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ABSTRACT 54 

Understanding circuit organization depends on identification of cell types. Recent advances in 55 

transcriptional profiling methods have enabled classification of cell types by their gene 56 

expression. While exceptionally powerful and high throughput, the ground-truth validation of 57 

these methods is difficult: if cell type is unknown, how does one assess whether a given 58 

analysis accurately captures neuronal identity? To shed light on the capabilities and limitations 59 

of solely using transcriptional profiling for cell type classification, we performed two forms of 60 

transcriptional profiling – RNA-seq and quantitative RT-PCR, in single, unambiguously identified 61 

neurons from two small crustacean networks: the stomatogastric and cardiac ganglia. We then 62 

combined our knowledge of cell type with unbiased clustering analyses and supervised machine 63 

learning to determine how accurately functionally-defined neuron types can be classified by 64 

expression profile alone. Our results demonstrate that expression profile is able to capture 65 

neuronal identity most accurately when combined with multimodal information that allows for 66 

post-hoc grouping so analysis can proceed from a supervised perspective. Solely unsupervised 67 

clustering can lead to misidentification and an inability to distinguish between two or more cell 68 

types. Therefore, our study supports the general utility of cell identification by transcriptional 69 

profiling, but adds a caution:  it is difficult or impossible to know under what conditions 70 

transcriptional profiling alone is capable of assigning cell identity. Only by combining multiple 71 

modalities of information such as physiology, morphology or innervation target can neuronal 72 

identity be unambiguously determined. 73 

  74 
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SIGNIFICANCE STATEMENT 75 

Single cell transcriptional profiling has become a widespread tool in cell identification, 76 

particularly in the nervous system, based on the notion that genomic information determines cell 77 

identity. However, many cell type classification studies are unconstrained by other cellular 78 

attributes (e.g., morphology, physiology). Here, we systematically test how accurately 79 

transcriptional profiling can assign cell identity to well-studied anatomically- and functionally-80 

identified neurons in two small neuronal networks. While these neurons clearly possess distinct 81 

patterns of gene expression across cell types, their expression profiles are not sufficient to 82 

unambiguously confirm their identity. We suggest that true cell identity can only be determined 83 

by combining gene expression data with other cellular attributes such as innervation pattern, 84 

morphology, or physiology. 85 

 86 

 87 

  88 
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INTRODUCTION 89 

 Unambiguous classification of neuronal cell types is a long-standing goal in 90 

neuroscience with the aim to understand the functional components of the nervous system that 91 

give rise to circuits and, ultimately, behavior (1–6). Beyond that, agreement upon neuronal cell 92 

types provides the opportunity to greatly increase reproducibility across investigations, allows 93 

for evolutionary comparisons across species (7, 8), and facilitates functional access to and 94 

tracking of neuron types through developmental stages (9). To this end, attempts at defining 95 

neuronal identity have been carried out using morphology, electrophysiology, gene expression, 96 

spatial patterning, and neurotransmitter phenotypes (10–18). Since the earliest efforts to 97 

capture the transcriptomes of single neurons, using linear or PCR amplification of mRNA 98 

followed by either cDNA library construction (19) or microarray hybridization (10, 20, 21), 99 

scRNA-seq (22) has become the method of choice for many genome-scale investigations into 100 

neuron cell type. Advances in microfluidics, library preparation, and sequencing technologies 101 

have propelled an explosion of molecular profiling studies seeking to use unique gene 102 

expression patterns to discriminate neuronal types from one another, whether for discovery of 103 

new types or further classification of existing ones (23, 24, 33–36, 25–32).  104 

Molecular profiling approaches to tackle the problem of neuronal cell identity have many 105 

advantages: first, single-cell transcriptomic data contain thousands of measurements in the form 106 

of gene products that can be used both in a qualitative (in the form of marker genes) and 107 

quantitative (in the form of absolute transcript counts) manner (6). Second, scRNA-seq allows 108 

for very high-throughput processing of samples with hundreds, if not thousands, of single cell 109 

transcripts simultaneously using barcoding techniques (37). Third, these techniques can be 110 

applied to species that lack well-annotated transcriptomic information, as the cost to generate 111 

de novo reference transcriptomes has decreased dramatically in recent years (38). Even the 112 

sequencing of heterogeneous tissues from the central nervous system (CNS) can be used in 113 

conjunction with predictive modeling to reconstruct markers for major classes of CNS cell types, 114 
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as has been done with oligodendrocytes, astrocytes, microglia, and neurons, in both humans 115 

and mice (39). Classifying neurons into different major categories (such as excitatory vs 116 

inhibitory, parvalbumin+ vs parvalbumin-, etc.) using qualitative expression measures is an 117 

easier task than quantitative approaches that separate neurons into smaller subclasses, but 118 

runs into limitations as to how far further classification can proceed. Subclasses of neuron types 119 

likely require greater depth of sequencing to resolve, and these neurons are more likely to be 120 

defined by the expression of multiple genes rather than unique markers (40). Yet this also is an 121 

inherent limitation of scRNA-seq: low abundance transcripts are often missed or inaccurately 122 

classified as differentially expressed (41), and methods to dissociate and isolate cells can alter 123 

their transcriptomic profiles before they are even measured (42, 43).   124 

There now have been many studies seeking to determine how many transcriptomically-125 

defined cell types might be present in a given part of the brain. For instance, an initial study of 126 

the cell type diversity of the mouse primary visual cortex revealed 42 neuronal and 7 non-127 

neuronal cell types (25). More recent work from the same group identified 133 transcriptomic 128 

cell types (44). Work in the retina has led the way as an example of generating a cell type 129 

consensus with an unknown endpoint. Multimodal information of retinal ganglion cell properties, 130 

including morphology, physiology, gene expression, and spatial patterning, has converged on 131 

over 65 cell types in the macaque fovea and peripheral retina (45). However, not all systems 132 

have the same technical advantages as the retinal ganglion cells (such as uniform spatial 133 

patterning) that can be indicative of cell type, and multimodal information can be more difficult to 134 

obtain than high-throughput transcriptomic profiling methods. Therefore, the reliability of 135 

transcriptomic profiling with respect to neuronal identity requires additional evaluation.  136 

In this study, we validate and compare transcriptional profiling via scRNA-seq and qRT-137 

PCR methods, using supervised and unsupervised analyses, in model systems in which 138 

neurons are unambiguously identified based on electrophysiological output, synaptic 139 

connectivity, axonal projection, and innervation target: the stomatogastric (STG) and cardiac 140 
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ganglia (CG) of the crab, Cancer borealis. This approach allows us to directly test how much of 141 

the known functional identity of a neuron is captured in the transcriptomic profile of single 142 

neurons within a given network. 143 

 144 

RESULTS 145 

Molecular Profiling of Single Identified STG and CG Neurons by RNA-seq 146 

Because of their large individual cell body size and our abiity to manually collect single 147 

identified STG neurons (Fig. 1), we generated transcriptomes for Pyloric Dilator (PD; N=11), 148 

Gastric Mill (GM; N=11), Lateral Pyloric (LP; N=8), and Ventricular Dilator (VD; N=8) neurons by 149 

typical library preparations rather than more automated procedures such as Drop-seq, Split-150 

Seq, or 10X Genomics (46). Sequencing data were mapped to the C. borealis nervous system 151 

transcriptome (47). After removing transcripts for which there was no expression in any cell 152 

type, our data set contained 28,459 distinct contigs (i.e. contiguous sequences) in the complete 153 

RNA-seq data set. These contigs represent more than the full set of genes transcribed in these 154 

cells, as multiple contigs may map to a single gene but during transcriptome assembly the 155 

intervening sequence could not be resolved to assemble these distinct fragments (see [58]). We 156 

then began our analysis of these data using unbiased hierarchical clustering methods, as is 157 

commonly done in this field. Using the complete data set (referred to as “All Expressed 158 

Contigs”), hierarchical clustering (with data centered and scaled across contigs) resulted in five 159 

clusters (Fig. 2A) that appeared not to segregate by cell type. One exception was observed 160 

among PD cells. All but two PD cells fell within one distinct cluster, albeit with a GM cell also 161 

identified in this cluster (Fig. 2A). While not surprising, the complete cellular transcriptome on its 162 

own does not distinguish cell types.  163 

We identified and extended our unbiased analysis to the most variably expressed genes 164 

in the RNA-seq dataset.  The first subset represents the top 2000 most variable contigs 165 
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(referred to as the “H2K contigs”) and the second subset includes variable genes identified 166 

using a method described by Brennecke et al. (48), assuming a false discovery rate of 0.2, 167 

which resulted in 922 contigs (referred to as “HVG contigs”). Focusing on variably expressed 168 

contigs improved clustering with respect to cell identity, with the HVG dataset outperforming the 169 

H2K. In the HVG clustering (Fig. 2B), 8/11 GM cells, 5/8 VD cells, 5/8 PD cells, and 5/8 LP cells 170 

formed distinct clusters. However, these nodes are not perfectly segregated by cell type and 171 

cells of each kind fail to appropriately cluster. If blind to these cell types, the HVG clustering 172 

analysis yields 5-6 distinct cell-type clusters, rather than the appropriate 4 (Fig. 2B).  173 

To achieve the best performance possible with scRNA-Seq clustering analyses, we 174 

unblinded the analyses to cell type and selected only differentially expressed transcripts. We 175 

selected two pools of differentially expressed transcripts: those with a 2-fold or higher level of 176 

expression difference and a q-value < 0.2 (referred to a “DE0.2”) or q-value <0.05 (“DE0.05”). 177 

Of course, differential expression (DE) analysis can only be carried with a priori knowledge of 178 

cell identity or some other post-hoc feature by which samples can be grouped. DE analysis with 179 

a q-value cutoff of 0.2 identified 137 transcripts (DE0.2), while a q-value of 0.05 identified only 180 

45 transcripts (DE0.05). Hierarchical clustering of the q<0.2 data set resulted in better 181 

clustering, but still failed to faithfully recapitulate cell identity. Hierarchical clustering was greatly 182 

improved by using the q<0.05 dataset (DE0.05; Fig. 2C) but remained imperfect.  183 

To reveal which preprocessing and clustering methods best recapitulate the predicted 184 

number of clusters based on known cell identity, we applied eight cluster estimation algorithms 185 

(optCluster package (49)) on the DE0.05 data set (centered and scaled by contig, Ward.D2 and 186 

a correlation dissimilarity matrix; Fig. 2D). The highest performing clusterings using the DE0.05 187 

data resulted from using Ward’s D with a correlation distance metric, resulting in a Jaccard 188 

index of 0.738. The results of cluster estimation differed based on the preprocessing of the 189 

datasets. Cluster estimation algorithms were selected from a set of 10 algorithms for use with 190 
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continuous data as they all yielded usable output. We retained the top three predicted k values 191 

from each. When data were centered and scaled by contig (Fig. 2D), the mode number of 192 

clusters estimated was 3 (5 indices) and 5 (5 indices), and none predicted the correct number of 193 

4 clusters.  194 

Finally, to assess whether unblinded analyses could predict cell type, we tested the 195 

ability of 8 supervised machine learning (sML) classification algorithms (generalized linear 196 

model (GLM), k-Nearest Neighbors (kNN), Neural Network (NN), Multinomial Neural Network 197 

(MNN), Random Forest (RF), Support Vector Machine with a linear kernel (SVML), Support 198 

Vector Machine with a radial kernel (SVMR), and Linear Discriminant Analysis (LDA)) to sort 199 

cells based on their transformed or untransformed mRNA abundances. Each model’s accuracy 200 

on new data was estimated using 5-fold cross validation. To capture the variation in the All 201 

Expressed Contigs dataset, we transformed the data with PCA and used the first 38 principal 202 

components, which accounted for over 99% of the variation. The sML mean accuracies on the 203 

All Expressed Contigs (PCA transformed) data set were extremely low, with a maximum mean 204 

accuracy of 48.6% (Fig. 2E).  sML accuracies improved substantially when classifying the RNA-205 

seq data preprocessed to identify variably expressed contigs (H2K, HVG) and DE contigs 206 

(DE0.2, DE0.05), often producing 100% accuracy for several cross-validation folds (Fig. 2E). It 207 

should be noted that no method classified all folds with complete accuracy, even with only DE 208 

contigs– most methods ranged between 75% to 100% accuracy. While these results are 209 

encouraging, even under optimal conditions (transcriptomic data, selection of transcripts by 210 

differential expression, ability to use supervised methods) we were unable to consistently 211 

classify these neurons with 100% accuracy. 212 

 213 

Principal Component Analysis of scRNA-seq Datasets 214 
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Principal Component Analysis (PCA) is often used to determine if the variance seen 215 

among transcript abundances can be used to separate cells into discrete types. Thus, we 216 

performed PCA on the four RNA-seq datasets (H2K, HVG, DE0.2, DE0.05) to examine the 217 

ability of this approach to discriminate among cell types (Fig. 3). For most of these datasets, the 218 

first principal component (PC1) accounted for >40% of the explained variance, with the 219 

exception of the HVG dataset (Fig. 3). As such, we have listed the top 10 contigs contributing to 220 

variation in PC1 for all four datasets in Table S1. We generated pairwise plots of all three PCs in 221 

attempts to visualize separation of samples into distinct cell types. There is little ability to resolve 222 

cell type differences in the H2K and HVG datasets (Fig. 3A, 3B). However, the differentially 223 

expressed transcripts allow for some separation of cell type (Fig. 3C, 3D), with PD becoming 224 

somewhat distinct for example in the DE0.05 dataset (Fig. 3D).  225 

 226 

Gene Ontology Analyses of RNA-seq Datasets 227 

To determine the types of genes represented in our most variable (H2K and HVG) and 228 

differentially expressed (DE0.2, DE0.05) data sets among cell populations, we performed Gene 229 

Ontology (GO) Enrichment Analysis using analysis tools from the PANTHER Classification 230 

System (50). Because there is relatively little gene annotation work in the crab, we performed 231 

GO analysis by first using BLAST to find the top Drosophila ortholog for a given contig, and then 232 

retrieving the GO terms associated with this ortholog for analysis. Thus while this analysis 233 

provides interesting insight into cell-type specific differences in gene expression, there are 234 

limitations to the interpretation, particularly with regards to fold enrichment in Drosophila relative 235 

to crab. The most robust expression differences (highest Fold Enrichment) in the H2K Molecular 236 

Function dataset were those of ATP-synthase activity and clathrin binding (Table S2). Others of 237 

note include mRNA-3’UTR binding, cell adhesion molecule, and calcium ion binding  (Table S2). 238 

More resolution is gained by examining the Biological Process category, where H2K contigs 239 
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were most overrepresented for “regulation of short-term neuronal synaptic plasticity,” “positive 240 

regulation of neuron remodeling,” “substrate adhesion-dependent cell spreading,” and “clathrin-241 

dependent synaptic vesicle endocytosis” categories (Table S3) among many others. The HVG 242 

dataset shows relatively few enriched categories (Tables S4 and S5) with FDR correction 243 

employed, including ATP binding and transferase activity (related to acetylcholine synthesis).  244 

 The differentially expressed contigs of the DE0.2 data set showed no significantly 245 

enriched contigs with FDR employed. Without any p-value correction, a number of molecular 246 

function categories appear as enriched (Table S6). However, this is less an appropriate 247 

enrichment analysis (due to the relatively small number of contigs) and more a description of 248 

gene categories present in the DE0.2 contigs. The top several hits are all indicative of 249 

transmitter phenotype, particularly acetylcholine synthesis (Table S6). However, other receptor 250 

activity is represented, such as GABA-gated chloride channel and GABA-A receptor activity. 251 

Finally, cell-cell adhesion mediator activity appears once again in this list.   252 

 253 

Molecular Profiling of Single Identified STG and CG Neurons Using Candidate Genes 254 

 One class of genes that we were surprised to not see represented in DE analyses were 255 

the voltage-gated ion channels. A very recent study found that three classes of neuronal effector 256 

genes - ion channels, receptors and cell adhesion molecules - have the greatest ability to 257 

distinguish among morphologically distinct mouse cortical cell populations (51). Our previous 258 

work also suggests that differential expression of ion channel mRNAs in STG cells may give rise 259 

to their distinct firing properties (52–54). We therefore examined our scRNA-seq data for 260 

expression of ion channel mRNAs. Overall, while the sequencing captured most of the known 261 

voltage-gated channel subtypes known in C. borealis, raw counts were very low (Fig. 4). 262 
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Therefore, we decided to use a qRT-PCR approach to directly test the hypothesis that channels 263 

and transmitter receptors are effective genes of interest to differentiate known neuron subtypes. 264 

To examine the molecular profile of individual identified neurons with qRT-PCR, we 265 

targeted the following transcripts: ion channels, receptors, gap junction innexins, and 266 

neurotransmitter-related transcripts. These cellular components are responsible for giving 267 

neurons much of their unique electrophysiological outputs. As such, we predicted that 268 

correspondingly unique expression patterns for this gene set would be present in each neuron 269 

type. Using multiplex qRT-PCR, we measured the absolute copy number of 65 genes of interest 270 

(see Table S7) from 124 individual STG neurons of 11 different types (10 STG neuron types: 271 

PD, LPG (Lateral Posterior Gastric), VD, GM, LP, PY (Pyloric), IC (Inferior Cardiac), LG Lateral 272 

Gastric), MG (Median Gastric), DG  (Dorsal Gastric) and the Large Cell (LC) motor neurons 273 

from the cardiac ganglion (N = 10-15 per type). We then used various methods of unsupervised 274 

clustering to generate the “best” clustering of these cells based on a priori known cell type. This 275 

included substituting any missing values in the qRT-PCR data set via median interpolation.  276 

 We then used k-means, unsupervised hierarchical, and SNN-Cliq clustering to generate 277 

unbiased clustering analyses based on expression of these genes of interest. Initial 278 

interrogation focused on data transformations with a fixed hierarchical clustering scheme 279 

(Ward’s D2, Correlation dissimilarity matrix as for the scRNA-seq analysis). Unscaled data as 280 

well as centered and data scaled data by gene resulted in different hierarchical clustering 281 

patterns. Using unscaled data, hierarchical clustering performed rather poorly in terms of 282 

generating distinct clusters that match known cell identity. Performance – as assessed by 283 

Jaccard Index –  was improved by scaling data across genes, generating 8 distinct nodes with 284 

high bootstrap support in hierarchical clustering that capture some of the features of known cell 285 

identity (LC, IC, LG, LPG, VD, GM, LP, PD; Fig. 5A). However, multiple cell types fall into 286 
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clusters that either do not show any separation by neuron identity (DG, MG, PY) or show no 287 

bootstrap support based on hierarchical clustering (AU p-value = 0).  288 

We sought to determine the upper bound for clustering performance with our dataset. If 289 

the known anatomical and physiological cell identity is reflected in the ion channel and receptor 290 

mRNA profile of STG neurons, then we hypothesize that clustering analyses performed on 291 

these mRNA data will yield 11 distinct clusters for our dataset. To determine the feasibility of 292 

clustering to sort cell types we tested 107 clusterings (varying clustering methods, distance 293 

metrics, and neighbors considered) for each data set. Each clustering was compared against 294 

the known cell identities with the Jaccard Index which ranges from 0 to 1 where 1 is perfect 295 

correspondence between clusterings – in this case the clustering and cell identity. The best 296 

performing combination was data scaled by target and processed using Ward’s D2 Hierarchical 297 

clustering with a correlation distance matrix (Jaccard = 0.636). By contrast the next best 298 

clusterings, Ward’s D on raw counts using Canberra distance and Ward’s D on data scaled by 299 

cell using Manhattan distance only achieved Jaccard indices of 0.495 and 0.487 respectively. 300 

The three least performant methods were Median hierarchical clustering with Canberra distance 301 

(0.084), hierarchical centroid clustering with Manhattan distance (0.859), and SNN-Cliq 302 

clustering with Binary distance and 9 neighbors (0.859). Examining the best performing 303 

clustering reveals that LP, PD, LG, IC, DG, LC, PY, GM, LPG, and VD separate fairly well.   304 

Given that an a priori known number of cell types represented in a sample is rare, we 305 

tested whether we would have arrived at the correct number of cell types in our sample had we 306 

been blind to their identity. We used the best performing transformations from the clustering 307 

analysis, i.e. data centered and scaled by gene and a correlation dissimilarity matrix, and 8 308 

cluster determination indices provided by the optCluster package (49). We allowed a minimum 309 

of 2 and a maximum of 32 clusters for this and later cluster determination analyses. The mode 310 

of the top 3 predicted k values for 8 different methods of cluster estimation was 2 (6 indices), 311 
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followed by 4 (the expected number of clusters) and 6 (3 indices each) (see Fig. 5B). If a 312 

researcher were using any one of these, or a majority vote of several, the chance they would 313 

conclude the correct number of 11 clusters are present would be vanishingly low.  314 

 We repeated our sML analyses on the qRT-PCR data to examine the “best case 315 

scenario” performance for clustering analyses. Performance varied substantially between 316 

algorithms (e.g. NN achieved a mean accuracy of 43.5% whereas SVML produced a mean 317 

accuracy of 87.5%) and was affected by whether the data was centered and scaled (e.g. NN 318 

improved by 43.5%, SVML did not improve) (Fig. 5C).  The highest mean accuracy we achieved 319 

was 87.5% (SVML, either with or without scaling). We considered a principal component 320 

transformation as well, but improved the maximum mean accuracy little (NN, 87.9%) and 321 

worsened the previously most performant methods (SVML decreased from 87.5% to 66.5%, 322 

unscaled and 67.4%, scaled). Although neither produces the highest mean accuracy, RF 323 

(87.2%-83.2%), GLM (86.6%-79.2%), and LDA (81.9%-77.7%) performed consistently across 324 

transformations, but clearly not equally well. Overall, the top performing accuracy methods 325 

involved centering and scaling the data across genes, and yielded similar efficacies across 326 

algorithms (Fig. 5C).  327 

 Finally, we repeated the Principal Component Analysis (PCA) to determine if the 328 

variance seen among transcript abundances can be used to separate these 11 cell types into 329 

discrete clusters. The first two principal components (PC1 and PC2) generated from the qRT-330 

PCR data accounted for 31.2% and 16.6% of the variance, respectively (Fig. 5D). PC3 331 

accounted for 9.6% of the variance across samples. The top 10 mRNAs contributing to each of 332 

these PCs is are listed in Table S1. We generated pairwise plots of all three PCs in attempts to 333 

visualize separation of samples into distinct cell types. The most consistent result across all 334 

comparisons was that LC neurons from the cardiac ganglion formed a cluster that had less 335 

overlap with STG neurons than STG neurons did with each other, particularly in the dimension 336 
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of PC1 vs. PC2 (Fig. 5D). Visualization of PC1 vs. PC3 and PC2 vs. PC3 also give some 337 

indication that even with these target genes of interest we are able to resolve some separation 338 

of these groups (Fig. 5D). However, without such extensive a priori knowledge about cell type 339 

overall it is difficult to see how PCA would be effective in separating these 11 cell types based 340 

on the expression data at hand.  341 

 342 

Comparison of qRT-PCR and RNA-seq Results 343 

 To ensure that the RNA-seq and qRT-PCR data were producing comparable expression 344 

results, we identified 4 different transcripts that were represented both in the DE data set from 345 

the RNA-seq and the qRT-PCR data set for the four cell types used in RNA-seq (PD, LP, GM, 346 

VD). Overall, there is very strong agreement in expression patterns for all four genes (Fig. 6A), 347 

adding confidence to the quality of both data sets with respect to capturing native expression 348 

patterns. However, we then extracted the RNA-seq expression data for all 65 of the transcripts 349 

used in the qRT-PCR data set. When we performed hierarchical clustering analysis and PCA 350 

using these 65 channel and receptor transcripts, the qRT-PCR clusters with nearly 100% 351 

success (with the exception of 2 GM neurons) into nodes that contain the 4 known distinct cell 352 

types, while the RNA-seq dataset using the same transcripts fails to generate coherent cell type 353 

clusters (Fig. 6B; 6C). As we examined this further, we realized that the four transcripts in 354 

Figure 6A (ChAT, vAChT, NMDA2B, KCNK1) represent somewhat higher abundance 355 

transcripts that were differentially expressed and showed consistent patterns between qPCR 356 

and RNA-seq methods. Other highly expressed transcript types were not differentially 357 

expressed (e.g. NaV, INX1-3), and therefore do not contribute strongly to distinguishing cell 358 

identity. Conversely, many of the other transcripts in the qRT-PCR data set that were distinct 359 

across cell types had very low levels of detected expression in the RNA-seq data set (Fig. 4). 360 
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 361 

DISCUSSION 362 

Many projects currently attempting to describe neuronal cell types begin with the 363 

acquisition of molecular profiles from populations of unidentified neurons (25, 35, 55). Our 364 

results demonstrate the strengths and limitations of both unsupervised and supervised methods 365 

that rely solely on a molecular profile to recapitulate neuron identity. We accomplish this by 366 

working “backwards” from an unambiguously known cell identity in a system with a rich history 367 

of single-cell neurophysiological characterization, the crustacean stomatogastric ganglion. Our 368 

analysis clearly demonstrates that even with the most complete a priori knowledge of cell type in 369 

the analysis, there are limitations to determining cell identity through mRNA expression profiles 370 

alone. However, our analyses add to compelling supporting evidence that the molecular profile 371 

can partially indicate identity, particularly once supervised methods incorporating known cell 372 

identification are employed.  373 

There is increasing evidence that classes of genes may differentiate cell types. For 374 

example, genes underlying synaptic transmission machinery were critical for separating mouse 375 

cortical GABAergic neurons into different types (56). Sets of genes that are regulated together 376 

that can be thought of as a “gene batteries” have also been shown to be indicative of cell type. 377 

One well-studied example of this can be found in C. elegans, wherein there is expression of 378 

neuron-type-specific combinations of transcription factors (57). Most recently, three classes of 379 

neuronal effector genes - ion channels, receptors and cell adhesion molecules – were 380 

determined to have the greatest ability to distinguish among genetically- and anatomically- 381 

defined mouse cortical cell populations (51). Consistent with this work, our GO analysis of the 382 

2000 most variable contigs in our scRNA-seq data set (H2K) revealed that the top 5 Biological 383 

Process terms that were significantly enriched included “regulation of short-term neuronal 384 

synaptic plasticity,” “substrate adhesion-dependent cell spreading,” and “clathrin-dependent 385 
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synaptic vesicle endocytosis.” Specifically, our differentially expressed contigs dataset (DE0.2) 386 

revealed Molecular Function enrichment for terms related to transmitter identity (“choline:sodium 387 

symporter activity” and “acetylcholine transmembrane transporter activity” among others), 388 

specifically identified two GABA receptor function terms (“GABA-gated chloride ion channel 389 

activity” and “GABA-A receptor activity”) and also included “cell-cell adhesion mediator activity.” 390 

Finally, our entire qRT-PCR experiment focused on the expression of ion channels, receptors, 391 

gap junction innexins, and neurotransmitter-related transcripts. While these 65 genes were not 392 

sufficient for classifying cells into known types, this modest number of transcripts discriminated 393 

neuron types fairly well. Thus, categorical families of neuronally expressed genes may yield the 394 

most useful data for subdividing neurons into distinct classes or subtypes.  395 

Retinal ganglion cells of mice show spatial patterning in which cells of the same type are 396 

distributed with exclusionary zones around them where no other cells of that type are found, 397 

while cells of different types do not exhibit spatial patterning and are more randomly distributed 398 

(58). Molecular classification of neurons in C. elegans found that anatomically distinct neurons 399 

have correspondingly distinct molecular profiles >90% of the time (59). However, 146 distinct 400 

molecular profiles were identified from the 118 anatomically distinct neuron classes, indicating 401 

the potential for molecular sub-classification. This classification relied on hierarchical clustering 402 

that was carried out solely on identified reporter genes (most prominently transcription factors 403 

and GPCR-type sensory receptors) known to be differentially expressed across the 302 neurons 404 

of C. elegans from Wormbase.org (60) and not whole transcriptome molecular profiles. It is 405 

reassuring that the expression of a wide variety of reporter genes known to be differentially 406 

expressed across a population of neurons can recapitulate cell identity. But, this relies on 407 

having an established definition of neuron type – in this case anatomical – to constrain 408 

hierarchical clustering, as differential expression analysis can only be carried out by assigning 409 

samples to different populations. Our results are consistent with these findings, in that clustering 410 

is most reliable when differentially expressed targets are present. Yet our data also demonstrate 411 
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that without separating cell types a priori by such additional criteria, molecular cell classification 412 

can generate unreliable results, particularly with neurons that belong to the same network.  413 

What are the sources of variability that could mask molecular identification of neuronal 414 

identity? Most common high-throughput molecular profiling techniques require destructive 415 

sampling to acquire mRNA abundances, which generates only a snapshot of the profile at a 416 

single point in time. Gene expression has stochastic characteristics (61, 62); transcription takes 417 

place not continually, but in bursts of expression (63) (reviewed in (64)); and steady-state 418 

mRNA abundances are the result of rates of expression, but also degradation and mRNA 419 

stability (65). Single cell transcriptomes can be altered biologically as a consequence of activity 420 

(66), injury (67), long-term memory formation (33), differentiation (68), and aging (23, 69), as 421 

well as being affected by technical noise (70).Cells also belong to different transcriptional states 422 

under certain conditions, with the major distinction between a cell type and cell state being that 423 

state is a reversible condition, where type is more constant and includes neuronal states (71). 424 

Neuron types exist in a continuum, exhibiting variation in expression patterns within defined cell 425 

types, increasing difficulty in discreetly drawing the cutoff of one type from another (72). Thus, 426 

the assertion that a given neuron has a single transcriptomic profile is an oversimplification and 427 

simply represents a moment in time in the life of a given cell. 428 

The present study also has limitations. The expression of the focal gene set of ion 429 

channels, receptors, gap junction innexins, and neurotransmitter-related transcripts examined in 430 

this study ultimately discriminated neuron types fairly well, using supervised methods taking into 431 

account known neuron identity. This same gene set did not perform well in the same cell types 432 

using RNA-seq (Fig. 6), where a lack of low-abundance transcripts (such as transcription factors 433 

and ion channels) may have prevented us from robustly identifying cell-type-specific expression 434 

patterns; thus, depth of sequencing is always an ambiguity in every RNA-seq study (73).  435 

Furthermore, while we sampled the mRNA transcriptome of individual neurons, we have not 436 
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measured other gene products that could drive unique identity, including non-coding RNA 437 

species such as miRNA and lncRNA (74). Epigenetic modifications have also been implicated in 438 

neuronal cell identity (75), which were not considered in this study. Further, there are numerous 439 

other methods and statistical analyses being applied to molecular profiles to distinguish cell 440 

type. We focus on the more commonly employed analyses (PCA, hierarchical clustering, 441 

machine learning algorithms) in the literature. Finally, although we are confident in our ability to 442 

identify and harvest the targeted neuron types, we cannot rule out the possibility of an 443 

occasional misidentified or wrongly isolated cell, as well as the potential presence of adherent 444 

support cells.  445 

This study reveals the inherent circularity of the problem facing researchers using 446 

transcriptome profiling to identify cell types: molecular profiling is most effective when cells are 447 

separated into distinct types a priori, yet this is often not possible in many systems. So then how 448 

can we most effectively use molecular profiling on unknown populations of cells? The clear 449 

answer is to provide as much multimodal data as possible in the analysis. Here, the additional 450 

data were an a priori separation into cell type based on electrophysiological output, synaptic 451 

connectivity, axonal projection, and muscle innervation target (76). While it has been more 452 

difficult to achieve multimodal data integration in systems such as cortex, the approach is 453 

gaining traction and proving effective. For example, supervised clustering methods proved 454 

superior to unsupervised algorithms in separating pyramidal neurons from interneurons in the 455 

mouse neocortex based on morphological phenotypes (77). Genetically- and anatomically-456 

defined cell populations in the mouse cortex have revealed much finer resolution and 457 

confidence in molecular profiling (51). Much like a circuit’s connectome alone is insufficient to 458 

predict network output and function (78), so too the transcriptome alone is insufficient to 459 

generate a definitive cell type. Yet it also is clear that transcriptome profiling provides valuable 460 
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insight into understanding the functional role of individual neurons and neuron types in a 461 

network. 462 

 463 

METHODS 464 

Tissue collection and RNA preparation 465 

Adult Jonah Crabs, Cancer borealis,  were purchased from the Fresh Lobster Company 466 

(Gloucester, Massachusetts, USA) and Commercial Lobster (Boston, MA). Animals were kept in 467 

filtered artificial seawater tanks chilled at 10–13°C on a 12/12 light:dark cycle. Prior to 468 

dissection, crabs were put on ice for 30 minutes to induce anesthetization. The complete 469 

stomatogastric nervous system (STNS) was dissected and pinned out in a dish coated in 470 

Sylgard (Dow Corning) with chilled (12°C) physiological saline (composition in mM/l: 440.0 471 

NaCl, 20.0 MgCl2, 13.0 CaCl2, 11.0 KCl, 11.2 Trizma base, and 5.1 maleic acid pH = 7.4 at 23 472 

oC. in RNase-free water). Following desheathing of the stomatogastric ganglion (STG), neurons 473 

were identified by simultaneous intra- and extracellular recordings (79, 80). Ten neuron types 474 

identified in the STG of C borealis were targeted for this study: PD (pyloric dilator), LPG (lateral 475 

posterior gastric), LP (lateral pyloric), IC (inferior cardiac), LG (lateral gastric), MG (medial 476 

gastric), GM, (gastric mill), PY (pyloric), VD (ventricular dilator), and DG (dorsal gastric). 477 

Identified neurons were extracted as previously described (81). Briefly, a Vaseline well was 478 

constructed around the ganglion, in which ~2.5 mg/ml protease (Sigma – P6911, St. Louis, MO) 479 

was added to disrupt connective tissue and loosen adherent support cells during a 10-15 minute 480 

incubation. The well was then thoroughly washed with fresh physiological saline to halt further 481 

enzymatic activity and remove any loose support or connective cells, and a 70% solution of 482 

chilled ethylene glycol in saline was added to the well. The saline outside the well was replaced 483 

with distilled water, and the entire dish was frozen at -20°C for 30 minutes. This kept the STG 484 

neurons cold during the removal of identified neurons. Due to the large size of C. borealis STG 485 
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neuronal somata (50-150 µM in diameter) (82), fine forceps were used to manually remove each 486 

neuron. Identified neurons (Fig. 1) were immediately placed in a cryogenic microcentrifuge tube 487 

containing 400 µL lysis buffer (Zymo Research) and stored at -80°C until RNA extraction. Total 488 

RNA was extracted using the Quick-RNA MicroPrep kit (Zymo Research) per the 489 

manufacturer’s protocol.  490 

 491 

Library Preparation and Single-Cell RNA-Seq 492 

Library construction and RNA sequencing services were carried out by the University of Texas 493 

at Austin Genomic Sequencing and Analysis Facility (Austin, TX, USA). Extracted single cell 494 

RNA from identified neurons from the STG was used to generate cDNA libraries using TruSeq 495 

Stranded mRNA Library Prep Kit (Illumina, San Diego, California, USA). Libraries were 496 

sequenced in a paired-end 150 bp (2x150bp) configuration on the NextSeq 500 Illumina 497 

platform (Illumina, San Diego, CA, USA). Raw reads were processed and analyzed on the 498 

Stampede Cluster at the Texas Advanced Computing Facility (TACC). Read quality was 499 

checked using the program FASTQC. Low quality reads and adapter sequences were removed 500 

using the program Cutadapt (Martin, 2011). The forty identified neurons used in this study all 501 

had at least 4 million uniquely mapped reads per sample, comprising 11 PD, 11 GM, 8 LP, and 502 

8 VD cell types. These sequencing reads are deposited in the National Center for Biotechnology 503 

Information BioProject archive (PRJNA524309) with the following identifiers: BioSample: 504 

SAMN11022125; Sample name: STG Neurons; SRA: SRS4411333. 505 

 506 

Mapping and Differential Expression 507 

The software package Kallisto (83) (v0.43.1) was used in the quantification of RNA-seq 508 

abundances through the generation of pseudo-alignments of paired-end fastq files to the C. 509 

borealis annotated nervous system transcriptome (47). Bootstrapping of the quantification was 510 
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performed iteratively for 100 rounds. Resulting counts were normalized through the transcripts 511 

per kilobase million (TPM) method. Differential expression analysis was carried out using the 512 

software package Sleuth (84) (v0.30.0) using TPM normalized counts for each cell type.  513 

 514 

Gene Ontology Enrichment Analysis 515 

 Since C. borealis lacks a well-curated reference genome, GO terms were assigned to 516 

the C. borealis transcriptome based on best BLASTX hits through reciprocal queries between 517 

crab sequence and the Drosophila melanogaster NCBI RefSeq database (Release 93). BLAST 518 

annotation was carried out based then on Drosophila protein sequence using the BLAST2GO 519 

(version 5.1) software suite with the blastx-fast alignment with an E value threshold = 1.0E-3 to 520 

generate D. melanogaster NCBI Gene IDs associated with each C. borealis contig. This 521 

produced 1348 and 252 annotated Gene IDs for the H2K and HVG datasets, respectively. 522 

These IDs were used as input for statistical overrepresentation tests using the PANTHER Gene 523 

Ontology Classification System (v14.1) with default settings using D. melanogaster as the 524 

reference species. Molecular Function and Biological Process GO terms were examined for 525 

enrichment in our datasets, and results reported reflect False Discovery Rate (FDR) correction 526 

except where noted.  527 

 528 

Multiplex Primer and Probe Design 529 

 Multiplex primer and probe sequences targeting C. borealis genes were generated using 530 

the RealTimeDesign™ qPCR Assay Design Software from LGC Biosearch Technologies 531 

(Petaluma, CA) for custom assays. Multiplex cassettes were designed as a unit to ensure 532 

minimal interference in simultaneous qPCR reactions. Probe fluorophore/quencher pairs used in 533 

this study are as follows: FAM-BHQ1, CAL Fluor Gold 540-BHQ1, CAL Fluor Red 610-BHQ2, 534 
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Quasar 670-BHQ2 and Quasar 705-BHQ2. Forward and reverse primer pair, as well as 535 

associated probe, sequences can be found in Table S7. 536 

 537 

cDNA synthesis and pre-amplification  538 

 Following RNA extraction, individual neuron RNA samples were reverse transcribed into 539 

cDNA using qScript cDNA SuperMix (QuantaBio, Beverly, MA, USA) primed with random 540 

hexamers and oligo-dT per the manufacturer’s protocol in 20 µL reactions. Half of each resulting 541 

cDNA pool (10 µL) was pre-amplified using PerfeCTa PreAmp Supermix (QuantaBio) with a 14-542 

cycle RT-PCR reaction primed with a pool of target-specific primers (Table S7) in a 20 µL 543 

reaction per the manufacturer’s protocol to allow for enough product to carry out 15 multiplex 544 

qPCR reactions per individual neuron sample. Amplified and unamplified target abundances 545 

were compared to ensure minimal amplification bias in the pre-amplification of samples (Fig. 546 

S1).  547 

 548 

Quantitative single-cell RT-PCR 549 

Following preamplification of cDNA, samples were diluted 7.5x in nuclease-free water 550 

(150 µL final volume) to allow for the quantification of 73 unique gene products across 15 551 

multiplex assays, each able to measure 4-5 different transcripts (Table S7). Reactions were 552 

carried out in triplicate on 96-well plates with 10 µL reactions per well using a CFX96 Touch™ 553 

Real-Time PCR Detection System from Bio-Rad (Hercules, CA, USA). Cycling conditions for 554 

qPCR reactions were as follows: 95°C for 3 min; 40 cycles of 95°C for 15 sec and 58°C for 1 555 

min. Fluorescent measurements were taken at the end of each cycle. The final concentration of 556 

primers in each multiplex qPCR reaction was 2.5 µM and 0.3125 µM for each probe.  557 

 To quantify absolute mRNA abundances, standard curves were developed for each RT-558 

qPCR multiplex assay using custom gBlock gene fragments (Integrated DNA Technologies, 559 
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Coralville, IA, USA). Standard curves were generated using a serial dilution of gBlock gene 560 

fragments from 1 X 106 to 1 X 101 copies for each reaction assay and were shown to be linear 561 

and reproducible. Copy numbers were calculated using the efficiency and slope generated from 562 

the standard curves and accounting for the 14-cycle preamplification and subsequent cDNA 563 

dilution described above.  564 

 565 

Statistical Analysis 566 

 All statistical analyses were performed using R version 3.5.3 (2019-03-11) -- "Great 567 

Truth" (85). We used single cell RNA-seq data to evaluate our methods under expected and 568 

near best case scenarios. To this end, we reduced the dimensionality of the data (28,695 569 

contigs) by selecting the 2000 most variable contig and by selecting 922 highly variable contigs 570 

selected using the M3Drop implementation of the Brennecke method (48) (i.e. M3Drop:: 571 

BrenneckeGetVariableGenes() (86) ) assuming a 0.2 false discovery rate. To test performance 572 

under ideal conditions we selected those contigs differentially expressed at an alpha of 0.2 or 573 

0.05. We centered and scaled the aforementioned datasets and their progenitors via the 574 

caret::predict() and caret::preprocess() functions (87). We also tested dimensionality reduction 575 

via PCA. We further used PCA in exploratory data analysis to determine if any of the cell types 576 

were visually separable across four subsets of the data (Seq H2K, Seq HVG, Seq DE0.2, and 577 

Seq DE0.05).  578 

Next, we performed cluster estimation using the optClust() function of the optCluster 579 

package (49). The algorithms used on each dataset varied by whether the data were counts or 580 

continuous. Allowed k values ranged from 2-10 (i.e. cells in dataset / 4, rounding up). We 581 

selected the top three predicted k values from each algorithm for visualization of the spread of 582 

predicted ks.  583 
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To assess the performance of unsupervised machine learning methods on our data we 584 

tested several clustering algorithms – k-means clustering, hierarchical clustering (using a variety 585 

of distance metrics, (euclidean, maximum, manhattan, canberra, binary, minkowski, correlation, 586 

uncentered) and clustering methods (ward.D, ward.D2, single, complete, average, mcquitty, 587 

median, centroid, ward.D2)), and SNN-Cliq clustering (88). We then selected high performing 588 

clustering methods based on the Jaccard index calculated against cell identity. We selected one 589 

of the best performing combinations (Ward’s method with correlation as the distance metric) for 590 

visualization. 591 

We applied several supervised machine learning methods to evaluate predictive power 592 

of expression data in ideal circumstances (i.e. prior knowledge of a given cell type’s molecular 593 

identity). Specifically, we tested elastic regression, k-nearest neighbors, linear discriminant 594 

analysis, neural network, multinomial neural network, random forest, support vector machine 595 

with a radial kernel, and support vector machine with a linear kernel. For each of these models 596 

we tested a variety of tuning parameters and selected the most effective parameter set before 597 

comparison with other methods. Methods were evaluated by using cross validation (with five 598 

folds) to produce the expected accuracy on new data. The same approaches were applied to 599 

the single cell RT-qPCR data set, with a few caveats. Given its relatively smaller size, 600 

dimensionality reduction was not necessary to overcome technical or practical hurdles. Thus, 601 

we tested both the raw and centered and scaled dataset in addition to PCA transformations of 602 

the same. We also increased the maximum k allowed in cluster estimation to 32. 603 

 604 

  605 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/690388doi: bioRxiv preprint 

https://doi.org/10.1101/690388


 

 25 

DECLARATIONS 606 

Availability of Data and Material 607 

All sequence data accession numbers are provided in the manuscript and accompanying tables.  608 

Competing Interests 609 

The authors declare that they have no competing interests. 610 

Funding 611 

This work was supported by National Institutes of Health grants R01MH046742-29 (EM and 612 

DJS) and NIGMS T32GM008396 (support for AJN).  613 

Authors Contributions 614 

Conceived the study: DJS, EM, HAH. Tissue collection: AJN, AGO, JMS, RMH. Performed 615 

qPCR assays: AJN. Design of Primers: AJN, DJS. RNA-seq analysis: BMG, AJN, DRK, DJS, 616 

HAH, RMH. Data analysis: AJN, DRK, DJS. Interpretation of results: AJN, DRK, DJS, EM, HAH. 617 

Wrote the manuscript: AJN, DRK, DJS, EM, HAH. All authors read and approved the final 618 

manuscript.  619 

Acknowledgements 620 

We would like to thank members of the Schulz and Hofmann labs for helpful discussions. The 621 

authors thank the Genomic Sequencing and Analysis Facility at UT Austin for library preparation 622 

and sequencing and the bioinformatics consulting team at the UT Austin Center for 623 

Computational Biology and Bioinformatics for helpful advice. 624 

 625 

  626 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/690388doi: bioRxiv preprint 

https://doi.org/10.1101/690388


 

 26 

REFERENCES 627 

1.  Masland RH (2004) Neuronal cell types. Curr Biol 14(13):R497–R500. 628 

2.  Zeng H, Sanes JR (2017) Neuronal cell-type classification: challenges, opportunities and the path 629 

forward. Nat Rev Neurosci 18(9):530–546. 630 

3.  Tasic B (2018) Single cell transcriptomics in neuroscience: cell classification and beyond. Curr 631 

Opin Neurobiol 50:242–249. 632 

4.  Stevens CF (1998) Neuronal diversity: too many cell types for comfort? Curr Biol 8(20):R708-10. 633 

5.  Cuevas-Diaz Duran R, Wei H, Wu JQ (2017) Single-cell RNA-sequencing of the brain. Clin Transl 634 

Med 6(1):20. 635 

6.  Luo L, Callaway EM, Svoboda K (2018) Genetic Dissection of Neural Circuits: A Decade of 636 

Progress. Neuron 98(2):256–281. 637 

7.  Tessmar-Raible K, et al. (2007) Conserved sensory-neurosecretory cell types in annelid and fish 638 

forebrain: insights into hypothalamus evolution. Cell 129(7):1389–400. 639 

8.  Tomer R, Denes AS, Tessmar-Raible K, Arendt D (2010) Profiling by Image Registration Reveals 640 

Common Origin of Annelid Mushroom Bodies and Vertebrate Pallium. Cell 142(5):800–809. 641 

9.  Mehta P, et al. (2019) Functional Access to Neuron Subclasses in Rodent and Primate Forebrain. 642 

Cell Rep 26(10):2818–2832.e8. 643 

10.  Whitaker KW, et al. (2011) Serotonergic modulation of startle-escape plasticity in an African cichlid 644 

fish: a single-cell molecular and physiological analysis of a vital neural circuit. J Neurophysiol 645 

106(1):127–37. 646 

11.  Ho H, et al. (2018) A Guide to Single-Cell Transcriptomics in Adult Rodent Brain: The Medium 647 

Spiny Neuron Transcriptome Revisited. Front Cell Neurosci 12:159. 648 

12.  Parmhans N, Sajgo S, Niu J, Luo W, Badea TC (2018) Characterization of retinal ganglion cell, 649 

horizontal cell, and amacrine cell types expressing the neurotrophic receptor tyrosine kinase Ret. J 650 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/690388doi: bioRxiv preprint 

https://doi.org/10.1101/690388


 

 27 

Comp Neurol 526(4):742–766. 651 

13.  Shrestha BR, et al. (2018) Sensory Neuron Diversity in the Inner Ear Is Shaped by Activity. Cell 652 

174(5):1229–1246.e17. 653 

14.  Chung S, et al. (2017) Identification of preoptic sleep neurons using retrograde labelling and gene 654 

profiling. Nature 545(7655):477–481. 655 

15.  Södersten E, et al. (2018) A comprehensive map coupling histone modifications with gene 656 

regulation in adult dopaminergic and serotonergic neurons. Nat Commun 9(1):1226. 657 

16.  Cadwell CR, et al. (2015) Electrophysiological, transcriptomic and morphologic profiling of single 658 

neurons using Patch-seq. Nat Biotechnol 34(2):199–203. 659 

17.  Zeisel A, et al. (2015) Brain structure. Cell types in the mouse cortex and hippocampus revealed 660 

by single-cell RNA-seq. Science 347(6226):1138–42. 661 

18.  Boldog E, et al. (2018) Transcriptomic and morphophysiological evidence for a specialized human 662 

cortical GABAergic cell type. Nat Neurosci 21(9):1185–1195. 663 

19.  Eberwine J, et al. (1992) Analysis of gene expression in single live neurons. Proc Natl Acad Sci U 664 

S A 89(7):3010–4. 665 

20.  Tietjen I, et al. (2003) Single-cell transcriptional analysis of neuronal progenitors. Neuron 666 

38(2):161–75. 667 

21.  Esumi S, et al. (2008) Method for single-cell microarray analysis and application to gene-668 

expression profiling of GABAergic neuron progenitors. Neurosci Res 60(4):439–451. 669 

22.  Tang F, et al. (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 670 

6(5):377–382. 671 

23.  Davie K, et al. (2018) A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain. Cell 672 

174(4):982–998.e20. 673 

24.  Poulin J-F, Tasic B, Hjerling-Leffler J, Trimarchi JM, Awatramani R (2016) Disentangling neural 674 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/690388doi: bioRxiv preprint 

https://doi.org/10.1101/690388


 

 28 

cell diversity using single-cell transcriptomics. Nat Neurosci 19(9):1131–41. 675 

25.  Tasic B, et al. (2016) Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. 676 

Nat Neurosci 19(2):335–46. 677 

26.  Trapnell C (2015) Defining cell types and states with single-cell genomics. Genome Res 678 

25(10):1491–1498. 679 

27.  Haas BJ, et al. (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity 680 

platform for reference generation and analysis. Nat Protoc 8(8):1494–512. 681 

28.  Cembrowski MS, Wang L, Sugino K, Shields BC, Spruston N (2016) Hipposeq: a comprehensive 682 

RNA-seq database of gene expression in hippocampal principal neurons. Elife 5:e14997. 683 

29.  Wagner A, Regev A, Yosef N (2016) Revealing the vectors of cellular identity with single-cell 684 

genomics. Nat Biotechnol 34(11):1145–1160. 685 

30.  Gokce O, et al. (2016) Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell RNA-686 

Seq. Cell Rep 16(4):1126–1137. 687 

31.  Doyle JP, et al. (2008) Application of a Translational Profiling Approach for the Comparative 688 

Analysis of CNS Cell Types. Cell 135(4):749–762. 689 

32.  Zhou T, Matsunami H (2018) Lessons from single-cell transcriptome analysis of oxygen-sensing 690 

cells. Cell Tissue Res 372(2):403–415. 691 

33.  Crocker A, Guan X-J, Murphy CT, Murthy M (2016) Cell-Type-Specific Transcriptome Analysis in 692 

the Drosophila Mushroom Body Reveals Memory-Related Changes in Gene Expression. Cell Rep 693 

15(7):1580–1596. 694 

34.  Macosko EZ, et al. (2015) Highly Parallel Genome-wide Expression Profiling of Individual Cells 695 

Using Nanoliter Droplets. Cell 161(5):1202–1214. 696 

35.  Usoskin D, et al. (2015) Unbiased classification of sensory neuron types by large-scale single-cell 697 

RNA sequencing. Nat Neurosci 18(1):145–53. 698 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/690388doi: bioRxiv preprint 

https://doi.org/10.1101/690388


 

 29 

36.  Shin J, Ming G, Song H (2014) Decoding neural transcriptomes and epigenomes via high-699 

throughput sequencing. Nat Neurosci 17(11):1463–75. 700 

37.  Rosenberg AB, et al. (2018) Single-cell profiling of the developing mouse brain and spinal cord 701 

with split-pool barcoding. Science (80- ) 360(6385):176–182. 702 

38.  Reuter JA, Spacek D V., Snyder MP (2015) High-Throughput Sequencing Technologies. Mol Cell 703 

58(4):586–597. 704 

39.  Kelley KW, Nakao-Inoue H, Molofsky A V., Oldham MC (2018) Variation among intact tissue 705 

samples reveals the core transcriptional features of human CNS cell classes. Nat Neurosci 706 

21(9):1171–1184. 707 

40.  Hobert O, Carrera I, Stefanakis N (2010) The molecular and gene regulatory signature of a 708 

neuron. Trends Neurosci 33(10):435–45. 709 

41.  Sha Y, Phan JH, Wang MD (2015) Effect of low-expression gene filtering on detection of 710 

differentially expressed genes in RNA-seq data. Conf Proc  . Annu Int Conf IEEE Eng Med Biol 711 

Soc IEEE Eng Med Biol Soc Annu Conf 2015:6461–4. 712 

42.  van den Brink SC, et al. (2017) Single-cell sequencing reveals dissociation-induced gene 713 

expression in tissue subpopulations. Nat Methods 14(10):935–936. 714 

43.  Harris RM, Kao H-Y, Alarcon JM, Hofmann HA, Fenton AA (2019) Hippocampal transcriptomic 715 

responses to enzyme-mediated cellular dissociation. Hippocampus:hipo.23095. 716 

44.  Tasic B, et al. (2018) Shared and distinct transcriptomic cell types across neocortical areas. 717 

Nature 563(7729):72–78. 718 

45.  Peng Y-R, et al. (2019) Molecular Classification and Comparative Taxonomics of Foveal and 719 

Peripheral Cells in Primate Retina. Cell 176(5):1222–1237.e22. 720 

46.  Ziegenhain C, et al. (2017) Comparative Analysis of Single-Cell RNA Sequencing Methods. Mol 721 

Cell 65(4):631–643.e4. 722 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/690388doi: bioRxiv preprint 

https://doi.org/10.1101/690388


 

 30 

47.  Northcutt AJ, et al. (2016) Deep sequencing of transcriptomes from the nervous systems of two 723 

decapod crustaceans to characterize genes important for neural circuit function and modulation. 724 

BMC Genomics 17(1):868. 725 

48.  Brennecke P, et al. (2013) Accounting for technical noise in single-cell RNA-seq experiments. Nat 726 

Methods 10(11):1093–1098. 727 

49.  Sekula M, Datta S, and Susmita Datta (2017) optCluster: Determine Optimal Clustering Algorithm 728 

and Number of Clusters. 729 

50.  Mi H, Muruganujan A, Thomas PD (2012) PANTHER in 2013: modeling the evolution of gene 730 

function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res 731 

41(D1):D377–D386. 732 

51.  Sugino K, et al. (2019) Mapping the transcriptional diversity of genetically and anatomically 733 

defined cell populations in the mouse brain. Elife 8. doi:10.7554/elife.38619. 734 

52.  Schulz DJ, Goaillard J-M, Marder EE (2007) Quantitative expression profiling of identified neurons 735 

reveals cell-specific constraints on highly variable levels of gene expression. Proc Natl Acad Sci U 736 

S A 104(32):13187–91. 737 

53.  Temporal S, Lett KM, Schulz DJ (2014) Activity-dependent feedback regulates correlated ion 738 

channel mRNA levels in single identified motor neurons. Curr Biol 24(16):1899–1904. 739 

54.  Santin JM, Schulz DJ (2019) Membrane Voltage Is a Direct Feedback Signal That Influences 740 

Correlated Ion Channel Expression in Neurons. Curr Biol 29(10):1683–1688.e2. 741 

55.  Li H, et al. (2017) Classifying Drosophila Olfactory Projection Neuron Subtypes by Single-Cell 742 

RNA Sequencing. Cell 171(5):1206–1220.e22. 743 

56.  Paul A, et al. (2017) Transcriptional Architecture of Synaptic Communication Delineates 744 

GABAergic Neuron Identity. Cell 171(3):522–539.e20. 745 

57.  Deneris ES, Hobert O (2014) Maintenance of postmitotic neuronal cell identity. Nat Neurosci 746 

17(7):899–907. 747 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/690388doi: bioRxiv preprint 

https://doi.org/10.1101/690388


 

 31 

58.  Sanes JR, Masland RH (2015) The Types of Retinal Ganglion Cells: Current Status and 748 

Implications for Neuronal Classification. Annu Rev Neurosci 38(1):221–246. 749 

59.  Hobert O, Glenwinkel L, White J (2016) Revisiting Neuronal Cell Type Classification in 750 

Caenorhabditis elegans. Curr Biol 26(22):R1197–R1203. 751 

60.  Harris TW, et al. (2014) WormBase 2014: new views of curated biology. Nucleic Acids Res 752 

42(D1):D789–D793. 753 

61.  Li G-W, Xie XS (2011) Central dogma at the single-molecule level in living cells. Nature 754 

475(7356):308–315. 755 

62.  Raj A, van Oudenaarden A (2008) Nature, Nurture, or Chance: Stochastic Gene Expression and 756 

Its Consequences. Cell 135(2):216–226. 757 

63.  Wang Y, Ni T, Wang W, Liu F (2018) Gene transcription in bursting: a unified mode for realizing 758 

accuracy and stochasticity. Biol Rev. doi:10.1111/brv.12452. 759 

64.  Symmons O, Raj A (2016) What’s Luck Got to Do with It: Single Cells, Multiple Fates, and 760 

Biological Nondeterminism. Mol Cell 62(5):788–802. 761 

65.  Perez-Ortin JE (2008) Genomics of mRNA turnover. Briefings Funct Genomics Proteomics 762 

6(4):282–291. 763 

66.  Benito E, Barco A (2015) The Neuronal Activity-Driven Transcriptome. Mol Neurobiol 51(3):1071–764 

1088. 765 

67.  Llorens-Bobadilla E, et al. (2015) Single-Cell Transcriptomics Reveals a Population of Dormant 766 

Neural Stem Cells that Become Activated upon Brain Injury. Cell Stem Cell 17(3):329–340. 767 

68.  Olivera-Martinez I, et al. (2014) Major transcriptome re-organisation and abrupt changes in 768 

signalling, cell cycle and chromatin regulation at neural differentiation in vivo. Development 769 

141(16):3266–3276. 770 

69.  Moroz LL, Kohn AB (2013) Single-Neuron Transcriptome and Methylome Sequencing for 771 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/690388doi: bioRxiv preprint 

https://doi.org/10.1101/690388


 

 32 

Epigenomic Analysis of Aging. Methods in Molecular Biology (Clifton, N.J.), pp 323–352. 772 

70.  Brennecke P, et al. (2013) Accounting for technical noise in single-cell RNA-seq experiments. Nat 773 

Methods 10(11):1093–1095. 774 

71.  Tasic B, Levi BP, Menon V (2017) Single-Cell Transcriptomic Characterization of Vertebrate Brain 775 

Composition, Development, and Function. Decoding Neural Circuit Structure and Function 776 

(Springer International Publishing, Cham), pp 437–468. 777 

72.  Cembrowski MS, Menon V (2018) Continuous Variation within Cell Types of the Nervous System. 778 

Trends Neurosci 41(6):337–348. 779 

73.  Rizzetto S, et al. (2017) Impact of sequencing depth and read length on single cell RNA 780 

sequencing data of T cells. Sci Rep 7(1):12781. 781 

74.  Sheng K, Cao W, Niu Y, Deng Q, Zong C (2017) Effective detection of variation in single-cell 782 

transcriptomes using MATQ-seq. Nat Methods 14(3):267–270. 783 

75.  Mito M, et al. (2018) Cell Type-Specific Survey of Epigenetic Modifications by Tandem Chromatin 784 

Immunoprecipitation Sequencing. Sci Rep 8(1):1143. 785 

76.  Marder E, Bucher D (2007) Understanding circuit dynamics using the stomatogastric nervous 786 

system of lobsters and crabs. Annu Rev Physiol 69:291–316. 787 

77.  Guerra L, et al. (2011) Comparison between supervised and unsupervised classifications of 788 

neuronal cell types: A case study. Dev Neurobiol 71(1):71–82. 789 

78.  Gutierrez GJ, O’Leary T, Marder E (2013) Multiple Mechanisms Switch an Electrically Coupled, 790 

Synaptically Inhibited Neuron between Competing Rhythmic Oscillators. Neuron 77(5):845–858. 791 

79.  Hooper SL, et al. (1986) The innervation of the pyloric region of the crab, Cancer borealis: 792 

homologous muscles in decapod species are differently innervated. J Comp Physiol A 793 

159(2):227–40. 794 

80.  Weimann JM, Meyrand P, Marder E (1991) Neurons that form multiple pattern generators: 795 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/690388doi: bioRxiv preprint 

https://doi.org/10.1101/690388


 

 33 

identification and multiple activity patterns of gastric/pyloric neurons in the crab stomatogastric 796 

system. J Neurophysiol 65(1):111–22. 797 

81.  Schulz DJ, Goaillard J-M, Marder E (2006) Variable channel expression in identified single and 798 

electrically coupled neurons in different animals. Nat Neurosci 9(3):356–62. 799 

82.  Ransdell JL, Faust TB, Schulz DJ (2010) Correlated Levels of mRNA and Soma Size in Single 800 

Identified Neurons: Evidence for Compartment-specific Regulation of Gene Expression. Front Mol 801 

Neurosci 3:116. 802 

83.  Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq 803 

quantification. Nat Biotechnol 34(5):525–527. 804 

84.  Pimentel H, Bray NL, Puente S, Melsted P, Pachter L (2017) Differential analysis of RNA-seq 805 

incorporating quantification uncertainty. Nat Methods 14(7):687–690. 806 

85.  R Core Team, Team RDC (2008) R: A Language and Environment for Statistical Computing. 807 

86.  Andrews T (2019) M3Drop: Michaelis-Menten Modelling of Dropouts in single-cell RNASeq. 808 

Available at: https://github.com/tallulandrews/M3Drop. 809 

87.  Kuhn M (2019) caret: Classification and Regression Training. R package version 6.0-84. 810 

88.  Xu C, Su Z (2015) Identification of cell types from single-cell transcriptomes using a novel 811 

clustering method. Bioinformatics 31(12):1974–1980. 812 

FIGURE LEGENDS 813 

Figure 1. A) Photomicrograph of the stomatogastric ganglion. Scale bar = 200 µm. B) Circuit 814 

map of the stomatogastric ganglion (STG). The STG contains 12 cell types that innervate the 815 

pylorus and gastric mill of the crab stomach. These cells are individually identifiable, and their 816 

chemical (closed circles) and electrical (resistor symbols) synaptic connections are all known. 817 

We used 10 of these 12 STG cell types (not AB or INT1) for this study, as well as motor neurons 818 

of the cardiac ganglion as an outgroup for comparison. Example traces taken from intracellular 819 
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recordings of each the 11 identified neuron types used in this study. Neurons are involved in 820 

three different networks/circuits in the crab, Cancer borealis: the pyloric network (PD, LPG, LP, 821 

and PY; orange box), the gastric network (LG, DG, and GM; red box) and the cardiac ganglion 822 

network (bottom). Note the time scale difference in the long-lasting bursts of the gastric cells 823 

(red box) relative to the pyloric cells (orange box). Some neurons (IC, VD, and MG) participate 824 

in both gastric and pyloric network activity, and are noted in the purple box. Large Cell (LC) 825 

motor neurons of the cardiac ganglion are used as an “outgroup” to compare expression 826 

patterns of motor neurons from a distinct ganglion (cardiac ganglion). Each of the representative 827 

recordings is independent as an example of individual cell output, and simultaneous network 828 

activity is not plotted here. Thus, none of the phase relationships of these units within their 829 

respective rhythms is implied in any of the recordings. 830 

 831 

Figure 2. Post-hoc recapitulation of cell identity via single cell RNA-seq with hierarchical 832 

clustering and supervised machine learning (sML) algorithms. A) Hierarchical clustering of cell 833 

type with correlation as the distance metric, Ward.D2 as the clustering method, and data 834 

centered and scaled by contig for all expressed contigs, B) Highly Variable Gene (HVG) 835 

dataset, and C) differentially expressed (DE) contigs at the q < 0.05 level. Each cell type is color 836 

coded, and Approximately Unbiased (AU) p-values are noted for each of the major nodes. Cells 837 

are identified by type (LP, PD, GM, VD) and a subscript that denotes a unique sample identifier. 838 

D) Dotplot of the top 3 predicted number of clusters (k values) for eight algorithms. None of 839 

these algorithms correctly predicted the expected 4 distinct clusters that would represent the 4 840 

different cell types in this assay. E) Accuracy (proportion of correctly identified cells) of cell type 841 

prediction using 8 different methods of sML (generalized linear model (GLM), k-Nearest 842 

Neighbors (kNN), Neural Network (NN), Multinomial Neural Network (MNN), Random Forest 843 

(RF), Support Vector Machine with a linear kernel (SVML), Support Vector Machine with a radial 844 
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kernel (SVMR), and Linear Discriminant Analysis (LDA)) for each of the data sets. Box and 845 

whisker plots show the efficacy of these methods to recapitulate cell identity from these two sets 846 

of contigs as estimated by cross validation (5 folds). To assess the efficacy of these methods on 847 

the full RNA-seq dataset, we used principle component analysis (PCA) for dimensionality 848 

reduction (i.e. >28,000 contigs to 38 PCs) while retaining 99% of the variance. Results are 849 

shown for raw data (top row) and data scaled across contigs (bottom row). 850 

 851 

Figure 3. Principal Component Analysis (PCA) for four different RNA-seq datasets. We 852 

performed PCA using A) the 2,000 contigs with the highest variance in expression (H2K), B) the 853 

Highly Variable Gene set (HVG), and differentially expressed (DE) contigs at the C) q < 0.2 854 

(DE0.2) and D) q < 0.05 (DE0.05) levels. For each panel we have plotted pairwise comparisons 855 

of PC1, PC2, and PC3, as well as a scree plot representing the percentage of variance 856 

explained by PCs 1-10. 857 

 858 

Figure 4. Count numbers for selected voltage-gated ion channels from the RNA-seq data. The 859 

median counts for each of the voltage-gated channels used in the RT-PCR analysis was 860 

generated by pooling cell type. Innexins and the Na+/K+ ATPase are used as a reference of 861 

more highly abundant gene products. 862 

 863 

Figure 5. Post-hoc recapitulation of cell identity via qRT-PCR expression with hierarchical 864 

clustering and sML algorithms. A) Hierarchical clustering of cell type with correlation as the 865 

distance metric, and Ward.D2 as the clustering method for data centered and scaled across 866 

genes. Approximately Unbiased (AU) p-values for a given node are noted in red.  Each node 867 

that has >80% support by AU p-value is color coded, and cell types that form a largely coherent 868 
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group are noted in bold. Cells that do not appear to cluster by type are noted in gray. Cells are 869 

identified by type and a subscript that denotes a unique sample identifier. B) Dotplot of the top 3 870 

predicted number of clusters based on 8 different prediction algorithms. None of these methods 871 

correctly predicted 11 distinct clusters that would represent the 11 different cell types in this 872 

assay. C) Accuracy of cell type prediction using 8 different methods of sML for each of the data 873 

sets. Box and whisker plots show efficacy of each method across five cross-validation folds. D) 874 

PCA for qRT-PCR data. Pairwise comparisons of PC1, PC2, and PC3 are shown in each panel 875 

as in Figure 3. PC1 accounted for 31.2% of the variance, PC2 accounted for 16.6%, and PC3 876 

accounted for 9.6% of the total variance across samples. A scree plot shows the amount of 877 

variance explained by PCs 1-10.   878 

 879 

Figure 6. Comparison of expression levels and clustering between qRT-PCR and RNA-seq 880 

data. A) Expression levels of 4 different genes (Choline Acetyltransferase: ChAT, Vesicular 881 

Acetylcholine Transporter: vAChT, NMDA Receptor Subtype 2B: NMDA2B, and K+ Two-Pore-882 

Domain Channel Subfamily K Member 1: KCNK1) between the RNA-seq and qRT-PCR data 883 

sets. Data shown are medians, quartiles and each individual value from a given animal. Each 884 

individual data point is also represented as open circles. RNA-seq data are presented as 885 

Transcripts Per Kilobase Million (TPM) while qRT-PCR data as absolute copy number per cell. 886 

B) Hierarchical clustering comparison between qRT-PCR (top) and RNA-seq (bottom) for the 887 

same 65 genes represented in the genes of interest pool shown in Figure 1. Each cell type is 888 

color coded, and nodes are labeled with AU-values as in previous figures. C) PCA for scRNA-889 

seq versus qRT-PCR channel and receptor data. Pairwise comparisons of PC1, PC2, and PC3 890 

are shown in each panel as in Figure 3. 891 
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Figure 1.   A) Photomicrograph of the stomatogastric ganglion. Scale bar = 200 µm. B) Circuit map of the stomatogastric 
ganglion (STG). The STG contains 12 cell types that innervate the pylorus and gastric mill of the crab stomach. These 
cells are individually identifiable, and their chemical (closed circles) and electrical (resistor symbols) synaptic connections 
are all known. We used 10 of these 12 STG cell types (not AB or INT1) for this study, as well as motor neurons of the 
cardiac ganglion as an outgroup for comparison. Example traces taken from intracellular recordings of each the 11 
identified neuron types used in this study. Neurons are involved in three different networks/circuits in the crab, Cancer 
borealis: the pyloric network (PD, LPG, LP, and PY; orange box), the gastric network (LG, DG, and GM; red box) and 
the cardiac ganglion network (bottom). Note the time scale difference in the long-lasting bursts of the gastric cells (red 
box) relative to the pyloric cells (orange box). Some neurons (IC, VD, and MG) participate in both gastric and pyloric 
network activity, and are noted in the purple box. Large Cell (LC) motor neurons of the cardiac ganglion are used as an 
“outgroup” to compare expression patterns of motor neurons from a distinct ganglion (cardiac ganglion).  Each of the 
representative recordings is independent as an example of individual cell output, and simultaneous network activity is not 
plotted here. Thus, none of the phase relationships of these units within their respective rhythms is implied in any of the 
recordings.   
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Figure 2. Post-hoc recapitulation of cell identity via single cell RNAseq with hierarchical clustering and supervised 
machine learning (sML) algorithms. A) Hierarchical clustering of cell type with correlation as the distance metric, 
Ward.D2 as the clustering method, and data centered and scaled by contig for all expressed contigs, B) Highly Variable 
Gene (HVG) dataset, and C) differentially expressed (DE) contigs at the q < 0.05 level. Each cell type is color coded, and 
Approximately Unbiased (AU) p-values are noted for each of the major nodes. Cells are identified by type (LP, PD, GM, 
VD) and a subscript that denotes a unique sample identifier. D) Dotplot of the top 3 predicted number of clusters (k 
values) for eight algorithms. None of these algorithms correctly predicted the expected 4 distinct clusters that would 
represent the 4 different cell types in this assay. E) Accuracy (proportion of correctly identified cells) of cell type 
prediction using 8 different methods of sML (generalized linear model (GLM), k-Nearest Neighbors (kNN), Neural 
Network (NN), Multinomial Neural Network (MNN), Random Forest (RF), Support Vector Machine with a linear kernel 
(SVML), Support Vector Machine with a radial kernel (SVMR), and Linear Discriminant Analysis (LDA)) for each of the 
data sets. Box and whisker plots show the efficacy of these methods to recapitulate cell identity from these two sets of 
contigs as estimated by cross validation (5 folds). To assess the efficacy of these methods on the full RNA seq dataset, we 
used principle component analysis (PCA) for dimensionality reduction (i.e. >28,000 contigs to 38 PCs) while retaining 
99% of the variance. Results are shown for raw data (top row) and data scaled across contigs (bottom row).  
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Figure 3.  Principal Component Analysis (PCA) for four different RNAseq datasets. We performed PCA using A) the 
2,000 contigs with the highest variance in expression (H2K), B) the Highly Variable Gene set (HVG), and differentially 
expressed (DE) contigs at the C) q < 0.2 (DE0.2) and D) q < 0.05 (DE0.05) levels.  For each panel we have plotted 
pairwise comparisons of PC1, PC2, and PC3, as well as a scree plot representing the percentage of variance explained by 
PCs 1-10.  
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Figure 4. Count numbers for selected voltage-gated ion channels from the RNAseq data. The median counts for each of 
the voltage-gated channels used in the RT-PCR analysis was generated by pooling cell type. Innexins and the Na+/K+ 
ATPase are used as a reference of more highly abundant gene products.   
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Figure 5.  Post-hoc recapitulation of cell identity via qRT-PCR expression with hierarchical clustering and sML 
algorithms. A) Hierarchical clustering of cell type with correlation as the distance metric, and Ward.D2 as the clustering 
method for data centered and scaled across genes. Approximately Unbiased (AU) p-values for a given node are noted in 
red.  Each node that has >80% support by AU p-value is color coded, and cell types that form a largely coherent group are 
noted in bold.  Cells that do not appear to cluster by type are noted in gray. Cells are identified by type and a subscript that 
denotes a unique sample identifier.  B) Dotplot of the top 3 predicted number of clusters based on 8 different prediction 
algorithms. None of these methods correctly predicted 11 distinct clusters that would represent the 11 different cell types 
in this assay. C) Accuracy of cell type prediction using 8 different methods of sML for each of the data sets. Box and 
whisker plots show efficacy of each method across five cross-validation folds. D) PCA for qRT-PCR data. Pairwise 
comparisons of PC1, PC2, and PC3 are shown in each panel as in Figure 3. PC1 accounted for 31.2% of the variance, PC2 
accounted for 16.6%, and PC3 accounted for 9.6% of the total variance across samples. A scree plot shows the amount of 
variance explained by PCs 1-10.   
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Figure 6. Comparison of expression levels and clustering between qRT-PCR and RNAseq data. A) Expression levels of 4 
different genes (Choline Acetyltransferase: ChAT, Vesicular Acetylcholine Transporter: vAChT, NMDA Receptor 
Subtype 2B: NMDA2B, and K+ Two-Pore-Domain Channel Subfamily K Member 1: KCNK1) between the RNAseq and 
qRT-PCR data sets. Data shown are medians, quartiles and each individual value from a given animal. Each individual 
data point is also represented as open circles. RNAseq data are presented as Transcripts Per Kilobase Million (TPM) while 
qRT-PCR data as absolute copy number per cell.  B) Hierarchical clustering comparison between qRT-PCR (top) and 
RNAseq (bottom) for the same 65 genes represented in the genes of interest pool shown in Figure 1. Each cell type is 
color coded, and nodes are labeled with AU-values as in previous figures. C) PCA for scRNA-seq versus qRT-PCR 
channel and receptor data. Pairwise comparisons of PC1, PC2, and PC3 are shown in each panel as in Figure 3.  
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SUPPLEMENTAL FIGURES 
 

 
Figure S1. Comparison of expression levels of the same single cell samples (N = 5) before (Unamplified) and after 
(Amplified) 14 cycles of preamplification of cDNA. Each sample represents a cDNA pool from a single identified neuron, 
half of which was preamplified and half remained unamplified. Data are shown as quantitation cycle (Cq) values. 
Statistics shown report values for Pearson’s Correlation test.  
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Table S1. Top ten contributing genes or contigs to PCs1-3 for each dataset. 
 

Dataset Rank PC1 PC1 value PC2 PC2 value PC3 PC3 value 
qRTPCR 1 LCCH3r 3.54 NaV 6.30 GluCl 9.12 
qRTPCR 2 mGABA3 3.10 Shal 5.65 GABAB_R1 8.04 
qRTPCR 3 mGluR5 3.06 NMDA_1A 5.16 vAChT 7.56 
qRTPCR 4 CaV2 3.05 KCNK1 4.95 HisCL 6.74 
qRTPCR 5 Shab 3.02 Shaker 4.54 ChAT 6.57 
qRTPCR 6 KCNH3 2.97 IH 3.47 IH 6.16 
qRTPCR 7 DAR1A 2.91 KCNK2 3.45 INX4 6.13 
qRTPCR 8 SKKCa 2.87 BKKCa 3.10 vGluT 5.29 
qRTPCR 9 His_3r 2.86 Dopa_1Br 3.06 RDLr 4.16 
qRTPCR 10 TRP_A_like 2.82 RDLr 2.93 CCAPr 3.11 
seq_h2k 1 c1318 0.10 c4636 0.50 c4191 0.59 
seq_h2k 2 c724 0.10 c8463 0.50 c751 0.58 
seq_h2k 3 c2022 0.10 c28755 0.50 c8533 0.49 
seq_h2k 4 c1834 0.10 c17319 0.50 c953 0.46 
seq_h2k 5 c718 0.10 c10220 0.50 c2665 0.46 
seq_h2k 6 c2357 0.10 c27163 0.49 c2126 0.45 
seq_h2k 7 c196 0.10 c5528 0.49 c2981 0.45 
seq_h2k 8 c739 0.10 c10716 0.49 c3881 0.42 
seq_h2k 9 c2301 0.10 c9333 0.49 c23433 0.41 
seq_h2k 10 c1048 0.10 c13463 0.49 c1647 0.40 
seq_hvg 1 c38450 0.50 c18443 0.63 c29394 0.80 
seq_hvg 2 c5595 0.50 c17911 0.63 c23916 0.80 
seq_hvg 3 c28755 0.50 c13615 0.63 c39794 0.80 
seq_hvg 4 c11256 0.49 c16416 0.63 c24360 0.80 
seq_hvg 5 c20433 0.49 c17569 0.63 c18403 0.79 
seq_hvg 6 c39762 0.49 c17622 0.63 c7694 0.79 
seq_hvg 7 c13489 0.49 c18306 0.63 c11984 0.79 
seq_hvg 8 c19224 0.49 c19165 0.63 c16991 0.79 
seq_hvg 9 c30088 0.49 c19999 0.63 c18899 0.79 
seq_hvg 10 c4923 0.49 c22142 0.63 c25542 0.79 

seq_DE0.2 1 c5749 1.62 c4517 3.20 c13441 5.94 
seq_DE0.2 2 c1898 1.44 c398 2.92 c1058 4.27 
seq_DE0.2 3 c23967 1.43 c878 2.92 c31757 3.14 
seq_DE0.2 4 c5120 1.41 c4945 2.87 c9248 3.05 
seq_DE0.2 5 c1219 1.39 c3559 2.69 c2212 3.02 
seq_DE0.2 6 c8871 1.37 c15559 2.64 c4534 2.63 
seq_DE0.2 7 c972 1.35 c8507 2.50 c8114 2.61 
seq_DE0.2 8 c973 1.33 c1151 2.15 c10145 2.57 
seq_DE0.2 9 c12663 1.32 c8323 2.06 c2981 2.47 
seq_DE0.2 10 c910 1.30 c1800 2.00 c14660 2.35 

seq_DE0.05 1 c21272 4.69 c4517 8.85 c1058 13.16 
seq_DE0.05 2 c5716 4.21 c16963 7.16 c13441 11.60 
seq_DE0.05 3 c5120 4.14 c3348 6.68 c2212 10.64 
seq_DE0.05 4 c3737 3.77 c1151 6.05 c2586 7.17 
seq_DE0.05 5 c8114 3.72 c14320 5.14 c5845 5.83 
seq_DE0.05 6 c16240 3.59 c5222 4.93 c14320 4.87 
seq_DE0.05 7 c2796 3.56 c8323 4.57 c4997 4.10 
seq_DE0.05 8 c1713 3.43 c5067 4.35 c14660 4.06 
seq_DE0.05 9 c49 3.38 c1324 4.12 c3348 4.00 
seq_DE0.05 10 c3716 3.23 c24846 4.08 c4534 3.86 
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Table S2. Gene Ontology Enrichment analysis of Molecular Function for H2K RNAseq data. 
 

GO term: molecular function  
Fold 

Enrichment 
FDR 

p-value 
proton-transporting ATP synthase activity, rotational mechanism (GO:0046933) 8.08+ 2.88E-04 
clathrin binding (GO:0030276) 6.82+ 4.51E-03 
ubiquitin conjugating enzyme activity (GO:0061631) 4.6+ 1.59E-02 
intramolecular oxidoreductase activity (GO:0016860) 4.32+ 2.22E-02 
structural constituent of ribosome (GO:0003735) 4.02+ 4.61E-11 
proton-transporting ATPase activity, rotational mechanism (GO:0046961) 3.84+ 4.35E-02 
structural constituent of cytoskeleton (GO:0005200) 3.84+ 4.30E-02 
unfolded protein binding (GO:0051082) 3.8+ 4.00E-05 
heat shock protein binding (GO:0031072) 3.73+ 5.01E-02 
mRNA 3'-UTR binding (GO:0003730) 3.73+ 4.96E-02 
cell adhesion molecule binding (GO:0050839) 3.57+ 3.89E-02 
translation factor activity, RNA binding (GO:0008135) 3.27+ 4.57E-03 
electron transfer activity (GO:0009055) 3.07+ 1.79E-02 
GTPase activity (GO:0003924) 3.07+ 6.09E-05 
GTP binding (GO:0005525) 2.97+ 6.78E-05 
actin binding (GO:0003779) 2.95+ 4.42E-04 
kinase binding (GO:0019900) 2.85+ 7.78E-03 
microtubule binding (GO:0008017) 2.75+ 3.98E-03 
phospholipid binding (GO:0005543) 2.56+ 3.16E-02 
calcium ion binding (GO:0005509) 2.4+ 1.60E-03 
protein-containing complex binding (GO:0044877) 2.39+ 7.29E-04 
ATP binding (GO:0005524) 2.31+ 1.36E-10 
protein serine/threonine kinase activity (GO:0004674) 2.17+ 1.31E-02 
enzyme regulator activity (GO:0030234) 1.83+ 1.40E-02 
DNA-binding transcription factor activity (GO:0003700) 0.41- 1.79E-02 
serine-type endopeptidase activity (GO:0004252) 0.1- 1.90E-03 
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Table S3. Gene Ontology Enrichment analysis of Biological Process for H2K RNAseq data. 
 

GO term: biological process  
Fold 

Enrichment 
FDR 

p-value 
regulation of short-term neuronal synaptic plasticity (GO:0048172) 10.96+ 6.64E-03 
positive regulation of neuron remodeling (GO:1904801) 10.63+ 7.39E-05 
substrate adhesion-dependent cell spreading (GO:0034446) 10.23+ 2.68E-03 
actin filament polymerization (GO:0030041) 9.59+ 9.52E-03 
clathrin-dependent synaptic vesicle endocytosis (GO:0150007) 8.77+ 3.43E-02 
protein N-linked glycosylation via asparagine (GO:0018279) 8.77+ 3.42E-02 
gluconeogenesis (GO:0006094) 8.53+ 1.31E-02 
dorsal closure, spreading of leading edge cells (GO:0007395) 8.53+ 1.31E-02 
morphogenesis of larval imaginal disc epithelium (GO:0016335) 7.67+ 4.63E-02 
retrograde axonal transport (GO:0008090) 7.67+ 1.79E-02 
ATP synthesis coupled proton transport (GO:0015986) 7.03+ 1.14E-04 
vesicle transport along microtubule (GO:0047496) 6.98+ 2.40E-02 
axonal transport of mitochondrion (GO:0019896) 6.98+ 2.39E-02 
anterograde axonal transport (GO:0008089) 6.98+ 2.39E-02 
cellular response to metal ion (GO:0071248) 6.39+ 3.07E-02 
axonal fasciculation (GO:0007413) 6.14+ 3.23E-03 
female germ-line stem cell asymmetric division (GO:0048132) 5.97+ 7.80E-03 
regulation of reactive oxygen species metabolic process (GO:2000377) 5.9+ 3.80E-02 
actin nucleation (GO:0045010) 5.48+ 4.75E-02 
positive regulation of photoreceptor cell differentiation (GO:0046534) 5.48+ 4.74E-02 
sevenless signaling pathway (GO:0045500) 5.42+ 2.40E-02 
ovarian follicle cell stalk formation (GO:0030713) 5.42+ 2.39E-02 
synaptic vesicle priming (GO:0016082) 5.42+ 2.39E-02 
flight behavior (GO:0007629) 5.42+ 2.39E-02 
positive regulation of endocytosis (GO:0045807) 5.42+ 3.15E-04 
positive regulation of lipid localization (GO:1905954) 5.42+ 2.38E-02 
positive regulation of canonical Wnt signaling pathway (GO:0090263) 5.39+ 1.58E-04 
ribosomal large subunit assembly (GO:0000027) 5.37+ 1.19E-02 
positive regulation of smoothened signaling pathway (GO:0045880) 5.31+ 3.15E-03 
positive regulation of protein modification by small protein conjugation or removal (GO:1903322) 5.12+ 2.94E-02 
glucose homeostasis (GO:0042593) 5.12+ 2.40E-04 
lumen formation, open tracheal system (GO:0035149) 5.12+ 3.83E-03 
cellular protein complex disassembly (GO:0043624) 5.12+ 7.47E-03 
glycolytic process (GO:0006096) 4.91+ 8.93E-03 
oocyte microtubule cytoskeleton polarization (GO:0008103) 4.85+ 3.49E-02 
hemocyte migration (GO:0035099) 4.6+ 4.17E-02 
negative regulation of supramolecular fiber organization (GO:1902904) 4.55+ 1.26E-02 
maintenance of protein location in cell (GO:0032507) 4.51+ 4.05E-03 
regulation of R7 cell differentiation (GO:0045676) 4.39+ 4.95E-02 
cell adhesion mediated by integrin (GO:0033627) 4.39+ 4.94E-02 
positive regulation of neuromuscular junction development (GO:1904398) 4.39+ 4.76E-03 
terminal branching, open tracheal system (GO:0007430) 4.39+ 1.49E-02 
pole plasm oskar mRNA localization (GO:0045451) 4.32+ 9.07E-03 
positive regulation of organ growth (GO:0046622) 4.3+ 3.01E-02 
antibiotic metabolic process (GO:0016999) 4.3+ 3.00E-02 
adherens junction organization (GO:0034332) 4.26+ 5.62E-03 
epithelial cell migration, open tracheal system (GO:0007427) 4.26+ 5.61E-03 
regulation of cell-cell adhesion (GO:0022407) 4.23+ 1.77E-02 
intestinal stem cell homeostasis (GO:0036335) 4.23+ 1.77E-02 
regulation of filopodium assembly (GO:0051489) 4.19+ 1.06E-02 
heart morphogenesis (GO:0003007) 4.15+ 6.50E-03 
negative regulation of autophagy (GO:0010507) 4.13+ 3.47E-02 
reactive oxygen species metabolic process (GO:0072593) 4.13+ 3.45E-02 
plasma membrane invagination (GO:0099024) 4.13+ 3.45E-02 
ATP hydrolysis coupled proton transport (GO:0015991) 4.04+ 7.57E-03 
olfactory learning (GO:0008355) 4.04+ 7.54E-03 
positive regulation of translation (GO:0045727) 4.04+ 7.50E-03 
rhabdomere development (GO:0042052) 4.02+ 4.61E-03 
synaptic growth at neuromuscular junction (GO:0051124) 3.95+ 1.43E-02 
protein folding (GO:0006457) 3.93+ 6.74E-08 
establishment of mitotic spindle localization (GO:0040001) 3.84+ 4.66E-02 
salivary gland cell autophagic cell death (GO:0035071) 3.84+ 4.65E-02 
insulin receptor signaling pathway (GO:0008286) 3.84+ 4.64E-02 
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regulation of lipid storage (GO:0010883) 3.74+ 1.15E-02 
negative regulation of cytoskeleton organization (GO:0051494) 3.72+ 3.20E-02 
negative regulation of smoothened signaling pathway (GO:0045879) 3.72+ 3.20E-02 
mitochondrial ATP synthesis coupled electron transport (GO:0042775) 3.65+ 1.75E-04 
regulation of peptide secretion (GO:0002791) 3.64+ 2.21E-02 
behavioral response to ethanol (GO:0048149) 3.63+ 3.40E-03 
regulation of chemotaxis (GO:0050920) 3.61+ 3.63E-02 
response to unfolded protein (GO:0006986) 3.61+ 3.62E-02 
positive regulation of cell size (GO:0045793) 3.57+ 1.48E-02 
tight junction organization (GO:0120193) 3.54+ 2.50E-02 
apical junction assembly (GO:0043297) 3.52+ 1.02E-02 
cytosolic transport (GO:0016482) 3.5+ 4.39E-03 
cytokinetic process (GO:0032506) 3.49+ 1.69E-02 
regulation of axonogenesis (GO:0050770) 3.47+ 3.00E-03 
negative regulation of protein phosphorylation (GO:0001933) 3.44+ 2.05E-03 
positive regulation of cell morphogenesis involved in differentiation (GO:0010770) 3.41+ 4.69E-02 
establishment or maintenance of apical/basal cell polarity (GO:0035088) 3.37+ 3.20E-02 
regulation of multicellular organism growth (GO:0040014) 3.34+ 2.20E-02 
morphogenesis of follicular epithelium (GO:0016333) 3.31+ 1.47E-02 
translational initiation (GO:0006413) 3.25+ 1.65E-02 
regulation of protein stability (GO:0031647) 3.25+ 1.65E-02 
neuromuscular synaptic transmission (GO:0007274) 3.23+ 1.13E-02 
autophagy (GO:0006914) 3.23+ 4.15E-04 
imaginal disc-derived wing margin morphogenesis (GO:0008587) 3.19+ 1.86E-02 
mitotic cytokinesis (GO:0000281) 3.16+ 6.07E-03 
long-term memory (GO:0007616) 3.15+ 4.15E-03 
germ-line stem cell population maintenance (GO:0030718) 3.15+ 2.84E-03 
asymmetric neuroblast division (GO:0055059) 3.14+ 4.50E-02 
cell redox homeostasis (GO:0045454) 3.13+ 3.09E-02 
response to growth factor (GO:0070848) 3.13+ 3.08E-02 
synaptic target recognition (GO:0008039) 3.13+ 3.07E-02 
amino acid transport (GO:0006865) 3.01+ 3.76E-02 
axon guidance (GO:0007411) 2.94+ 1.77E-08 
positive regulation of locomotion (GO:0040017) 2.63+ 4.08E-02 
negative regulation of neurogenesis (GO:0050768) 2.63+ 3.09E-02 
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Table S4. Gene Ontology Enrichment analysis of Molecular Function for HVG RNAseq data. 
 

GO term: molecular function  
Fold 

Enrichment 
FDR 

p-value 
ATP binding (GO:0005524) 3.1+ 1.72E-03 
transferase activity (GO:0016740) 2+ 2.38E-02 
 
 
Table S5. Gene Ontology Enrichment analysis of Biological Process for HVG RNAseq data. 
 

GO term: molecular function  
Fold 

Enrichment 
FDR 

p-value 
regulation of protein localization to plasma membrane (GO:1903076) 35.33+ 4.79E-02 
chromatin silencing (GO:0006342) 7.69+ 3.12E-02 
nucleic acid metabolic process (GO:0090304) 2.17+ 3.74E-02 
macromolecule modification (GO:0043412) 2.08+ 3.91E-02 
cellular macromolecule metabolic process (GO:0044260) 1.84+ 2.22E-02 
 
 
Table S6. Gene Ontology Enrichment analysis of Molecular Function for DE0.2 RNAseq data. 
 

GO term: molecular function  
Fold 

Enrichment 
raw 

p-value 
choline:sodium symporter activity (GO:0005307)  > 100+ 7.51E-03 
acetylcholine transmembrane transporter activity (GO:0005277)  > 100+ 7.51E-03 
dihydroorotase activity (GO:0004151)  > 100+ 7.51E-03 
choline O-acetyltransferase activity (GO:0004102)  > 100+ 7.51E-03 
carboxyl- or carbamoyltransferase activity (GO:0016743)  > 100+ 7.51E-03 
carbamoyl-phosphate synthase (glutamine-hydrolyzing) activity (GO:0004088)  > 100+ 7.51E-03 
aspartate carbamoyltransferase activity (GO:0004070)  > 100+ 7.51E-03 
very-long-chain-acyl-CoA dehydrogenase activity (GO:0017099)  > 100+ 7.51E-03 
latrotoxin receptor activity (GO:0016524)  > 100+ 7.51E-03 
glutamine binding (GO:0070406)  > 100+ 7.51E-03 
L-iduronidase activity (GO:0003940)  > 100+ 7.51E-03 
choline binding (GO:0033265)  > 100+ 7.51E-03 
myosin II light chain binding (GO:0032033)  > 100+ 1.12E-02 
kinetochore binding (GO:0043515)  > 100+ 1.12E-02 
GABA-gated chloride ion channel activity (GO:0022851) 88.25+ 1.50E-02 
receptor antagonist activity (GO:0048019) 88.25+ 1.50E-02 
GABA-A receptor activity (GO:0004890) 66.19+ 1.87E-02 
smoothened binding (GO:0005119) 66.19+ 1.87E-02 
patched binding (GO:0005113) 66.19+ 1.87E-02 
histone demethylase activity (H3-K4 specific) (GO:0032453) 66.19+ 1.87E-02 
kinesin binding (GO:0019894) 58.83+ 7.47E-04 
histone demethylase activity (H3-K36 specific) (GO:0051864) 52.95+ 2.24E-02 
morphogen activity (GO:0016015) 52.95+ 2.24E-02 
MAP-kinase scaffold activity (GO:0005078) 52.95+ 2.24E-02 
extracellular matrix binding (GO:0050840) 52.95+ 2.24E-02 
axon guidance receptor activity (GO:0008046) 44.12+ 2.61E-02 
protein kinase C binding (GO:0005080) 44.12+ 2.61E-02 
RNA polymerase II activity (GO:0001055) 29.42+ 3.70E-02 
epidermal growth factor receptor binding (GO:0005154) 29.42+ 3.70E-02 
phosphatidylserine binding (GO:0001786) 29.42+ 3.70E-02 
cell-cell adhesion mediator activity (GO:0098632) 24.07+ 4.42E-02 
fatty-acyl-CoA binding (GO:0000062) 24.07+ 4.42E-02 
microtubule plus-end binding (GO:0051010) 22.06+ 4.78E-02 
calcium-dependent phospholipid binding (GO:0005544) 22.06+ 4.78E-02 
amino acid transmembrane transporter activity (GO:0015171) 9.46+ 2.01E-02 
flavin adenine dinucleotide binding (GO:0050660) 7.79+ 2.85E-02 
GTP binding (GO:0005525) 5.12+ 2.15E-02 
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Table S7. Target primer and probe sequences for qRT-PCR Multiplex assays. Each box represents a group of four to five genes 
that were combined into a single multiplex reaction.  
 

Gene Accession # Forward / Reverse Primer 5’-3’ sequence Probe 5’-3’ sequence 
HTR1A KU710381.1 AACCGCTGTGGTAGTTTCCA / TGCTCGTTAACCCGGACTAAG AGCGCCTTTATTTGGCTGGAAGGA 
HTR2 KU710380.1 TCCGCCTCCATCAAGTTTGT / GCACGTTGGCGATGAAGAAC TCATCGAAGAGACACGGGAGGACC 
HTR7 KU710379.1 ACGGCGATGGCTCCATCTG / CGGTGAGCGGGATGTAGAAG TGAGGTGTGCAACAACTTCTGGTACC 
DAR2 KU710378.1 GAAGCCGAAAGTGAGTGAGATCA / TCCGAACTAAGCGCTGTTTC TGTGATCGAGAATGTGACACAGACGA 
DAR1A KU710377.1 GGCGCCTGTCCATTCACT / CGCGGTAGATGCGGAAGTAAG ACCTTGTGTTCTCCTCTACTATCAGCTTCT 
GABAB-R1 KU986868.1 TCGTCTCGTTTGCCATCATC / GGTGCCGAACCTCAATGATC TCTGCTGCTTCCTCTCCATGGCT 
LCCH3r KU986871.1 TGACGGCTCCATCACCTATGG / TTGGGTGTCGAGTGGATAGTAG TTCACCACTACGTTGGCCTGCAT 
RDLr KU986872.1 TGGTGTTTGCCTCGCTTCTAG / TCCGCTGTTCTGCTAACTTC AATACGCCGCGGTGGGCTACAT 
GluCl KX059698.1 ACGGAGGATCTGGTGTTTCTG / ACCCGTGTTGGTCTTGCTGTT TACAGGTGACCAAGAACCTTCACC 
NALCN KU681457.1 TCGCTTCCACGGTGTACATTC / GCGGTGCCTTTGTTCTCAG TCTTCGTCTTCCTTGGCTGCATGA 
CACNAB GEFB01006512 GCAGCTGGCCAAGACTTCTTT / AGACGCTGCAATACCTTAGGA AGCGCCCATCCTCGTGTACCTTAAG 
IRK KU681451.1 TACAGTGGCGTTGGACTCTAC / TCCACCACACCAAGGCAAATAG TCGTGTTCGCTATGTCATTCATCAGC 
IH DQ103257.3 TCGGTGCCACTAGACTACATC / GACCCGCGTGGAGAATCTG TCCTCATCTTCAACCAGGACTTCAGC 
SKKCa KU710383.1 GCATCGGAGCATTGAACAGAA / GCCCGGACAGATAGTCATCAG CAACTTCAACACTCGGTTTGTCCTCAA 
INX1 JQ994479.1 TGGAGCGTCATGATGCATTC / GAGCAGGATGGCAAGGATCAC TGCTGCCTCTCAACATTCTTAACGAA 
INX2 JQ994480.1 GGCTGTGGTGTCTGGTGTAG / GCGAGAGCGTGTCCTTAACAG CTGCTGTACCGCCTCGCCACTTT 
INX3 JQ994481.1 TGTCGGCCCTAGTGAAAGAG / GGTACCGTGGGATGTAGAACA TGACGAGATTGTGTACCACGCTTAC 
INX4 KJ642222.1 CTGGCGTTCAGCCTCATTGTC / CACGTCCTCTGGGATCTCCTTAG CACGCGTCAGTATGTCGGGAACC 
INX5 KJ817410.1 TGCCTTCCCTGCTGGATAA / GCGTCACCCATTGGTAGTAAC AGGTGGCTCATCCAGGCATCGGT 
Shaw1 KU681456.1 CGCGTCACTCCTCAGGACTT / CCCAGCACCAGGAAGAACAC TGATACAGACTTTCCGTGCATCCGC 
Shaw2 KU681455.1 GAACGCCATCAAGCACTATCATC / ATGGCGCCCGACAGCTTAG TGGCTTGAAGGACGGTCTCACA 
NaV EF089568.2 TCAACGGGAGGTACCATAAGTG / TCGCTGTTCACCCAAGAGTAG CGGAGGGATTGAAGCTCAACGCA 
Shaker FJ263946.1 GAGGCTCAGAAGACCAGTCAAC / TGGCGATATCACCGAGCTCAT CACTCGATGTCTTCGCGGAGGAGAT 
Shab DQ103255.1 GAGCCGGACAGACAGGAAC / TGCGCCTCCTTCTGTAGTC AAGAACCACGAACACCACATGGGTC 
CaV1 JN809809.1 CCAGGCCTTCTACTGGCTCATT / GCTGGCGATAGTGCTCACTG TGTGCTCGTCTTCCTCAACACGG 
CaV2 JN809808.1 ATCCGGCGGACAGTAAAGC / GTTCGGCAGCAACACAAAC TGGTTCTACTGGTTCGTCATCATACTTGT 
CaV3 JN809810.1 TGGCTGCCACCGATACTTC / CAGCACAATGCCCACAACTG CAGGACAGAGATGGAACCAGTTGGA 
Shal DQ103254.1 GACACCACCTTCACCTCCATTC / GAACCATGTCGCCGTATCCTA CGGCGTTTTGGTACACCATTGTCAC 
BKKCa DQ103256.4 GCTCAAACTCGGCTTCATTG / CTGCGTGTCTGGAGAAGTTT AGAATCCCGGCGCTAAACATGACT 
mGluR1 KU986879.1 GCATCGTGTGGCTCATCTTTG / GGCCAACGTGACCACTCTAAT ACCTGTCAGCGGGAGTCACTGATG 
mGluR2 KU986880.1 TCCGCAGGTGAGTTTCTTC / CCATGGCTTTCACTTGGTAATGG CCACGTCGCCTGAACTGAGTAACA 
mGluR4 KU986882.1 GCGCGTTGATTCCGGTACT / CCACTCATCGTCCTCAACTTC AAGTCTTCCCGCTGGACTACGAAC 
mGluR5 KU986883.1 GCCTGTCCTTTGCCATGATC / TGCGCATCGTGATCTTCTTG CGCTTGTCACCAAGACCAACCGC 
mGluR7 KU986884.1 ACCGCGCTCGCAGATTGTC / TGGCTGGCGTTTCCACTATC TTCTGGACTGGTGAGTGTTCAGCT 
mACHrA KX021822.1 GGTGTCGATGCCTTTGTTCAC / GCCAGCCAGGTGTCACATAT TGTACACGCTGATGGGATACTGGC 
mACHrB KX021821.1 GCGGACCATCTCCATCATTC / TGGTGCACTGACAGAAGCT CCTTTGTGGCCTGTTGGACGCC 
mGABA2 KU986869.1 TGCCTACAAAGGTCTGCTAATGG / TCGTTCAAGGCGGGTATGTT TGGTTGTTTCCTGGCCTGGGAAA 
mGABA3 KU986870.1 CGATCCCATGACGAGACACAT / TCCACCTGTGGCTGATAGAC CCTCACCTTAGAAGTGTCAGCCGA 
mGluR3 KU986881.1 CACCGTGTATGCCGTCAAGAC / CCCGGTGCCGAAGTAGATG CCCCGAGAATTTCAACGAGAGCAAGT 
TRP-M3 KX037433.1 CCGCACCATCTACGAGAAC / TGCTGGCCTGGAAGATGT TGCTCAAGTCTCCTCGTCTTCACC 
TRP-A-like KX037434.1 TCGCGACCTTCCTCAAATTC / CGGTACCTGAGTCCTCAACAC CACGGTCTTCTTACTCTTCCTCATCGC 
TRP-A1 KX037435.1 CTGCCAAGTACGGTCGTTACAAC / CCCTCGTCATTGCACTCGTTA ACGTCAGCTTGTGGAGTCTCTGAA 
TRP-M1 KX037436.1 GAGGGCGGACCTCAAACTATC / TGTCGGCTGCTCTTCCTGTT CGTCAGGTGCTGGAGTATGTCACTG 
TRP-M-like KX037437.1 GACGGGACGCAGATCCTCTT / GAGTGCTTGGGCTGTTAGGT ACGGTATACGGTTGGCTATTTCCCA 
Dopa-1Br KU710376.1 CGCAAGATTGGCAACCTCTTC / ACGAGGGCAAAGCTCATCAC TGTCCTTGGCTATCGCTGACCTCTT 
5HTR-1Br KU710382.1 TGACGCAGGTGGACTACATTC / GGAACGACACCACCCAGATC ACCGATCGCCGCGTCGCATC 
His-1r KU716100.1 TGCCTGCCAGAGTAACCTTAG / GACAGGTGGGAGGGATTTCTG CATCACTTCTCACTCTGTCAACCCAACA 
His-2r KU716101.1 CCGCCACAGTCTCAAGGTAATC / GCGTAGGTCATGGAACTCTCATC ACGGTAGTCTACTTCCACGTCACA 
His-3r KU716102.1 ATCCGCCGCAACAAAGCAT / GAGAGCGAAGGAGGTTGGAA TGATGGTGGATCGAGTCTCAAGATATGTAT 
kainate-1A KX016772.1 CAGGTCGGAGTGCAGTAAAGAC / GCCACCAGTCAGGATGTAGAAG CGATGACCACCCAGACGAGTGC 
kainate-1B KX016773.1 TGAGCAGAACGAGATCGAGTATG / CGCCACATGTTCTGATACGTC AGGGCGGGTCTACCATGGCCTT 
kainate-2A KX016774.1 CGCATGGAGTCACCTATTGAGA / AGGCGAAAGTGGTGCCAGTTG TGAGGACCTTGCTAACCAGGACAA 
kainate-2B KX016775.1 GCACGGCAAGTTTGACAAGAAG / TGCTCCCTCTCGTAAGTGATG AACGGCATGATTGGGCAGCTGTT 
kainate-2C KX016776.1 GGCTTGGTCAGGGAACTCAAG / GCTCTCCCTCGCGTAGTTG TGATCTAGCGGTGGGTTCTATGACTA 
NMDA-1A KX016782.1 GCCGTCAAATCAGGGAGGTT / ACCGGCGGTTACCAGTTCAC AGGCGTTCATCTGGGACAGTTCACGT 
NMDA-1B KX016783.1 ACAGCCAAGACGAAGAAGAC / CCGCTGTTCAGGATGACAGA TGAGTTCATGGCCATCTCGGAGTC 
NMDA-2A KX016785.1 TCGGGTTCGTTCCCTTCAC / TGATGCCGTCCGTGATAGAAG TGAGACCATCCTTGCCAAGCACC 
NMDA-2B KX016786.1 GCAAGGGTCACCATCAGACA / CGCTGTGAGCATGATGTAGGTA TGGAGAAACAACTTGAGGCCAATGGA 
NMDA-2-like KX016784.1 GCGTTGGAGCAGTTCATGTC / GCCACATACTGACGGAAGTAC CACGTTCCTGCTGTTGGGTTGTG 
KCNK2 KU681437.1 GACGCCTTCTACTACTGCTTCATC / GAGGGCGTTCTCCTTCTGTAG CCCTCACTACCATTGGCTTCGGG 
KCNK1 KU681438.1 TGGCGAACGACTCAACAAAG / GTCCTGGCACTTAAGGATCTTC CTCCTCCATCGGCATCAGGCAA 
KCNQ1 KU681453.1 GAGCCTCCTTGGGAAACCTATC / CCGCTCCAGGAAGTTGTAGAC CTCTCGCAGGGACGTCCGCTAC 
KCNQ2 KU681452.1 GCTGCCATGTTGATCCAGTG / CCACGTTGCTGTAGAGTTGAAG TGTGGCGTTGTTATGCTGCAGATAA 
KCNH2 KU681459.1 CACCGCGAGATCCTTTCAC / CCTGATGTGGAGGCTGAGTAG CATCTTCGAGACAGCGTCGCAGG 
KCNH3 KU681460.1 GAGGCGACGTACTTACCTCTATG / AGTGGCGTACATGCAAGGATTC ACTTCATCTCAAGAGGCTCGCTAGA 
KCNH1 KU681458.1 GGTCACGTCACCACCATCATC / CCGCACGTTGTTGAGCATTTC ATGACCTCCGCCACCGCCAAGT 
KCNT1 KU681454.1 CGTCCAGACCATGTTCAAGTTC / AAGCGCATGTTGGACGACTG TCCCCAACATCAAAATCATCACGGA 
CCAPr KM349850.1 GCCCTTCTCCTCTCCAAATCAC / GTCGGTGAGAACGCTGATGAG CCAGGACCAACTTCTTCATCATGCATCT 
vGluT MK958905 GCGTTCGTGGACCTTCTAC / TCAGCCACCCTGTAATGGAA ATCACAGCCAACCTACTTCAGCGAG 
ChAT MK958903 GGACCGCCTGGCTAAGTAC / TCGCGGAGTCCCATAAGG AGGCGGCGCTCAAGCTTCAGAC 
vAChT MK958904 GCGTCAGCTGCTTCTTCCT / CAGCAGTGCCGTGTCTATGAG TTCGCCAGCAACTACTGGGTGTT 
ACHE MK958902 GGGCAACATGGGCATGTAC / GGTCACCACCGAAGAATTCAATG AGGCGCTGGCCATCAAGTGGATAC 
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