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Abstract 

The rate at which RNA molecules are degraded is a key determinant of cellular RNA 

concentrations, yet current approaches for measuring RNA half-lives are generally labor-

intensive, limited in sensitivity, and/or disruptive to normal cellular processes.  Here we introduce 

a simple method for estimating relative RNA half-lives that is based on two standard and widely 

available high-throughput assays: Precision Run-On and sequencing (PRO-seq) and RNA 

sequencing (RNA-seq).  Our method treats PRO-seq as a measure of transcription rate and RNA-

seq as a measure of RNA concentration, and estimates the rate of RNA degradation required for 

a steady-state equilibrium.  We show that this approach can be used to assay relative RNA half-

lives genome-wide, with reasonable accuracy and good sensitivity for both coding and noncoding 

transcription units.  Using a structural equation model (SEM), we test several features of 

transcription units, nearby DNA sequences, and nearby epigenomic marks for associations with 

RNA stability after controlling for their effects on transcription. We find that RNA splicing-related 

features, including intron length, are positively correlated with RNA stability, whereas features 

related to miRNA binding, DNA methylation, and G+C-richness are negatively correlated with 

RNA stability.  Furthermore, we find that a measure of predicted stability based on U1 binding 

sites and polyadenylation sites distinguishes between unstable noncoding and stable coding 

transcripts but is not predictive of relative stability within the mRNA or lincRNA classes.  We also 

identify several histone modifications that are associated with RNA stability after controlling for 

their correlations with transcription.  Together, our estimation method and systematic analysis 

shed light on the pervasive impacts of RNA stability on cellular RNA concentrations.  
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Introduction 

Gene regulation is an exquisitely complex and multifaceted process that operates 

at all stages of gene expression, ranging from pre-transcriptional chromatin remodeling 

to post-translational modification of proteins.  Nevertheless, the concentration of RNA 

molecules in the cell is a key intermediate quantity in this process and serves as the 

primary target of many regulatory mechanisms.  Many studies of gene regulation focus 

on the production of RNA, often at the stages of transcriptional pre-initiation, initiation, or 

release from pausing into productive elongation.  RNA concentrations, however, result 

from a dynamic equilibrium between the production of new RNA molecules and their 

degradation, and therefore rates of RNA degradation are potentially as important as rates 

of production in determining concentrations of RNA molecules1–7. Indeed, there is 

evidence that bulk differences in RNA concentrations result in large part from substantial 

differences in RNA degradation rates across different kinds of transcription units (TUs).  

For example, protein-coding mRNAs, on average, are relatively stable, whereas lincRNAs 

are somewhat less stable, and enhancer RNAs (eRNAs) and other short noncoding RNAs 

tend to be extremely unstable7–9.  Among protein-coding genes, mRNAs associated with 

housekeeping functions tend to be fairly stable, whereas those associated with regulation 

of transcription and apoptosis tend to have much shorter half-lives, probably to enable 

RNA concentrations to change rapidly in response to changing conditions1,5,6,10,11. In 

some cases, RNA degradation is accelerated by condition- or cell-type-specific 

expression of micro-RNAs or RNA-binding proteins7,12. 

Over a period of more than four decades, investigators have developed numerous 

methods for measuring RNA decay rates or half-lives13–15.  A classical approach to this 

problem, still in use today, is to measure the decay in RNA abundance over time following 

inhibition of transcription, often using the antibiotic actinomycin D1,3,16.  More recently, 

many studies have employed a strategy that is conceptually similar but considerably less 

disruptive to cellular physiology, based on metabolic labeling of RNA transcripts with 

modified nucleotides.  In this approach, the relative proportions of labeled and unlabeled 

transcripts are quantified as they change over time due to RNA turnover, following an 

initial introduction or removal of labeled nucleotides6,15.  Today, metabolic labeling is most 
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commonly accomplished using the nucleotide analog 4-thiouridine (4sU, also known as 

s4U), which is rapidly taken up by animal cells and can be biotinylated for affinity 

purification4,7,9,17–19.  Related methods use chemical conversion of 4sU nucleotide 

analogs to allow direct identification by sequencing and avoid the need for affinity 

purification11,20.  In most of these assays, sample preparation and sequencing must be 

performed in a time course, making the protocols labor-intensive and dependent on the 

availability of abundant and homogeneous sample material (typically a cell culture). Many 

of these methods also have limited sensitivity for low-abundance transcripts. Owing to 

various limitations of the assays, differences in the populations of accessible TUs, and 

potential disruptions to cellular physiology, estimates of RNA half-lives tend to vary 

considerably across assays, with median half-lives often differing by factors of 2-3 or 

more6,15. As yet, there exists no general-purpose assay for RNA half-life that is as robust, 

sensitive, convenient, or versatile as RNA-seq is for measuring cellular RNA 

concentrations, or PRO-seq21 and NET-seq22 are for measuring nascent transcription. 

Recently, it has been shown that condition- or cell-type-dependent changes to 

RNA half-lives can be identified in a simpler manner, by working directly from high-

throughput RNA-seq data12,23–25.  The essential idea behind these methods is to treat 

RNA-seq read counts obtained from introns as a surrogate for transcription rates, and 

read counts obtained from exons as a surrogate for RNA concentrations.  Changes in 

half-life can then be estimated from changes to the ratio of these quantities, under the 

assumption of a steady-state equilibrium between RNA production and degradation.  This 

approach is crude in several respects.  For example, it assumes intronic read counts are 

representative of pre-mRNA abundances, when in fact they may derive from a variety of 

sources, and it can require a correction for condition-specific differences in RNA 

processing rates25. Moreover, the dependency on intronic reads limits the method to 

spliced transcripts that are transcribed at relatively high levels.  Finally, this method 

produces only relative, rather than absolute, estimates of RNA half-lives.  Nevertheless, 

this simple approach has the important advantage of requiring no time course, metabolic 

labeling, transcriptional inhibition, chemical conversion, RNA pull-down, or indeed, any 

experimental innovation beyond standard RNA-seq.  As a result, it can be an inexpensive 
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and effective strategy for identifying genes undergoing cell-type- or condition-specific 

degradation12,24,25.  

In this article, we show that this same general approach—but using a measure of 

nascent transcription based on PRO-seq rather than intronic RNA-seq reads—results in 

estimates of relative RNA half-life that have improved accuracy and are broadly useful for 

downstream analysis. This approach requires only the application of two standard and 

widely applicable experimental protocols—PRO-seq and RNA-seq—to matched cells.  

Importantly, it applies to unspliced as well as spliced transcripts, it requires no correction 

for RNA-processing rates, and it is sufficiently sensitive to assay TUs expressed at low 

levels, including many noncoding RNAs.  We validate estimates of RNA half-life for K562 

cells by comparing them with estimates based on TimeLapse-seq20, and by showing that 

several subclasses of TUs have expected patterns of relative RNA stability.  We then 

perform a systematic analysis to identify features of TUs, DNA sequences, and 

epigenomic marks that are specifically associated with RNA half-life, after controlling for 

their associations with transcription. Together, these analyses establish combined RNA-

seq and PRO-seq measurements as a simple but powerful means for assaying RNA 

stability, and shed light on several possible determinants of RNA degradation. 

 

Results  

Matched PRO-seq and RNA-seq measurements are generally well correlated but 
suggest reduced stability of noncoding RNAs. 

We first compared PRO-seq and RNA-seq measurements for various TUs from 

across the human genome, to assess the degree to which transcriptional activity, as 

assayed by PRO-seq, is predictive of steady-state RNA concentrations, as assayed by 

RNA-seq. To reduce technical noise we collected new data of each type in multiple 

replicates (two for PRO-seq, four for RNA-seq), all from the same source of K562 cells.  

After verifying high concordance between replicates (Supplemental Fig. 1), we 

combined replicates to create a single PRO-seq and a single RNA-seq data set.  When 

analyzing these data, we considered all annotated TUs in GENCODE26, dividing them 

into mRNA (n=16,338), lincRNA (n=2,880), antisense (n=2,636), and pseudogene 
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(n=2,653) classes.  For each data type and each TU, we estimated expression by the 

total number of mapped reads in transcripts per million (TPM), a measure that normalizes 

by both library size and TU length.  We excluded the first 250 bp downstream of the TU 

for PRO-seq to avoid a bias from promoter-proximal pausing27, and discarded TUs with 

insufficient read counts from either assay (see Methods).  

We found that the PRO-seq and RNA-seq measurements were well correlated 

overall, with Spearman’s ρ=0.83 (Fig. 1), suggesting that transcription explains the 

majority of the variance in mRNA levels.  A parallel analysis based on pooled intronic 

reads from the same RNA-seq libraries showed only a slightly higher correlation, with 

ρ=0.90 (Supplemental Fig. 2).  At the same time, there were considerable differences in 

the degree of correlation across classes of TUs, ranging from a high of ρ=0.85 for mRNAs 

to ρ=0.72 for lincRNAs, ρ=0.71 for antisense genes, and only ρ=0.57 for pseudogenes 

(Fig. 1).  Similarly, the slopes of the lines of best fit on the log/log scatter plots decreased 

substantially (by roughly 50%) when proceeding from mRNAs to the noncoding RNAs 

and pseudogenes.  We observed similar patterns for spliced and unspliced genes, but 

reduced values of ρ and slopes overall in unspliced genes (Supplemental Figs. 3 & 4).  

Together, these observations suggest that RNA degradation rates have a more 

pronounced effect on steady-state RNA levels in noncoding RNAs and pseudogenes.  To 

ensure that these differences were not simply artifacts of differences in expression level 

across TU classes, we repeated the comparison with sets of genes matched by 

expression level (Methods; Supplemental Fig. 5) and observed similar results. We also 

repeated the analysis in GM12878 cells with comparable results (Supplemental Fig. 6). 

A potential confounding factor in this comparison is elongation rate.  Because 

PRO-seq read depth reflects a combination of transcription initiation rates and elongation 

rates28,29, some reduction in correlation with RNA-seq could reflect variability across TUs 

in elongation rate.  However, when we examined a subset of ~2000 genes for which 

elongation rates have been estimated for the same cell type30 and explicitly adjusted for 

the estimated rates, we observed no improvement (indeed, a slight decline) in the 

correlation of PRO-seq and RNA-seq measurements (Supplemental Fig. 7).  Thus, 
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elongation rate does not appear to be a dominant factor in the analysis (but see 

Discussion). 

 

 

Figure 1. Scatter plots of PRO-seq vs. RNA-seq read counts for transcription units (TUs) 

in K562 cells, both shown in units of log10 transcripts per million (TPM) (see Methods).  

Panels describe (A) all annotated TUs (n=24,966), (B) mRNAs (n=16,338), (C) intergenic 

lincRNAs (n=2,880), (D) intragenic antisense non-coding genes (n=2,636), and 

(E) pseudogenes (n=2,653), all from GENCODE26.  For each plot, the linear regression 

line is shown together with Spearman’s rank-order correlation coefficient (ρ) and the slope 

of the regression line. Notice that as one proceeds from panel B to panel E, from mRNAs 

to noncoding RNAs and pseudogenes, there is a general decrease in both ρ, indicating 

greater variability of steady-state RNA concentrations at each transcription level, and the 

slope, indicating reduced average RNA concentrations for highly transcribed TUs. 
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Relative RNA half-life can be estimated from the RNA-seq/PRO-seq ratio 

As noted above, a quantity proportional to RNA half-life can be approximated in a 

straightforward manner from measurements of transcription rate and steady-state RNA 

concentration under equilibrium conditions24,25.  Briefly, if 𝛽i is the rate of production of 

new RNAs for each TU i, 𝛼i is the per-RNA-molecule rate of decay, and Mi is the number 

of RNA molecules, then, at steady state, 𝛽i = 𝛼i Mi, and the decay rate can be estimated 

as 𝛼i = 𝛽i / Mi (see Fig. 2A & Methods).  If we assume that 𝛽i is approximately proportional 

to the normalized PRO-seq read counts for i, denoted Pi, and Mi is proportional to the 

normalized RNA-seq read counts, denoted Ri, then the ratio Pi / Ri  is an estimator for a 

quantity proportional to the decay rate, and its inverse, T1/2,iPR = Ri / Pi, is an estimator for 

a quantity proportional to RNA half-life (where “PR” denotes a PRO-seq/RNA-seq-based 

estimator).  As noted, the use of PRO-seq, rather than intronic read counts, for the 

measure of transcription has a number of advantages, including applicability to unspliced 

TUs and increased sensitivity for TUs expressed at low levels.  Notice that these unit-less 

T1/2PR values can be compared across experiments only up to a proportionality constant, 

unless the raw read counts have been appropriately normalized. 

Following this approach, we estimated T1/2PR values for TUs from across the 

genome using our PRO-seq and RNA-seq data for K562 cells.  To validate our estimates, 

we compared them with estimates of RNA half-life for K562 cells from TimeLapse-seq20, 

a recently published method based on chemical conversion of 4sU.  We compared our 

estimates of half-life with those from TimeLapse-seq (denoted T1/2TLS) at 5,112 genes 

measured by both methods.  We found that the two sets of estimates were reasonably 

well correlated (Spearman’s ρ=0.54; Fig. 2B), especially considering the substantial 

differences in experimental protocols and the generally poor concordance of published 

half-life estimates across experimental methods6,15.  Moreover, if we remove the 50% of 

genes expressed at the lowest levels (as measured by PRO-seq), for which the noise 

contribution will tend to be largest, the correlation improves to ρ=0.61.   

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/690644doi: bioRxiv preprint 

https://doi.org/10.1101/690644
http://creativecommons.org/licenses/by-nd/4.0/


 

To compare our PRO-seq-based approach with an approach based on intronic 

reads, we repeated the estimation for about 21,000 TUs in our data set for which we could 

retrieve adequate numbers of RNA-seq reads mapped to introns (see Methods).  We 

found that these intron-based estimates of half-life, T1/2intr, also correlated with the 

estimates from TimeLapse-seq but the correlation was substantially poorer than for the 

PRO-seq-based estimates (only ρ=0.20 for 5,039 TUs accessible to both methods; 

Supplemental Fig. 8), suggesting that the PRO-seq-based approach provides less noisy 

estimates of transcription, and hence, reduced variance in estimates of half-life.   

As additional validation, we considered TUs for two classes of genes that have 

consistently been shown to exhibit unusually low, or high, levels of RNA stability: zinc 

finger proteins and ribosomal proteins, respectively.  We found, as expected, that the 

estimated T1/2PR values were significantly shifted toward lower values—indicating higher 

turnover rates—for zinc finger proteins (Fig. 2C), many of which play key regulatory roles.  

By contrast, the estimated T1/2PR values were significantly shifted toward higher values—

indicating lower turnover rates—for ribosomal proteins, which tend to have fairly stable 

levels of expression across cell types and conditions and are considered “housekeeping” 

genes.  Similarly, we tested TUs having experimentally verified target sites for several 

miRNAs that are expressed in K562 cells.  In this case, we found that the targets of 

numerous miRNAs, including the well-studied31 miR-182 (Fig. 2D), have significantly 

reduced stability (the reduction in half-life was significant for the predicted targets of 55 

out of 217 miRNAs; see Supplemental Fig. 9 for additional examples).   We also found 

that the estimated half-lives of the same TUs in two different cell lines (K562 and 

GM12878) were fairly consistent (ρ=0.660). 
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Figure 2. (A) Illustration of dynamic equilibrium between production and degradation of 

RNA.  PRO-seq (Pi) can be used to measure production and RNA-seq (Ri) to measure 

the resulting equilibrium RNA concentration.  At steady-state, the production and 

degradation rates must be equal, allowing for estimation of a quantity proportional to RNA 

half-life (T1/2PR) by the ratio Pi / Ri (see Methods).  Illustration adapted from ref. 32.  (B) 
Scatter plot with density contours for (log10) half-lives estimated by the PRO-seq/RNA-

seq method (T1/2PR, x-axis) vs. those estimated by TimeLapse-seq20 (T1/2TLS, y-axis) for 

5,112 TUs assayed by both methods in K562 cells.  The T1/2PR values are unit-less, 

whereas the T1/2TLS values are expressed in hours.  (C) Cumulative distribution functions 

(CDF) for (log2) estimated RNA half-lives, T1/2PR, for ribosomal proteins, zinc-finger 

proteins, and other genes.  (D) Similar CDFs for mRNAs predicted to be targets of miR-

182-5p vs. non-targets. 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/690644doi: bioRxiv preprint 

https://doi.org/10.1101/690644
http://creativecommons.org/licenses/by-nd/4.0/


 

 

Properties of transcription units that are predictive of RNA stability 

We sought to shed light on determinants of RNA stability by identifying features of 

TUs that were predictive of our estimated RNA half-lives. We focused on the mRNA and 

lincRNA classes, for which we could identify the most informative features. Anticipating 

an effect from splicing2,33, we focused our analysis on spliced TUs. For the features of 

mRNAs, we considered the splice junction density (number of exons divided by the total 

length of all exons), the G+C content and length of the annotated coding sequence (CDS), 

the G+C content and total length of all introns, and the G+C content and length of each 

of the 5’UTR and the 3’UTR. The features for lincRNAs were similar but, naturally, did not 

distinguish between UTRs and CDSs.  We carried out a parallel analysis of unspliced 

TUs and found qualitatively similar results (not shown). 

A typical approach to this analysis would be to measure the correlation of each 

feature with half-life, either individually or together in a multiple regression framework.  

Because T1/2PR is estimated from the RNA-seq/PRO-seq ratio, however, it will tend to be 

statistically correlated with features predictive of transcription regardless of their true 

influence on half-life.  To identify features of TUs that are predictive of RNA abundance 

after accounting for their correlation with transcription, we instead made use of a 

Structural Equation Model (SEM)34 that explicitly describes the separate influences of 

features on transcription and half-life, and the contributions of both to RNA abundance 

(see Methods & Fig. 3A). To our knowledge, this is the first attempt to identify features 

associated with RNA half-life that disentangles these separate influences (see 

Discussion). 
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Figure 3. Features of transcription units (TUs) that are predictive of transcription rate and 

RNA half-life. (A) Structural Equation Model (SEM) describing the effects of an arbitrary 

collection of TU features (X1,…,XN, with intercept term X0=1) on transcription rate (b) and 

half-life (t1/2), as well as the downstream impact on mRNA concentration (m), normalized 

PRO-seq (p), and normalized RNA-seq (r) read counts.  The model is linear in logarithmic 

space, with unmodeled variation accounted for as Gaussian noise (𝜀b, 𝜀t, 𝜀p, and 𝜀r; see 

Methods).  The coefficients for transcription rate (𝜆n) and half-life (𝜇n) are estimated by 

maximum likelihood, assuming independence of replicates and pooling data from all TUs 

of the same class.  (B) Estimated values for coefficients for transcription (𝜆n; top) and half-

life (𝜇n; bottom) for various features of interest.  Results are for spliced mRNAs (see 

Supplemental Figs. 10 & 11 for other classes). Features considered for each TU: spl. 

junc. dens. – number of splice junctions  divided by mature RNA length. CDS G+C – GC 

content in coding region. CDS len. – total length of coding region. Intronic G+C – GC 

content introns. Ave. intron len. – average of intron length. 3’UTR G+C – GC content in 

3`UTR. 3’ UTR len. - length of 3’UTR. 5’UTR G+C – GC content in 5’UTR. 5’ UTR len. - 

length of 5’UTR. Error bars represent ±1.96 standard error, as calculated by the ‘lavvan’ 

R package35.  Significance (from Z-score): * p<0.05; ** p<0.005; *** p<0.0005.   
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Our analysis revealed significant positive correlations with half-life of both splice 

junction density and average intron length, for spliced mRNAs and lincRNAs (Fig. 3B; 
Supplemental Figs. 10 & 11).  The observation regarding splice junction density is 

consistent with previous reports for mRNAs2,33,36,37 and lincRNAs38, as well as with the 

general tendency for spliced TUs to be more stable than unspliced TUs (Supplemental 
Fig. 12).  However, the correlation with intron length is new, to our knowledge, and may 

indicate that RNA stability is enhanced by recursive splice sites39 or extended contact 

with the spliceosome in long introns (see Discussion).  We also found that CDS length 

is negatively correlated with half-life, but this observation may reflect a positive correlation 

between CDS length and number of introns, and/or a confounding effect from elongation 

rate (see Discussion).       

Several additional significant associations concerned G+C content, at the levels of 

both transcription and half-life.  The most prominent of these is a positive correlation 

between G+C content in the 5’UTR and transcription.  However, we also observe a fairly 

pronounced negative correlation between G+C content in the 5’UTR and RNA half-life, 

which is consistent with reports of an association between degradation rate and the 

number of CpG dinucleotides in the 5’UTR, hypothesized to reflect the action of methyl 

CpG-binding proteins that regulate splicing2  (see Discussion).  We observed a similar 

negative correlation with intronic G+C content, which could potentially also be related to 

methyl-CpG-mediated splicing.  This negative correlation is also apparent with G+C 

content in the 3’UTR. Notably, a trend in the opposite direction would be expected if it 

were driven by driven by AU-rich elements (ARE) and PUF-binding sites, whose presence 

in the 3’UTR has been reported to be associated with reduced stability2.  These G+C-

related correlations held in lincRNA introns, but not in lincRNA exons (Supplemental Fig. 
10).  In general, the observed G+C-related patterns are somewhat difficult to interpret, 

because of the complex correlations among G+C content, CpGs, transcription, splicing, 

and RNA half-life (see Discussion). 

Notably, several features had coefficients of opposite sign for transcription and 

half-life (e.g., intronic and 5’UTR G+C; CDS, intron, and 3’UTR length), despite our 

attempt to explicitly account for separate effects on both processes using the SEM.  This 
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pattern of anti-correlation could be driven, at least in part, by stabilizing selection on RNA 

levels, which could lead to evolutionary compensation at the transcription and 

degradation steps (see Discussion).  

DNA sequence correlates of RNA stability 

Our estimates of RNA half-life for both coding and noncoding TUs provide an 

opportunity to better characterize DNA sequence correlates of RNA stability near 

transcription start sites (TSSs)2,40–42.  Toward this end, we first compared the sequences 

from 0 to 2500 bp downstream of the TSS for the 20% least and most stable TUs, 

according to the estimated T1/2PR, testing for global enrichments of all possible nucleotide 

k-mers in either class.  We considered DNA word sizes of k ∈ {2, 3, 4} and separately 

tested for enrichments in 1000 bp windows at various distances from the TSS 

(Supplemental Figs. 13 & 14).  As above, we examined mRNAs and lincRNAs 

separately.  In all cases, we matched the stable and unstable transcripts by their PRO-

seq abundance estimates (see Methods) to avoid a bias from differences in transcription 

rates.   

These tests identified a number of k-mers that were either enriched or depleted in 

stable transcripts, but these trends were almost completely explained by G+C content, 

with A+T-rich k-mers being enriched, and G+C-rich k-mers being depleted, in stable 

transcripts relative to unstable transcripts (Fig. 4A).  Notice that, while this observation is 

generally consistent with the results of our SEM analysis, it specifically relates to G+C 

content near the TSS.  Interestingly, these trends were largely independent of window 

position near the TSS, although they were slightly less pronounced in the first 500bp than 

in downstream windows (Supplemental Fig. 15).  The patterns were similar for mRNAs 

and lincRNAs.  An exception to the overall depletion of G+C-rich sequences occurred 

with CpG dinucleotides, which were slightly enriched in stable mRNAs (but not lincRNAs) 

near the TSS (Supplemental Fig. 13), a pattern that has been previously observed2. 

Using the discriminative motif finder DREME43, we identified several A+T-rich motifs 

associated with stable transcripts, and several G+C-rich motifs associated with unstable 
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transcripts (Fig. 4B&C), but we were unable to establish any clear biological significance 

for these motifs. 

Figure 4.  DNA-sequence, methylation, and RNA-binding-protein correlates of 

RNA stability near the TSS. (A) Distribution of G+C content (y-axis) for the 20% most 

(red) and least (blue) stable TUs, according to our estimated half-life (T1/2
PR), in 

enhancer RNAs (eRNA), lincRNAs and mRNAs (x-axis). (B&C) Two most significantly 

enriched DNA sequence motifs in stable (B) and unstable (C) mRNAs. (D) Signal for 

MeDIP-measured DNA methylation for low-, medium-, and high-stability mRNAs (see 

Methods) as a function of distance from the TSS. Solid line represents mean signal and 

lighter shading represents standard error and 95% confidence interval.  (E) Distribution 

of Sequence Stability Index (SSI) based on U1 and Polyadenylation sites (see Methods) 

for eRNAs, lincRNAs, and mRNAs. Separate plots are shown for eRNAs with low and 

high CAGE support, suggesting low and high stability, respectively. 
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To shed further light on the local DNA sequence determinants of RNA stability, we 

expanded our set of TUs to include about 22,000 eRNAs from K562 cells, identified by 

GRO-cap in a previous study42.  We obtained a relative measure of stability for these 

eRNAs based on the ratio of CAGE reads to PRO-seq reads within each TU (see 

Methods), using CAGE in this case because it was more sensitive than our RNA-seq 

data for eRNAs.  We excluded eRNAs with no mapped CAGE reads.  We then considered 

the 10% least stable and the 10% most stable of the remaining eRNAs (n=510 in each 

set), matching the two sets by normalized PRO-seq read counts downstream of the pause 

site.  Interestingly, in this case, we found that stable eRNAs were enriched, rather than 

depleted, for G+C-rich sequences (Fig. 4A).  This trend was strongly evident only for the 

first 400bp downstream of the TSS.  It was especially pronounced for CpG dinucleotides 

(Supplemental Fig. 16).  In contrast, AT (and to a lesser extent, TA) dinucleotides 

showed a fairly pronounced depletion for stable eRNAs.   

The atypical patterns around CpG dinucleotides raise the possibility of an 

association with DNA methylation near the TSS. To address this question, we compared 

the average methylation levels of TUs exhibiting low, medium, or high levels of RNA 

stability.  Specifically, we partitioned our mRNAs, considering spliced TUs only, into five 

equally sized stability classes based on the estimated T1/2PR values, and then subsampled 

from classes 1 (low stability), 3 (medium stability), and 5 (high stability) to obtain 

distributions matched by PRO-seq signal (see Methods).  We then produced meta-plots 

for each of these three classes showing the average signal of the methylated DNA 

immunoprecipitation (MeDIP-seq) assay in K562 cells44,45 as a function of distance from 

the TSS.  We found that the medium- and high-stability TUs exhibited similar patterns of 

methylation, with intermediate levels 1-2kb upstream and downstream of the TSS, and a 

pronounced dip at the TSS which extended to about 1kb downstream (Fig. 4D).  The low-

stability TUs, by contrast, show a clearly distinct pattern, with elevated methylation levels 

across the whole region, no pronounced dip at the TSS, and a peak about 1kb 

downstream.  These observations suggest the possibility of epigenomic as well as DNA 

sequence differences associated with RNA stability, as we explore further below.  

Interestingly, these differences in methylation were not nearly as pronounced for 

lincRNAs (Supplemental Fig. 17).  
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U1 and Polyadenylation sites have limited predictive power for stability 

We also directly tested for the possibility that differences in RNA half-life could 

reflect the presence or absence of either U1 binding sites (5’ splice sites) or 

polyadenylation sites (PAS) downstream of the TSS.  Comparisons of (stable) protein-

coding TUs and (unstable) upstream antisense RNA (uaRNA) TUs have revealed 

significant enrichments for proximal PAS in uaRNAs, suggesting that they may lead to 

early termination that triggers RNA degradation.  These studies have also found 

significant enrichments for U1 binding sites in protein-coding TUs, suggesting that splicing 

may play a role in enhancing RNA stability40,41.  In previous work, we showed that these 

trends generalize to eRNAs as well.  In particular, we found that a hidden Markov model 

(HMM) that distinguished between the occurrence of a PAS prior to a U1 site, and the 

occurrence of a U1 site prior to a PAS, could classify both coding and noncoding TUs as 

unstable or stable, respectively, with fairly high accuracy42. 

We applied this HMM (see Methods) to our mRNA and lincRNA TUs and tested 

whether our DNA-sequence-based predictions of stability (as measured by a sequence 

stability index, or SSI) were predictive of our estimated T1/2PR values.  We also computed 

the SSI for the eRNAs identified from PRO-seq data and classified as stable or unstable 

based on CAGE data.  In all cases, we applied the HMM to the 1kb immediately 

downstream of the TSS, on the sense strand.  We found that the mRNAs had the highest 

SSI, followed by lincRNAs, and then eRNAs (Fig. 4E), as expected.  Interestingly, 

however, the subset of eRNAs that we find to be stable based on CAGE data also show 

elevated SSIs, roughly on par with lincRNAs.  In addition, spliced lincRNAs have 

significantly higher SSIs than unspliced lincRNAs, although the difference for spliced and 

unspliced mRNAs was not as pronounced (Supplemental Fig. 18).  Moreover, within 

each of the mRNA and lincRNA groups, we found that the SSI changed little as a function 

of T1/2PR, suggesting that the HMM had almost no predictive power for true RNA stability 

within these classes (Supplemental Figs. 19 & 20).   These observations suggest that, 

whereas the U1 and PAS sequence signals do seem to distinguish broad classes of TUs 

with different levels of stability—namely, mRNAs, eRNAs, and uaRNAs—and the same 

signals are useful in distinguishing stable and unstable eRNAs, other factors likely 
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dominate in determining gradations of stability within the mRNA and lincRNA classes (see 

Discussion).  

Additional epigenomic correlates of RNA stability  

Finally, we asked whether other epigenomic marks such as histone modifications 

correlate with RNA stability.  Histone modifications are primarily associated with 

transcriptional activity or repression, but they are also known to interact with the process 

of splicing46, and for this reason or others they could influence RNA stability.  Similar to 

the methylation analysis above (Fig. 4D), we produced meta-plots showing the average 

ChIP-seq signal in K562 cells as a function of distance from the TSS for 11 different 

common histone modifications45, separately for low-, medium-, and high-stability classes 

of expression-matched spliced mRNAs (see Methods).  While some of these histone 

modifications did not differ substantially across stability classes, such as H3K9me1 and 

H3K9me3, several did show clear relationships with estimated RNA half-life 

(Supplemental Fig. 21).  For example, H3k79me2, which is associated with 

transcriptional activity, gives a substantially higher signal in stable transcripts than in 

unstable ones, particularly in a peak about 1kb downstream from the TSS (Fig. 5A).  A 

similar pattern is observed for H3K4me2.  However, an inverse relationship is observed 

with H3K4me1, which is associated with active enhancers, with an elevated signal in 

unstable transcripts relative to stable ones.   

As an alternative strategy for identifying epigenomic correlates of RNA stability 

while correcting for transcription, we again applied our SEM framework, this time using 

the 11 histone marks as covariates for estimated RNA half-life and considering the ChIP-

seq signals immediately downstream of each TSS (Fig. 5B, Supplemental Fig. 22).  As 

expected, the strongest correlations were detected with transcription rate, and these 

generally had the expected sign, for example, with positive correlations for the activation 

marks H3K27ac, H3K4me1, H3K4me2, and H3K4me3, and negative correlations for the 

repressive marks H3K9me3 and H3K27me3.  All of these patterns were consistent 

between lincRNAs and mRNAs (Supplemental Fig. 22 & 23), and they did not change 

substantially as a function of distance from the TSS, within 2kb (Supplemental Fig. 24).  

However, we did additionally identify several significant correlates of half-life.  For mRNAs 
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these were generally consistent with the ones identified from the ChIP-seq meta-plots, 

Figure 5. Histone-modification correlates of RNA stability. (A) ChIP-seq signal for 

H3K79me2 (left), H3K4me1 (middle), and H3K4me2 (right) for low-, medium-, and high-

stability mRNAs (see Methods) as a function of distance from the TSS. Results are for 

spliced mRNAs matched by normalized PRO-seq signal.  Solid line represents mean 

signal and lighter shading represents standard error and 95% confidence interval.   (B) 

Estimated SEM coefficients for half-life (𝜇n) for 11 histone modifications, as assayed by 

ChIP-seq in the 500 bases immediately downstream of the TSS, also for spliced mRNAs 

that were matched by transcription rate (Methods; see Supplemental Figs. 22-24 for 

additional results). Error bars and significance are as in Fig. 3B. 
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for example, with H3K79me2 showing a positive correlation with RNA half-life, and 

H3K4me1 showing a negative correlation. In general, the estimated coefficients were 

similar for mRNAs and lincRNAs, but there were some notable differences: for example, 

the activity mark H3K36me3, shows a strong negative correlation with RNA half-life in 

lincRNAs but a weaker and position-dependent positive or negative correlation with 

mRNA half-life; and the silencing marks H3K9me1 and H3K9me3 show positive 

correlations for lincRNA half-life but negative or near-zero correlations for mRNA half-life 

(Supplemental Fig. 24).  These divergent patterns could possibly reflect differences in 

the degree to which splicing is co-transcriptional in mRNAs and lincRNAs47 . 

 

Discussion 

In this article, we have introduced a simple method for estimating the RNA half-

lives of TUs from across the genome based on matched RNA-seq and PRO-seq data 

sets.  Like previous methods based on intronic reads, our method assumes equilibrium 

conditions and produces a relative measure of half-life only, based on standard high-

throughput transcriptomic data.  The use of PRO-seq data in place of intronic reads, 

however, brings with it several benefits, including the ability to interrogate unspliced TUs 

and TUs that are expressed at low levels.  Moreover, even for spliced and abundantly 

expressed genes, the PRO-seq-based measurements appear to be considerably more 

accurate than those based on intronic reads, according to our comparisons with a third 

method, TimeLapse-seq.  We have shown that our measurements of relative half-life are 

useful in a wide variety of downstream analyses, including the identification of various 

features that are predictive of RNA half-life. 

To identify such features, we devised a structural equation model (SEM) that 

explicitly describes the separate effects of each feature on transcription and half-life, as 

well as the resulting impact on RNA concentrations, PRO-seq, and RNA-seq data.  While 

multivariate regression has been used to identify features associated with RNA stability2, 

our analysis is the first, to our knowledge, to attempt to disentangle the separate 

influences of such features on transcription and RNA stability.  It is worth noting that this 

framework could also be useful for estimators based on intronic reads. 
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The results of the SEM analysis were consistent with previous findings in many 

respects, particularly regarding the association between RNA splicing and RNA stability.   

The mechanism underlying this relationship remains unclear, but it is known that the exon 

junction complex (EJC) remains bound to the mature mRNA after its transport to the 

cytoplasm and it has been proposed that EJC components may protect the mRNA from 

degradation2,37. In addition to the previously reported positive correlation of splice junction 

density and RNA half-life, we found that intron length is also positively correlated with 

half-life.  The causal basis of this correlation is also unknown, but intriguingly, long introns 

have also been reported to be enriched for recursive splice sites39, suggesting that these 

“hidden” splice sites could contribute to increased RNA stability.  The SEM also revealed 

some more difficult-to-interpret associations with G+C content and epigenomic marks 

(discussed further below).   

An important finding in the recent literature on RNA stability is the observation that 

U1 binding sites are enriched, and polyadenylation sites are depleted, downstream of the 

TSS in stable mRNAs relative to unstable upstream antisense RNAs (uaRNAs) and 

enhancer RNAs (eRNAs).  This observation suggests that RNA stability is determined, at 

least in part, by the DNA sequence near the TSS.  In addition to its mechanistic 

implications, this “U1-PAS axis”40 for the determination of stability has evolutionary 

implications; for example, it provides a potential mutational mechanism for the emergence 

of new genes48.  In this study, we examined the U1-PAS axis from a slightly different 

perspective, testing not only whether it could distinguish TUs belonging to relatively stable 

classes (mRNAs) from those in unstable classes (uaRNAs and eRNAs) but also how 

predictive it is of relative RNA half-life within these classes.  Using our previously 

developed HMM42, we confirmed that a U1-PAS-based “sequence stability index” (SSI) 

is generally elevated for mRNAs, intermediate for lincRNAs, and reduced for eRNAs.  

Furthermore, the SSI can distinguish, to a degree, between more and less stable eRNAs, 

as quantified using CAGE (Fig. 4E).   

Somewhat surprisingly, however, we found that the SSI has essentially no 

predictive power for relative RNA stability within the generally more stable mRNA and 

lincRNA classes (Supplementary Figs. 19 & 20).  One possible explanation for this 

observation is that the U1-PAS axis determines a kind of early “checkpoint” for stable 
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transcripts—for example, by ensuring that premature transcriptional termination is 

avoided—but that once a transcript has cleared this checkpoint, these DNA sequence 

features are no longer relevant in determining RNA stability.  Instead, the relative stability 

of mRNAs and lincRNAs may be determined by splicing-related processes, binding by 

miRNAs or RBPs, or other posttranscriptional phenomena.  More work will be needed to 

fully understand the mechanistic basis of these differences in stability.    

One important technical limitation of our method is that PRO-seq does not 

measure transcription directly, but rather the occupancy of engaged RNA polymerases, 

which reflects both the rate of transcription and the rate of elongation.  The PRO-seq 

signal along a gene body is analogous to the headlight “signal” on a highway at night; an 

increase in signal can reflect either an increased number of cars passing by per unit time 

(analogous to an increased rate of transcription), or a back-up in traffic (analogous to a 

decreased elongation rate).  As a consequence, variation in T1/2PR across TUs could in 

part be driven by variation in elongation rate, with slower elongation rates leading to over-

estimation of the transcription rate and therefore underestimation of T1/2PR, and faster 

elongation rates leading to under-estimation of transcription rate and over-estimation of 

T1/2PR.  We attempted to control for a confounding effect from elongation rate by explicitly 

adjusting our PRO-seq abundance estimates based on published elongation rates for 

~2000 genes, and found that it had little effect on the relationship to RNA-seq signal.  

However, more work will be needed to obtain more accurate and more comprehensive 

estimates of elongation rates, and to examine their impact on half-life estimates.   

Some of the most pronounced associations that we observed with half-life, both 

near the TSS and across TUs, concerned G+C content.  However, these observations 

are difficult to interpret owing to the complex patterns of correlation between G+C content 

and a wide variety of genomic and epigenomic features.  Indeed, even the comparatively 

straightforward question of the relationship between G+C content and transcriptional 

activity has a long and contradictory literature, with several studies finding correlations 

between them49–51, but others claiming that the relationship between G+C and 

transcription is weak, at best, once confounding factors such as genomic context are 

properly accounted for52,53.   Sharova et al.2 identified a fairly pronounced negative 

correlation between RNA stability and the prevalence of CpGs in the 5’UTR, which is 
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consistent with—but not identical to—our observation of a negative correlation with G+C 

content in the 5’UTR.   These authors raised the intriguing hypothesis this correlation may 

reflect the activity of splicing-associated methyl CpG-binding proteins54, but, to our 

knowledge, this idea has not been tested experimentally.  Sharova et al. did not examine 

G+C content in introns or the 3’UTR, where we also found negative correlations.  In any 

case, it seems unlikely that the complex relationships among G+C content, CpGs, 

transcription, RNA stability and downstream effects such as translational efficiency can 

be fully disentangled through post-hoc statistical analyses.  Instead, this effort will require 

carefully designed experiments that directly perturb individual features of interest and 

separately measure the effects on a variety of transcriptional and post-transcriptional 

processes. 

Our observations of epigenomic correlates of transcription and stability are 

similarly challenging to interpret.  The observed negative correlation between DNA 

methylation and RNA stability near the TSS (Fig. 4D) is broadly consistent with Sharova 

et al.’s2 observations regarding CpG content in the 5’UTR (and ours regarding G+C 

content), and with the hypothesis of a splicing association.  However, we also identified 

several histone modifications that are significantly associated with increased or 

decreased half-life, using two complementary approaches—direct comparison of low-, 

medium-, and high-stability TUs after matching by PRO-seq signal (Fig. 5A) and joint 

consideration of all features using our SEM (Fig. 5B).  At face value, an association 

between histone modifications and RNA stability would seem surprising, and we cannot 

rule out the possibility that these correlations reflect indirect relationships with 

confounding variables not considered here.  However, the effect is quite strong for certain 

marks (such as H3K79me2 and H3K4me2) and it is apparent both in direct comparisons 

of PRO-seq-matched TUs (Fig. 5A) and in the SEM setting (Fig. 5B).  It therefore seems 

plausible that it has a direct mechanistic basis, perhaps involving factors that interact both 

with DNA-bound nucleosomes and the spliceosome during co-transcriptional splicing.  

Divergent patterns in these histone marks for mRNAs and lincRNAs (Supplemental Fig. 
24) suggest the possibility of differences in these splicing-associated processes.  

Additional work will be needed to test these hypotheses. 
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One general pattern that emerges from the SEM analysis of histone modifications 

is that the coefficients for transcription and half-life are often significantly different from 

zero in opposite directions (Supplementary Figs. 22-24). This trend of anti-correlation 

was less prominent with the TU features, but we did observe it with intronic and 5’UTR 

G+C content, and CDS, intron, and 3’UTR length (Fig. 3B).  A possible explanation for 

this pattern is that it is a reflection of stabilizing selection on gene expression.  If selection 

tends to favor a particular RNA level for each TU, then mutations that increase 

transcription may tend to be compensated for by mutations that decrease RNA stability, 

and vice versa.  A related idea is that there is a fundamental evolutionary tradeoff in 

achieving a desired RNA concentration between low-transcription/high-stability solutions, 

which are energetically favorable, and high-transcription/low-stability solutions, which 

allow for rapid responses to stimuli5.  Different TUs will fall at different points along the 

continuum between these solutions.  Either of these evolutionary forces would create a 

tendency for features that are positively correlated with one measure (transcription or 

stability) to be negatively correlated with the other.  Notably, this type of interrelationship 

between transcription and stability is one that our SEM cannot fully disentangle—these 

evolutionary forces would effectively induce a correlation between transcription and half-

life that is not considered in the model.  As a result, it is difficult to distinguish correlations 

that have a direct, mechanistic basis (say, relating to transcription) from their indirect 

“echoes” (say, relating to half-life) resulting from evolutionary constraint.  Nevertheless, 

our framework remains useful for identifying potentially interesting correlations, whose 

mechanistic underpinnings can then be further investigated through direct experimental 

perturbation.  

 

Materials and Methods 

PRO-seq and RNA-seq data preparation and processing  

To minimize technical differences, we sequenced new PRO-seq (n=2) and RNA-

seq (n=4) libraries, generated from cells grown in the same flask under the same 

conditions. Human K562 cells were cultured using standard cell culture procedures and 

sterile techniques. The cells were cultured in RPMI-1640 media supplemented with 10% 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/690644doi: bioRxiv preprint 

https://doi.org/10.1101/690644
http://creativecommons.org/licenses/by-nd/4.0/


 

fetal bovine serum (FBS) and 1% penicillin/streptomycin.  For PRO-seq, 3’ and 5’ 

adapters were ligated as described55, followed by library preparation as previously 

published56. Sequencing was done by Novogene on a HiSeq instrument with paired-end 

reads of 2×150bp. For RNA-seq, RNA was extracted using the Trizol method (see 

https://assets.thermofisher.com/TFS-Assets/LSG/manuals/trizol_reagent.pdf), followed 

by rRNA depletion using the Ribozero HMR Gold kit. Libraries were prepared using the 

NEB kit with TruSeq RNAseq adaptors.  Single-end sequencing (length=75) was 

performed on a NextSeq500 instrument by the RNA Sequencing Core at the College of 

Veterinary Medicine, Cornell University. 

Read mapping and transcript abundance estimation  

Raw data files in fastq format were trimmed using TrimGalore with default 

parameters (trim_galore fastqfile.fq.gz). Reads were then aligned using ‘STAR’ with 

default parameters (STAR --runMode alignReads --readFilesCommand zcat --quantMode 

GeneCounts --outSAMtype BAM). We used the GRCh37/hg19 reference genome and the 

associated GENCODE gene annotations. For RNA-seq, the index for STAR was derived 

from the GENCODE GTF standard annotation file. For PRO-seq, we modified this GTF 

annotation file so that, for each gene, the entire transcript length (from transcription start 

site to termination site) was represented as a single “exon” in the STAR index. 

Importantly, however, for the purposes of read counting with PRO-seq we omitted the first 

250 bases downstream of the TSS to avoid a bias in read counts from promoter proximal 

pausing.  For RNA-seq, read counts per TU were obtained using ‘kallisto’ with default 

parameters (kallisto quant -i index.idx --single -l 200 -s 30 -o). Finally, we 

normalized read counts by converting them to transcripts per million (TPM)58 based on 

the length of each TU. 

Estimation of RNA half-life from RNA-seq and PRO-seq data  

We assume a constant rate of production of new RNAs, 𝛽i, a constant per-RNA-

molecular rate of decay, 𝛼i, and a number of RNA molecules,  Mi.  At steady state, 𝛽i = 𝛼i 

Mi; therefore the decay rate can be estimated as 𝛼i = 𝛽i / Mi, and the halflife as T1/2 = ln(2) 

/ 𝛼i = ln(2) × Mi / 𝛽i.  We further assume that the normalized PRO-seq read counts (omitting 
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the pause peak) are proportional to the rate of production of new RNAs, Pi ∝ 𝛽i, and that 

the normalized RNA-seq read counts are proportional to the number of RNA molecules, 

Ri ∝ Mi.  Therefore, T1/2 ∝ Ri / Pi.  We define our unit-less estimator of half-life as T1/2PR = 

Ri / Pi. 

Structural equation model (SEM) 

To separate the effects of TU features on decay from the effects on transcription, 

we developed an SEM using the ‘lavvan’ R package35. Let 𝑋( be the n-th feature 

associated with a TU. We assume that the logarithms of this TU’s transcription rate and 

half-life, i.e., b = log 𝛽 and t1/2 = log T1/2PR, are linear combinations of the 𝑋(’s and a TU-

level random effect: b= ∑+(,- 𝜆nXn + 𝜀b and t1/2= ∑+(,- 𝜇nXn + 𝜀t  where 𝜖/ ∼ 𝑁(0, 𝜎/) 

and 𝜖7 ∼ 𝑁(0, 𝜎7) are independent Gaussian random variables explaining all variation not 

attributable to known features. Assuming a fixed value 𝑋- = 	1 for all genes, the 

parameters 𝜆0 and 𝜇0 can be interpreted as intercepts whereas 𝜆n≠0  and 𝜇n≠0 are 

regression coefficients indicating the contributions of feature n to transcription rate and 

half-life, respectively.   

According to the model derived above, at steady state, T1/2PR∝ M / 𝛽, where M is 

the number of RNA molecules; therefore, m = log M is given by m = b + t1/2 + C, where C 

is an arbitrary constant that can be ignored here because it does not affect the estimation 

of regression coefficients.  Denoting pj = log Pj and rj = log Rj as the logarithms of the 

PRO-seq and RNA-seq measurements in replicate j, respectively, we assume pj ~ b + 𝜀p 

and rj ~ m + 𝜀r where 𝜖: ∼ 𝑁(0, 𝜎:) and 𝜖: ∼ 𝑁(0, 𝜎:) are independent Gaussian random 

variables describing the noise in PRO-seq and RNA-seq experiments, respectively. 

Finally, we assume that all observations are independent across TUs.  With these 

assumptions, and pooling information across TUs of the same class, we can estimate 

separate regression coefficients for transcription rates (𝜆n) and half-life (𝜇n) for all features 

by maximum likelihood. 
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Transcription unit features 

Transcription unit (TU) sequences were downloaded from BioMart61,62 

(http://grch37.ensembl.org) using the R package biomaRt. We considered only one 

isoform per annotated gene, selecting the one with the highest estimated TPM by kallisto 

(above) and including only TUs having one clearly dominant isoform (i.e., where   the 

isoform accounted for at least 75% of the TPM for the gene).  Features based on 

properties of DNA sequences (e.g., G+C content) were then extracted using Biopython63.  

The intron length was set equal to the transcript length minus the total exon length. The 

splice junction density was set equal to twice the intron number divided by the coding 

sequence length.  

eRNA analysis 

We used eRNAs identified from our previous GRO-cap analysis in K562 cells42 

restricting our analysis to putative eRNAs with divergent transcription57 that fell at least 

1kb away from annotated genes (n=21,816). To measure steady-state RNA levels, we 

used CAGE in place of RNA-seq owing to its greater sensitivity.  We used the Nucleus 

PolyA and Non-polyA CAGE libraries from ENCODE. To measure transcription rates, we 

used PRO-seq data from same study42.  For the stability analysis, we eliminated TUs 

having no mapped CAGE reads, and then selected the top 10% by CAGE/PRO-seq ratio 

as “stable” and the bottom 10% as “unstable”.  These stable and unstable groups were 

then matched by PRO-seq signal (n=510). 

DNA word enrichments 

We considered all DNA words (all possible combinations of A,C,G,T) of sizes k ∈ 

{2, 3, 4}. For each word w, we counted the total number of appearances in our set of 

stable TUs (top 20% by T1/2PR), denoted cs,w, and the total number of appearances in 

unstable TUs (bottom 20% by T1/2PR), denoted cu,w.  These counts were collected in 1kb 

windows beginning at various distances downstream of the TSS (0, 500, 1000, and 1500 

bp). The enrichment score for each word w and each window position was then computed 
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as log2(cs,w/cu,w). A positive value of this score indicates an enrichment and a negative 

score indicates a depletion in stable TUs relative to unstable TUs.  For eRNAs, we used 

a similar procedure but with 400 bp windows at distances of 0, 200, 400, and 600bp from 

the TSS.  

Motif discovery   

For motif discovery, we used the discriminative motif finder ‘DREME’43 with 

default parameters (core width ranging from 3-7) . For the stable motifs, we used the top 

20% of TUs by T1/2PR as the primary sequences and the bottom 20% as the control 

sequences.  For the unstable motifs, we reversed the primary and control sequences.   

Sequence Stability Index (SSI) 

We define the SSI to be the probability that a TU is “stable” based on our previously 

published U1-PAS hidden Markov model (HMM)42. Briefly, the HMM identifies a TU 

sequence as “stable” if either (1) it has a U1 splicing motif upstream of a PAS motif or (2) 

it lacks both a PAS motif and a U1 splicing motif, as detailed by Core et al.42.  We applied 

the HMM to the first 1kb of sequence downstream of the annotated TSS and calculated 

the SSI as 1 minus the probability the TU is unstable, as output by the program.  An 

implementation of the HMM is available at https://github.com/Danko-Lab/stabilityHMM.   

Matching by PRO-seq expression 

We used the R package ‘MatchIt’59,60 to match groups of TUs by their normalized 

PRO-seq read counts (method=”nearset”).  In cases of multiple groups, one group was 

selected as the reference and every other group was matched to that reference group. 

Metaplots 

Metaplots showing the average values of signals of interest across loci (e.g., Figs. 
4D & 5A) were produced using the ‘plotMeta’ function from the ‘Genomation’64 R 

package.  The input signal was provided in bigwig format and the loci were defined in bed 

format.  In all cases, the average signal is plotted as a colored lined, with uncertainty 
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indicated by the standard error of the mean (darker shading) and 95% confidence 

intervals (lighter shading) as specified by the “se” parameter. 

MicroRNA targets analysis 

We obtained microRNA targets from TargetScanHuman65, Release 7.2 

(http://www.targetscan.org/vert_72/vert_72_data_download/Predicted_Target_Location

s.default_predictions.hg19.bed.zip).  We used all default predictions of conserved targets 

for each conserved miRNA family in the database.  

Gene categories 

We obtained lists of genes encoding ribosomal proteins and zinc fingers from the 

HUGO Gene Nomenclature Committee (https://www.genenames.org/). 

Epigenomic Resources 

Histone modifications, DNA methylation IP (MeDIP) and eCLIP data were 

downloaded from the ENCODE consortium45 as bigwig files annotated to the 

GRCh37/hg19 reference genome (https://www.encodeproject.org/).     
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