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Image features computed by specific convolutional artificial
neural networks (ANNs) can be used to make state-of-the-art
predictions of primate ventral stream responses to visual stim-
uli.
However, in addition to selecting the specific ANN and layer
that is used, the modeler makes other choices in preprocessing
the stimulus image and generating brain predictions from ANN
features. The effect of these choices on brain predictivity is cur-
rently underexplored.
Here, we directly evaluated many of these choices by perform-
ing a grid search over network architectures, layers, image pre-
processing strategies, feature pooling mechanisms, and the use
of dimensionality reduction. Our goal was to identify model
configurations that produce responses to visual stimuli that are
most similar to the human neural representations, as measured
by human fMRI and MEG responses. In total, we evaluated
more than 140,000 model configurations. We found that spe-
cific configurations of CORnet-S best predicted fMRI responses
in early visual cortex, and CORnet-R and SqueezeNet models
best predicted fMRI responses in inferior temporal cortex. We
found specific configurations of VGG-16 and CORnet-S models
that best predicted the MEG responses.
We also observed that downsizing input images to ~50-75% of
the input tensor size lead to better performing models compared
to no downsizing (the default choice in most brain models for
vision). Taken together, we present evidence that brain predic-
tivity is sensitive not only to which ANN architecture and layer
is used, but choices in image preprocessing and feature postpro-
cessing, and these choices should be further explored.
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Introduction
In recent years, deep convolutional artificial neural networks
(ANNs) have revolutionized computer vision and achieved
high performance on the ImageNet object recognition chal-
lenge. Many studies in the last several years have demon-
strated considerable similarities between ANNs and brain
representations of objects. Specifically, ANNs predict rep-
resentations of object images in the visual cortex, as mea-
sured in humans via fMRI (e.g. (1)), and MEG (e.g., (2)).
Only a small number of ANN architectures were previously
tested in their ability to predict neural representation in the
human brain (e.g., (1–3)). Here, we assessed the representa-
tional similarity of a wide range of network architectures to

measurements from human brains given specific networks,
input preprocessing strategies, feature pooling mechanisms,
and dimensionality reduction approaches.

Methods
fMRI. Subjects (n=15, two separate groups) had their brain
activity measured with a 3T fMRI scanner while they viewed
two sets of images: 92 colored images of real-world objects
segmented from their backgrounds and presented on a gray
background (data from (4)) and 118 colored images with
backgrounds (data from (2)). Images were presented at the
center of fixation (size: 2.9° visual angle, stimulus duration:
500 ms for 92 images; and size: 4° visual angle, stimulus
duration: 500 ms for 118 images) as the subjects were per-
forming a fixation task. Regions of interest (early visual cor-
tex (EVC) and inferior temporal (IT) cortex) were defined
anatomically in each subject.

MEG. Two groups of subjects viewed the same two sets of
images used for fMRI (N= 15 for each image set) while their
brain activity was measured with MEG (data from (4) and
(2)). The experimental design was similar to the fMRI study
described above. Early (70-90 ms for 92 images, and 100-
120 ms for 118 images) and late (140-160 ms, and 165-185
ms) time windows were used in the analyses. Peak latency
was 82 ms (early) and 150 ms (late) for 92 images and 108
ms (early) and 176 ms (late) for 118 images. For each subject
and time window (early and late), we averaged the represen-
tational dissimilarity matrices (explained below) computed
for each 10ms time window.

Deep Artificial Neural Networks. We considered 33 ANN
architectures from recent neural networks literature (full list
of models is available on www.brain-score.org (5).
All ANNs were trained to classify 1.2 million images into
1000 categories using the ImageNet dataset (6). We extracted
activations from a range of ANNs for the two image sets (de-
scribed above).

Grid search. We performed grid search over network archi-
tectures and input and output parameterizations to find the
models that have the highest correlation with brain represen-
tations (Figure 1). Our goal was to assess to what degree
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these parameters could improve our ability to predict the hu-
man brain responses to natural visual stimuli. Specifically,
we tested the following parameters: input field of view (to
account for the uncertainty over visual extent of input ten-
sor), performing Gaussian blur or adding jitter to images (to
account for adversarial regions), averaging activations across
filter types (depth average, to account for smoothing over
space in fMRI and MEG), averaging activations across the fil-
ter map (spatial average, to account for smoothing over space
in fMRI and MEG), and applying PCA on ANN activations
(to prevent overfitting). We extracted activations for all the
models, layers, and parameter combinations yielding more
than 140,000 candidates.

Representational Similarity Analysis. We computed re-
sponse patterns (based on fMRI, MEG, and ANNs) for each
image. We then computed response-pattern dissimilarities
between each pair of images and placed these in a repre-
sentational dissimilarity matrix (RDM). An RDM captures
which distinctions among stimuli are emphasized and which
are de-emphasized by a particular model or brain region. We
estimated model performance by correlating model and data
RDMs using Spearman correlation.

Results
Track 1: fMRI responses. We assessed the ability of ANNs
to predict EVC and IT fMRI responses for two datasets (92
and 118 images). The model and data similarity scores for
over 140,000 parameter combinations were spread and we
selected the models with the highest similarity score with
brain data (Figure 2). Our goal was to find the best model
that could predict the brain responses regardless of the stim-
ulus set. Therefore we selected models with high similarity
scores across the two datasets. Among the first five models
that have high IT predictivity and are common for the two
datasets is CORnet-S (Figure 3). CORnets (7) have an archi-
tecture that approximates the number and size of visual areas
in the macaque brain. CORnet-S is a recurrent ANN with
skip connections. For EVC, models with good predictivity
are SqueezeNet v1.1 and CORnet-R. SqueezeNet is an ANN
with AlexNet-level accuracy but with 50x fewer parameters.

Track 2: MEG responses. We correlated each model with
early and late time windows in MEG responses. Averaged
early MEG responses are best predicted by VGG-16 and
CORnet-S. Averaged late MEG responses are best predicted
by CORnet-S and MobileNet v1 1.0 160. MobileNets are
light-weight ANNs whose architecture uses depth-wise sep-
arable convolutions.

Trends in the most predictive models. We observed
some qualitative trends in the top performing models, and
report them informally here:

• The best input field of view for most of the top models
is 0.5, meaning the images occupy half of the models’
inputs.

• Blur or jitter added to the images seem to be beneficial.

• All models that best predict EVC have depth averag-
ing.

• PCA does not seem to be beneficial.

We combined the five best model RDMs and averaged them,
which resulted in one combined model per dataset. We used
these models to make a single submission to the Algonauts
challenge (8), a competition aimed at finding models that best
predict human fMRI and MEG brain representation.

Discussion
In summary, our results suggest that there is a certain class
of models that is consistently among the best models that
predict brain responses in fMRI and MEG - CORnets. We
also found that priors on image size and presence of blur or
jitter in images seem to have a positive effect on the pre-
dictivity of brain representations. A more detailed analysis
is needed to determine to what extent each of the tested pa-
rameters beyond network architectures (input preprocessing
strategies, feature pooling mechanisms, and dimensionality
reduction approaches) contributes to predicting brain repre-
sentations. It is possible that some of the parameters may
be more relevant to certain brain areas but not others (e.g.,
depth averaging seemed to be beneficial for EVC but not IT).
Our approach could be useful to define a set of parameters
to be used to predict representations in a given brain area or
modality, establishing a new ANN processing pipeline in the
field.
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Fig. 1. Grid search over parameters. Parameters for image preprocessing included varying the model input field of view and adding or not blur or jitter to the images.
We extracted activations for two sets of images (92 and 118 images) from a range of networks and layers after each computational block in a network. We either left the
activations as they were or added spatial and/or depth averaging. We either applied, or did not apply (PCA) on the activations. We computed RDMs for activations from each
grid condition. Finally, we correlated RDMs with fMRI RDMs (EVC and IT) or MEG RDMs (early and late timepoints) and obtained the similarity scores. We noise corrected
the scores for each dataset (92 or 118) images and averaged the scores across the two datasets to obtain a mean score. We combined five RDMs with the best scores into
one averaged RDM.
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Image Scale Image Noise DNN Layer Spatial Pooling Depth Average PCA Score (R)

fMRI EVC

50% blur CORnet-S V2.output-t0 to 16x16 yes no 0.3734
50% blur CORnet-S V2.output-t0 none yes no 0.3722
50% none CORnet-S V2.output-t0 to 16x16 yes no 0.3711
50% jitter CORnet-S V2.output-t0 to 16x16 yes no 0.3710
50% jitter CORnet-S V2.output-t0 none yes no 0.3700

fMRI IT

50% blur SqueezeNet1.1 features.11 to 4x4 no no 0.1257
50% jitter SqueezeNet1.1 features.11 to 4x4 no no 0.1246
75% blur CORnet-R IT.output-t3 to 4x4 no no 0.1227
75% blur CORnet-R IT.output-t3 to 8x8 no no 0.1227
75% blur CORnet-R IT.output-t3 to 16x16 no no 0.1277

MEG (early)

50% jitter VGG-16 block3_pool to 16x16 no no 0.4796
50% none VGG-16 block3_pool to 16x16 no no 0.4779
50% blur VGG-16 block3_pool to 16x16 no no 0.4752
50% blur CORnet-S V2.output-t0 to 16x16 yes no 0.4730
50% jitter CORnet-S V2.output-t0 to 16x16 yes no 0.4722

MEG (late)

75% blur CORnet-S V2.output-t0 to 16x16 yes no 0.4488
50% none CORnet-S V2.output-t0 to 16x16 yes no 0.4378
75% blur CORnet-S V2.output-t0 none yes no 0.4366
50% jitter MobileNet v1 Conv2d 3 none no no 0.4363
50% jitter CORnet-S V2.output-t0 to 16x16 yes no 0.4359

Table 1. Best model information. We identified the five best models with the highest average score across the two datasets (92 and 118 images) for each data type (fMRI
EVC, fMRI IT, early MEG, and late MEG). The best model and layer names are provided in the table together with their parameter specifications. Parameters of the images
included image scale and the presence or absence of jitter and blur. Parameters of the ANN activations included spatial pooling, depth averaging, and applying PCA.

Fig. 2. Distribution of correlation values for model and data RDMs for grid search
conditions for predicting IT (92 images).
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