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Fig.  5.  Distortion and its influence on downstream analyses. (A) Distortion vs. 
neighborhood size. A single cell RNA sequencing dataset is filtered for highly varying genes.  
The data is then embedded into a 45-dimensional space using PCA.  (The choice of 45 principal 
components was based on inspection of a scree plot) The data is then embedded into 2 
dimensions using t-SNE and UMAP.  Average Jaccard Distances are calculated between the raw 
data and the PCA embedding, as well as between the raw data and the 2-dimensional 
embeddings using various values for the k-nearest neighbor search.  (B)  The result of clustering 
of scRNA-seq data in the original, ambient dimension (left), and the result using the same 
clustering algorithm with the same parameters on PCA-reduced representation of the data.  Only 
a subset of the points is colored for clarity.  The graphs were produced using t-SNE for the 
purpose of visualization only, as the t-SNE embedding loses much of the structure of the data.  
(C)  The Graph Edit Distance between a minimum spanning tree constructed in the ambient 
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space and a minimum spanning tree constructed in the NDR-reduced representation.  The dotted 
line corresponds to a random embedding that retains none of the original information. 
 

clustering on the entire Hydra data set, first on the raw data, and then after application of the 

standard pipeline up to the PCA step using the number of components employed by the authors 

in their original work (Siebert et al. 2019). We used the standard Louvain clustering algorithm 

with the default parameters in Seurat (see Methods) (Butler et al. 2018). To visualize the impact 

of the standard pipeline on clustering results, we chose the largest cluster we obtained from 

clustering on the raw data and colored those points green on a t-SNE visualization (Fig. 5A). We 

then colored those same cells according to the clusters obtained from the standard pipeline data 

(Fig. 5B). Although this t-SNE is used simply for visualization purposes, given the large amount 

of distortion it introduces, visual inspection of these results clearly indicates that the resulting 

clusters are very different. 

While these results suggest that cell type clustering may be heavily influenced by 

dimensionality reduction, a visualization like this is difficult to interpret quantitatively. We thus 

used the Adjusted Rand Index (ARI), a measurement of similarity in clustering results, to 

quantify the similarity of the clusters obtained from either the PCA or UMAP step of the 

standard pipeline with those obtained from clustering on the raw data (Table 2).  Because 

clustering only makes sense in the case where there are multiple distinct cell types, we applied 

this analysis only to those studies where it was computationally feasible to analyze all cells in the 

data set.  As in Fig. 5, we obtained clusters using the standard procedure in Seurat (see Methods). 

We found that the ARI values between the clusters obtained from raw data and the 

clusters based on the PCA-reduced data indicates significant differences between the clusters in 

every case. Clustering in the 2-D UMAP space results in even more divergence between the  
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Table 2 

Study Model Organism ARI:  PCA ARI:  UMAP 
(Siebert et al. 2019) 

Hydra vulgaris 
0.61 0.43 

(Jean-Baptiste et al. 2019) 
Arabidopsis thaliana 

0.53 0.45 

(Jackson et al. 2019) Saccharomyces cerevisiae (Yeast) 0.25 0.14 
(Siebert et al. 2019) Danio rerio (Zebrafish) 0.12 0.09 
(Taylor et al. 2019) Caenorhabditis elegans (Worm) 0.31 0.23 
(Ma et al. 2019) Homo sapiens (Human) 0.36 0.21 
(Davie et al. 2018) Drosophila melanogaster (Fruit Fly) 0.27 0.12 
 
Table 2. Adjusted Rand Index (ARI) between clustering performed on the minimally processed 
(raw) scRNA-seq datasets and clustering performed on representations produced by 
dimensionality reduction.  In each case, the number of PCs used for PCA is the same as in the 
original study, and UMAP into 2 dimensions is performed downstream of PCA.  In every case, 
the clustering is substantially different after PCA, and even more dissimilar after UMAP. 
 

clusters obtained, with ARI values close to 0 in several cases (Table 2). This indicates that the 

overlap between clustering in UMAP space vs. clustering in the raw space is roughly equivalent 

to what one would expect if the two different clusterings were generated completely at random. 

Overall, these results suggest that distortion introduced by both linear and non-linear 

dimensionality reduction can significantly change the classification of cells into specific cell 

types based on clustering in scRNA-seq data. 

Pseudotime ordering attempts to use cells captured at various points along a 

differentiation or developmental trajectory to infer the underlying trajectory itself  (Trapnell et al. 

2014b).  A large number of algorithms have been proposed for this analysis, but perhaps the 

most classic approach involves the calculation of a minimum spanning tree that connects the 

beginning and end point in the trajectory (Trapnell et al. 2014b).  This tree is formed by linking 

cells in close proximity to each other to form a graph, typically after NDR is performed.  

Because NDR readily changes both the local and global relationships between cells in the data 
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set (Figs. 2 and 3), we hypothesized that the trees produced by analyzing data after NDR would 

not closely resemble trees formed using the original data.  To test this, we calculated the graph 

edit distance between trees formed from the raw data and after various NDR techniques were 

used to project the data into a variety of different dimensions (Fig. 5C).  For comparison, we also 

generated a random embedding by simply assigning each cell to a random point in the reduced-

dimensional space (see Methods).  The graph edit distances obtained from the NDR techniques 

and from the random embedding are similar until embedding dimensions of ~100 are reached 

(Fig. 5C).  Even above 100 dimensions, the improvement in the graph edit distance relative to a 

random embedding is not very large.  Because pseudotime trees are usually built using 2- or 3-

dimensional representations based on t-SNE, UMAP or similar techniques (Trapnell et al. 2014b; 

Saelens et al. 2019), our findings suggest that distortion caused by NDR could have a large effect 

on the results. Even pseudotime inferences techniques that do not form minimum spanning trees 

are based on analysis of scRNA-seq data after significant dimensionality reduction, suggesting 

that distortion has a wide-ranging impact on this type of analysis (Saelens et al. 2019). 

 
Discussion 

The capacity to generate high-dimensional data is currently in the process of 

revolutionizing scientific inquiry.  scRNA-seq, for example, has the potential to drive significant 

advances in our understanding of the evolution and differentiation of cell types, the progression 

of cellular state during development and disease, and a host of other critical biological 

phenomena (Luecken and Theis 2019; Andrews et al. 2021).  Yet the very thing that makes this 

technique so powerful – the ability to simultaneously measure the expression level of tens of 

thousands of genes within a single cell – also entails the curse of dimensionality and thus 

complicates the analyses needed to extract meaning from the data.  As such, dimensionality 
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reduction has become an indispensable part of scRNA-seq data analysis (Moon et al. 2018; 

Luecken and Theis 2019; Andrews et al. 2021). It is currently unclear, however, to what extent 

dimensionality reduction disrupts the underlying structure of the data itself. 

Distortion from dimensionality reduction can take several forms.  Much of the previous 

work on this problem has focused on the extent to which the process changes the distances 

between points (McInnes et al. 2018					; Laurens van der Maaten and Geoffrey E. 2008).  Our 

work highlights that there are even larger problems with dimensionality reduction than just 

distortion of distances.  For one, even in possession of a perfect technique, one cannot reduce the 

dimensionality of the data to arbitrarily low dimensions without creating large numbers of 

discontinuities in local neighborhoods and other distortions in the data. In the case of points 

taken from the surface of a 3-D sphere, for instance, it is mathematically impossible to project 

those points into a 2-D representation without introducing discontinuities in local neighborhoods 

into the data (e.g., the scattering of the rainbow pattern in Fig. 1c).  Many analyses commonly 

performed with scRNA-seq data, including cell type clustering, RNA velocity, and pseudotime 

ordering, rely at least in part on the local relationships between data points (Trapnell et al. 2014b; 

Luecken and Theis 2019; Andrews et al. 2021; La Manno et al. 2018).  The introduction of 

discontinuities thus has the potential to significantly impact the results of a wide range of 

downstream analyses. 

A second problem is the fact that, even if it is theoretically possible to represent the data 

in a given dimension, available techniques may not be capable of finding that representation.  

Unfortunately, it is currently impossible to evaluate the extent to which either of these issues 

have an impact on the analysis of scRNA-seq data (or, indeed, any high-dimensionality data).  
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Here, we developed a straightforward metric that quantifies the extent to which discontinuities of 

the type exemplified in Fig. 1C would impact the analysis of any given data set. 

One immediate application of this metric is in the discovery of the appropriate latent 

dimension of a given data set.  In testing this use case on data sampled from hyperspheres, 

however, we found that all NDR techniques currently in widespread use are far from perfect 

(Fig. 2).  Indeed, none of the techniques we tested could find a true embedding for even a 20-

dimensional hypersphere, despite a complete lack of noise in the data and the fact that the 

embedding in this case was rather trivial (and known a priori).  We found that this problem was 

not limited only to hyperspheres, but to also to generic multivariate Gaussians and simulated 

scRNA-seq data generated using the Splatter algorithm (Zappia et al. 2017) (Fig. 2). This finding 

suggests that fundamental work is needed to develop new and more effective NDR techniques.  

We expect that both the AJD metric we developed and the simulated data sets that we explored 

will prove useful in the design and testing of these algorithms. 

Application of our metric to scRNA-seq data revealed that the problem there is even 

worse than for hyperspheres (Fig. 3).  For instance, it is currently common to use t-SNE or 

UMAP to reduce scRNA-seq data to two dimensions for visualizations and, in many cases, 

downstream data analysis (Trapnell et al. 2014b; Rosenberg et al. 2018; Jean-Baptiste et al. 

2019; Taylor et al. 2019).  Our work revealed that nearly 100% of the local neighborhood 

structure is disrupted by this kind of dimensionality reduction.  We found that this level of 

distortion has a significant effect on the results of common analyses such as cell type clustering 

and pseudotime ordering (Tables 1 and 2 and Fig. 5). Interestingly, we also found that PCA, 

which is often thought to “de-noise” the data, is extremely unlikely to recover a set of true 
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neighborhood relationships given the high levels of noise typically observed in scRNA-seq 

experiments (Eraslan et al. 2019; Kim et al. 2015; Townes et al. 2019) (Fig. 4). 

There are several practical implications of our findings for routine scRNA-seq analysis.  

A straightforward recommendation flowing from this work is to exercise caution when analyzing 

data in dimensions that are significantly smaller than the ambient space of the original 

measurements, particularly the 2-D representations generated by t-SNE or UMAP. We 

recommend that practitioners use the AJD to track the distortion they introduce into their data 

when employing dimensionality reduction and report it so that others can understand potential 

biases and errors that may affect the results of analyses that rely on local relationships between 

cells in the dataset. Secondly, the AJD could be used as a parameter to optimize several steps in 

the analysis pipeline, from choosing the appropriate PCA dimension (i.e., an alternative to the 

scree plot, Fig. 3) to optimizing the parameters of NDR techniques (Tables 1, 2 and 3 

Supplementary Material). 

Our findings, and the recommendations above, might at first glance seem to conflict with 

the fact that most scRNA-seq studies ultimately produce results that are broadly consistent with 

orthogonal data regarding the system under study.  For instance, t-SNE and UMAP plots still 

tend to place cells of similar type close to one another.  This is often checked by coloring cells 

according to the expression of marker genes that are known to be associated with certain cell 

types, and finding that those cells tend to cluster together, at least on visual inspection (Siebert et 

al. 2019; Cao et al. 2019; Rosenberg et al. 2018).  Similarly, pseudotime analysis often results in 

expression dynamics that broadly correlate with known expression dynamics obtained from other 

techniques (Jean-Baptiste et al. 2019; Zhong et al. 2018; Bach et al. 2017).  While this agreement 

seems reassuring, there is a subtle issue with this kind of analysis. 
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Each of the dimensionality reduction techniques mentioned above are governed by one or 

more parameters.  A small adjustment in any of these parameters can result in vastly different 

representations of the data (Supplementary Fig. 6).  How does one decide the appropriate values 

for the parameters?  In practice, one first selects marker genes that they know correspond to 

certain cell types based on previous studies. The expectation in this case is that the analysis 

pipeline, which entails several steps of dimensionality reduction, will have been executed 

correctly when the marker genes cluster more-or-less according to prior knowledge.  Adjusting 

the parameters of the algorithm until agreement is achieved, the researcher concludes that these 

are the correct parameter values, and this is the correct representation because the result has been 

“validated” by prior knowledge.  Other observed clusters can then be interpreted as representing 

new cell types.  Popular packages, such as Seurat, include suggestions along these lines for users 

in their documentation, particularly when looking for rare cell types in a population (Butler et al. 

2018). 

The problem with this approach is that it is inherently biased to reproduce known aspects 

of the system in question.  To see why, suppose that the biological ground truth doesn’t agree 

with prior biological knowledge.  The researcher will discard such a result and adjust the 

parameters of the analysis pipeline until the representation comes into agreement with their 

expectations.  In other words, if prior knowledge is used to guide the analysis, the fact that one 

ultimately sees agreement between the result and that prior knowledge is no guarantee that the 

analysis itself is sound.  This is true even if the marker genes used to guide clustering or other 

analysis are different from the ones used for “validation,” since it is unlikely that any such sets of 

genes will be truly independent of one another.  Thus, while many scRNA-seq analyses agree 
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with well-established prior knowledge, that in no way guarantees that distortion due to 

dimensionality reduction has not significantly impacted the analysis.  

Of course, one question raised by our results is whether or not meaningful dimensionality 

reduction of scRNA-seq data is possible at all.  The poor performance of NDR techniques on the 

simple hypersphere tests makes it difficult to say whether the results we obtained for scRNA-seq 

data are due to the limitations of available techniques or because the data do not actually lie on a 

low-dimensional manifold.  We note, however, that NDR techniques failed to find meaningful 

embeddings even for standard non-scRNA-seq data sets used in machine learning research 

(Supporting Info), strongly suggesting that the issue here lies with the techniques themselves, 

rather than representing limitations of the individual data sets.  The only technique that we found 

to provide something close to a “true” embedding, PCA, does so only at dimensionalities that are 

much larger than those typically used.  Indeed, PCA sometimes only finds a true embedding at 

the largest possible dimension that can be obtained by the technique (Fig. 3).  The development 

of new NDR techniques that are more effective at finding true embeddings thus represent a 

critical step in answering central questions not only in cell biology, but across all scientific 

disciplines that rely on the analysis of high-dimensional data.  Until such techniques are 

developed, the relentless expansion of single-cell genomics to larger and larger scales may 

provide a wealth of new data that cannot be optimally mined for its biological insights.  
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Methods 

Average Jaccard Distance 

For each data point, the neighborhood consisting of the nearest k-neighbors were found in 

the ambient space, call this set A, and the NDR-reduced space, call this set B, using 

sklearn.neighbors.NearestNeighbors.  We employed the ball-tree algorithm in both cases.  To 

calculate the Jaccard distance between A and B, we used the usual definition: 

𝐷! 𝐴,𝐵 =
𝐴 ∪ 𝐵 − 𝐴 ∩ 𝐵

𝐴 ∪ 𝐵  

The Average Jaccard Distance was calculated by taking the arithmetic mean of the Jaccard 

distance for every point. 

Sampling of Hyperspheres 

To create a synthetic dataset consisting of m uniformly distributed samples in an n-

dimensional spherical manifold in d-dimensional space, we used the following method:  For each 

of the m data points, we sampled from a standard normal distribution n times (using the Python 

Numpy method numpy.random.normal(0,1)).  This method ensured that the sampling on the 

sphere was uniform.  These samples became the first n coordinates of a vector.  The remaining 

n+1 to d coordinates were filled with zeros.  We then normalized each vector to length 1.   

Dimensionality Reduction 
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We executed dimensionality reduction with t-SNE, Isomap, PCA, Spectral Embedding, 

Multidimensional Scaling, LLE, and LTSA using the implementations in Scikit-learn (Pedregosa 

et al. 2011).  For the methods UMAP and diffusion maps, we used umap-learn (McInnes et al. 

2018) and pydiffmap (Berry and Harlim 2016), respectively.  We implemented PCA using 

sklearn.decomposition.PCA.  We used default parameters except where otherwise noted.	

scRNA-seq Data	

The study from Siebert et al. is published on the Broad Institute’s single cell portal: 

https://portals.broadinstitute.org/single_cell/study/SCP260/stem-cell-differentiation-trajectories-

in-hydra-resolved-at-single-cell-resolution. 

The study from Cao et al. is published on The Gene Expression Omnibus: 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE119945  

The .txt files were converted to .csv files corresponding to individual clusters, and the data were 

loaded into Python pandas (https://pandas.pydata.org/) dataframes for dimensionality reduction. 

Minimum Spanning Tree and Graph Edit Distance 

The minimum spanning tree in the ambient space, mst1, and the minimum spanning tree 

in the NDR-reduced space, mst2, were constructed using the Python function 

scipy.sparse.csgraph.minimum_spanning_tree.  The graph edit distance was calculated in Python 

according to the following equation: 

𝐺𝐸𝐷 𝑚𝑠𝑡!,𝑚𝑠𝑡! = 𝑚𝑖𝑛
{!!,…,!!}∈! !"#!,!"#!

!

!!!

𝑐 𝑒!  

Where 𝑃(𝑚𝑠𝑡!,𝑚𝑠𝑡!) is the set of edit paths transforming mst1 into mst2 and 𝑐(𝑒!) is the cost of 

each graph edit operation 𝑒!.  The cost of deleting a vertex and the cost of adding a vertex were 

both weighted as 1. 
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As a control, a random embedding was created by sampling coordinates from a uniform 

distribution between -1 and 1.  The minimum spanning tree was then computed on this random 

embedding and the Graph Edit Distance was calculated between this tree and the minimum 

spanning tree constructed in the ambient space.	

Adjusted Rand Index	

The Rand index quantifies the similarity between clusters in two partitions 𝑈 and 𝑉 (say, 

cell clusters in the ambient dimension and in a reduced dimension) through a contingency table 

that classifies pairs of points into four cases: pairs in the same cluster in both partitions (𝑎), pairs 

in the same cluster in 𝑈 but not 𝑉 (𝑏), pairs in the same cluster in 𝑉 but not 𝑈 (𝑐), or pairs in 

different clusters in both partitions (𝑑). It takes a value between 0 and 1. The adjusted Rand 

index corrects the value by accounting for coincidental/chance clustering and avoiding the 

tendency of the unadjusted Rand index to approach 1 as the number of clusters increases. It is 

given by 

𝐴𝑅𝐼 = ! ! !!! ! !!! !!! ! !!! !!!
! ! !! !!! !!! ! !!! !!!

 where 𝑛 is the number of points and 𝑛 2  is the total 

number of possible point pair combinations (Santos and Embrechts 2009). 

Replicating scRNA-seq Workflows 

To replicate a typical workflow, we used Seurat (Butler et al. 2018) in R.  To isolate 

highly variable genes, we used the data from the function FindVariableFeatures() in Seurat with 

default parameters.  For PCA reduction, we used the ElbowPlot function, with the “elbow” 

observed to be at 12 PCs. 

Our clustering was done in Seurat using the function FindNeighbors() on the specified 

dimensional space to compute the Shared Nearest Neighbor Graph, followed by the 
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FindClusters() function.  We set the resolution at 0.8, number of random starts at 10, random 

seed at 0, maximum number of iterations at 10 and we used the standard modularity function. 

Evaluating PCA’s denoising ability. 

 To test whether PCA can effectively denoise data. we decided to use 3 synthetic datasets 

and 1 real sc-RNA-seq datasets: 1000 points uniformly sampled from a 20 Dimensional 

Hypersphere embedded in 100-Dimensional Space; 1000 points sampled from a 20-Dimensional 

Multivariate Gaussian; 1000 Points from a tree-lineage structure generated by the Python 

Package PROSSTT, with 20 genes and 4 branch points; and the Endodermal Epithelial Stem Cell 

Cluster in the previously used Hydra Dataset.  

To each of these datasets, we added Gaussian Noise, both On-Manifold (referring to 

noise being added to the feature columns that were used to define the structure of the manifold) 

and Off-Manifold (referring to noise being added to columns of zeros appended to the end of the 

dataset to make the full space). For the Hypersphere and Multivariate Gaussian datasets, both the 

On-Manifold and Off-Manifold Noise was simulated by adding a vector sampled from a 

Gaussian distribution whose covariance matrix was the identity matrix. For the PROSSTT 

dataset, the On-manifold noise was simulated by adding a vector sampled from a Gaussian 

distribution with no covariance and whose variance was proportional to the variance of the 

aligned feature. The Off-manifold noise was simulated by adding a vector sampled from a 

Gaussian distribution which had no covariance and whose variance exponentially decreased from 

the maximum variance observed in the PROSSTT data without noise to the minimum variance 

observed in the PROSSTT data without noise. For the Hydra, noise was added by adding a 

vector sampled from a Gaussian distribution no covariance and whose variance was proportional 
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to the variance of the aligned feature. In each case, after noise was added the average Jaccard 

Distance for each dataset before and after noise was added was calculated (AJD1). 

After noise was added, PCA was done to denoise the data and find the latent 

dimensionality. For the synthetic datasets generated, the latent dimensionality was known a 

priori. For the Hydra dataset, the latent dimensionality was estimated using the “elbow” of the 

scree plot of explained variance. To automate the determination of this “elbow” and reduce 

operator bias introduced to the experiment, the kneelocator function within the Python package 

Kneed was used, with the sensitivity set to 1.0, the curve parameter set to “convex” and the 

direction set to “decreasing” to estimate the latent dimensionality of the dataset that PCA would 

reduce the data to during the denoising process. After PCA was applied to each of the datasets, 

the Average Jaccard Distance between the High Dimensional Datasets before noise was added 

and the datasets after PCA was applied (AJD2).    
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