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Abstract

Gap junctions are key mediators of the intercellular communication in cardiac tissue,

and their function is vital to sustain normal cardiac electrical activity. Conduction

through gap junctions strongly depends on the hemichannel arrangement and

transjunctional voltage, rendering the intercellular conductance highly non-Ohmic.

Despite this marked non-linear behavior, current tissue-level models of cardiac

conduction are rooted on the assumption that gap-junctions conductance is constant

(Ohmic), which results in inaccurate predictions of electrical propagation, particularly in

the low junctional-coupling regime observed under pathological conditions. In this work,

we present a novel non-Ohmic multiscale (NOM) model of cardiac conduction that is

suitable for tissue-level simulations. Using non-linear homogenization theory, we develop
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a conductivity model that seamlessly upscales the voltage-dependent conductance of

gap junctions, without the need of explicitly modeling gap junctions. The NOM model

allows for the simulation of electrical propagation in tissue-level cardiac domains that

accurately resemble that of cell-based microscopic models for a wide range of junctional

coupling scenarios, recovering key conduction features at a fraction of the computational

complexity. A unique feature of the NOM model is the possibility of upscaling the

response of non-symmetric gap-junction conductance distributions, which result in

conduction velocities that strongly depend on the direction of propagation, thus

allowing to model the normal and retrograde conduction observed in certain regions of

the heart. We envision that the NOM model will enable organ-level simulations that are

informed by sub- and inter-cellular mechanisms, delivering an accurate and predictive

in-silico tool for understanding the heart function.

Author summary

The heart relies on the propagation of electrical impulses that are mediated gap

junctions, whose conduction properties vary depending on the transjunctional voltage.

Despite this non-linear feature, current mathematical models assume that cardiac tissue

behaves like an Ohmic (linear) material, thus delivering inaccurate results when

simulated in a computer. Here we present a novel mathematical multiscale model that

explicitly includes the non-Ohmic response of gap junctions in its predictions. Our

results show that the proposed model recovers important conduction features modulated

by gap junctions at a fraction of the computational complexity. This contribution

represents an important step towards constructing computer models of a whole heart

that can predict organ-level behavior in reasonable computing times.

Introduction 1

The conduction of electrical waves in cardiac tissue is key to human life, as the 2

synchronized contraction of the cardiac muscle is controlled by electrical impulses that 3

travel in a coordinated manner throughout the heart chambers. Under pathological 4

conditions cardiac conduction can be severely reduced, potentially leading to reentrant 5
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arrhythmias and ultimately death if normal propagation is not restored properly [1]. At 6

a subcellular level, electrical communication in cardiac tissue occurs by means of a rapid 7

flow of ions moving through the cytoplasm of cardiac cells, and a slower intercellular 8

flow mediated by gap junctions embedded in the intercalated discs. Gap junctions are 9

intercellular channels composed by hemichannels of specialized proteins, known as 10

connexins, that control the passage of ions between neighboring cells [2]. The regulation 11

of ionic flow through gap junctions has been established for a variety of connexin types 12

and hexameric arrangements, which under dynamic conditions result in a markedly 13

non-linear relation between the electric conductance and the transjunctional voltage [3], 14

revealing a non-ohmic electrical behavior. Further, it has been shown that ionic flow 15

through cell junctions can take up to 50% of the total conduction time in cultured 16

strands of myocytes with normal coupling levels [4], and that conduction velocity is 17

predominantly controlled by the level of gap-junctional communication [5], which 18

highlights the key physiological relevance of gap-junction conductivity and coupling in 19

tissue electrical conduction. 20

Cardiac modeling and simulation has strongly motivated the development of 21

tissue-level mathematical models of electrophysiology, as they have the ability to 22

connect subcellular mechanisms to whole-organ behavior [6]. To date, the vast majority 23

of continuum models assume a linear conduction model of spatial communication, based 24

on the assumption that electrical current in cardiac tissue follows Ohm’s law, i.e, that 25

current is linearly proportional to gradients in the intracellular potential [7, 8]. From a 26

mathematical perspective, the assumption that conduction in cardiac tissue follows 27

Ohm’s law is conveniently represented by a linear diffusion term when stating the local 28

statement of current balance in a continuum, where gradients are modulated by a 29

conductivity tensor that is independent of the local electrical activity. Further, if the 30

conductivity tensor is assumed isotropic, a Laplacian operator acting on the 31

transmembrane potential arises, and the electrophysiology model takes the form of a set 32

of nonlinear reaction-diffusion partial differential equations, otherwise known as the 33

cable (monodomain) model of cardiac electrophysiology [9]. 34

Using two-scale asymptotic homogenization techniques, analytic expressions have 35

been obtained for the effective conductivity tensor, which is then used to model the 36

electrical current in an average macroscopic sense [10–12]. To this end, periodicity at 37
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the microstructural level of cardiac tissue is assumed, and a representative tissue unit is 38

partitioned in regions of high and low conductivity that represent the cytoplasm and 39

intercalated discs with gap junctions, respectively. While this approach allows for the 40

explicit consideration of regions with decreased conductivity, e.g. membranes where flow 41

is mediated by gap junctions, Ohm’s law is still assumed to hold throughout the 42

microstructural domain [13]. As a result, the non-Ohmic behavior of gap junctions and 43

their impact on tissue-level conduction continues to be neglected [14]. In particular, it 44

has been shown that continuum models that consider effective conductivity tensors 45

described above fail to capture the slow conduction of electrical impulses in cases of low 46

gap-junctional coupling [12,15], limiting their applicability to the simulation of 47

pathological conditions in excitable tissue. Alternatively, non-linear diffusion models 48

that replace the laplacian term in the monodomain equations by either a fractional 49

laplacian [16,17] or a porous-medium-like diffusive term [8,18], which have shown to 50

modulate the shape of propagating waves and other restitution properties. However, 51

these models are largely based on phenomenological grounds, and are not able to 52

directly incorporate physical microscopic information, neither have been assessed for 53

cases of low junctional coupling. 54

In this work, we present a multiscale continuum model of cardiac conduction that 55

accounts for the nonlinear communication between adjacent cells. We argue that the 56

explicit consideration of the non-ohmic behavior of gap junctions can be seamlessly 57

embedded into continuum tissue-scale models of electrophysiology using an asymptotic 58

homogenization approach, which delivers nonlinear continuum equations for 59

characterizing the electrical conduction in excitable media. 60

Results 61

The effect of gap-junctional coupling (GJc) on conduction is studied by down-scaling 62

the maximal gap-junction conductance from 100% to 0.5%. The cardiac strand is 63

excited on one end with a current whose amplitudes that varied between 10 µA/mm2 to 64

35 µA/mm2, which elicits a propagating pulse from left to right. Our results are 65

compared with those obtained from the cell-chain model of Kucera et al. [5], which we 66

consider as the baseline, an with the predictions from a linear homogenization model 67
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(LHM), which considers a standard cable model where the effective conductivity results 68

from linear homogenization theory [12]. We note here that the cell-chain model results 69

in a dynamical system with 642 degrees of freedom, using cell segments of 10µm, 70

whereas the LHM and the HOM models employ only 65 degrees of freedom, equivalent 71

to a spatial discretization of 100µm. 72

Figure 1 shows the propagating wavefronts that result from the three conduction 73

models under different coupling levels. For GJc=100% we observe that the three models 74

predict a very similar wavefront and wave speed. When GJc was reduced to 10% the 75

LHM results in propagating waves that considerably drift ahead of the baseline, whereas 76

the NOM delivers a very good prediction of the wavefront when compared to the 77

baseline. For the case of very low coupling (GJc=1%), the NOM wavefronts display a 78

positive drift from the baseline, but still deliver a much better prediction than the LHM 79

model. The conduction velocity as a function of the reduction in GJc is reported in 80

Figure 2(a). Both the LHM and NOM capture a marked decrease in conduction as the 81

GJc is decreased, but the LHM consistently overestimates the conduction velocity, 82

resulting in larger relative errors when compared to the NOM, particularly for GJc < 83

50%, see Figure 2(b). 84

Fig 1. Impulse conduction features from computational simulations. The wavefront
predicted by the cell-network (Baseline), linear homogenization model (LHM) and
non-ohmic multiscale model (NOM) are compared for three levels of transjunctional
coupling: (a) high coupling 100%, (b) low coupling 10%, and (c) very low couping 1%.
Waveform and conduction speed are recovered by both LHM and HOM models at high
levels of transjunctional coupling, but substantial differences can be observed at very
low levels of junctional coupling, with the NOM delivering a considerably better
estimate than the LHM.

Fig 2. Conduction velocity studies and the effect of gap-junction coupling. (a)
Performance of the LHM and the NOM as a function of the level of gap-juntional
coupling, where the baseline estimates correspond to a cell-network model [5]. (b)
Relative errors in conduction velocity for the LHM and NOM. At very low gap-junction
coupling levels, the NOM outperforms the LHM.

The NOM model is then used to study how different type of connexins and 85

hemichannel combinations affect the tissue-level conduction. To this end, we consider 86

gap junctions formed by homomeric-homotypic channels Cx43-Cx43 and Cx45-Cx45, 87

and the homomeric-heterotypic channel Cx43-Cx45, whose normalized conductance 88

distributions are depicted in Figure 3, and whose parameters for the Boltzmann model 89
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Channel Type Vj0 gj,min z p d
Cx43-Cx43 -60.8/62.9 0.26/0.25 -3.4/2.9 1 0
Cx45-Cx45 -38.9/38.5 0.16/0.17 -2.5/2.7 1 0
Cx43-Cx45 -15.9/149.3 0.05/0.05 -2.1/0.7 0.73 25

Table 1. Parameters for the conductance distribution of gap junctions, taken from [3].
For Vj0, gj,min, z the negative/positive values are presented. The Cx43-Cx45 case
considered a modified Boltzmann distribution to improve the fitness to data.

described in (11) have been reported in the literature [3], and are summarized in Table 90

1. For all three types of channels, a left-to-right propagating wave is elicited by 91

stimulating the left end of the cardiac strand. To study the effect of asymmetric 92

conductance in reverse conduction, additional right-to-left waves are propagated for all 93

channels studied. 94

Fig 3. Normalized conductance of gap junctions as a function of the transjunctional
voltage. (a) Cx43-Cx43 channel, (b) Cx45-Cx45 channel, and (c) Cx43-Cx45 channel.
Data extracted from [3].

Figure 4(a) shows the time evolution of the transmembrane voltage measured at the 95

middle of the cardiac strand. Activation times for the different gap-junction channels 96

markedly differ, with Cx43-Cx43 resulting in the earliest activation, and Cx43-Cx45 in 97

the latest activation. The conduction velocity is 59.7, 51.3 and 32.1 cm/s for the 98

Cx43-Cx43, Cx45-Cx45 and Cx43-Cx45 channels, respectively. The time evolution for 99

transmembrane voltage at the same location for the case of pulses traveling in opposite 100

directions using channel Cx43-Cx45 is reported in Figure 4(b). The right-to-left wave 101

activates this location at t = 6.84 ms, whereas the left-to-right wave excites the same 102

point at t = 10.51 ms, which corresponds to conduction velocities of 32.2 and 63.4 cm/s, 103

respectively. No differences in activation during reverse conduction are found for the 104

case of homomeric-homotopyc channels Cx43-Cx43 and Cx45-Cx45. 105

Fig 4. Upscaling the effect of gap-junction conductance distribution on tissue-level
conduction properties. (a) Transmembrane time evolution at the center of a cardiac
strand for traveling waves considering different homotypic and heterotypic channels, (b)
Transmembrane time evolution for normal (left-to-right) and retrograde (right-to-left)
propagation. The shape of the normalized conductance distribution results in drastic
changes in the activation times. In particular, asymmetric conductance distribution
predicts different conduction velocities for normal and retrograde propagation.
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Discussion 106

In this article, we study the gap-junction-mediated electrical conduction in excitable 107

cardiac tissue by means of a novel non-ohmic multiscale model. A unique feature of the 108

proposed model is that tissue-level spatial conduction is fully informed by sub-cellular 109

communication mechanisms, specifically by cytoplasmic and gap-junctional 110

conductances. While the upscaling of conduction properties in excitable media has been 111

the subject of some studies in the past using a linear homogenization theory 112

approach [10,11], our work offers a rigorous mathematical framework that delivers an 113

effective non-linear model of conduction able to represent, at the tissue level, the 114

non-Ohmic conduction that takes place at the sub-cellular level. Despite the fact that 115

our focus has been on understanding gap-mediated communication between cardiac 116

myocytes, the present model of conduction can be extended to study the electrical 117

propagation phenomena in other areas of biology, such as the neurosciences, where 118

electrical synapsis occurring in the brain is highly regulated by neural gap junctions [19]. 119

The propagating waves resulting from the NOM model resemble the wave forms and 120

wave speeds observed in simulations of cell-strand models [5] (Figure 1). In particular, 121

features that arise in propagating action potentials under decreasing levels of coupling 122

such as a steeper upstroke and a notch in the upstroke [20] are predicted by the NOM 123

model. Remarkably, this prediction is achieved at a fraction of the computational 124

complexity involved in cell-network models, as the number of degrees of freedom in the 125

NOM model are one order of magnitude smaller. An alternative approach is the use of 126

hybrid multiscale models [21], which adaptively partition the domain to solve 127

macroscopic cable equations in regions with low potential gradients and impose 128

microscopic equations of conduction in regions of high potential gradients. While hybrid 129

models can reduce the computational complexity of a simulation, they involve an 130

important increase of degrees of freedom when compared to standard homogenized 131

models. We believe that the NOM model offers the advantage of delivering accurate 132

predictions while maintaining the computational cost similar to that of standard 133

macroscopic continuum models. The balance between predictive power and 134

computational cost remains one of the main hurdles in the development of 135

patient-specific whole-heart simulations [22], which highlights the importance of 136
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developing accurate yet efficient tissue-level models. 137

The accuracy of the NOM and LHM models is studied by determining the 138

conduction velocity for a wide range of gap-junctional coupling levels and comparing 139

these results with cell-chain simulations (Figure 2). Previous studies have confirmed 140

that the accuracy of LHM in predicting cardiac conduction consistently deteriorates as 141

the junctional conductance is decreased to low levels [12,15]. Remarkably, the NOM 142

model is able to capture conduction under very low junctional-coupling scenarios with a 143

reasonable error (Figure 2). This feature takes particular relevance in the study of 144

cardiac disease, as the reduction of gap-junctional coupling has been correlated to a 145

marked decreased of conduction velocity [23], and slow conduction is considered one of 146

the main mechanisms of sustained reentrant arrhythmias [1, 24]. 147

A unique feature of the NOM model is its ability to predict the tissue-level 148

conduction mediated by homotypic and heterotypic combinations of homomeric 149

connexons. In our simulations, action potentials resulting from gap-junction channels 150

composed by homotypic Cx43-Cx43 result in a higher conduction velocity when 151

compared to simulations considering homotypic Cx45-Cx45 channels (Figure 4(a)). This 152

result is consistent with observations from dual whole-cell patch clamp experiments, 153

where the conductance of Cx43-Cx43 channels can be twice as large as that of 154

Cx45-Cx45 channels [25]. It is important to note, however, that future developments 155

should focus in combining the gap-junction conductance distributions, as several 156

connexin types are typically co-expressed in cardiac tissue. Another interesting feature 157

of the NOM model is the possibility to upscale the effect of asymmetric distributions of 158

gap-junction conductance associated to heterotypic channels (Figure 3). Here we show 159

that such asymmetry results in propagating action potentials whose wave form and 160

wave speed strongly depend on the direction of propagation (Figure 4(b)). This 161

behavior, together with connexin coexpression, may partly explain the differences in 162

conduction velocity for normal and retrograde conduction that have been observed in 163

the sinoatrial node [26]. 164

The work presented here can be extended in several directions. First, the theoretical 165

framework for the NOM model should be extended to consider the 3D case of cardiac 166

conduction. A heuristic derivation is included in Remark 2 of the S1 Appendix. Second, 167

intercellular communication mechanisms other than gap junctions should be integrated 168
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to this theoretical framework. Sodium channels have been reported to co-localize with 169

gap junctions at the intercalated discs, creating an ephatic coupling effect that has been 170

associated to conduction during gap-junction blockage [24]. Further, the spatial 171

distribution of sodium channels around the cellular membrane and on the intercalated 172

discs has been studied using detailed cell-to-cell computational studies, to conclude that 173

channel spatial distribution strongly affect the cardiac conduction [27]. Since the 174

ephatic effect has been considered in homogenization schemes of cardiac conduction in 175

the past by including a cleft-to-ground resistance in the microscopic model of 176

conduction [12, 21], we forsee that future versions of the NOM could equally incorporate 177

this effect, potentially in 3D formulations with non-uniform distributions of channels. 178

Finally, the applicability of the NOM model should tested in the simulation of 179

conduction in the whole heart during diseased conditions [22]. 180

Methods 181

Multiscale model for non-ohmic conduction 182

Fig 5. Schematic of the multiscale model of cardiac conduction. Ionic currents are
linearly proportional to gradients of transmembrane potential inside the cytoplasm, but
are non-linearly mediated by gap junctions located at the intercalated discs.

In the following we consider the microscopic problem of non-linear conduction in a 183

strand of cardiac cells with domain Ω = (0, L), see Figure 5. We let ε be the cell length, 184

δε be the length of gap junctions, and assume that δε� ε� L. Further, we let uε,δ be 185

the microscopic transmembrane potential field, and jε,δ be the microscopic current 186

density. The steady-state problem of conduction resulting from current balance reads 187

− ∂

∂x
jε,δ(uε,δ) = 0, x ∈ Ω. (1)

We denote the space occupied by the cytoplasm by 188

Bcytε,δ = ∪∞k=−∞((k + δ
2 )ε, (k + 1− δ

2 )ε), and the space occupied by gap junctions by 189

Bgapε,δ = ∪∞k=−∞((k − δ
2 )ε, (k + δ

2 )ε). Further, we assume that current is governed by 190

Ohm’s law inside the cytoplasm with conductivity σc, but is non-linearly regulated at 191
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the gap junctions, which we express by the following microscopic constitutive law 192

jε,δ(uε,δ) = −σ
(
x, {uε,δ}

)∂uε,δ
∂x

(2)

where the conductivity is described by the following relation 193

σ
(
x, u

)
=


σc, x ∈ Bcytε,δ ,

δσg(1 + µa([u]j,ε)), x ∈ Bgapε,δ ,

(3)

where δσg is a representative conductivity for the intercalated disc with gap junctions, µ 194

is a positive constant, and a is a smooth bounded function that depends on the 195

transjunctional voltage jump defined as 196

[u]j,ε =
u((k + δ

2 )ε)− u((k − δ
2 )ε)

ε
. (4)

Using asymptotic analysis (see S1 Appendix for details and proofs) we show that the 197

macroscopic current conservation for the steady-state problem is governed by the 198

homogenized equation 199

∂

∂x

(
σ̂(
∂v

dx
)
∂v

∂x

)
= 0, x ∈ Ω, (5)

where v is the macroscopic transmembrane potential, and the effective conductivity 200

modulating conduction at the macroscopic scale takes the form 201

σ̂(y) = σc

{
1 + µa([N ](y))

σc

σg
+ (1− δ)(1 + µa([N ](y)))

}
(6)

where 202

[N ](y) = −(1− δ) (σ̂(y)− 1) y, (7)

and we note that for a given transmembrane potential gradient y, the effective 203

conductivity σ̂(y) is implicitly solved from (6) and (7). Further, we show that under 204

reasonable assumptions, the following error estimate for the macroscopic 205
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transmembrane potential holds 206

‖uε,δ − v‖L∞((0,1)) = O(ε+ δ2). (8)

We now focus on the time-dependent macroscopic model of cardiac electrophysiology for 207

the time interval (0, T ). The homogenized electrical flux described in the right-hand 208

side of (5) is then balanced by the transmembrane current, leading to the non-Ohmic 209

cable equation 210

∂

∂x

(
σ̂(
∂v

dx
)
∂v

∂x

)
= Am

{
Cm

∂v

∂t
+ Iion

}
in Ω× (0, T ), (9)

where Iion : R× R→ R represents the transmembrane ionic current, Cm is the 211

membrane capacity and Am is the surface-to-volume ratio, and we note that the 212

right-hand side of (9) accounts for the amount of charge that leaves the intracellular 213

domain and enters the extracellular domain. Further, we will assume that the 214

transmembrane ionic current Iion is governed by v and by gating variables 215

w : Ω× (0, T )→ RM that modulate the conductance of ion channels, pumps and 216

exchangers, i.e., Iion = Iion(v,w), where the exact functional form of Iion will depend on 217

the choice of ionic model. The evolution of gating variables is determined by kinetic 218

equations of the form 219

∂w

∂t
= g(v,w), (10)

where the form of g : R× RM → RM will also depend on chosen the ionic model. The 220

equations (9) and (10) are supplemented with initial and boundary conditions for the 221

transmembrane potential and gating variables to form an initial boundary value 222

problem. The numerical solution of the coupled system of the non-Ohmic cable 223

equation (9) and kinetic equations (10) was performed using a standard Galerkin 224

finite-element scheme [28] for the spatial discretization and a Forward Euler scheme for 225

the time discretization implemented in FEniCS [29], see S1 Appendix. Codes are 226

available for download at https://github.com/dehurtado/NonOhmicConduction. 227
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Conduction experiments in a cardiac strand 228

To validate the proposed NOM model we consider the cardiac conduction problem 229

described in [5], in which a strand of cardiac cells electrically connected by gap 230

junctions are represented using a circuit network. The effect of gap junctions on the 231

overall conduction is studied by varying the level of transjunctional coupling. In this 232

work, we model the propagation of electrical impulses based on (9) and (10) in a strand 233

with length L = 6.4 mm, and consider the Luo-Rudy I model of transmembrane ionic 234

current [30]. The cytoplasmic conductivity and the membrane capacitance are taken to 235

be σc = 0.667µS and Cm = 1µF/cm2 respectively [5]. The surface to volume ratio is 236

given by Am = 2RCG/a, where RCG = 2 is the ratio between capacitive and 237

geometrical areas and a = 11µm is the fiber radius [5, 31]. The microscopic nonlinear 238

normalized conductance of gap junctions is assumed to follow a Boltzmann distribution 239

that depends on the transjunctional voltage Vj, which takes the form [32] 240

gj,norm(Vj) =


1−g+j,min

p+e
(A+(Vj−V

+
j0

))
+ g+j,min Vj < d

1−g−j,min

p+e
(A−(Vj−V

−
j0

))
+ g−j,min Vj > d

(11)

where p, d, g+j,min, g
−
j,min, A

+, A−, V +
j0 , V

−
j0 are model constants that depend on the type

of channel. In this example, we consider the values reported in [3] for gap junctions

based on Cx43-Cx43 channels. From (3) and the relation between electrical conductance

and conductivity for a cylindrical domain we have

δσg(1 + µa(Vj)) =
gj(Vj)δε

Acell

where we set ε = 100µm as the length of a cardiomyocyte, δ = 10−4 as the ratio 241

between the gap length and the cell length and Acell = 380µm as the transversal area of 242

the cell. We let δσg =
gjoδε
Acell

, where gjo is a representative conductance for the 243

intercalated disc with gap junctions, whose value is taken to be gjo = 2.534µS 244

according to [5]. Further, we express the intercalated-disc conductance gj(Vj) as the 245

product of the gap-junction normalized conductance gj,norm(Vj) times an effective 246
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conductance density and its respective plaque area, which reads 247

gj(Vj) = gmaxj Ajgj,norm(Vj), (12)

where gmaxj is the maximum gap-junction conductance per unit area, and Aj is the 248

plaque area, i.e., the area where ions pass through gap junction channels. In our 249

simulations, we set gmaxj = 0.3µS/µm2 and Aj = 26µm2, both of which are within the 250

ranges reported in the literature and provide a good fit to data [33]. As a result, we get 251

µa(Vj) =
gmaxj Aj

gjo
gj,norm(Vj)− 1. (13)

Supporting information 252

S1 Appendix. Formulation Details. Details and proofs for the asymptotic 253

formulation and the numerical solution for the NOM model are presented here. 254
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19. Söhl G, Maxeiner S, Willecke K. Expression and functions of neuronal gap

junctions. Nature Reviews Neuroscience. 2005;6(3):191–200.

20. Henriquez AP, Vogel R, Muller-Borer BJ, Henriquez CS, Weingart R, Cascio WE.

Influence of dynamic gap junction resistance on impulse propagation in

ventricular myocardium: A computer simulation study. Biophysical Journal.

2001;81(4):2112–2121.

21. Hand PE, Griffith BE. Adaptive multiscale model for simulating cardiac

conduction. Proceedings of the National Academy of Sciences.

2010;107(33):14603–14608. doi:10.1073/pnas.1008443107.

22. Prakosa A, Arevalo HJ, Deng D, Boyle PM, Nikolov PP, Ashikaga H, et al.

Personalized virtual-heart technology for guiding the ablation of infarct-related

ventricular tachycardia. Nature Biomedical Engineering. 2018;2(10):732–740.

doi:10.1038/s41551-018-0282-2.

23. Dhillon PS, Gray R, Kojodjojo P, Jabr R, Chowdhury R, Fry CH, et al.

Relationship between gap-junctional conductance and conduction velocity in

mammalian myocardium. Circulation: Arrhythmia and Electrophysiology.

2013;6(6):1208–1214.

24. Tse G, Yeo JM. Conduction abnormalities and ventricular arrhythmogenesis:

The roles of sodium channels and gap junctions. IJC Heart and Vasculature.

2015;9:75–82.

25. Desplantez T, Dupont E, Severs NJ, Weingart R. Gap junction channels and

cardiac impulse propagation. Journal of Membrane Biology. 2007;218(1-3):13–28.

doi:10.1007/s00232-007-9046-8.

26. Verheijck EE, Van Kempen MJA, Veereschild M, Lurvink J, Jongsma HJ,

Bouman LN. Electrophysiological features of the mouse sinoatrial node in

relation to connexin distribution. Cardiovascular Research. 2001;52(1):40–50.

27. Horgmo Jæger K, Edwards AG, Mcculloch A, Tveito A. Properties of cardiac

conduction in a cell-based computational model. PLoS Computational Biology.

2019;15(5):e1007042. doi:10.1371/ journal.pcbi.1007042.

June 28, 2019 16/17

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/690255doi: bioRxiv preprint 

https://doi.org/10.1101/690255
http://creativecommons.org/licenses/by/4.0/


28. Hurtado DE, Henao D. Gradient flows and variational principles for cardiac

electrophysiology: Toward efficient and robust numerical simulations of the

electrical activity of the heart. Computer Methods in Applied Mechanics and

Engineering. 2014;273:238–254. doi:10.1016/j.cma.2014.02.002.

29. Logg A, Mardal KA, Wells GN, editors. Automated Solution of Differential

Equations by the Finite Element Method. The FEniCS Book. 1st ed. Berlin

Heidelberg: Springer-Verlag; 2012.

30. Luo CH, Rudy Y. A Model of the Ventricular Cardiac Action Potential.

Circulation Research. 1991;68(6):1501–1526. doi:10.1161/01.RES.68.6.1501.

31. Shaw RM, Rudy Y. Ionic mechanisms of propagation in cardiac tissue: Roles of

the sodium and L-type calcium currents during reduced excitability and

decreased gap junction coupling. Circulation Research. 1997;81(5):727–741.

doi:10.1161/01.RES.81.5.727.

32. Harris aL, Spray DC, Bennett MV. Kinetic properties of a voltage-dependent

junctional conductance. The Journal of general physiology.

1981;77(January):95–117.

33. Jongsma HJ, Wilders R. Gap Junctions in Cardiovascular Disease. Circulation

Research. 2000;86(12):1193–1197. doi:10.1161/01.RES.86.12.1193.

June 28, 2019 17/17

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/690255doi: bioRxiv preprint 

https://doi.org/10.1101/690255
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/690255doi: bioRxiv preprint 

https://doi.org/10.1101/690255
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/690255doi: bioRxiv preprint 

https://doi.org/10.1101/690255
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/690255doi: bioRxiv preprint 

https://doi.org/10.1101/690255
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/690255doi: bioRxiv preprint 

https://doi.org/10.1101/690255
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/690255doi: bioRxiv preprint 

https://doi.org/10.1101/690255
http://creativecommons.org/licenses/by/4.0/

