequence data could be particularly informative [35–37]. 135

Some potential limitations of the study are related to the sampling scheme, the assessment of 136

the host type, and the transmission model. Regarding the sampling, the proportion of infected 137

‘new’ host that are sampled is unknown but could be high. For the ‘classical’ hosts, we selected 138

a representative subset of the patients detected in the area but this sampling is likely to be low. 139

However, the effect of underestimating sampling for the new epidemics would be to underestimate 140

its spread, which is already faster than the classical epidemics. In general, implementing a more 141

realistic sampling scheme in the model would be possible but it would require a more detailed model 142

and more data to avoid identifiability issues. Regarding assignment of hosts to one of the two types, 143

this was performed by clinicians independently of the sequence data. The main criterion used was 144

the infection stage (acute or chronic), which was complemented by other epidemiological criteria 145
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(history of intravenous drug use, blood transfusion, HIV status). Finally, the ‘classical’ and the 146

‘new’ epidemics appear to be spreading on contact networks with different structures. However, such 147

differences are beyond the level of details of the birth-death model we use here, and would require a 148

larger dataset for them to be inferred. 149

In order to test whether the infection stage (acute vs. chronic) can explain the data better than 150

the existence of two host types, we developed an alternative model where all infected hosts first go 151

through an acute phase before recovering or progressing to the chronic phase. As for the model 152

with two host types, we used 3 time intervals. Interestingly, it was almost impossible to simulate 153

phylogenies with this model, most likely because of its intrinsic constrains on assortativity (both 154

acute and chronic infections always generate new acute infections). 155

To our knowledge, few attempts have been made in phylodynamics to tackle the issue of host 156

population heterogeneity. In 2018, a study used the structured coalescent model to investigate 157

the importance of accounting for so-called ‘superspreaders’ in the recent ebola epidemics in West 158

Africa [38]. The same year, another study used the birth-death model to study the effect of drug 159

resistance mutations on the R0 of HIV strains [39]. Both of these are implemented in Beast2. 160

However,the birth-death model is unlikely to be directly applicable to our HCV epidemics because 161

it links the two epidemics via mutation (a host of type A becomes a host of type B), whereas in our 162

case the linking is done via transmission (a host of type A infects a host of type B). 163

Overall, we show that our ABC approach, which we validated for simple epidemiological models 164

such as Susceptible-Infected-Recovered [30], can be applied to more elaborate models that current 165

phylodynamics methods have difficulties to capture. Further increasing the level of details in the 166

model may require to increase the number of simulations but also to introduce new summary statistics. 167

Another promising perspective would be to combine sequence and incidence data. Although this 168

could not be done here due to the limited sampling, such data integration can readily be done with 169

regression-ABC. 170

Material and methods 171

Epidemiological data 172

The Dat’AIDS cohort is a collaborative network of 23 French HIV treatment centers covering approx- 173

imately 25% of HIV-infected patients followed in France (Clinicaltrials.gov ref NCT02898987). The 174

epidemiology of HCV infection in the cohort has been extensively described from 2000 to 2016 [40–42]. 175

The incidence of acute HCV infection has been estimated among HIV-infected MSM between 2012 and 176

2016, among HIV-negative MSM enrolled in PrEP between in 2016-2017 [13] and among HIV-infected 177

and HIV-negative MSMs from 2014 to 2017 [14]. [SA: A réécrire pour ne citer que les 178

données de séquences que nous utilisons (voire un autre article si on en a besoin pour179

le labeling)] 180
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HCV sequence data 181

We included HCV molecular sequences of all MSM patients diagnosed with acute HCV genotype 182

1a infection at the Infectious Disease Department of the Hospices Civils de Lyon, France, and for 183

whom NS5B sequencing was performed between January 2014 and December 2017 (N = 68). HCV 184

genotype 1a isolated from N = 145 non-MSM, HIV-negative, male patients of similar age were 185

analysed by NS5B sequencing at the same time for phylogenetic analysis. This study was conducted 186

in accordance with French ethics regulations. All patients gave their written informed consent to 187

allow the use of their personal clinical data. The study was approved by the Ethics Committee of 188

Hospices Civils de Lyon. 189

HCV testing and sequencing 190

HCV RNA was detected and quantified using the Abbott RealTime HCV assay (Abbott Molecular, 191

Rungis, France). The NS5B fragment of HCV was amplified between nucleotides 8256 and 8644 192

by RT-PCR as previously described and sequenced using the Sanger method. Electrophoresis and 193

data collection were performed on a GenomeLabTM GeXP Genetic Analyzer (Beckman Coulter). 194

Consensus sequences were assembled and analysed using the GenomeLabTM sequence analysis 195

software. The genotype of each sample was determined by comparing its sequence with HCV 196

reference sequences obtained from GenBank. 197

Nucleotide accession numbers 198

All HCV NS5B sequences isolated in MSM and non-MSM patients reported in this study were 199

submitted to the GenBank database. The list of Genbank accession numbers for all sequences is 200

provided in Appendix. 201

Dated viral phylogeny 202

To infer the time-scaled viral phylogeny from the alignment we used a Bayesian Skyline model in 203

BEAST v2.4.8 [43]. The general time reversible (GTR) nucleotide substitution model was used with 204

a strict clock rate fixed at 10−3 based on data from Ref. [44] and a gamma distribution with four 205

substitution rate categories. The MCMC was run for 100 million iterations and samples were saved 206

every 5,000 iterations. We selected the maximum clade credibility using TreeAnnotator BEAST2 207

package. The date of the last common ancestor was estimated to be 1977.67 with a 95% Highest 208

Posterior Density (HPD) of [1960.475; 1995.957]. 209

Epidemiological model and simulations 210

We assume a Birth-Death model with two hosts types (Supplementary Figure S1) with ‘classical’ 211

hosts (numbered 1) and new hosts (numbered 2). This model is described by the following system 212

of ordinary differential equations (ODEs): 213
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Table 1. Prior distributions for the birth-death model parameters over the three

time intervals. t0 is the date of origin of the epidemics in the studied area, t1 is the date of

introduction of 3rd generation HCV tests, t2 is the date of emergence of the epidemic in ‘new’ hosts

and tf is the time of the most recent sampled sequence.

Interval γi ν R
(1)
0 ai

[t0, t1] Unif(0.1, 4) 0 Unif(0.9, 15) Unif(0, 1)

[t1, t2] Unif(0.1, 3)

[t2, t3] Unif(0, 10)

dI1
dt

= a1βI1 + (1− a2)νβI2 − γ1I1 (1a)

dI2
dt

= a2βνI2 + (1− a1)βI1 − γ2I2 (1b)

In the model, transmission events are possible within each type of hosts and between the two types 214

of hosts at a transmission rate β. Parameter ν corresponds to the transmission rate differential 215

between classical and new hosts. Individuals can be ‘removed’ at a rate γ1 from an infectious 216

compartment (I1 or I2) via infection clearance, host death or change in host behaviour (e.g. condom 217

use). The assortativity between host types, which can be seen as the percentage of transmissions 218

that occur with hosts from the same type, is captured by parameter ai. 219

The effective reproduction number (denoted R0) is the number of secondary cases caused by an 220

infectious individual in a fully susceptible host population [31]. We seek to infer the R0 from the 221

classical epidemic, denoted R
(1)
0 and defined by R

(1)
0 = β/γ1, as well as the R0 of the new epidemic, 222

denoted R
(2)
0 and defined by R

(2)
0 = νβ/γ2 = νR

(1)
0 γ1/γ2. 223

The doubling time of an epidemics (tD) corresponds to the time required for the number of 224

infected hosts to double in size. It is usually estimated in the early stage of an epidemics, when 225

epidemic growth can assumed to be exponential. To calculate it, we assume perfect assortativity 226

(a1 = a2 = 1) and approximate the initial exponential growth rate by β − γ1 for ‘classical’ hosts and 227

νβ − γ2 for ‘new’ hosts. Following [45], we obtain t
(1)
D = ln(2)/(β − γ1) and t

(2)
D = ln(2)/(νβ − γ2). 228

We consider three time intervals. During the first interval [t0, t1], t0 being the year of the origin 229

of the epidemic in the area of Lyon, we assume that only classical hosts are present. The second 230

interval [t1, t2], begins in t1 = 1997.3 with the introduction of the third generation HCV tests, which 231

we assume to have affected R
(1)
0 through the decrease of the transmission rate β. Finally, the ‘new’ 232

hosts appear during the last interval [t2, tf ], where t2, which we infer, is the date of origin of the 233

second outbreak. The final time (tf ) is set by the most recent sampling date in our dataset (2018.39). 234

The prior distributions used are summarized in Table 1 and shown in Figure 2. 235

To simulate phylogenies, we use a simulator implemented in R via the Rcpp package. This is done 236

in a two-step procedure. First, epidemiological trajectories are simulated using the compartmental 237

model in equation 1 and Gillespie’s stochastic event-driven simulation algorithm [46]. The number of 238

individuals in each compartment and the reactions occurring through the simulations of trajectories, 239

such as recovery or transmission events, are recorded. Using the target phylogeny, we know when 240

9

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 27, 2020. ; https://doi.org/10.1101/689158doi: bioRxiv preprint 

https://doi.org/10.1101/689158


sampling events occur. For each simulation, each sampling date is randomly associated to a host 241

compartment using the observed fraction of each infection type (here 68% of the dates associated 242

with ’classical’ hosts type and 32% with ’new’ hosts). Once the sampling dates are added to the 243

trajectories, we move to the second step, which involves simulating the phylogeny. This step starts 244

from the last sampling date and follows the epidemiological trajectory through a coalescent process, 245

that is backward-in-time. Each backward step in the trajectory can induce a tree modification: 246

a sampling event leads to a labelled leaf in the phylogeny, a transmission event can lead to the 247

coalescence of two sampled lineages or to no modification of the phylogeny (if one of the lineages is 248

not sampled). 249

We implicitly assume that the sampling rate is low, which is consistent with the limited number 250

of sequences in the dataset. We also assume that the virus can still be transmitted after sampling. 251

We simulate 71, 000 phylogenies from known parameter sets drawn in the prior distributions 252

shown in Table 1. These are used to perform the rejection step and build the regression model in 253

the Approximate Bayesian Computation (ABC) inference. 254

ABC inference 255

Summary statistics 256

Phylogenies are rich objects and to compare them we break them into summary statistics. These 257

are chosen to capture the epidemiological information of interest. In particular, following an earlier 258

study, we use summary statistics from branch lengths, tree topology, and lineage-through-time 259

(LTT) [30]. 260

We also compute new summary statistics to extract information regarding the heterogeneity of

the population, the assortativity, and the difference between the two R0. To do so, we annotate

each internal node by associating it with a probability to be in a particular state (here the host

type, ‘classical’ or ‘new’). We assume that this probability is given by the ratio

P (Y ) =
number of leaves labelled Y

number of descendent leaves
(2)

where Y is a state (or host type). Each node is therefore annotated with n ratios, n being the 261

number of possible states. Since in our case n = 2, we only follow one of the labels and use the 262

mean and the variance of the distribution of the ratios (one for each node) as summary statistics. 263

In a phylogeny, cherries are pairs of leaves that are adjacent to a common ancestor. There are 264

n(n+ 1)/2 categories of cherries. Here, we compute the proportion of homogeneous cherries for each 265

label and the proportion of heterogeneous cherries. We also consider pitchforks, which we define as 266

a cherry and a leaf adjacent to a common ancestor, and introduce three categories: homogeneous 267

pitchforks, pitchforks whose cherries are homogeneous for a label and whose leaf is labelled with 268

another trait, and pitchforks whose cherries are heterogeneous. 269

The Lineage-Through-Time (LTT) plot displays the number of lineages of a phylogeny over time. 270

In this plot, the number of lineages is incremented by one every time there is a new branch in the 271

phylogeny, and is decreased by one every time there is a new leaf in the phylogeny. We use the 272

ratios defined for each internal node to build a LTT for each label type, which we refer to as ‘LTT 273
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label plot’. After each branching event in phylogeny, we increment the number of lineages by the 274

value of the ratio of the internal node for the given label. This number of lineages is decreased by 275

one every time there is a leaf in the phylogeny. In the end, we obtain n = 2 LTT label plots. 276

Finally, for each label, we compute some of our branch lengths summary statistics on homogeneous 277

clades and heterogeneous clades present in the phylogeny. Homogeneous clades are defined by 278

their root having a ratio of 1 for one type of label and their size being greater than Nmin. For 279

heterogeneous clades, we keep the size criterion and impose that the ratio is smaller than 1 but 280

greater than a threshold ε. After preliminary analyses, we set Nmin = 4 leaves and ε = 0.7. We 281

therefore obtain a set of homogeneous clades and a set of heterogeneous clades, the branch lengths of 282

which we pool into two sets to compute the summary statistics of heterogeneous and homogeneous 283

clades. Note that we always select the largest clade, for both homogeneous and heterogeneous cases, 284

to avoid redundancy. 285

Regression-ABC 286

We first measure multicollinearity between summary statistics using variance inflation factors (VIF). 287

Each summary statistic is kept if its VIF value is lower than 10. This stepwise VIF test leads to the 288

selection of 88 summary statistics out of 234. 289

We then use the abc function from the abc R package to infer posterior distributions generated 290

using only the rejection step. Finally, we perform linear adjustment using an elastic net regression. 291

The abc function performs a classical one-step rejection algorithm [29] using a tolerance parameter 292

Pδ, which represents a percentile of the simulations that are close to the target. To compute the 293

distance between a simulation and the target, we use the Euclidian distance between normalized 294

simulated vector of summary statistics and the normalized target vector. 295

Prior to linear adjustment, the abc function performs smooth weighting using an Epanechnikov 296

kernel [29]. Then, using the glmnet package in R, we implement an elastic-net (EN) adjustment, 297

which balances the Ridge and the LASSO regression penalties [47]. The EN performing a linear 298

regression, it is not subject to the risk of over-fitting that may occur for non-linear regressions 299

(e.g. when using neural networks, support vector machines or random forests). 300

In the end, we obtain posterior distributions for t0, t2, a1, a2, ν, γ1, γ2, R
(1),t1
0 and R

(1),t2
0 using 301

our ABC-EN regression model with Pδ = 0.1. 302

Parametric bootstrap and cross validation 303

Our parametric bootstrap validation consists in simulating 5, 000 additional phylogenies from 304

parameter sets drawn in posterior distributions. We then compute summary statistics and perform 305

a principal component analysis (PCA) on the vectors of summary statistics for the simulated and for 306

the target data. If the posterior distribution is informative, we expect the target data to be similar 307

to the simulated phylogenies. On the contrary, if the posterior distribution can generate phylogenies 308

with a variety of shapes, the target data can be outside the cloud of simulated phylogenies in the 309

PCA. 310

In order to assess the robustness of our ABC-EN method to infer epidemiological parameters of
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our BD model, we also perform a ‘leave-one-out’ cross-validation as in [30]. This consists in inferring

posterior distributions of the parameters from one simulated phylogeny, assumed to be the target

phylogeny, using the ABC-EN method with the remaining 60, 999 simulated phylogenies. We run

the cross-validation 100 times with 100 different target phylogenies. We consider three parameter

distributions θ: the prior distribution, the prior distribution reduced by the feasibility of the

simulations and the ABC inferred posterior distribution. For each of these parameter distributions,

we measure the median and compute, for each simulation scenario, the mean relative error (MRE)

such as:

MRE =
1

100

100∑
i=1

| θi
Θ
− 1 | (3)

where Θ is the true value. 311
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