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Abstract 

The rate at which RNA molecules decay is a key determinant of cellular RNA 

concentrations, yet current approaches for measuring RNA half-lives are generally labor-intensive, 

limited in sensitivity, and/or disruptive to normal cellular processes.  Here we introduce a simple 

method for estimating relative RNA half-lives that is based on two standard and widely available 

high-throughput assays: Precision Run-On and sequencing (PRO-seq) and RNA sequencing 

(RNA-seq).  Our method treats PRO-seq as a measure of transcription rate and RNA-seq as 

a measure of RNA concentration, and estimates the rate of RNA decay required for a steady-

state equilibrium.  We show that this approach can be used to assay relative RNA half-lives 

genome-wide, with good accuracy and sensitivity for both coding and noncoding transcription 

units.  Using a structural equation model (SEM), we test several features of transcription units, 

nearby DNA sequences, and nearby epigenomic marks for associations with RNA stability after 

controlling for their effects on transcription. We find that RNA splicing-related features are 

positively correlated with RNA stability, whereas features related to miRNA binding, DNA 

methylation, and G+C-richness are negatively correlated with RNA stability.  Furthermore, we 

find that a measure based on U1-binding and polyadenylation sites distinguishes between 

unstable noncoding and stable coding transcripts but is not predictive of relative stability 

within the mRNA or lincRNA classes.  We also identify several histone modifications that are 

associated with RNA stability. Together, our estimation method and systematic analysis shed 

light on the pervasive impacts of RNA stability on cellular RNA concentrations.  
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Introduction 

Gene regulation is an exquisitely complex process that operates at all stages of 

gene expression, ranging from pre-transcriptional chromatin remodeling to post-

translational modification of proteins.  However, the concentration of RNA molecules in 

the cell appears to serve as the primary target of many regulatory mechanisms.  Many 

studies of gene regulation focus on the production of RNA, often at the stages of 

transcriptional pre-initiation, initiation, or release from pausing into productive elongation.  

RNA concentrations, however, result from a dynamic equilibrium between the production 

of new RNA molecules and their decay (Hao and Baltimore 2009; Rabani et al. 2011, 

2014; Schwanhausser et al. 2011; Sharova et al. 2009; Tani et al. 2012; Yang et al. 2003). 

Indeed, bulk differences in RNA concentrations across types of transcription units (TUs) 

often result from differences in RNA decay rates.  For example, protein-coding mRNAs, 

on average, are relatively stable, whereas lincRNAs are less stable, and enhancer RNAs 

(eRNAs) and other short noncoding RNAs tend to be extremely unstable (Rabani et al. 

2014; Schwalb et al. 2016; Tani et al. 2012; Mukherjee et al. 2017). Among protein-coding 

genes, mRNAs associated with housekeeping functions tend to be stable, whereas those 

associated with regulation of transcription and apoptosis tend to have much shorter half-

lives, probably to enable RNA concentrations to change rapidly in response to changing 

conditions (Herzog et al. 2017; Lam et al. 2001; Schwanhausser et al. 2011; Tani et al. 

2012; Yang et al. 2003). In some cases, RNA decay is accelerated by condition- or cell-

type-specific expression of micro-RNAs or RNA-binding proteins (Gosline et al. 2016; 

Rabani et al. 2014). 

Over several decades, investigators have developed numerous methods for 

measuring RNA decay rates or half-lives (Hynes and Phillips 1976; Kim and Warner 1983; 

Wada and Becskei 2017).  A classical approach to this problem is to measure the decay 

in RNA abundance over time following inhibition of transcription, often using 

actinomycin D (Hao and Baltimore 2009; Raghavan et al. 2002; Yang et al. 2003).  More 

recently, many studies have employed a strategy that is less disruptive to cellular 

physiology, based on metabolic labeling of RNA transcripts with modified nucleotides.  In 

this approach, the relative proportions of labeled and unlabeled transcripts are quantified 
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as they change over time, following an initial introduction or removal of labeled 

nucleotides (Tani et al. 2012; Wada and Becskei 2017).  Today, metabolic labeling is 

most commonly accomplished using the nucleotide analog 4-thiouridine (4sU), which is 

rapidly taken up by animal cells and can be biotinylated for affinity purification (Dolken et 

al. 2008; Kenzelmann et al. 2007; Rabani et al. 2011, 2014; Schwalb et al. 2016; 

Windhager et al. 2012). Related methods use chemical conversion of 4sU nucleotide 

analogs to allow identification by sequencing and avoid the need for affinity purification 

(Herzog et al. 2017; Schofield et al. 2018).  In most of these assays, sample preparation 

and sequencing must be performed in a time course, making the protocols labor-intensive 

and dependent on the availability of abundant and homogeneous sample material 

(typically a cell culture). Many of these methods also have limited sensitivity for low-

abundance transcripts. Owing to a variety of limitations, estimates of RNA half-lives tend 

to vary considerably across assays, with median half-lives often differing by factors of 2-

3 or more (Tani et al. 2012; Wada and Becskei 2017). As yet, there exists no general-

purpose assay for RNA half-life that is as robust, sensitive, or versatile as RNA-seq 

(Alkallas et al. 2017; Gaidatzis et al. 2015; Gosline et al. 2016) is for measuring cellular 

RNA concentrations, or PRO-seq (Kwak et al. 2013) and NET-seq (Churchman and 

Weissman 2011) are for mapping engaged RNA polymerases. 

Recently, it has been shown that changes to RNA half-lives can be identified in a 

simpler manner, by working directly from high-throughput RNA-seq data (Alkallas et al. 

2017; Gaidatzis et al. 2015; Gosline et al. 2016; Zeisel et al. 2011). The essential idea 

behind these methods is to treat RNA-seq read counts obtained from introns as a 

surrogate for transcription rates, and read counts obtained from exons as a surrogate for 

RNA abundance. Changes in half-life are then inferred from changes to the ratio of these 

quantities, under the assumption of a steady-state equilibrium between RNA production 

and decay.  This approach assumes intronic read counts are representative of pre-mRNA 

abundances, when in fact they may derive from a variety of sources, and it can require a 

correction for differences in RNA processing rates (Alkallas et al. 2017). Moreover, the 

dependency on intronic reads limits the method to intron-containing transcription units 

that are transcribed at relatively high levels.  Nevertheless, this simple approach requires 

no time course, metabolic labeling, transcriptional inhibition, or indeed, any experimental 
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innovation beyond standard RNA-seq, making it an inexpensive and effective strategy for 

identifying genes undergoing cell-type- or condition-specific decay (Alkallas et al. 2017; 

Gaidatzis et al. 2015; Gosline et al. 2016).  

In this article, we show that this same general approach—but using a measure of 

nascent transcription based on PRO-seq rather than intronic RNA-seq reads—results in 

improved estimates of relative RNA half-life. Our approach requires only two standard 

and widely applicable experimental protocols—PRO-seq and RNA-seq. It applies to 

intron-less as well as intron-containing transcription units; it requires no correction for 

RNA-processing rates; it makes efficient use of the available sample material and can be 

extended to tissue samples using ChRO-seq (Chu et al. 2018); it is relatively 

nondisruptive to the biological processes under study; and it is sufficiently sensitive to 

assay TUs expressed at low levels, including many noncoding RNAs (see Supplemental 

Table 1 for a summary of advantages).  We show, through a series of analyses, that 

these combined RNA-seq and PRO-seq measurements are a powerful means for 

assaying RNA stability that can reveal possible determinants of RNA decay. 

 

Results  

Matched PRO-seq and RNA-seq measurements are generally well correlated but 

suggest reduced stability of noncoding RNAs. 

We first compared PRO-seq and RNA-seq measurements for various TUs from 

across the human genome, to assess the degree to which transcriptional activity, as 

assayed by PRO-seq, is predictive of steady-state RNA concentrations, as assayed by 

RNA-seq. To reduce technical noise, we collected new data of each type in multiple 

replicates (two for PRO-seq, four for RNA-seq), all from the same source of K562 cells, 

and pooled the replicates after verifying high concordance between them (Supplemental 

Fig. 1).  When analyzing these data, we considered all annotated TUs in GENCODE 

(Frankish et al. 2019), dividing them into mRNA (n=15,255), lincRNA (n=2,348), antisense 

(n=2,134), and pseudogene (n=1,274) classes. We quantified expression by the total 

number of mapped reads in transcripts per million (TPM), a measure that normalizes by 

both library size and TU length, and discarded TUs with insufficient read counts from 
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either assay. Notably, we excluded the first 500 bp downstream of the TSS and 500bp 

upstream of TES for PRO-seq to avoid a bias from promoter-proximal pausing and 

polymerase deceleration (Kwak et al. 2013) (see Methods).  

We found that the PRO-seq and RNA-seq measurements were well correlated 

overall, with Pearson’s r=0.82 (Fig. 1), suggesting that transcription explains the majority 

of the variance in mRNA levels. A parallel analysis based on pooled intronic reads from 

the same RNA-seq libraries showed only a slightly higher correlation, with r=0.87 

(Supplemental Fig. 2).  At the same time, there were considerable differences in the 

degree of correlation across classes of TUs, ranging from a high of r=0.86 for protein-

coding mRNAs to r=0.72 for lincRNAs, r=0.68 for antisense genes, and only r=0.59 for 

pseudogenes (Fig. 1).  Similarly, the slopes of the lines of best fit on the log/log scatter 

plots decreased substantially (by roughly 50%) from mRNAs to noncoding RNAs and 

pseudogenes.  We observed similar patterns for intron-containing and intron-less genes, 

but reduced values of r and slopes overall in intron-less genes (Supplemental 

Figs. 3 & 4).  Together, these observations suggest that RNA decay rates have a more 

pronounced effect on steady-state RNA levels in noncoding RNAs and pseudogenes.  

These differences remain when TUs are matched by expression level (Methods; 

Supplemental Fig. 5) and when the HeLa cell type is evaluated instead (Supplemental 

Fig. 6).   

Elongation rate is an important potential confounding factor in this analysis, 

because the PRO-seq density does not directly reflect the synthesis rate of RNA, but 

rather the synthesis rate divided by the elongation rate.  However, when we correct for 

elongation rate using two different sets of estimates for K562 cells—one previously 

published (Veloso et al. 2014) and one based on our own experiments—we find that the 

correlation with RNA-seq measurements does not improve, and indeed, declines slightly.  

Thus the observed differences across classes of TUs do not appear to be driven primarily 

by differences in elongation rate (Supplemental Text, Supplemental Fig. 7, and 

Discussion). 
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Relative RNA half-life can be estimated from the RNA-seq/PRO-seq ratio 

As noted above, a quantity proportional to RNA half-life can be approximated in a 

straightforward manner from measurements of transcription rate and steady-state RNA 

concentration under equilibrium conditions (Alkallas et al. 2017; Gaidatzis et al. 2015).  

Briefly, if 𝛽i is the rate of production of new RNAs for each TU i, 𝛼i is the per-RNA-molecule 

rate of decay, and Mi is the number of RNA molecules, then, at steady state, 𝛽i = 𝛼i Mi, 

and the decay rate can be estimated as 𝛼i = 𝛽i / Mi (see Fig. 2A & Methods).  If we 

assume that 𝛽i is approximately proportional to the normalized PRO-seq read counts for 

i, denoted Pi, and Mi is proportional to the normalized RNA-seq read counts, denoted Ri, 

then the ratio Pi / Ri is an estimator for a quantity proportional to the decay rate, and its 

inverse, T1/2,i
PR = Ri / Pi, is an estimator for a quantity proportional to RNA half-life.  As 

noted, the use of PRO-seq, rather than intronic read counts, for the measure of 

transcription has a number of advantages, including applicability to intron-less TUs and 

increased sensitivity for TUs expressed at low levels.   

Following this approach, we estimated T1/2
PR values for TUs from across the 

genome using our PRO-seq and RNA-seq data for K562 cells.  To validate our estimates, 

we compared them with estimates of RNA half-life for K562 cells from TimeLapse-seq 

(Schofield et al. 2018), a recently published method based on chemical conversion of 4sU.  

We compared our estimates of half-life with those from TimeLapse-seq (denoted T1/2
TLS) 

at 5,068 genes measured by both methods.  We found that the two sets of estimates were 

reasonably well correlated (Spearman’s ρ=0.59 Fig. 2B), especially considering the 

substantial differences in experimental protocols and the generally limited concordance 

of published half-life estimates across experimental methods (Tani et al. 2012; Wada and 

Becskei 2017).  Moreover, if we remove the 50% of genes expressed at the lowest levels 

(as measured by PRO-seq), for which the noise contribution will tend to be largest, the 

correlation improves to ρ=0.62.  By contrast, estimates based on intronic reads showed 

much poorer agreement with TimeLapse-seq (ρ=0.22; Supplemental Fig. 8 and 

Supplemental Text), although it is worth noting that the correction for RNA processing 

introduced by Alkallas et al. (2017) could not be applied in our case, because it requires 

a comparison of two conditions.  We found that our estimated T1/2
PR values were 
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significantly shifted toward lower values for zinc finger proteins (Fig. 2C), many of which 

play key regulatory roles, and toward higher values for ribosomal proteins, which are 

representative of “housekeeping” genes.  We also found that the predicted targets of 

numerous miRNAs, including the well-studied (Wei et al. 2015) miR-182 (Fig. 2D), have 

significantly reduced stability (see Supplemental Fig. 9 for additional examples).  

As further validation, we extended our comparison to include estimates of RNA 

half-life for K562 cells based on TT-seq (Wachutka et al. 2019), SLAM-seq (Wu et al. 

2019), and the method of Mele et al. (2017), focusing on 3,991 genes for which estimates 

from all methods are available.  In general, all methods show significant but somewhat 

modest levels of correlation in their half-life estimates, ranging from a high value of 

Spearman’s ρ=0.8 for the TimeLapse-seq and Mele et al. (2017) methods to a low of 

ρ=0.32 for SLAM-seq and our method (Supplemental Fig. 10).  We attribute these 

differences in correlation to a variety of both technological and conceptual differences 

among methods (see Discussion).  Notably, the TT-seq method—while similar to ours 

in some respects—has considerably reduced sensitivity, particularly for noncoding TUs 

(Supplemental Tables 2 & 3). 

Finally, we explicitly adjusted our estimates of relative half-life for elongation rate, 

and found that the correlation with other methods did not improve (Supplemental 

Figs. 11 & 12).   Moreover, we note that the variation across genes in estimated 

elongation rate is nearly an order of magnitude smaller than the variation in estimated 

half-lives, further indicating that elongation rate is not a dominant factor in our analysis, 

although it undoubtedly has some effect on our results (Supplemental Material and 

Discussion). 

 

Properties of transcription units that are predictive of RNA stability 

To reveal potential determinants of RNA stability, we sought to identify features of 

TUs that were predictive of our estimated RNA half-lives. We focused on the mRNA and 

lincRNA classes, for which we could identify the most informative features. Anticipating 
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an effect from splicing (Hamer and Leder 1979; Sharova et al. 2009), we focused our 

analysis on intron-containing TUs.  We considered nine different features related to 

splicing patterns, transcript length, and G+C content (Fig. 3 and Supplemental Figs. 

13 & 14).  In previous studies of this kind, investigators have examined the correlation of 

each feature with half-life, either individually or together in a multiple regression 

framework.  By construction, however, T1/2
PR will tend to be statistically correlated with 

features predictive of transcription regardless of their true influence on half-life.  Therefore, 

we instead made use of a Structural Equation Model (SEM) (Kaplan 2008) that explicitly 

describes the separate influences of features on transcription and half-life, and the 

contributions of both to RNA abundance (see Methods & Fig. 3A).  

Our analysis revealed significant positive correlations with half-life of both splice 

junction density and total intron length, for intron-containing mRNAs and lincRNAs 

(Fig. 3B; Supplemental Fig. 13).  The observation regarding splice junction density is 

consistent with previous reports for mRNAs (Hamer and Leder 1979; Sharova et al. 2009; 

Wang et al. 2002; Zhao and Hamilton 2007) and lincRNAs (Clark et al. 2012), as well as 

with the general tendency for intron-containing TUs to be more stable than intron-less 

TUs (Supplemental Fig. 15).  The correlation with intron length is intriguing but could be 

an artefact of increased elongation rates in long introns (see below and Discussion).   

We also observed several patterns having to do with G+C content and length that are 

difficult to interpret owing to the complex correlations of these features with CpGs, 

transcription, splicing, and RNA half-life (see Discussion and Supplemental Text).  In 

addition, we found that several features had coefficients of opposite sign for transcription 

and half-life (e.g., CDS, intron, and 3’UTR length), which could be driven, in part, by 

stabilizing selection on RNA levels (see Discussion). 

 To evaluate the degree to which these findings were influenced by elongation rate, 

we repeated the SEM analysis for the subset of 1,939 genes analyzed by Veloso et al. 

(2014), using an updated estimate of half-life that explicitly corrected for the estimated 

elongation rates of these genes (see Supplemental Material). We found that most of the 

results above held up under this analysis, with the main exception being the positive 

correlation between intron length and RNA half-life (Supplementary Fig. 16).  This 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2020. ; https://doi.org/10.1101/690644doi: bioRxiv preprint 

https://doi.org/10.1101/690644
http://creativecommons.org/licenses/by-nd/4.0/


9 
 

finding could indeed be an artifact of elongation rate in our uncorrected analysis because 

there is evidence of increased elongation rate (which would be perceived as reduced 

PRO-seq signal, and hence increased RNA-seq/PRO-seq ratio) in long introns (Gressel 

et al. 2017). We also observed some differences in the associations with G+C content.    

As further validation, we performed a similar analysis using estimates of half-life 

based on TT-seq (Wachutka et al. 2019), SLAM-seq (Wu et al. 2019) and the study of 

Mele et al. (2017), focusing on 3,923 genes for which estimates were available from all 

methods (Supplementary Fig. 17).  In these cases, we did not have separate measures 

of transcription and steady-state RNA abundance, so in place of the SEM analysis we 

performed multiple linear regression using the same features as covariates and the 

estimated half-lives from each of these other studies as outcomes.  In general, the 

observed trends were similar across all methods.  The major exceptions were intron 

length, where the other methods found a weak negative correlation instead of the positive 

correlation observed with our method, and 3’ UTR length, where the other methods found 

a weak positive correlation instead of a negative correlation.  The intron length finding 

may again reflect a confounding influence from elongation rate.  It is possible that the 3’ 

UTR length could similarly be influenced (in the other direction) by elongation rate, 

although in this case isoform selection may also play a role. 

 

DNA sequence correlates of RNA stability 

Our estimates of RNA half-life for both coding and noncoding TUs provide an 

opportunity to better characterize DNA sequence correlates of RNA stability near 

transcription start sites (TSSs) (Almada et al. 2013; Core et al. 2014; Ntini et al. 2013; 

Sharova et al. 2009).  We tested for associations between half-life and DNA words (k-

mers) of various lengths near the TSS (Supplemental Text), but we found that the 

observed trends were predominantly driven by G+C content, with A+T-rich k-mers being 

enriched, and G+C-rich k-mers being depleted, in stable transcripts relative to unstable 

transcripts (Fig. 4A; Supplemental Figs. 18–20).  Using the discriminative motif finder 

DREME (Bailey 2011), we identified several A+T-rich motifs associated with stable 
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transcripts, and several G+C-rich motifs associated with unstable transcripts (Fig. 4B&C).  

Finally, we expanded our set of TUs to include previously identified eRNAs from K562 

cells (Core et al. 2014) (see Methods), and found, interestingly, that stable eRNAs were 

slightly enriched, rather than depleted, for G+C-rich sequences (Fig. 4A; Supplemental 

Fig. 20).  This trend was most strongly associated with CpG dinucleotides within 400bp 

of the TSS (Supplemental Fig. 21).     

The atypical patterns around CpG dinucleotides raise the possibility of an 

association with DNA methylation near the TSS. We therefore compared the methylation 

patterns of TUs exhibiting low, medium, or high levels of RNA stability,  summarizing 

these patterns with meta-plots of average signal of the methylated DNA 

immunoprecipitation (MeDIP-seq) assay in K562 cells (ENCODE Project Consortium 

2012; Vucic et al. 2009) as a function of distance from the TSS (Supplemental Text).  

We found that the medium- and high-stability TUs exhibited similar patterns of methylation, 

but the low-stability TUs show a clear enrichment (Fig. 4D).  A similar trend was evident 

for lincRNAs (Supplemental Fig. 22).  These observations suggest the possibility of 

epigenomic as well as DNA sequence differences associated with RNA stability, as we 

explore further below.   

U1 and Polyadenylation sites have limited predictive power for stability 

We also directly tested for the possibility that differences in RNA half-life could 

reflect the presence or absence of either U1 binding sites (5’ splice sites) or 

polyadenylation sites (PAS) downstream of the TSS.  Comparisons of (stable) protein-

coding TUs and (unstable) upstream antisense RNA (uaRNA) TUs have revealed 

significant enrichments for proximal PAS in uaRNAs, suggesting that they may lead to 

early termination that triggers RNA decay.  These studies have also found significant 

enrichments for U1 binding sites in protein-coding TUs, suggesting that splicing may play 

a role in enhancing RNA stability (Almada et al. 2013; Ntini et al. 2013).  In previous work, 

we showed that these trends generalize to eRNAs as well.  In particular, we found that a 

hidden Markov model (HMM) that distinguished between the occurrence of a PAS prior 

to a U1 site, and the occurrence of a U1 site prior to a PAS, could classify TUs as unstable 

or stable, respectively, with fairly high accuracy (Core et al. 2014). 
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We applied this HMM (see Methods) to our mRNA and lincRNA TUs and tested 

whether our DNA-sequence-based predictions of stability (as measured by a sequence 

stability index, or SSI) were predictive of our estimated T1/2
PR values.  We also computed 

the SSI for the eRNAs identified from PRO-seq data and classified as stable or unstable 

based on CAGE data.  We found that the mRNAs had the highest SSI, followed by 

lincRNAs, and then eRNAs (Fig. 4E), as expected.  Interestingly, however, the subset of 

eRNAs that we find to be stable based on CAGE data also show elevated SSIs, roughly 

on par with lincRNAs.  In addition, intron-containing lincRNAs have significantly higher 

SSIs than intron-less lincRNAs, although there was little difference in intron-containing 

and intron-less mRNAs (Supplemental Fig. 23).  Moreover, within each of the mRNA 

and lincRNA groups, we found that the SSI changed relatively little as a function of T1/2
PR, 

suggesting that the HMM had almost no predictive power for true RNA stability within 

these classes (Supplemental Figs. 24 & 25).   These observations suggest that, whereas 

the U1 and PAS sequence signals do seem to distinguish broad classes of TUs with 

different levels of stability—namely, mRNAs, eRNAs, and uaRNAs—and the same 

signals are useful in distinguishing stable and unstable eRNAs, other factors likely 

dominate in determining gradations of stability within the mRNA and lincRNA classes (see 

Discussion).  

Additional epigenomic correlates of RNA stability  

Finally, we asked whether other epigenomic marks such as histone modifications 

correlate with RNA stability.  Histone modifications are primarily associated with 

transcriptional activity or repression, but they are also known to interact with splicing 

(Luco et al. 2010), and thus could influence RNA stability.  Similar to the methylation 

analysis above (Fig. 4D), we produced meta-plots showing the average ChIP-seq signal 

in K562 cells as a function of distance from the TSS for 11 different common histone 

modifications (ENCODE Project Consortium 2012), separately for low-, medium-, and 

high-stability classes of expression-matched intron-containing mRNAs (see Methods).  

While some of these histone modifications did not differ substantially across stability 

classes, such as H3K9me1 and H3K9me3, several did show clear relationships with 

estimated RNA half-life (Supplemental Fig. 26).  For example, H3k79me2, which is 
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associated with transcriptional activity, gives a substantially higher signal in stable 

transcripts than in unstable ones, particularly in a peak about 1kb downstream from the 

TSS (Fig. 5A).  A similar pattern is observed for H3K4me2, H3K4me3, and H3K27ac.  An 

inverse relationship is observed with H3K4me1, which is associated with active 

enhancers.   

As an alternative strategy for identifying epigenomic correlates of RNA stability 

while correcting for transcription, we again applied our SEM framework, this time using 

the 11 histone marks as covariates for estimated RNA half-life and considering the ChIP-

seq signals immediately downstream of each TSS (Fig. 5B, Supplemental Fig. 27).  As 

expected, the strongest correlations were detected with transcription rate, and these 

generally had the expected sign, for example, with positive correlations for the activation 

marks H3K27ac, H3K4me1, H3K4me2, and H3K4me3, and negative correlations for the 

repressive marks H3K9me3 and H3K27me3.  All of these patterns were consistent 

between lincRNAs and mRNAs (Supplemental Fig. 27 & 28), and they did not change 

substantially as a function of distance from the TSS (Supplemental Fig. 29).  However, 

we did additionally identify several significant correlates of half-life.  For mRNAs these 

were generally consistent with the ones identified from the ChIP-seq meta-plots, for 

example, with H3K79me2 showing a positive correlation with RNA half-life, and H3K4me1 

showing a negative correlation. In general, the estimated coefficients were similar for 

mRNAs and lincRNAs, but there were some notable differences: for example, the activity 

mark H3K36me3, shows a strong negative correlation with RNA half-life in lincRNAs but 

a weaker and position-dependent positive or negative correlation with mRNA half-life; and 

the silencing marks H3K9me1 and H3K9me3 show positive correlations for lincRNA half-

life but negative or near-zero correlations for mRNA half-life (Supplemental Fig. 28).  

These divergent patterns could possibly reflect differences in the degree to which splicing 

is co-transcriptional in mRNAs and lincRNAs (Tilgner et al. 2012). 

 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2020. ; https://doi.org/10.1101/690644doi: bioRxiv preprint 

https://doi.org/10.1101/690644
http://creativecommons.org/licenses/by-nd/4.0/


13 
 

Discussion 

In this article, we have introduced a simple method for estimating the RNA half-

lives of TUs from across the genome based on matched RNA-seq and PRO-seq data 

sets.  Like previous methods based on intronic reads, our method assumes equilibrium 

conditions and produces a relative measure of half-life only.  Unlike these methods, 

however, the use of PRO-seq allows us to interrogate intron-less TUs and TUs that are 

expressed at low levels (e.g., Supplemental Tables 2 & 3).  Moreover, even for intron-

containing and abundantly expressed genes, the PRO-seq-based measurements appear 

to be considerably more accurate than those based on intronic reads.  Our approach also 

has a number of advantages in comparison to existing methods for estimating RNA half-

lives based on transcriptional inhibition or metabolic labeling.  For example, it does not 

require collecting data in a time course, which enables efficient use of both time and 

sample material; it can make use of RNA-seq or PRO-seq data generated for other 

purposes; it is relatively nondisruptive of the biological processes under study; and it can 

be extended to tissue samples using ChRO-seq (Chu et al. 2018) (see Supplemental 

Table 1).  We have shown that our measurements of relative half-life are useful in a wide 

variety of downstream analyses. 

It is worth noting that our ability to assay noncoding RNAs derives in part from the 

use of RNA-seq data from total rRNA-depleted RNA rather than, say, oligoDT-enriched 

mature mRNA.  As a consequence, our estimates of stability actually reflect a combination 

of RNA maturation steps, and likely underestimate the influence of RNA stability alone.  In 

separate work (not shown), we recently analyzed K562 polyA+ RNA-seq data from the 

ENCODE project using our methods, and did observe a slight improvement in the 

correlation with other estimates of half-life.  It is also worth noting that all of the available 

methods interrogate RNA stability for a particular cell type under a particular set of 

conditions.  In most cases, it still remains unclear how RNA stability varies across 

conditions or cell-types. 

In a comparison of half-life estimates from several methods that have all been 

applied to K562 cells, including TimeLapse-seq (Schofield et al., 2018), TT-seq 

(Wachutka et al. 2019), SLAM-seq (Wu et al. 2019), and the method of Mele et al. (2017), 
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we found reasonable agreement across methods, but also substantial differences 

(Supplemental Fig. 10).  Indeed, the average pairwise Pearson’s correlation coefficient 

between sets of estimates was only ρ=0.57. It is difficult at this stage to disentangle the 

sources of these differences.  Most likely, they result both from experimental noise and 

from a combination of fundamental differences among methods, including whether the 

estimates are based on steady-state assumptions or time-course measurements, 

whether transcriptional inhibition or activation is used, how the rate of transcription is 

assayed, and whether RNA abundance is based on total RNA or polyA+ RNA.  These 

differences may make some methods better for certain classes of TUs than others (e.g., 

coding vs. noncoding RNAs, lowly vs. highly expressed TUs, intron-containing vs. intron-

less TUs, or RNAs that are or are not at equilibrium).  More work will be required to clarify 

the relative strengths and weaknesses of the available methods. 

One particularly important limitation of our method is that we use PRO-seq as a 

proxy for the rate of transcription, but in reality PRO-seq is a measure of the occupancy 

of engaged RNA polymerases, which reflects both the rate of transcription and the rate 

of elongation.  The PRO-seq signal along a gene body is analogous to the headlight 

brightness on a highway at night; an increase in signal can reflect either an increased 

number of cars entering the highway (analogous to an increased rate of transcription), or 

a back-up in traffic (analogous to a decreased elongation rate).  As a consequence, 

variation in T1/2
PR across TUs could in part be driven by variation in elongation rate.  We 

attempted to control for this possibility in several ways.  First, we explicitly corrected our 

estimates of transcription and half-life with estimates of elongation rate for the same cell 

type, using both previously published estimates (Veloso et al. 2014) and ones obtained 

through our own experiments (Supplemental Material).   We found that the correction 

did not improve the correlation of PRO-seq and RNA-seq measurements (Supplemental 

Fig. 7), nor did it improve the agreement with independent estimates of half-life 

(Supplemental Fig. 11). Second, we repeated our analysis of features predictive of half-

life with the corrected estimates and found that it did not substantially alter our results, 

with one notable exception (Supplementary Figure 16; discussed below). Third, we 

observed that the variation in elongation rate across genes is smaller by almost an order 

of magnitude than the variation in estimated half-lives, indicating that it can account for, 
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at most, a small fraction of the observed variation (Supplemental Text). We conclude 

from these analyses that elongation rate does undoubtedly have some impact on our half-

life estimates, but overall, the effects appear to be limited. However, more work will be 

needed to obtain more accurate and more comprehensive estimates of elongation rates, 

and to fully understand their impact on half-life estimates.   

To identify features that are predictive of RNA half-life, we devised a structural 

equation model (SEM) that explicitly describes the separate effects of each feature on 

transcription and half-life, as well as the resulting impact on RNA concentrations, PRO-

seq, and RNA-seq data.  While multivariate regression has been used to identify features 

associated with RNA stability (Sharova et al. 2009), our analysis is the first, to our 

knowledge, to attempt to disentangle the separate influences of such features on 

transcription and RNA stability.  It is worth noting that this framework could also be useful 

for estimators based on intronic reads.  The results of the SEM analysis were consistent 

with previous findings in many respects, particularly regarding the association between 

RNA splicing and RNA stability.   The mechanism underlying this relationship remains 

unclear, but it is known that the exon junction complex (EJC) remains bound to the mature 

mRNA after its transport to the cytoplasm and it has been proposed that EJC components 

may protect the mRNA from decay (Sharova et al. 2009; Zhao and Hamilton 2007). In 

addition to the previously reported positive correlation of splice junction density and RNA 

half-life, we also observed a positive correlation between intron length and half-life. This 

observation could potentially indicate that RNA stability is enhanced by recursive splice 

sites (Sibley et al. 2015) or extended contact with the spliceosome in long introns.  

However, we could not confirm this finding after our correction for elongation rate using a 

subset of our full gene set, and it may therefore be an artifact of increased elongation 

rates in long introns.  More work will be needed to confirm or reject this association.   

It has recently been reported that U1 binding sites are enriched, and 

polyadenylation sites are depleted, downstream of the TSS in stable mRNAs relative to 

unstable upstream antisense RNAs (uaRNAs) and enhancer RNAs (eRNAs), suggesting 

that RNA stability is determined, in part, by the DNA sequence near the TSS.  In this 

study, we tested not only whether this “U1-PAS axis” could distinguish TUs in stable 

classes (mRNAs) from those in unstable classes (uaRNAs and eRNAs) but also how 
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predictive it is of half-life within these classes.  We confirmed that a U1-PAS-based 

“sequence stability index” (SSI) is generally elevated for mRNAs, intermediate for 

lincRNAs, and reduced for eRNAs.  Furthermore, this SSI can distinguish between more 

and less stable eRNAs, as quantified using CAGE (Fig. 4E).  Somewhat surprisingly, 

however, we found that the SSI has essentially no predictive power for relative RNA 

stability within the generally more stable mRNA and lincRNA classes (Supplemental 

Figs. 24 & 25).  One possible explanation for this observation is that the U1-PAS axis 

determines a kind of early “checkpoint” for stable transcripts—for example, by ensuring 

that premature transcriptional termination is avoided—but that once a transcript has 

cleared this checkpoint, these DNA sequence features are no longer relevant in 

determining RNA stability.  Instead, the relative stability of mRNAs and lincRNAs may be 

predominantly determined by splicing-related processes, binding by miRNAs or RBPs, or 

other posttranscriptional phenomena.  More work will be needed to fully understand the 

mechanistic basis of these differences in stability.    

Some of the associations that we observed with half-life concerned G+C content, 

but these observations are generally difficult to interpret.  Indeed, even the comparatively 

straightforward question of the relationship between G+C content and transcriptional 

activity has a long and contradictory literature, with several studies finding correlations 

between them (Kudla et al. 2006; Urrutia and Hurst 2003; Versteeg et al. 2003), but others 

claiming that the relationship between G+C and transcription is weak, at best, once 

confounding factors such as genomic context are properly accounted for (Arhondakis et 

al. 2008; Sémon et al. 2005).  Sharova et al. (2009) identified a fairly pronounced negative 

correlation between RNA stability and the prevalence of CpGs in the 5’UTR, which is not 

supported by our analysis—although we interrogated only G+C content, not CpGs, in the 

5’UTR.   These authors raised the intriguing hypothesis this correlation may reflect the 

activity of splicing-associated methyl CpG-binding proteins (Young et al. 2005), but, to 

our knowledge, this idea has not been tested experimentally.  In any case, it seems 

unlikely that the complex relationships among G+C content, CpGs, transcription, RNA 

stability and downstream effects such as translational efficiency can be fully disentangled 

through post-hoc statistical analyses.  Instead, this effort will require experiments that 
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directly perturb individual features of interest and separately measure the effects on a 

variety of processes. 

Our observations of epigenomic correlates of transcription and stability are 

similarly challenging to interpret.  We identified several histone modifications that are 

significantly associated with increased or decreased half-life, but we cannot rule out the 

possibility that these correlations reflect indirect relationships with confounding variables 

not considered here.  However, the effect is quite strong for certain marks (such as 

H3K79me2 and H3K4me2) and it is apparent both in direct comparisons of PRO-seq-

matched TUs (Fig. 5A) and in the SEM setting (Fig. 5B).  It therefore seems plausible 

that it has a direct mechanistic basis, perhaps involving factors that interact both with 

DNA-bound nucleosomes and the spliceosome.  Divergent patterns for mRNAs and 

lincRNAs (Supplemental Fig. 27) suggest the possibility of differences in these splicing-

associated processes.  Additional work will be needed to test these hypotheses. 

One general pattern that emerges from the SEM analysis of histone modifications 

is that the coefficients for transcription and half-life are often different from zero in opposite 

directions (Supplemental Figs. 27-29). This trend of anti-correlation was less prominent 

with the TU features, but we did observe it with CDS, intron, and 3’UTR length (Fig. 3B).  

A possible explanation for this pattern is that it is, at least in part, a reflection of stabilizing 

selection on gene expression.  If selection tends to favor a particular RNA level for each 

TU, then mutations that increase transcription may tend to be compensated for by 

mutations that decrease RNA stability, and vice versa.  Thus, stabilizing selection might 

result in a tendency for features that are positively correlated with one measure 

(transcription or stability) to be negatively correlated with the other.  Notably, this type of 

hypothetical causal interrelationship between transcription and stability is not considered 

in our SEM, nor in any other statistical model of which we are aware.  As a result, it may 

be difficult to distinguish correlations that have a direct, mechanistic basis (say, relating 

to transcription) from their indirect “echoes” (say, relating to half-life) resulting from 

evolutionary constraint.  Despite this potential limitation, our framework remains useful 

for identifying potentially interesting correlations, whose mechanistic underpinnings can 

then be further investigated through direct experimental perturbation.  
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Materials and Methods 

PRO-seq and RNA-seq data preparation and processing  

To minimize technical differences, we sequenced new PRO-seq (n=2) and RNA-

seq (n=4) libraries, generated from cells grown in the same flask under the same 

conditions. Human K562 cells were cultured using standard cell culture procedures and 

sterile techniques. The cells were cultured in RPMI-1640 media supplemented with 10% 

fetal bovine serum (FBS) and 1% penicillin/streptomycin.  For PRO-seq, 3’ and 5’ 

adapters were ligated as described (Chu et al. 2018) followed by library preparation as 

previously published (Mahat et al. 2016). Sequencing was done by Novogene on a HiSeq 

instrument with paired-end reads of 2×150bp. For RNA-seq, RNA was extracted using 

the Trizol method (see https://assets.thermofisher.com/TFS-

Assets/LSG/manuals/trizol_reagent.pdf), followed by rRNA depletion using the Ribozero 

HMR Gold kit. Libraries were prepared using the NEB kit with TruSeq RNAseq adaptors.  

Single-end sequencing (length=75) was performed on a NextSeq500 instrument by the 

RNA Sequencing Core at the College of Veterinary Medicine, Cornell University. 

Read mapping and transcript abundance estimation  

Raw data files in fastq format were trimmed using Cutadapt (Martin 2011) with 

parameters (-j 0 -e 0.10 --minimum-length=10). Reads were then aligned using HISAT2 

(Kim et al. 2019, 2) with default parameters (hisat2 --threads 4 -x {index} -U {input.reads} 

-S {output} --summary-file {log}). We used the GRCh38/hg38 reference genome and the 

associated GENCODE gene annotations. HTSeq (Anders et al. 2015) was used for read 

counting for RNA-seq and PRO-seq. Importantly, for the purposes of read counting with 

PRO-seq, we omitted the first 500 bases downstream of the TSS and 500 bases upstream 

of TES to avoid a bias in read counts from promoter proximal pausing and polymerase 

deceleration.  Finally, we normalized read counts by converting them to transcripts per 

million (TPM) (Wagner et al. 2012) based on the length of each TU. 
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Estimation of RNA half-life from RNA-seq and PRO-seq data  

We assume a constant rate of production of new RNAs, 𝛽i, a constant per-RNA-

molecular rate of decay, 𝛼i, and a number of RNA molecules, Mi.  At steady state, 𝛽i = 𝛼i 

Mi; therefore the decay rate can be estimated as 𝛼i = 𝛽i / Mi, and the half-life as T1/2 = ln(2) 

/ 𝛼i = ln(2) × Mi / 𝛽i. We further assume that the normalized PRO-seq read counts (omitting 

both regions near TSS and TES) are proportional to the rate of production of new RNAs, 

Pi ∝ 𝛽i, and that the normalized RNA-seq read counts are proportional to the number of 

RNA molecules, Ri ∝ Mi.  Therefore, T1/2 ∝ Ri / Pi. We define our unit-less estimator of 

half-life as T1/2
PR = Ri / Pi, where “PR” denotes a PRO-seq/RNA-seq-based estimator.  

Notice that these unit-less T1/2
PR values can be compared across experiments only up to 

a proportionality constant, unless the raw read counts have been appropriately 

normalized. 

Structural equation model (SEM) 

To separate the effects of TU features on decay from the effects on transcription, 

we developed an SEM using the ‘lavaan’ R package (Yves 2012). Let 𝑋𝑛 be the n-th 

feature associated with a TU. We assume that the logarithms of this TU’s transcription 

rate and half-life, i.e., b = log 𝛽 and t1/2 = log T1/2
PR, are linear combinations of the 𝑋𝑛’s 

and a TU-level random effect: b= ∑𝑁
𝑛=0 𝜆nXn + 𝜀b and t1/2= ∑𝑁

𝑛=0 𝜇nXn + 𝜀t  where 𝜖𝑏 ∼

𝑁(0, 𝜎𝑏)  and 𝜖𝑡 ∼ 𝑁(0, 𝜎𝑡)  are independent Gaussian random variables explaining all 

variation not attributable to known features. Assuming a fixed value 𝑋0 =  1 for all genes, 

the parameters 𝜆0 and 𝜇0 can be interpreted as intercepts whereas 𝜆n≠0 and 𝜇n≠0 are 

regression coefficients indicating the contributions of feature n to transcription rate and 

half-life, respectively.   

According to the model derived above, at steady state, T1/2
PR∝ M / 𝛽, where M is 

the number of RNA molecules; therefore, m = log M is given by m = b + t1/2 + C, where C 

is an arbitrary constant that can be ignored here because it does not affect the estimation 

of regression coefficients.  Denoting pj = log Pj and rj = log Rj as the logarithms of the 

PRO-seq and RNA-seq measurements in replicate j, respectively, we assume pj ~ b + 𝜀p 

and rj ~ m + 𝜀r where 𝜖𝑟 ∼ 𝑁(0, 𝜎𝑟) and 𝜖𝑟 ∼ 𝑁(0, 𝜎𝑟) are independent Gaussian random 
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variables describing the noise in PRO-seq and RNA-seq experiments, respectively. 

Finally, we assume that all observations are independent across TUs.  With these 

assumptions, and pooling information across TUs of the same class, we can estimate 

separate regression coefficients for transcription rates (𝜆n) and half-life (𝜇n) for all features 

by maximum likelihood. 

Transcription unit features 

Transcription unit (TU) sequences were downloaded from BioMart using the R 

package biomaRt (Durinck et al. 2005, 2009). We considered only one isoform per 

annotated gene, i.e., selecting the longest transcript.  Features based on properties of 

DNA sequences (e.g., G+C content) were then extracted using Biopython (Cock et al. 

2009).  The intron length was set equal to the transcript length minus the total exon length. 

The splice junction density was set equal to the intron number divided by the mature RNA 

length.  

eRNA analysis 

We used eRNAs identified from our previous GRO-cap analysis in K562 cells 

(Core et al. 2014) restricting our analysis to putative eRNAs with divergent transcription 

(Danko et al. 2015) that fell at least 1kb away from annotated genes (n=21,816). To 

measure steady-state RNA levels, we used CAGE in place of RNA-seq owing to its 

greater sensitivity.  We used the Nucleus PolyA and Non-polyA CAGE libraries from 

ENCODE. To measure transcription rates, we used PRO-seq data from same study (Core 

et al. 2014).  For the stability analysis, we eliminated TUs having no mapped CAGE reads, 

and then selected the top 10% by CAGE/PRO-seq ratio as “stable” and the bottom 10% 

as “unstable”.  These stable and unstable groups were then matched by PRO-seq signal 

(n=510). 

DNA word enrichments 

We considered all DNA words (all possible combinations of A,C,G,T) of sizes k ∈ 

{2, 3, 4}. For each word w, we counted the total number of appearances in our set of 

stable TUs (top 20% by T1/2
PR), denoted cs,w, and the total number of appearances in 
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unstable TUs (bottom 20% by T1/2
PR), denoted cu,w.  These counts were collected in 1kb 

windows beginning at various distances downstream of the TSS (0, 500, 1000, and 1500 

bp). The enrichment score for each word w and each window position was then computed 

as log2(cs,w/cu,w). A positive value of this score indicates an enrichment and a negative 

score indicates a depletion in stable TUs relative to unstable TUs.  For eRNAs, we used 

a similar procedure but with 400 bp windows at distances of 0, 200, 400, and 600bp from 

the TSS.  

Motif discovery   

For motif discovery, we used the discriminative motif finder ‘DREME’ (Bailey 

2011) with default parameters (core width ranging from 3-7). For the stable motifs, we 

used the top 20% of TUs by T1/2
PR as the primary sequences and the bottom 20% as 

the control sequences.  For the unstable motifs, we reversed the primary and control 

sequences.   

Sequence Stability Index (SSI) 

We define the SSI to be the probability that a TU is “stable” based on our previously 

published U1-PAS hidden Markov model (HMM) (Core et al. 2014). Briefly, the HMM 

identifies a TU sequence as “stable” if either (1) it has a U1 splicing motif upstream of a 

PAS motif or (2) it lacks both a PAS motif and a U1 splicing motif, as detailed by Core et 

al. (2014).  We applied the HMM to the first 1kb of sequence downstream of the annotated 

TSS and calculated the SSI as 1 minus the probability the TU is unstable, as output by 

the program.  An implementation of the HMM is available at https://github.com/Danko-

Lab/stabilityHMM.   

Matching by PRO-seq expression 

We used the R package ‘MatchIt’ (Ho et al. 2007, 2011) to match groups of TUs 

by their normalized PRO-seq read counts (method=”nearset”).  In cases of multiple 

groups, one group was selected as the reference and every other group was matched to 

that reference group. 
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Metaplots 

Metaplots showing the average values of signals of interest across loci (e.g., Figs. 

4D & 5A) were produced using the ‘plotMeta’ function from the ‘Genomation’ (Akalin et 

al. 2015) R package.  The input signal was provided in bigwig format and the loci were 

defined in bed format.  In all cases, the average signal is plotted as a colored lined, with 

uncertainty indicated by the standard error of the mean (darker shading) and 95% 

confidence intervals (lighter shading) as specified by the “se” parameter. 

MicroRNA targets analysis 

We obtained microRNA targets from TargetScanHuman (Agarwal et al. 2015), 

Release 7.2 

(http://www.targetscan.org/vert_72/vert_72_data_download/Predicted_Targets_Info.def

ault_predictions.txt.zip).  We used all default predictions of conserved targets for each 

conserved miRNA family in the database.  

Gene categories 

We obtained lists of genes encoding ribosomal proteins and zinc fingers from the 

HUGO Gene Nomenclature Committee (https://www.genenames.org/). 

Epigenomic Resources 

Histone modifications, DNA methylation IP (MeDIP) and eCLIP data were 

downloaded from the ENCODE consortium (ENCODE Project Consortium 2012) as 

bigwig files annotated to the GRCh37/hg19 reference genome 

(https://www.encodeproject.org/).     

Software Availability 

The software used for our data analysis and figure generation is available as 

Supplementary Material and via GitHub at https://github.com/EasyPiPi/blumberg_et_al. 
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Figures 

 

Figure 1. Scatter plots of PRO-seq vs. RNA-seq read counts for transcription units (TUs) 

in K562 cells, both shown in units of log2 transcripts per million (TPM) (see Methods).  

Panels describe (A) all annotated TUs (n=21,011), (B) protein-coding mRNAs (n=15,255), 

(C) intergenic lincRNAs (n=2,348), (D) intragenic antisense non-coding genes (n=2,134), 

and (E) pseudogenes (n=1,274), all from GENCODE (Frankish et al. 2019).  For each 

plot, the linear regression line is shown together with Pearson’s correlation coefficient (r) 

and the slope of the regression line. Notice that as one proceeds from panel B to panel 

E, from mRNAs to noncoding RNAs and pseudogenes, there is a general decrease in 

both r, indicating greater variability of steady-state RNA concentrations at each 

transcription level, and the slope, indicating reduced average RNA concentrations for 

highly transcribed TUs. 
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Figure 2. (A) Illustration of dynamic equilibrium between production and decay of RNA.  

PRO-seq (Pi) can be used to measure production and RNA-seq (Ri) to measure the 

resulting equilibrium RNA concentration.  At steady-state, the production and decay rates 

must be equal, allowing for estimation of a quantity proportional to RNA half-life (T1/2
PR) 

by the ratio Ri / Pi (see Methods).  Illustration adapted from (Weingarten-Gabbay and 

Segal 2014).  (B) Scatter plot with density contours for (log2) half-lives estimated by the 

PRO-seq/RNA-seq method (T1/2
PR, x-axis) vs. those estimated by TimeLapse-seq 

(Schofield et al., 2018) (T1/2
TLS, y-axis) for 5,068 TUs assayed by both methods in K562 

cells.  The T1/2
PR values are unit-less, whereas the T1/2

TLS values are expressed in hours. 

ρ = Spearman’s rank correlation coefficient.  (C) Cumulative distribution functions (CDF) 

for (log2) estimated RNA half-lives, T1/2
PR, for ribosomal proteins, zinc-finger proteins, and 

other genes (both comparisons have Kolmogorov–Smirnov test p = 3.99e-15).  (D) Similar 

CDFs for mRNAs predicted to be targets of miR-182-5p vs. non-targets. K-S test p = 

3.86e-10. 

A B
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Figure 3. Features of transcription units (TUs) that are predictive of transcription rate and 

RNA half-life. (A) Structural Equation Model (SEM) describing the effects of an arbitrary 

collection of TU features (X1,…,XN, with intercept term X0=1) on transcription rate (b) and 

half-life (t1/2), as well as the downstream impact on mRNA concentration (m), normalized 

PRO-seq (p), and normalized RNA-seq (r) read counts.  The model is linear in logarithmic 

space, with unmodeled variation accounted for as Gaussian noise (𝜀b, 𝜀t, 𝜀p, and 𝜀r; see 

Methods).  The coefficients for transcription rate (𝜆n) and half-life (𝜇n) are estimated by 

maximum likelihood, assuming independence of replicates and pooling data from all TUs 

of the same class.  (B) Estimated values for coefficients for transcription (𝜆n; top) and half-

life (𝜇n; bottom) for various features of interest.  Results are for intron-containing mRNAs 

(see Supplemental Figs. 13 & 14 for other classes). Features considered for each TU: 

G+C 3’UTR – GC content in 3’ UTR. G+C 5’UTR – GC content in 5’ UTR. G+C cds – GC 

content in coding region. G+C intron – GC content in intron(s). len 3’ UTR - length of 3’ 

UTR. len 5’ UTR - length of 5’ UTR. len cds – total length of coding region. len intron – 

total length of intron(s). spl. junc. dens. – number of splice junctions divided by mature 

RNA length.  Error bars represent ±1.96 standard error, as calculated by the ‘lavaan’ R 

package (Yves 2012).  Significance (from Z-score): * p<0.05; ** p<0.005; *** p<0.0005.  
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Figure 4.  DNA-sequence, methylation, and RNA-binding-protein correlates of RNA 

stability near the TSS. (A) Distribution of G+C content (y-axis) for the 20% most (red) 

and least (blue) stable TUs, according to our estimated half-life (T1/2
PR

), in enhancer 

RNAs (eRNA), lincRNAs and mRNAs (x-axis). (B&C) Two most significantly enriched 

DNA sequence motifs in stable (B) and unstable (C) mRNAs. (D) Signal for MeDIP-

measured DNA methylation for low-, medium-, and high-stability mRNAs (see Methods) 

as a function of distance from the TSS. Solid line represents mean signal and lighter 

shading represents standard error and 95% confidence interval.  (E) Distribution of 

Sequence Stability Index (SSI) based on U1 and Polyadenylation sites (see Methods) 

for eRNAs, lincRNAs, and mRNAs. Separate plots are shown for eRNAs with low and 

high CAGE support, suggesting low and high stability, respectively. 
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Figure 5. Histone-modification correlates of RNA stability. (A) ChIP-seq signal for 

H3K79me2 (left), H3K4me1 (middle), and H3K4me2 (right) for low-, medium-, and high-

stability mRNAs (see Methods) as a function of distance from the TSS. Results are for 

intron-containing mRNAs matched by normalized PRO-seq signal.  Solid line represents 

mean signal and lighter shading represents standard error and 95% confidence interval.   

(B) Estimated SEM coefficients for half-life (𝜇n) for 11 histone modifications, as assayed 

by ChIP-seq in the 500 bases immediately downstream of the TSS, also for intron-

containing mRNAs (Methods; see Supplemental Figs. 27-29 for additional results). 

Error bars and significance are as in Fig. 3B. 
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