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Abstract 

High-dimensional data are becoming increasingly common in nearly all areas of science. Devel-

oping approaches to analyze these data and understand their meaning is a pressing issue.  This is 

particularly true for the rapidly growing field of single-cell RNA-Seq (scRNA-Seq), a technique 

that simultaneously measures the expression of tens of thousands of genes in thousands to mil-

lions of single cells.  The emerging consensus for analysis workflows reduces the dimensionality 

of the dataset before performing downstream analysis, such as assignment of cell types.  One 

problem with this approach is that dimensionality reduction can introduce substantial distortion 

into the data; consider the familiar example of trying to represent the three-dimensional earth as 

a two-dimensional map.  It is currently unclear if such distortion affects analysis of scRNA-Seq 

data sets.  Here, we introduce a straightforward approach to quantifying this distortion by com-

paring the local neighborhoods of points before and after dimensionality reduction.  We found 

that popular techniques like t-SNE and UMAP introduce significant distortion even for relatively 

simple geometries such as simulated hyperspheres.  For scRNA-Seq data, we found the distor-

tion in local neighborhoods was greater than 95% in the 2- and 3-dimensional space typically 

used for downstream analysis.  This high level of distortion can readily introduce important er-

rors into cell type identification, pseudotime ordering, and other analyses that rely on local rela-

tionships.  We found that principal component analysis can generate accurate embeddings of the 

data, but only when using dimensionalities that are much higher than typically used in scRNA-

Seq analysis.  We suggest approaches to take these findings into account and call for a new gen-

eration of dimensional reduction algorithms that can accurately embed high dimensional data in 

its true latent dimension.  
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Introduction 

Technological advances over the past century have enabled collection and analysis of 

data sets of unprecedented size and complexity.  In geology, a modern assay might report the 

concentrations for over fifty elements from a single sample1; in climatology, measurements of 

sea surface temperature and the strength of zonal winds can be obtained simultaneously from 

hundreds of different sensors at any given point in time2; in cell and molecular biology, sequenc-

ing technologies have scaled up the throughput and resolution of genome data in populations3, 4 

and gene expression levels in cells5, 6, into many thousands of dimensions in the case of single 

cell RNA-Seq (scRNA-Seq).  Future technologies will doubtlessly expand the numbers of di-

mensions detected in complex systems by orders of magnitude. 

While such datasets promise to provide greater insight into the problems being studied, 

high-dimensional data are also more difficult to analyze.  The computational complexity of many 

data analysis algorithms scales exponentially with the dimensionality of the dataset, statistical 

inference often becomes difficult as dimensionality increases, and algorithms that work in lower 

dimensions become intractable in higher-dimensional spaces7, 8.  This is often referred to as the 

“curse of dimensionality”. The aim of dimensionality reduction is to reduce the dimensionality of 

the problem while retaining as much of the relevant information as possible– ideally all of it. It 

has become an indispensable tool for the rapidly growing number of scRNA-Seq studies. 

Dimensionality reduction has a long history9, 10.  Principal Component Analysis (PCA) is 

perhaps the oldest and most common linear approach, but many alternative approaches to linear 

dimensionality reduction exist as well, such as Non-negative Matrix Factorization (NMF) and 

Independent Component Analysis (ICA)9, 11.  These algorithms are useful in a broad class of 

problems.  However, linear approaches may be insufficient when the data display significant 
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nonlinear characteristics12.  In such situations, one often adopts a “manifold” assumption, which 

posits that the data can be modeled as smoothly varying local neighborhoods of dimension sig-

nificantly lower than the ambient space13.  A large number of Nonlinear Dimensionality Reduc-

tion (NDR) techniques have been developed to approximate these manifolds14-17, including popu-

lar visualization methods like t-distributed Stochastic Neighbor Embedding (t-SNE)18 and Uni-

form Manifold Approximation and Projection (UMAP)19.  Collectively, the use of NDR tech-

niques is often referred to as “manifold learning”13. 

In NDR techniques, one specifies the dimension of the resulting representation of the 

data.  For example, if we use t-SNE to reduce the dimension of scRNA-Seq data, we tell the al-

gorithm the number of dimensions that we want in the end.  Unfortunately, the appropriate (or 

latent) dimensionality needed to correctly represent any given data set is generally not known a 

priori.  A natural choice for visualization purposes is to choose two dimensions, since that kind 

of representation is easy to reproduce in the format of a figure.  In the analysis of scRNA-Seq 

data, two dimensions are commonly used not just for visualization but also for downstream anal-

yses ranging from cell type clustering (Fig. 1a) to “pseudotime” ordering20.  Currently, it is un-

clear just how much character of the original data is being lost in the reduction of data on the or-

der of 20,000 dimensions, typical for scRNA-Seq in many species, to two dimensions.  Even 

when more dimensions are employed, the amount of information preserved in the dimensionality 

reduction step is not obvious.  Because thousands or millions of cells can be characterized using 

scRNA-Seq, the resulting datasets are often massive, and dimensionality reduction is generally 

considered a necessary step in the analysis. 

In order to understand the issues that might be introduced through dimensionality reduc-

tion, consider the familiar problem of making a 2-D map of the entire surface of the Earth.  
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Doing this requires “slicing” the earth along some axis in order to unfold it into a map; this is 

commonly done in a line through the Pacific, since few landmasses are disrupted by this cut.  

Then, the mapmaker must either increase the relative size of landmasses near the poles or slice 

the map again in order to project the globe into two dimensions.  Regardless of technique, the 

globe cannot be represented in two dimensions without slicing and distorting the map in some 

way, which has led, for instance, to popular criticisms of the Mercator Projection.  While distor-

tion of distance and area are of course important, perhaps more concerning is the fact that the 

discontinuous slices mentioned above take points that are nearby (e.g. two points in the Pacific) 

and place them on opposite sides of the map.  This means that the local neighborhoods of many 

of the points on the globe are completely different between the Earth itself and the 2-D represen-

tation. 

 With this observation in mind, it becomes apparent that there is no guarantee that high 

dimensional data sets, such as those associated with single cell genomics, can be represented in 

two dimensions without introducing analogous discontinuous slices into the data.  Even tech-

niques that attempt to objectively find a lower-dimensional representation using more than two 

dimensions, such as the common scree (elbow) plot technique in PCA to choose the directions 

that capture most of the variation in the data21, could also suffer from similar problems.  Yet, lit-

tle analysis has been done to elucidate the extent to which NDR techniques introduce discontinu-

ities into reduced-dimensional representations. 

 We approached this problem by applying a simple metric, inspired by the above meta-

phor of the globe, to quantify the extent to which any given dimensionality reduction technique 

discontinuously slices or folds the data in some way.  This metric is based on comparing the lo-

cal neighborhood of a point in the original data with the local neighborhood of that same point in 
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the reduced-dimensional space using the Jaccard distance22.  We first applied this approach to the 

simple problem of embedding points on the surface of a hypersphere (which is a straightforward 

generalization of the sphere to more than three dimensions) into the appropriate latent dimension 

from a higher-dimensional space.  We found that many popular techniques, such as t-SNE and 

UMAP, not only introduced discontinuous slices into the data when trying to embed hy-

perspheres into two dimensions, but also when trying to embed into the correct latent dimension.  

Indeed, we failed to identify an NDR technique currently in widespread use for analysis or visu-

alization of scRNA-Seq data that could successfully embed hyperspheres above approximately 

10 dimensions. 

 We then used our metric to analyze how dimensionality reduction affects analysis of 

scRNA-Seq data.  When embedding into 2 dimensions, we found that commonly-used tech-

niques disrupt 95-99% of the local neighborhoods in the data.  Even when embedding into higher 

dimensions, NDR techniques generally introduced substantial discontinuity into the data.  These 

discontinuities have important consequences for any approach that uses local neighborhoods for 

inference in scRNA-Seq data, including clustering and pseudotime ordering20.  We found that 

PCA could find a true embedding for some data sets by using many more dimensions than are 

typically obtained through analysis of scree/elbow plots. 

Our results demonstrate that, regardless of the technique used to reduce dimensionality, 

the majority of the local structure of high-dimensional data is lost when compressed into two di-

mensions.  This implies that any analysis based on a 2-dimensional representation of the data in-

troduces substantial bias into interpretations of the results.  We show that NDR techniques do not 

generate valid embeddings even for simple manifolds, and that the distortion introduced by NDR 

techniques applied to existing scRNA-Seq datasets can significantly alter the results of 
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downstream analyses like cell type clustering and pseudotime ordering.  Our findings suggest 

straightforward guidelines for evaluating the quality of a lower-dimensional representation of 

scRNA-Seq data.  Nevertheless, it is clear that new NDR techniques are needed that can reliably 

produce true topological embeddings, or, at least, closer approximations than current techniques 

can produce.  We expect that the metric and approach introduced here will be helpful in evaluat-

ing and developing more effective approaches to the problem of manifold learning and analysis 

of scRNA-Seq or other high-dimensional data. 

Results 

Quantifying discontinuities introduced by dimensionality reduction 

 The goal of NDR is to learn a representation of a data set that has fewer features, but still 

retains the bulk of the information contained in the data.  The extent to which the representations 

created by dimensionality reduction techniques actually preserve information is often illustrated 

with toy datasets such as the swiss roll (Fig. 1b).  This example tests the ability of NDR tech-

niques to represent the three-dimensional swiss roll data set in two dimensions while preserving 

the local structure of the original dataset (as can be seen here by the preservation of the “rain-

bow” pattern in the t-SNE representation).  Most NDR techniques perform well on this task be-

cause a swiss roll is just a “rolled up” two-dimensional plane – a relatively simple transformation 

of a plane into a three-dimensional object.  However, many objects, like the sphere in Fig. 1c, 

cannot be represented in 2-D without introducing significant distortion in local neighborhoods.  

This results in a notable scattering of the rainbow pattern (Fig. 1c). 

 Mathematically, a mapping from a high dimension to a lower dimension that (locally) 

preserves the structure of the data is called an embedding: technically, this a bijective map that is 

continuous in both directions (also called a homeomorphism).  For topological spaces, a key 
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mathematical property of an embedding is that it is continuous, and a consequence of that conti-

nuity is that local neighborhoods (e.g. the rainbow pattern in Fig. 1c) are preserved.  For a swiss 

roll, NDR techniques like t-SNE can usually find an embedding, or something close to one.  For 

a sphere, however, NDR finds a representation of the data in two dimensions that is not, strictly 

speaking, an embedding. 

It is clear from the simple example in Fig. 1c that a major problem with trying to embed a 

sphere in 2-D is that this is impossible to do without introducing discontinuities into the resulting 

representation.  In the context of experimental scRNA-Seq data, this means that the local struc-

ture of the data may be lost in the dimensionality reduction, and error (possibly large error) could 

be introduced into any analysis that happens downstream of NDR.  This is particularly problem-

atic because we do not know a priori what the true dimension of a particular scRNA-Seq data set 

might be.  Previous work on quantifying distortion in NDR has focused on the notion of Euclid-

ean distance19, 23, which is the formulation of distance most of us are familiar with.  However, 

quantifying the extent of the loss of structure caused by NDR is difficult using Euclidean dis-

tance, because it is not necessarily correlated with distortion in the local structure of the data.  

For example, a 2-D representation of the swiss roll might be stretched out, greatly distorting the 

Euclidean distance, while still maintaining the rainbow structure depicted in Fig. 1c and thus 

providing a true embedding.  This suggests the need to develop alternative approaches to quanti-

fying distortion in NDR, particularly focused on characterizing discontinuities that may be intro-

duced by dimensionality reduction techniques. 

For any point in the swiss roll, the neighborhood of other points that are nearest to it are 

roughly the same in three dimensions and in the t-SNE representation in two dimensions (Fig. 

1b).  The two-dimensional representation of the sphere, on the other hand, gives noticeably 
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different sets of nearest neighbors to many points (Fig. 1c).  We thus developed a straightforward 

metric based on quantifying how similar the sets of neighbors are around each point between the 

original, high-dimensional data in the ambient space, and the low-dimensional representation.  

First, we find the k-nearest neighbors for each point in the original data.  We call this set A (see 

Fig. 1d).  Next, we find the k-nearest neighbors in the lower-dimensional space.  We call this set 

B.  We compare these two sets using a measure of dissimilarity called the Jaccard distance (Fig. 

1e).  Calculating the Jaccard distance involves computing the size (or cardinality) of the symmet-

ric difference between A and B: the symmetric difference is just the set of points that are in A or 

B, but not both.  This is equivalent to subtracting the number of points in the intersection be-

tween A and B from the number of points in the union (Fig. 1e).  The Jaccard distance is the ratio 

of the size of this symmetric difference to the total number of points in A and B together (i.e. the 

number of points in the union between A and B).   

If A and B are identical sets, meaning the neighbors of the point in the high-dimensional 

data and the low-dimensional representation are the same, then the Jaccard distance is 0.  If A 

and B are completely different sets (i.e. the neighbors around this point completely change) then 

the Jaccard distance is 1. It is easy to prove that, for a true topological embedding the Jaccard 

distance will be zero for every point in the dataset (Supplemental Info); in other words, in a true 

embedding all local information is preserved.  To characterize the global “distance” of any low-

dimensional representation from this ideal, we first compute the Jaccard distance for all the 

points in the data set and then average these values.  We refer to this quantity as the Average Jac-

card Distance (AJD), and it gives a value of 0 for a true embedding, 1 for a representation that 

retains none of the information about the local structure of the data for any point in the data set, 

and intermediate values for a representation that retains part of the information. 
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Fig.  1.  (a)  A schematic of some scRNA-Seq workflows.  The gene expression data are stored 
as a matrix, with each row corresponding to a cell, and each column correspond to a gene (after 
correcting for UMI swapping).  The data undergo dimensionality reduction, and analysis is per-
formed on the lower-dimensional representation of the data.  (b)  The “swiss roll” data set.  t-
SNE is able to reduce the data into two dimensions without altering the local structure of the 
data.  (c)  A sphere data set.  t-SNE is unable to represent the 3-dimensional object in 2 dimen-
sions without disrupting the local structure of the data.  (d)  An illustration of how NDR distorts 
local neighborhoods.  The red points are the k-nearest neighbors of a single point in the 3-dimen-
sional space.  The blue points are the k-nearest neighbors of the same point in the t-SNE-gener-
ated 2-dimensional representation.  The violet points are the intersection between the red points 
and the blue points.  (e)  The Jaccard Distance is a method for quantifying the disruption in local 
neighborhoods pictured in d. 
 
 
Testing on Synthetic Data 

To test the usefulness of AJD, we first applied the metric to a problem where we know a 

priori the appropriate embedding dimension for the data set.  Specifically, we created synthetic 

data for hyperspheres of varying dimension.  A hypersphere is a manifold that represents a 
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straightforward generalization of the standard 3-dimensional sphere to higher numbers of dimen-

sions; it is just a collection of points in some n-dimensional space that are all the same distance 

from a central point (that distance is the radius of the sphere).  In two dimensions this is a circle, 

in three dimensions a sphere, and in higher dimensions a hypersphere.  We used a simple algo-

rithm to sample uniformly from the surface of a hypersphere in n dimensions; for simplicity we 

used the origin of the space as the central point, and we set the radius of the hypersphere to 1 

(see Methods).  It is mathematically impossible to embed an n-dimensional sphere generated this 

way in less than n dimensions, so we called n the “latent dimension” of the data.  To see if NDR 

techniques could generate a true embedding of the data into n dimensions, we first embedded our 

hyperspheres into a 100-dimensional ambient space.  To demonstrate how we did this, take the 

case of a 20-dimensional hypersphere.  If we sample points from that hypersphere, each one of 

those points is characterized by a vector of 20 numbers.  We can trivially embed those points into 

a 100-dimensional space by just adding 80 zeroes to the end of those vectors (see Methods and 

Supporting Info). 

We used the approach above to generate synthetic 100-dimensional datasets with 1000 

points sampled from hyperspheres of known latent dimension.  We then used multiple NDR 

techniques to embed this dataset into each lower dimension from 1 to 100.  We hypothesized that 

the AJD would be zero for every dimension above the latent dimensionality n of the manifold 

that we had generated.  Surprisingly, however, we found that the AJD did not reach 0 for hy-

perspheres with n ≥ 10 for any NDR technique that we tried when we used a neighborhood size 

of k = 20 (see Fig. 2a and Supporting Info).  In the case of the popular technique t-SNE, for in-

stance, the embeddings it produced generally had AJDs of greater than 0.75, regardless of both 

the latent dimension of the hypersphere and the embedding dimension used for the t-SNE 
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algorithm.  Other techniques, such as Isomap and Spectral Embedding12, 14 exhibited clear min-

ima in the AJD at the appropriate latent dimension, but still produced embeddings with signifi-

cant distortion.  Changing the size of the neighborhood between 10 and 100 points did not signif-

icantly alter these findings (Supporting Info).  This result is particularly striking because we 

know that it is possible to embed a 20-dimensional hypersphere into a 20-dimensional space 

without any distortion at all (corresponding to an AJD of 0).  Indeed, for the case of this particu-

lar synthetic dataset there is a trivial mapping that results in a true embedding and an AJD of 

zero in the latent dimension, but none of the commonly used techniques that we tested success-

fully recovered it. 

We hypothesized that the datasets were too small, and that an increased sample size 

might allow the algorithms to find a proper embedding.  Although increasing the sample size cre-

ated a more pronounced local minimum at the latent dimension for some techniques (Fig. 2b), 

the AJD at the latent dimension never dropped below a certain level:  this minimum was invari-

ant to increases in sample size of points on the sphere (Fig. 2c). In the case of MDS, increasing 

sample size resulted in more distorted representations at the latent dimension.  Again, these sim-

ulated datasets represent what should be a relatively trivial problem for manifold learning. The 

fact that no nonlinear dimensionality reduction technique could find even this simple mapping 

raises questions about the accuracy of the approximate “embeddings” generated by NDR and the 

effects that distortion might have on the analysis of scRNA-Seq and other high-dimensional data. 

Measuring Distortion in scRNA-Seq Studies 

To address these questions, we identified state-of-the-art scRNA-Seq studies24, 25 and an-

alyzed the effect of NDR on the analysis of these data.  First, we looked at a study of Hydra cells 

by Siebert et al.24.  For this dataset, we selected one of the largest cell type clusters defined in the  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/689851doi: bioRxiv preprint 

https://doi.org/10.1101/689851
http://creativecommons.org/licenses/by-nc-nd/4.0/


Cooley et al. 2019 13 

 

Fig.  2.  (a)  The Average Jaccard Distance (AJD) for points randomly sampled from the surface 
of hyperspheres of varying dimension embedded in dimensions 1-100.  The AJD is lowest when 
the latent dimensionality of the manifold is lowest.  (b)  The effect of sample size on Average 
Jaccard Distance.  Although the shape of the curve more clearly indicates the latent dimensional-
ity of the manifold, the distortion in local structure (AJD) does not improve with increased sam-
ple size.  (c)  The Average Jaccard Distance as the sample size increases from 100-5000 points.  
The distortion created by the embedding is mostly independent of sample size.  (The latent di-
mension of these datasets was 20, and the ambient dimension of these datasets was 100.)  
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study (1,778 cells), an endodermal epithelial stem cell, and reduced the gene expression data cor-

responding to these cells into dimensions ranging from 1 to 100 (Fig. 3 a, b).  The AJD for these 

low-dimensional representations never dropped below 0.5, and for the most commonly used 

number of dimensions for analysis and visualization, 2 and 3, the AJD was close to one, regard-

less of the technique employed.  In other words, mapping the data down to 2 or 3 dimensions in-

troduces so much distortion that nearly every point in the dataset has a completely different 

neighborhood in the NDR representation compared to the original data.  Above 100 dimensions, 

many techniques, such as Spectral Embedding, exhibited numerical instabilities and could not be 

used.  For those NDR techniques that consistently worked above 100 dimensions, we attempted 

embedding the data in dimensions ranging up to 1400 (Fig. 3b) but did not find any indication of 

approaching a true embedding (AJD≈0). As a control, we used PCA and found that the AJD 

only approached zero when the embedding dimension approached the number of cells in the 

cluster (~1,750 see Fig. 3b).  The number of cells sets the absolute limit of the number of dimen-

sions that PCA can find, indicating that even PCA cannot find a meaningful reduction of the di-

mensionality in this particular case (see Supporting Info). 

We next looked at a large study conducted by Cao et al.25 in mice. We again selected one 

of the largest cell type clusters, in this case corresponding to a particular subcluster of excitatory 

neurons with around 10,000 total cells and used common NDR algorithms to represent the data 

in dimensions ranging from 1-100 (Fig. 3c).  We found that NDR representations of the data 

demonstrated even higher AJD values than the Hydra case, and that AJD only approached zero 

with PCA when the embedding dimension was approximately 10,000 (Fig. 3d), which again was 

close to the number of cells in the cluster. 
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These results indicate that dimensionality reduction likely introduces significant distor-

tion into data not only reduced to two dimensions, which is commonly used for visualization and 

some data analysis, but even in higher-dimensional representations of the data.  As some degree 

of dimensionality reduction is an integral part of essentially every scRNA-Seq data analysis 

pipeline, it is unclear how accurate the results of most scRNA-Seq analysis are. 

Evaluating the Effect of NDR Distortion 

Although the distortion in local neighborhoods caused by NDR is quite high when the 

techniques are applied to scRNA-Seq data, it is unclear if these effects are mostly local, or if the 

problem is more global in nature.  In other words, it is possible that, within some local region of 

the data, NDR is essentially moving points around within the region.  This would lead to an AJD 

near one with a neighborhood size of ~20 but may not significantly affect analyses like cell type 

clustering.  Alternatively, the distortion caused by NDR might move points over large distances, 

as in the example with the sphere discussed above (Fig. 1c).  More global changes like this could 

introduce more significant errors into cell type clustering and other analyses. 

To test this, we first considered how the AJD changes as a function of the neighborhood 

size used to calculate the Jaccard distances.  If the distance goes to 0 at a relatively small neigh-

borhood size (say, around 100 or so), this would imply that the distortion due to NDR is primar-

ily local.  If not, it implies that the distortion is more global.  We applied this analysis to hy-

perspheres, and found that, for many techniques including t-SNE and UMAP, the AJD did not 

approach 0 until we included the majority of the data set in the neighborhood even at the latent 

dimension, indicating that the distortion in the case of hyperspheres is global in nature (see Sup-

porting Info).  We applied a similar analysis to the endothelial cell cluster from the Siebert et al. 

Hydra dataset24.  Because we do not know the “true” latent dimension for this dataset, we chose  
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Fig.  3.  scRNA-Seq data from Hydra (Siebert et al.24) and mouse (Cao et al.25).  (a)  The Aver-
age Jaccard Distance of representations in embedding dimensions from 1-100 of Hydra data us-
ing various techniques.  (b)  The Average Jaccard Distance of representations in embedding di-
mensions from 1-1400 in Hydra data using various techniques.  Note that the t-SNE and PCA re-
sults are essentially identical; this is likely because t-SNE begins with a PCA embedding and the 
subsequent steps of t-SNE do not alter the embedding much in this case.  (c)  The Average Jac-
card Distance of representations in embedding dimensions from 1-100 in mouse data using vari-
ous techniques.  (d)  The Average Jaccard Distance of representations in embedding dimensions 
from 1-14,000 in mouse data using PCA (other techniques were too computationally costly at 
these dimensionalities).  
 

to use two dimensions, the typical dimensionality for visualization and, frequently, data analy-

sis20.  Here we also found that the AJD did not fall to 0 until we computed the Jaccard Distance 

using the entire cell type cluster, which indicates that the distortion due to NDR is global in na-

ture (Fig. 4a). 

The above analyses were performed on minimally-processed scRNA-Seq data where the 

raw counts were just corrected for doublets, batch effects, and other common sources of 
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technical noise in the scRNA-Seq experiment.  In practice, NDR is rarely used on this type of 

relatively unprocessed scRNA-Seq data.  In particular, transcript counts for each cell are often 

reduced to a subset of “Highly Variable Genes” (HVGs) that display significantly more variabil-

ity between cells in the experiment than one would expect according to some null model. Reduc-

tion of the gene set to HVGs is itself a form of dimensionality reduction.  Next, the data are sub-

jected to linear dimensionality reduction.  Often a scree plot is used to select the embedding di-

mension for PCA.  Clustering is performed after this linear reduction, and nonlinear reduction is 

used for visualization of the results.  It is common for developmental “pseudotime trajectories” 

to then be derived from the data after NDR26, 27.  This is done by constructing a minimum span-

ning tree across the reduced data set and ordering cells using this tree20. 

Such analysis pipelines clearly entail several dimensionality reduction steps, and our re-

sults above indicate that severe distortion is likely introduced at each step.  We thus sought to an-

alyze the consequences of this distortion on the results of a typical analysis pipeline applied to 

the Siebert et al. Hydra data. We used the Seurat package in R28 to perform these analyses, par-

tially because of the popularity of the package and partially because the original analysis of the 

data was performed using Seurat24. Using the scree plot, we estimated the “elbow” in the amount 

of variance explained occurred at a dimension of 12 in PCA, so we choose that as the embedding 

dimension for the linear dimensionality reduction step in the pipeline (see Supporting Info).  We 

first computed the AJD between each step in the standard pipeline.  As expected based on our 

findings above, each step of dimensionality reduction introduces significant distortion, with AJD 

values between the original data and the processed data above 0.9 for almost every step (Table 

1).  Clearly, the local structure of the data is almost entirely lost downstream of the final NDR 

step.  
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Fig.  4.  (a)  The Average Jaccard Distance as a function of k-nearest neighbors used to compute 
Jaccard distance for the Siebert et al. data24.  The effect of distortion is not just limited to local 
neighborhoods.  (b)  The Graph Edit Distance between a minimum spanning tree constructed in 
the ambient space and a minimum spanning tree constructed in the NDR-reduced representation.  
The dotted line corresponds to a random embedding that retains none of the original information. 
(c)  Adjusted Rand Index values between each stage of a typical scRNA-Seq analysis applied to 
the Hydra data from Siebert et al.  Note that here we employ all the cells in their data set, not just 
the cells from the largest cluster that they identified.  The opacity of the ellipse corresponds to 
the ARI and hence the similarity of the lower-dimensional representation to the raw data.  The 
thickness and opacity of the arrows correspond to the value of the ARI.  (d)  The result of clus-
tering of scRNA-Seq data in the original, ambient dimension (left), and the result using the same 
clustering algorithm with the same parameters on PCA-reduced representation of the data.  Only 
a subset of the points is colored for clarity.  The graphs were produced using t-SNE for the pur-
pose of visualization only, as the t-SNE embedding loses much of the structure of the data.  
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One of the most common applications of scRNA-Seq analysis is in the identification of 

distinct cell types in the data, which is usually done by clustering the cells after dimensionality 

reduction has been performed24, 25, 29.  We used the standard Adjusted Rand Index (ARI) to quan-

tify the similarity of the clusters obtained from each step along the data analysis pipeline.  Be-

cause clustering only makes sense in the case where there are multiple distinct cell types, we ap-

plied this analysis to all 24,458 cells in the Hydra data set rather than the ~1,700 endothelial cells 

we focused on above.  We obtained clusters using the standard procedure in Seurat (see Meth-

ods).  As can be seen from Fig. 4c the clusters obtained from the minimally processed data and 

clusters obtained from Seurat’s HVGs completely agree (ARI = 1).  Thus, while reducing the da-

taset to HVGs does disrupt local neighborhoods (Table 1), this disruption is not sufficient to 

change the clustering of cells into cell types. Reducing to HVGs therefore likely introduces local, 

but not global, distortions. 

Table 1. Average Jaccard distance (AJD) between the minimally processed (raw) Hydra scRNA-
Seq dataset and the data after various processing steps. 

Analysis Step AJD from 
Raw Data 

Highly-Varying 
Genes 0.96 

PCA 0.88 
t-SNE 0.94 

 

Clustering is not usually performed directly after identification of HVGs.  Instead, it is 

common to use the elbow/scree plot to choose a number of dimensions for PCA and cluster 

based on the PCA-transformed data.  We see that the ARI between the HVG data set and the 

PCA-based clusters is ≈0.6, indicating significant divergence between the clusters produced in 

both cases.  This effect is visualized in Fig. 4d, where a cluster obtained in the HVG data is visu-

alized using t-SNE, demonstrating a notable difference in how cells are classified into different 
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cell types.  Clustering after using t-SNE to reduce to 2 dimensions results in even greater 

changes in clusters, with an ARI of ≈0.3 (Fig. 4c).  Overall, these results suggest that distortion 

introduced by both linear and non-linear dimensionality reduction can significantly change the 

classification of cells into specific cell types based on clustering in scRNA-Seq data. 

Pseudotime ordering attempts to use cells captured at various points along a differentia-

tion or developmental trajectory to infer the underlying trajectory itself20.  A key step in this 

analysis is the calculation of a minimum spanning tree that connects the beginning and end point 

in the trajectory.  This tree is formed by linking cells in close proximity to each other to form a 

graph, typically after NDR is performed.  Because NDR readily changes both the local and 

global relationships between cells in the data set (Fig. 3 and 4a), we hypothesized that the trees 

produced by analyzing data after NDR would not closely resemble trees formed using the origi-

nal data.  To test this, we calculated the graph edit distance between trees formed from the raw 

data and after various NDR techniques were used to project the data into a variety of different 

dimensions (Fig. 4b).  For comparison, we also generated a random embedding by simply as-

signing each cell to a random point in the reduced-dimensional space (see Methods).  The graph 

edit distances obtained from the NDR techniques and from the random embedding are similar 

until embedding dimensions of ~100 are reached (Fig. 4b).  Even above 100 dimensions, the im-

provement in the graph edit distance relative to a random embedding is not very large.  Because 

pseudotime trees are usually built using 2- or 3-dimensional representations based on t-SNE, 

UMAP or similar techniques20, our findings suggest that distortion caused by NDR could have a 

large effect on the results. 
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Methods 

Average Jaccard Distance 

For each data point, the neighborhood consisting of the nearest k-neighbors were found in 

the ambient space, call this set A, and the NDR-reduced space, call this set B, using 

sklearn.neighbors.NearestNeighbors.  We employed the ball-tree algorithm in both cases.  To 

calculate the Jaccard distance between A and B, we used the usual definition: 

𝐽#(𝐴, 𝐵) =
|𝐴 ∪ 𝐵| − |𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|  

The Average Jaccard Distance was calculated by taking the arithmetic mean of the Jaccard dis-

tance for every point. 

Sampling of Hyperspheres 

To create a synthetic dataset consisting of m samples an n-dimensional spherical mani-

fold in d-dimensional space, we used the following method:  For each of the m data points, we 

sampled from a uniform distribution over (-1,1) n times (using the Python method random.uni-

form).  These samples became the first n coordinates of a vector.  The remaining n+1 to d coordi-

nates were filled with zeros.  We then normalized each vector to length 1.   

Dimensionality Reduction 

We executed dimensionality reduction with t-SNE, Isomap, PCA, Spectral Embedding, 

Multidimensional Scaling, LLE, and LTSA using the implementations in Scikit-learn30.  For the 

methods UMAP and diffusion maps, we used umap-learn19 and pydiffmap31, respectively.  We 

implemented PCA using sklearn.decomposition.PCA.  We used default parameters except where 

otherwise noted. 
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scRNA-Seq Data 

The study from Siebert et. al. is published on the Broad Institute’s single cell portal: 

https://portals.broadinstitute.org/single_cell/study/SCP260/stem-cell-differentiation-trajectories-

in-hydra-resolved-at-single-cell-resolution. 

The study from Cao et. al. is published on The Gene Expression Omnibus: 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE119945  

The .txt files were converted to .csv files corresponding to individual clusters, and the data were 

loaded into Python pandas (https://pandas.pydata.org/) dataframes for dimensionality reduction. 

Minimum Spanning Tree and Graph Edit Distance 

The minimum spanning tree in the ambient space, mst1, and the minimum spanning tree 

in the NDR-reduced space, mst2, were constructed using the Python function 

scipy.sparse.csgraph.minimum_spanning_tree.  The graph edit distance was calculated in Python 

according to the following equation: 

𝐺𝐸𝐷(𝑚𝑠𝑡4,𝑚𝑠𝑡5) = min
{:;,…,:=}∈@(ABC;,ABCD)

E𝑐(𝑒H)
I

HJ4

	 

Where 𝑃(mst4,mst5) is the set of edit paths transforming mst1 into mst2 and 𝑐(𝑒H) is the cost of 

each graph edit operation 𝑒H.  The cost of deleting a vertex and the cost of adding a vertex were 

both weighted as 1. 

As a control, a random embedding was created by sampling coordinates from a uniform 

distribution between -1 and 1.  The minimum spanning tree was then computed on this random 

embedding and the Graph Edit Distance was calculated between this tree and the minimum span-

ning tree constructed in the ambient space.  
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Adjusted Rand Index 

The Rand index quantifies the similarity between clusters in two partitions 𝑈 and 𝑉 (say, 

cell clusters in the ambient dimension and in a reduced dimension) through a contingency table 

that classifies pairs of points into four cases: pairs in the same cluster in both partitions (𝑎), pairs 

in the same cluster in 𝑈 but not 𝑉 (𝑏), pairs in the same cluster in 𝑉 but not 𝑈 (𝑐), or pairs in dif-

ferent clusters in both partitions (𝑑). It takes a value between 0 and 1. The adjusted Rand index 

corrects the value by accounting for coincidental/chance clustering and avoiding the tendency of 

the unadjusted Rand index to approach 1 as the number of clusters increases. It is given by 

𝐴𝑅𝐼 =
TU5V(WX#)Y[(WX[)(WX\)X(\X#)([X#)]

TU5V
D
Y[(WX[)(WX\)X(\X#)([X#)]

 where 𝑛 is the number of points and T𝑛2V is the total num-

ber of possible point pair combinations32. 

Replicating scRNA-Seq Workflows 

To replicate a typical workflow, we used Seurat in R28.  To isolate highly variable genes, 

we used the data from the function FindVariableFeatures() in Seurat with default parameters.  

For PCA reduction, we used the ElbowPlot function, with the “elbow” observed to be at 12 PCs. 

Our clustering was done in Seurat using the function FindNeighbors() on the specified dimen-

sional space to compute the Shared Nearest Neighbor Graph, followed by the FindClusters() 

function.  We set the resolution at 0.8, number of random starts at 10, random seed at 0, maxi-

mum number of iterations at 10 and we used the standard modularity function. 

Discussion 

The capacity to generate high-dimensional data is currently in the process of revolutioniz-

ing scientific inquiry.  scRNA-seq, for example, has the potential to drive significant advances in 

our understanding of the evolution and differentiation of cell types, the progression of cellular 
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state during development and disease, and a host of other critical biological phenomena13, 33, 34.  

Yet the very thing that makes this technique so powerful – the ability to simultaneously measure 

the expression level of tens of thousands of genes within a single cell – also entails the curse of 

dimensionality and thus complicates the analyses needed to extract meaning from it.  As such, 

dimensionality reduction has become an indispensable part of scRNA-Seq data analysis13. It is 

currently unclear, however, to what extent dimensionality reduction disrupts the underlying 

structure of the data itself. 

Distortion from dimensionality reduction can take several forms.  Much of the previous 

work on this problem has focused on the extent to which the process changes the distances be-

tween points18, 19.  Our work highlights that there are even larger problems with dimensionality 

reduction than just distortion of distances.  For one, even in possession of a perfect technique, 

one cannot reduce the dimensionality of the data to arbitrarily low dimensions without creating 

large numbers of discontinuities in local neighborhoods and other distortions in the data. In the 

case of points taken from the surface of a 3-D sphere, it is mathematically impossible to project 

those points into a 2-D representation without introducing discontinuities into the data (e.g. the 

scattering of the rainbow pattern in Fig. 1c).  Many analyses commonly performed with scRNA-

Seq data, including cell type clustering, RNA velocity35, and pseudotime ordering, rely at least in 

part on the local relationships between data points.  The introduction of discontinuities thus has 

the potential to significantly impact the results of that kind of analysis. 

A second problem is the fact that, even if it is theoretically possible to represent the data 

in a given dimension, available techniques may not be capable of finding that representation.  

Unfortunately, it is currently impossible to evaluate the extent to which either of these issues 

have an impact on the analysis of scRNA-Seq data (or, indeed, any high-dimensionality data).  
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Here, we developed a straightforward metric that quantifies the extent to which discontinuities of 

the type exemplified in Fig. 1c would impact the analysis of any given data set. 

One immediate application of this metric is in the discovery of the appropriate latent di-

mension of a given data set.  In testing this use case on data sampled from hyperspheres, how-

ever, we found that a large number of NDR techniques currently in widespread use are far from 

perfect (Fig. 2).  Indeed, none of the techniques we tested could find a true embedding for even a 

20-dimensional hypersphere, despite a complete lack of noise in the data and the fact that the 

embedding in this case was rather trivial (and known a priori).  This finding suggests that funda-

mental work is needed to develop new and more effective NDR techniques.  We expect that both 

the AJD metric we developed and the hypersphere example we explored will prove useful in the 

design and testing of these algorithms. 

Application of our metric to scRNA-Seq data revealed that the problem there is even 

worse than for hyperspheres (Fig. 3).  For instance, it is currently common to use t-SNE or 

UMAP to reduce scRNA-Seq data to two dimensions for visualizations and, in many cases, 

downstream data analysis20, 24, 25.  Our work revealed that nearly 100% of the local neighborhood 

structure is disrupted by this kind of dimensionality reduction.  We found that this level of distor-

tion has a significant effect on the results of common analyses such as cell type clustering and 

pseudotime ordering (Fig. 4). 

There are several practical implications of our findings for routine scRNA-Seq analysis.  

For one, it seems likely productive to perform cell-type clustering using a set of “Highly Varia-

ble Genes” provided by popular packages like Seurat, because this preserves the resulting clus-

ters while reducing dimensionality (and thus the computational resources required) by about an 

order of magnitude (Fig. 4).  Another straightforward recommendation flowing from this work is 
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to exercise caution when analyzing data in dimensions that are significantly smaller than the am-

bient space of the original measurements, particularly the 2-D representations generated by  

t-SNE or UMAP. We recommend that practitioners use the AJD to track the distortion they intro-

duce into their dimensionally-reduced data and report it so that others can understand potential 

biases and errors that may affect the results of analyses that rely on local relationships between 

cells in the dataset. 

Of course, one question raised by our results is whether or not meaningful dimensionality 

reduction of scRNA-Seq data is possible at all.  The poor performance of NDR techniques on the 

simple hypersphere tests makes it difficult to say whether the results we obtained for scRNA-Seq 

data are due to the limitations of available techniques or because the data do not actually lie on a 

low-dimensional manifold.  The only technique that we found to provide something close to a 

“true” embedding, PCA, does so only at dimensionalities that are close to the maximum possible 

dimensionality that can be obtained by the technique (Fig. 3).  The development of new NDR 

techniques that are more effective at finding true embeddings thus represent a critical step in an-

swering central questions in cell biology.  Until such techniques are developed, the relentless ex-

pansion of single-cell genomics to larger and larger scales may provide a wealth of new data that 

cannot be optimally mined for its biological insights. 
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