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Abstract Many RNA molecules are dynamic, but characterizing their motions11

by experiments is difficult, often requiring application of complex NMR12

experiments. Computational methods such as molecular dynamics simulations,13

on the other hand, still suffer from difficulties in sampling and remaining force14

field errors. Here, we provide an atomic-level description of structure and15

dynamics of the 14-mer UUCG RNA stem-loop by combining molecular dynamics16

simulations with exact nuclear Overhauser enhancement data. The integration of17

experiments and simulation via a Bayesian/Maximum entropy approach enables18

us to discover and characterize a new state of this molecule, which we show19

samples two distinct states. The most stable conformation corresponds to the20

native, consensus three-dimensional structure. The second, minor state has a21

population of 11%, and is characterized by the absence of the peculiar22

non-Watson-Crick base pair between U and G in the loop region. By using23

machine learning techniques, we identify key contacts in the NOESY spectrum24

that are compatible with the presence of the low-populated state. Together, our25

results demonstrate the validity of our integrative approach to determine the26

structure and thermodynamics of conformational changes in RNA molecules.27

28

INTRODUCTION29

RNA loops are structural elements that cap A-form double helices, and as such30

are fundamental structural units in RNA molecules. The great majority of known31

RNA loops contain four nucleotides [1], and these so-called tetraloops are one of32

the most common and well-studied RNA three-dimensional motifs [2]. The great33

majority of known RNA tetraloops have the sequence GNRA or UNCG, where N34
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Figure 1. Consensus secondary structure (left) and three dimensional structure (right) of
the UUCG tetraloop [6]. The stem is formed by 5 consecutive Watson-Crick base-pairs

capped by the loop U6-U7-C8-G9. One of the most distinctive feature of this structure is

the trans-Sugar-Watson interaction between U6 and G9 (bottom). Extended secondary

structure annotation follows the Leontis-Westhof nomenclature [8]

is any nucleotide and R is guanine or adenine. Their small size, together with35

their biological relevance, has made these systems primary targets for nuclear36

magnetic resonance (NMR) spectroscopy, X-ray-crystallography, and atomistic37

molecular dynamics (MD) simulation studies [3, 4, 2].38

The UUCG tetraloop has been long known to be highly stable, and both crystal-39

lographic and NMR studies suggest that this tetraloop adopts a well-defined three40

dimensional structure [5, 6] (Fig. 1). Experimentally, the UUCG tetraloop is used41

to stabilize the secondary structure of larger RNA molecules without interacting42

with other RNAs or proteins [7].43

Despite its stability, the UUCG tetraloop is not rigid. In particular, three re-44

cent studies by independent groups indicate the presence of alternative loop45

conformations [9, 10, 11]. Earlier NMR studies [6, 12] also suggested the presence46

of loop dynamics, without providing a detailed structural interpretation of the47

data. More generally, the atomic-detailed characterization of RNA structure and48

dynamics requires specialized techniques and substantial experimental effort, in-49

cluding NMRmeasurements of nuclear Overhauser effects (NOE), scalar couplings,50

chemical shifts, residual dipolar couplings, cross-correlated relaxation rates as51

well as a wide range of relaxation-dispersion type NMR experiments [13, 14].52

While NOEs are typically used to determine RNA and protein structures, they53
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also contain dynamic information. Because ensemble-averaged NOEs are highly54

sensitive to the underlying distance fluctuations, they may contain contributions55

even from minor populations. Normally, such information is difficult to extract56

because standard NOE measurements are relatively inaccurate. It has, however,57

been demonstrated that a substantial part of the information content inherent58

to these probes can be obtained from exact NOE measurements (eNOEs) [11].59

As opposed to conventional NOEs, eNOEs can be converted into tight upper and60

lower distance limit restraints [15, 16, 17].61

Previous computational studies of the UUCG tetraloops focused either on62

the dynamics around the near-native state [18] or on the difficulty in separating63

force-field inaccuracies from insufficient sampling [19, 20]. In a previous study we64

reported converged free-energy landscape for RNA 8-mer and 6-mer loops, and65

we have shown that native-like states are not the global free-energy minimum66

using the current AMBER RNA force-field [21]. This problem has been addressed67

in a new parameterization of the AMBER force-field, that improves the description68

of the UUCG 14-mer and other RNA systems [22]. Nevertheless, it remains difficult69

to assess the accuracy of these simulations, because experiments alone do not70

provide an atomic-detailed description of structure and dynamics that serve as a71

benchmark.72

Here, we use extensive atomistic MD simulations to map the conformational73

landscape of the UUCG tetraloop using enhanced sampling techniques and a74

recent force-field parameterization. To further improve the description of this75

system, we perform an a posteriori refinement of the MD simulation using eNOE76

data via a Bayesian/maximum entropy procedure [23, 24]. By construction, the77

refined ensemble shows better agreement with eNOE relative to the original MD78

simulation. We validate the eNOE-refined ensemble against independent NMR79

measurements, and we find an agreement that is on average comparable with80

NMR structures of the UUCG tetraloop deposited in the Protein Data Bank (PDB).81

Our experimentally-refined ensemble reveals the presence of two confor-82

mational states. The dominant, major state (here called state A) is the consen-83

sus UUCG structure shown in Fig. 1. The second, previously unreported lowly-84

populated state (state B) is characterized by the absence of the signature U6-G985

non-Watson-Crick base pair, with the G9 base exposed into solution. The salient86

features of state B are identified using a technique adapted from the field of87

machine learning called harmonic linear discriminant analysis (HLDA) [25]. Among88

all possible proton-proton distances, we identify specific contacts between C8 and89

G10 that are present in state B but not in state A. We inspect the NOESY spectrum90

for such contacts in order to provide independent evidence for the presence of91

the low-populated state.92

The paper is organized as follows: we first compare the predictions obtained93

from MD simulation against different experimental datasets. We then discuss the94
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effect of the refinement procedure, showing how it improves the agreement with95

experiments and how it affects the population of different conformations. We pro-96

ceed by identifying the relevant degrees of freedom and contacts that characterize97

the two states. Finally, we identify peaks in the NOESY spectrum corresponding98

to contacts that are present in state B but not in state A. We accompany this99

paper with the commented code, in form of Jupyter notebooks, to reproduce step-100

by-step the complete analysis, including all figures and supplementary results101

presented in the manuscript.102

Results103

MD simulations and comparison with experimental data104

We simulate the RNA 14-mer with sequence GGCACUUCGGUGCC starting from a105

completely extended conformation. Studying the folding free-energy landscape106

of this system is computationally expensive: for this reason previous attempts107

required �s-long simulations in combination with tempering protocols [22, 26, 27].108

Here, we combine two enhanced sampling techniques: solute tempering in the109

REST2 formulation [28] and well-tempered metadynamics [29]. We used a nucleic-110

acid specific metric, called eRMSD, [30] as a collective variable for enhanced111

sampling. The MD simulation setup and convergence analysis are presented in112

supporting information 1 (SI1).113

Before describing the conformational ensemble provided by MD, we com-114

pare the computational prediction with available NMR spectroscopy data. More115

precisely, we consider the following experimental datasets:116

• Dataset A. Exact eNOEs [11], consisting in 62 bidirectional exact NOE,117

177 unidirectional eNOE and 77 generic normalized eNOE (gn-eNOE). This118

dataset alone was used to determine the structure of the UUCG tetraloop119

with PDB accession codes 6BY4 and 6BY5. In addition to the original dataset,120

we added 1 new eNOE and 6 new gn-eNOEs, as described in SI2.121

• Dataset B. 97 3J scalar couplings, 31 RDCs and 250 NOE distances. This data,122

among other NMR measurements, was used to calculate the consensus123

UUCG tetraloop structure (PDB 2KOC [6]).124

• Dataset C. 38 (RDC1) plus 13 (RDC2) residual dipolar couplings. These RDCs125

have been used in conjunction with MD simulations to obtain a dynamic126

ensemble of the UUCG tetraloop. [9].127

• Dataset D. 91 solvent paramagnetic resonance enhancement (sPRE) mea-128

surements [10].129

The grey bars in Fig. 2 show the agreement between simulation and the dif-130

ferent experimental datasets. The agreement with NOE and 3J scalar couplings131

4 of 18

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2019. ; https://doi.org/10.1101/690412doi: bioRxiv preprint 

https://www.rcsb.org/structure/6BY4
https://www.rcsb.org/structure/6BY5
https://www.rcsb.org/structure/2koc
https://doi.org/10.1101/690412
http://creativecommons.org/licenses/by/4.0/


is expressed using the reduced �2 statistics, defined as the average square dif-132

ference between the experimental measurement (F exp) and the back-calculated133

ensemble average (< F (x) >) normalized by the experimental error �:134

�2 = 1
m

m
∑

i

(< F (x) >i −FEXPi )2

�2i
(1)

Hence, the lower the �2, the better the agreement. As a rule of thumb, �2 < 1135

can be considered small, as the difference between experiment and prediction136

is within experimental error. For RDC and sPRE we calculate the the Spearman137

correlation coefficient (�), that approaches the value of 1 when experimental138

measurement and computational prediction are perfectly correlated. See SI2 for139

additional details on this comparison.140

As a reference, we report in Fig. 2 the agreement calculated on the PDB ensem-141

bles 6BY5 [11] and 2KOC [6]. For bidirectional eNOE and gn-eNOE, the agreement142

of the MD with experiment is considerably poorer than the one calculated on143

6BY5. We recall that this latter ensemble was determined by fitting dataset A,144

we thus expect �2 to be small in this case. On datasets B, C, and D, all different145

ensembles behave similarly. When considering other statistics (e.g. root mean146

square error, Pearson correlation, number of violations), the same conclusions147

apply. Note that �2 for 3J couplings is large in all cases. This discrepancy may arise148

both from the imperfect ensembles as well as from the limitation of the function149

used to calculate the experimental quantity from the atomic positions (i.e. the150

forward model). As an example, the parameters in the Karplus equation for HCOP151

couplings critically depend on a single experimental data point measured in 1969152

[31].153

Bayesian/Maximum entropy refinement of the MD ensemble154

As described above, our MD simulation provide a conformational ensemble con-155

sisting of a rich and diverse set of conformations, that, however, do not match156

all experimental data perfectly, especially when considering dataset A. On the157

other hand, the 6BY5 ensemble matches the eNOE data remarkably well, but may158

underestimate the dynamics of the tetraloop.159

In order to improve the description provided by the MD simulation, we calcu-160

late a refined conformational ensemble by a posteriori including experimental161

information into simulations. In brief, the refinement is obtained by assigning a162

new weight to each MD snapshot, in such a way that the averages calculated with163

these new weights match a set of input (or “training”) experimental data within a164

given error. Among all the possible solutions to this underdetermined problem,165

we use the one that maximize the Shannon cross-entropy [32, 33].166

Here, we refine the simulation by using dataset A as a training set, while167

datasets B–D serve for cross-validation (see also SI3). By construction, the refine-168
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ment procedure improves the agreement on the training data (dataset A). We169

choose the free hyper-parameter of the algorithm as the one that maximize the170

agreement on the validation datasets.171

Figure 2. Comparison between experiment and conformational ensembles. We consider
four ensembles (MD, MD+eNOE, 2KOC and 6BY5) on nine different experimental datasets.

Agreement is expressed using �2 (NOE and 3J scalar couplings) and by the Spearman
correlation coefficient � (RDC and sPRE). Error bars show the standard error estimated
using four blocks.

Taken together, our results show that the refined ensemble (MD+eNOE) fits all172

available experimental data to a degree that is comparable to the one calculated173

from PDB structures 2KOC and 6BY5 (Fig. 2).174

Free energy landscape175

In this section we analyze in detail the MD+eNOE ensemble, and discuss the176

differences with respect to the original simulation and previously determined177

structures. We consider the free energy surface projected along the distance from178

the consensus structure (PDB 2KOC). Distances are measured using the eRMSD, a179

nucleic-acid specific metric that takes into account both position and orientations180

between nucleobases [30]. The free energy surface projected onto the distance181

from the fully-formed stem (residues 1-5 and 10-14) in Fig. 3a shows a single182

global minimum around eRMSD=0.5. This indicates that in the global free-energy183

minimum all five Watson-Crick base-pairs are formed. As a rule-of-thumb, two184
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Figure 3. a) Free energy surface projected on to the eRMSD from native stem (residues
1-5 and 10-14). The eRMSD from native of 2KOC and 6BY5 are indicated as dots. b) Free
energy surfaces projected onto the loop eRMSD (residues 5-10). Shades show the

standard error estimated using four blocks. c) Two-dimensional free energy surface of
the experimentally-refined MD simulations projected onto the eRMSD from native loop

and onto the distance between the center of the six-membered rings in C6 and G9.

Isolines are shown every 2.5 kJ/mol. The rectangles show the regions defining state A and

state B. d) Representative state A conformations. e) Representative state B
conformations.

structures with eRMSD ≤ 0.7 are typically very similar one to another, and share185

the same base-pair and stacking patterns [30, 34].186

When considering the loop region only (Fig. 3b) there exist two distinct minima.187

The global minimum on the left (state A) corresponds to the consensus loop188

structure. Both 2KOC and 6BY5 structures lie in the vicinity of this minimum.189

The other minimum is a different loop conformation (state B) in which this non-190

canonical base pair is not present.191

The picture emerging from the combination of MD simulations and eNOE192

is summarized in Fig. 3c, showing the free energy landscape projected onto193

the distance from native and onto the C6-G9 distance. The global free energy194

minimum is the native state A, with all the Watson-Crick base pairs in the stem195

formed together with the signature trans-sugar-Watson base pair between U6 and196

G9 (Fig. 3d). In state A, U7 is free to fluctuate into the solvent. In state B (Fig. 3e) all197

Watson-Crick base-pairs are formed, but the loop presents significant differences198
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with respect to state A: the U6-G9 interaction is lost, and G9 is flipped out (Fig.199

3e). From the regions defined in Fig. 3c we estimate a population of 84 ± 7%200

for state A and 11 ± 6% for state B, corresponding to a free energy difference of201

−5.7 ± 2.9 kJ/mol.202

On top of the free-energy surface, in Fig. 3c we plot the two tetraloop structures203

2KOC and 6BY5. Both ensembles fall within our definition of state A. Note also that204

the original experimental study described the presence of two sub-states in 6BY5,205

that can be distinguished along the y projection. In addition, we extract from the206

PDB all stem-loop structures with sequence NNUUCGNN as described previously [2].207

These structures, when projected on the surface in Fig. 3, are spread in different208

regions of the free-energy landscape. Experimentally solved tetraloops are subject209

to a variety of perturbations, including crystal packing, different buffer conditions210

or tertiary interactions. It has been shown in the case of proteins and nucleic acids211

that these perturbations are compatible with the equilibrium fluctuations [35, 36],212

and Fig.3c is consistent with this picture. Note that a handful of PDB structures213

with sequence UUCG fall into the state B region. While it would be tempting to use214

this fact to support the existence of state B, we noticed that these hits all belong215

to solvent-exposed regions in cryo-electron microscopy structures.216

Describing state B using harmonic linear discriminant analysis.217

Having discovered this new B-state, we proceed to analyse its structural features218

and seek for experimental validation. While the main global minimum is known219

and structurally well-defined, it is not trivial from a simple visual inspection to220

identify which are the main structural features distinguishing the two loop confor-221

mations. Here, we address this question by using the harmonic linear discriminant222

analysis (HLDA), a variant of the linear discriminant analysis (LDA) [37]. LDA is223

routinely used in the field of data science and machine learning to find a linear224

combination of descriptors that best separates two or more classes. This idea225

has been applied for analysing complex transitions in biomolecular simulations226

[38, 39], and HLDA has successfully been used as biased collective variables to227

enhance sampling [25, 40, 41].228

Here, we are interested in finding the most relevant descriptors (degrees229

of freedom) that discriminate the two states. To this end, we perform HLDA230

considering as descriptors a cosine function of the dihedral angles �, �, , �, �, � , �231

in the 14-mer (see Methods section).232

We show in Fig. 4 the coefficients of the non-zero eigenvector. The larger in233

magnitude the coefficient, the more important the corresponding descriptor in234

the linear combination. The largest coefficients are localized in nucleotides C8235

and G9, both belonging to the loop region (Fig. 1). Indeed, the distribution of the236

descriptor with the highest coefficient (� in C8) has two distinct peaks. This angle237

is in the gauche+ (g+) conformation in the native state, and we find the alternative238
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loop conformation to adopt the gauche- (g-) rotameric state. The � angle in G9 is239

not among the highest-ranked descriptor because it is in syn conformation both240

in state A and in state B.

Figure 4. a) Eigenvector coefficients from HLDA using state A and B as classes and a
cosine function of the torsion angles as descriptors. The larger the magnitude of the

coefficient, the more relevant the angle in describing the separation between the two

states. � in C8 is the degree of freedom with the largest coefficient. b) Probability
distribution of the C8(� ) calculated on the MD+eNOE ensemble, together with the values
from the PDB structures 2KOC and 6BY5.

241

HLDA also makes it possible to address a different question: which distances242

that are short in state B but not in state A – and vice-versa – would be measurable243

by eNOEs? To this end, we consider all the H-H inter-nucleotide distances in the244

14-mer whose calculated NOE-derived distance is smaller than 6Å. We obtain245

in this way 801 H-H distances, that we use as descriptors in HLDA. Again, the246

eigenvector coefficients allow us to rank the most important distances that are247

different in the two states. Among the highest-ranked coefficients we find several248

contacts between C8 and G10 that are shorter in state B compared to state A.249

Because NOE-derived distances are highly sensitive to distance fluctuations, in250

particular when measured via eNOE protocols, such B-specific contacts should be251

able to provide further evidence for the structure and population of the B state.252

By inspecting the NOE spectrum for the presence of C8-G10 contacts, we253

identify several NOE that were not part of the original dataset [11], but are here254

included the training set used for ensemble refinement. In Fig. 5c we show se-255

lected NOE-derived distances, together with the predicted values from MD+eNOE256

and PDB ensembles. The first three NOEs are used as lower-distance bounds257

estimated from the spectral noise. Note that MD+eNOE average is at the limit258

of the boundary for C8 H5-G10 H1’ and C8 H2’-G10 H8, suggesting the presence259

of the B state to be overestimated in our refined ensemble. The contact C8-H4’260

to G10-H8 is less informative, as the corresponding eNOE matches the experi-261

mental value both in A and B states. Note that the presence of the B-state is262
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compatible with short contacts between G9 and U6, that are satisfied even if the263

GU base-pairs is not formed at all times (Fig. 5c,d). The NOE spectrum shows a264

peak corresponding to the C8 H1’ to G10 H8, that overlaps with G9 H1’ to G10 H8265

(Fig. 5b). The combined signal is compatible with the distances sampled in the266

MD+eNOE, but incompatible with 2KOC. Note that this new eNOE is also satisfied267

in the 2-state ensemble 6BY5.268

An additional argument supporting the presence of the B-state is provided269

by sPRE data. In the original paper [10], the authors measured unusually large270

calculated sPRE in G9-H1 and U6-H3, corresponding to a larger than expected271

solvent accessibility of these atoms, and observed that these values could not272

be explained from available PDB structures. In our MD+eNOE ensemble we273

observe a large G9-H1 sPRE, in agreement with experiments (see also SI4). At274

variance with experimental evidence, we do not predict large sPRE for U6-H3.275

Different reasons may contribute to this discrepancy: the lack of U6 dynamics276

in simulations, inaccuracies in the empirical model employed to calculate sPRE277

from structures, or solvent-exchange effects [42]. Conversely, on-resonance 13C278

R1� relaxation dispersion experiments on a UUCG tetraloop with a different stem279

sequence showed no significant exchange contributions, indicating the absence280

of motions with substantial chemical shift variation in the �-ms timescale [43].281

Conclusions282

Based on our extensive MD simulations and integrating them with exact NOE data,283

we report the free energy landscape of a prototype stem-loop RNA 14-mer known284

as the UUCG tetraloop. The main finding of the present study is the previously285

unreported presence of a non-native free-energy minimum with an estimated286

population of 11% ± 6%. The low-populated state differs from the known structure287

only in the loop region, and it is characterized by the absence of the tSW base-pair288

between C6 and G9, with the latter nucleotide partially exposed into solution. This289

result has been obtained by using atomistic MD simulations and eNOE, without290

the need of additional data.291

The free-energy surfaces and estimated population provided here are based292

on the available experimental data, on the employed model, and the extent of our293

sampling. Therefore, they are subject to inaccuracies. However, both simulations294

and eNOE data are consistent with the presence of the B state as described in295

this paper. This interpretation is qualitatively consistent with several NMR studies,296

that also suggested the presence of dynamics in G9 [12, 6, 10]. Note also that297

G9-exposed structures were reported in previous MD simulations [26, 20, 44],298

suggesting our finding to be robust with respect to the choice of the force-field299

and water model.300

In order to further test our findings, it could be useful to perform dedicated301

10 of 18

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2019. ; https://doi.org/10.1101/690412doi: bioRxiv preprint 

https://doi.org/10.1101/690412
http://creativecommons.org/licenses/by/4.0/


fit of noise (upper limit for 
population of state B)

10 H8 - 8 H2'

mixing times (s)

8 H1' - 10 H8

8 H5 - 10 H1'

uni-directional 
cross-peak 
buildups ( )

re
la

tiv
e 

in
te

ns
ity

 [A
U

]

re
la

tiv
e 

in
te

ns
ity

 [A
U

]

mixing times (s)

10 H8 - 8 H5

10 H8uni-directional 
cross-peak 
buildups ( )

mixing times (s)

re
la

tiv
e 

in
te

ns
ity

 [A
U

]

0 0.04 0.08 0.12 0.16

 = 0.003 s-1

0.6

0.4

0.2

uni-directional 
cross-peak 
buildups ( )

decays ( )

 

G10 H8

 = 1.262 s-1

1.9

1.7

1.5

0 0.04 0.08 0.12 0.16

fit of noise (upper limit for 
population of state B)

10 H8

10 H8 - 8 H2'

mixing times (s)

10 H8 - 8 H4'

8 H5 - 10 H1'

uni-directional 
cross-peak 
buildups ( )

re
la

tiv
e 

in
te

ns
ity

 [A
U

]

re
la

tiv
e 

in
te

ns
ity

 [A
U

]

mixing times (s)

diagonal peak 
decays ( )

8 H4' - 10 H8    10 H8 - 8 H4'

 = 0.004 s-1

 = 0.003 s-1

0 0.04 0.08 0.12 0.16

0.6

0.4

0.2

fit of noise (upper limit for 
population of state B)

10 H8 - 8 H2'

mixing times (s)

8 H5 - 10 H1'

re
la

tiv
e 

in
te

ns
ity

 [A
U

]

0 0.04 0.08 0.12 0.16

0.4
0.3
0.2
0.1

10 H8 - 8 H2'

fit of noise  

0 0.04 0.08 0.12 0.16

0.16

0.12
0.08
0.04

0 0.04 0.08 0.12 0.16

0.3
0.2

0.4

0.1

8.40

8.40

8.35

8.35

8.30

8.30

ω2 - 1H  (ppm)

6.2 6.2

6.0 6.0

5.8 5.8

5.6 5.6

5.4 5.4

5.2 5.2

ω
1 

- 1 H
  (

pp
m

)

8.4 8.3

2 -1H

1 -
1 H

11 H5

9 H3'

8 H1'
9 H1'

8 H5

U6

C8

G9

G10 G10

G9

C8

U6
H1

OH2’
H1’ H8

H2’

H1’

H5

State A State B

a b c

d

fit of noise  

fit of noise  

0.3
0.4

8/9 H1' - 10 H8 

10 H8 

Figure 5. a) NOESY diagonal decay and cross peak buildup curves are shown for spin
pairs with significantly shorter distances in the B state than in the A state. There is no

visible cross peak in the spectrum corresponding to some of the proton pairs. In these

cases the horizontal broken line showing the spectral noise puts an upper limit on the

peak intensities. The NOESY series was recorded as described in [11]. b) Strip of the
NOESY spectrum at maximum mixing time showing buildup cross peaks caused by the

magnetization transfers to 10 H8. c) Calculated and experimental NOE for selected
proton-pairs. The average from the MD+eNOE simulation ensemble is shown in blue, and

the experimental measure is shown in gray. Red and orange shows the eNOE calculated

from the 6BY5 and 2KOC ensembles. For 8 H5 - 10 H8, 8 H5 - 10 H1’, 8 H2’-10 H8, the bar

shows the allowed range as derived from the spectral noise. d) Comparison between A
and B state in the loop region. Short-range contacts between C8 and G10 are possible

when G9 is bulged out.

experiments probing long-timescale dynamics such as R1� [43] or chemical ex-302

change saturation transfer experiments.303

In this work we have used eNOEs to reweight a posteriori the ensemble304

generated via enhanced sampling MD simulations. This refinement procedure is305

a post-processing approach [23, 24] that is in principle less powerful compared to306

on-the-fly methods that samples directly from the target probability distribution307

[45]. Refinement, however, is computationally cheap, as such one can easily308

experiment by trying different combinations of training/cross-validation sets, and309

to include new data when they become available. Here we have taken advantage310

of this property, and we used the refined ensemble to make predictions and to311
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suggest new experiments.312

In order to identify the experimental measurement to probe the existence313

of state B, we resorted to a variant of the linear discriminant analysis, a method314

adapted from the field of machine learning. HLDA provides a concise way to315

interpret differences between biomolecular conformations that cannot be easily316

summarized in terms of a small number of collective variables [46, 47].317

During the course of this study we have attempted to refine the simulation by318

matching RDC data (datasets B and C), but this resulted in a decreased agreement319

with other datasets. We have observed a similar behaviour when using sPRE320

(dataset D) for refinement. Instead, enforcing the agreement with eNOE (dataset321

A) marginally affects the agreement with other datasets (Fig. 2 and SI2). Different322

reasons can contribute to this behaviour. First, we do not expect all experimental323

data to be perfectly compatible one with the other, because measurements were324

conducted in similar, but not identical conditions. Second, the forward models325

might not be accurate for arbitrary molecular conformation. For example, if the326

forward model can accurately predict the RDC given the native structure, but fails327

on unfolded/misfolded conformations, we obtain artefacts that cannot be easily328

accounted for in our refinement procedure. Note that this problem is typically less329

relevant when using experimental RDC, sPRE or chemical shift data for scoring330

structures [48, 43, 10].331

Finally, we note that the approach taken here is general and it is applicable332

to other RNA or protein systems [49, 50]. Previous characterization of slow,333

larger motions in RNA molecules have mostly relied on relaxation-dispersion,334

chemical exchange saturation transfer or related NMR experiments that probe335

chemical shift differences between different conformational states. We hope336

that the integration of MD simulations and eNOE measurements provides further337

opportunities for characterizing the free energy landscapes of RNA molecules.338
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Methods346

Integrating MD simulation and experimental data347

We combine the MD simulation with experimental data using a maximum en-348

tropy/Bayesian procedure [33, 51, 23]. In our previous work, we have described349
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this reweighting procedure as Bayesian/MaxEnt (BME) [52, 24] . In BME we use350

the experimental data to modify a posteriori the simulation so that the new con-351

formational ensemble has the following properties: (i) the calculated averages352

are close to the experimental values taking uncertainty into account and (ii) it353

maximizes the relative Shannon entropy with respect to the original simulation354

ensemble. The modification comes in the form of a new set of weights w∗j , one355

for each simulation frame.356

It can be shown that this problem can be cast as a minimization problem, in357

which one seeks the minimum of the function Γwith respect to the set of Lagrange358

multipliers �̄ = �1⋯ �m, with m being the number of experimental constraints.359

Γ(�̄) = log(Z(�̄)) +
m
∑

i
�iF

exp

i + �
2

m
∑

i
�2i �

2
i (2)

Here, �i are the uncertainties on the experimental measurements F
exp
i and360

include experimental errors and inaccuracies introduced by the calculation of the361

experimental quantity from the atomic positions (F (x)). � is a free parameter,362

while the partition function Z is defined as363

Z(�̄) =
n
∑

j=1
w0j exp[−

m
∑

i
�iFi(xj)] (3)

The sum over the index j runs over the n frames in the simulation, and w0j364

are the original weights. w0 = 1∕n when using plain MD simulations or enhanced365

sampling techniques that sample directly from the target distribution (e.g. parallel366

tempering). In this paper we use WT-METAD, and the original weights w0 are367

estimated using the final bias potential [53]. The minimization of Eq. 2 yields a set368

of Lagrange multipliers �̄∗ that are used to calculate the optimal weights369

w∗j =
1

Z(�̄∗)
w0j exp[−

m
∑

i
�∗i Fi(xj)] (4)

In the context of the UUCG tetraloop, we use the dataset A described in the370

previous section to refine the simulation ensemble, and cross-validate the results371

against datasets B, C, and D. Details on the comparison between simulations372

and experiments, on the BME procedure and on the choice of the regularization373

parameter � can be found in SI 2,3, and 4.374

Harmonic linear discriminant analysis (HLDA)375

In HLDA, the goal is to find the projectionW that maximize the degree of separa-376

tion betweenM classes in the N dimensional space of the descriptors [41]. The377

separation is measured by the ratio378

 (W) =
WTSbW
WTSwW

(5)

13 of 18

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2019. ; https://doi.org/10.1101/690412doi: bioRxiv preprint 

https://doi.org/10.1101/690412
http://creativecommons.org/licenses/by/4.0/


Where the between classes Sb and within class Sw scatter matrices are defined as379

Sw =
[ M
∑

i
Σ−1i

]−1

Sb =
M
∑

i
(�i − �̄)(�i − �̄)T (6)

Here, �i,Σi are the mean and covariance of the itℎ class and �̄ is the overall380

average. The maximization of  (W) under the constraintWTSwW = 1 can be cast381

to an eigenvalue problem of the form382

SbW = �SwW (7)

Note that there areM −1 non-zero eigenvalues, and in the simplest case ofM = 2,383

the eigenvector corresponding to the only non-zero eigenvalue is given by384

W∗ = Sw−1(�A − �B) (8)

The magnitude and sign of the componentsW∗ = {W ∗
1 ⋯W ∗

N} carry information385

on the importance of the different descriptors. The larger the absolute value of386

the coefficient, the more relevant is the corresponding descriptor in discriminating387

the states.388
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