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ABSTRACT

Many behavioural tasks require an animal to integrate information on a slow timescale that can
exceed hundreds of milliseconds. How this is realized by neurons with membrane time constants on
the order of tens of milliseconds or less remains an open question. We show, how the interaction of
two kinds of events within the dendritic tree, excitatory postsynaptic potentials and locally generated
dendritic plateau potentials, can allow a single neuron to detect specific sequences of spiking input
on such slow timescales. Our conceptual model reveals, how the morphology of a neuron’s dendritic
tree determines its computational function, which can range from a simple logic gate to the gradual
integration of evidence to the detection of complex spatio-temporal spike-sequences on long time-
scales. As an example, we illustrate in a simulated navigation task how this mechanism can even allow
individual neurons to reliably detect specific movement trajectories with high tolerance for timing
variability. We relate our results to conclusive findings in neurobiology and discuss implications for
both experimental and theoretical neuroscience.

Introduction1

The ability to detect long-lasting sequences of neural activity is crucial for complex behavior, but poses a serious2

challenge for most established neuron models. Consider a rodent navigating through an environment in search for3

food. Receptive fields of place and grid cells tile a spatial map of the environment and encode the current position by4

their respective population activities [1, 2]. But in order to find its way back, the animal needs to know not only its5

present location, but also which path it took to get there. Decoding this path from the sequential activation of place and6

grid cells requires the integration of information on behavioural timescales that can span hundreds of milliseconds or7

more [3, 4]. Relevant patterns on such long timescales may prove to be a ubiquitous phenomenon, and have already been8

documented for a wide range of sensory processing tasks, such as olfaction [5, 6] or cortical auditory processing [7].9

This raises the puzzling question, how such long sequences of neural activity can be processed by volatile neurons10

with membrane time constants on the timescale of tens of milliseconds or less [8]. While this problem is typically11

addressed on a network level, e.g. by relying on effects of fast-acting synaptic plasticity [9] or slow emergent dynamics12

due to recurrent connections [10], we argue that it can be solved on the level of individual neurons by active processes13

within their dendritic trees. These localized processes endow neurons with internal memory traces on the timescale of14

hundreds of milliseconds, and can be captured in a simple, conceptual model that adheres to recent biological evidence15

not accounted for in integrate-and-fire neuron models.16

By investigating the computational properties of neurons with active dendrites, we conclude that:17

1. Active dendritic processes can implement complex spatio-temporal receptive fields for ordered sequences of18

synaptic inputs19

2. Active dendritic processes enable the robust integration of weak signals over long time-scales.20

3. When analyzed from a rate-coding perspective, active dendritic processes can produce sophisticated nonlinear21

computations determined by the neuron’s dendritic morphology22

∗Both authors contributed equally.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 7, 2020. ; https://doi.org/10.1101/690792doi: bioRxiv preprint 

https://doi.org/10.1101/690792


PREPRINT: EVENT-BASED PATTERN DETECTION IN ACTIVE DENDRITES- AUGUST 7, 2020

We demonstrate these propositions in a general computational framework for event-based, active dendritic sequence23

processing (ADSP), which offers an elegant solution to the problem of detecting highly variable, long lasting patterns in24

a neuron’s input.25

Neural dynamics is driven by active dendritic processes26

We derive our abstract model of dendritic computation from a few basic biological observations: Most of a cortical27

pyramidal neuron’s excitatory synaptic inputs terminate on dendritic spines [11], where post-synaptic ion channels28

are activated via the stochastic, pre-synaptic release of glutamate-carrying vesicles [12, 13]. The activated channels,29

primarily controlled by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) [14], become30

conductive to a mixture of ions, which leads to a brief depolarization in the corresponding spine, referred to as the31

excitatory post-synaptic potential (EPSP) [15]. These voltage changes in nearby spines induce a modest depolarization32

in the local dendritic membrane potential [16], which passively propagates along the dendrite as described by neural33

cable theory (Fig. 1c). For very specific branching patterns, the passive propagation of activity along a neuron’s dendrite34

can be simplified to an equivalent model of a cylinder, in which the contribution of individual synaptic inputs sum35

(sub-)linearly [17]. Since propagation along the cylinder is very fast, abstract point-neuron models such as leaky36

integrate-and-fire neurons ignore the spatial dimension of the dendritic tree entirely and model the neuron as if it were a37

single electric compartment [18]. However, in this purely passive model of dendritic integration, the attenuation of38

signals along the dendritic cable is so strong, that synaptic input onto thin apical dendrites should have little, if any,39

measurable effect on the membrane potential at the soma far away [19, 20]. This apparent problem could be resolved by40

a synaptic plasticity mechanism that proportional up-scales synaptic efficacies to compensate for the distance-dependent41

attenuation. This phenomenon, aptly termed “dendritic democracy”[21], has been shown in hippocampal pyramidal42

neurons [22], where it results in a similar contribution of synaptic inputs onto the somatic membrane potential —43

regardless of the synapse’s position along the dendrite. We instead look at a different mechanism to boost weak synaptic44

inputs, which relies on localized depolarizations that are actively generated and maintained within the dendritic tree.45

Such active dendritic processes are ubiquitous [23, 24] and largely rely on N-methyl-D-asparate receptor (NMDAR)46

gated ion-channels [14] (see Fig. 1c for a schematic representation of this mechanism). NMDAR gated channels, like47

their AMPAR gated counterparts, are activated in the presence of glutamate, but do not become conductive unless a48

channel-blocking Mg+ ion is first displaced by a sufficiently strong depolarization [25, 26]. This depolarization can be49

achieved by the coactivation of multiple AMPAR channels on nearby spines within a short time-window. Experimental50

as well as simulation studies report that this requires a volley of 4-20 or even up to 50 spikes within 1-4ms, depending51

on the location along the dendritic tree [16, 27, 28, 29]. The opening of NMDAR channels triggers a massive influx52

of different ionic currents that lead to a complete depolarization of a small segment of the dendritic arbor. While the53

isolated NMDAR response itself is reported to last on the order of at least 25ms [30], in vivo recordings reveal that54

voltage-gated channels in the dendritic membrane [20] prolong this effect, resulting in a depolarization that can last55

from tens to hundreds of milliseconds [31]. We focus on these longer lasting events, which we collectively refer to as56

dendritic plateau potentials, and argue, that they provide useful memory traces within the dendritic tree that can last57

hundreds of milliseconds.58

The much larger depolarization during a plateau potential propagates further along the dendrite than the weaker effect59

of individual EPSPs and thus extends the range at which they can contribute to somatic action potential generation.60

This may even be required for generating or spiking [32] or bursting [33] output. Just like EPSPs, however, plateau61

potentials are still subject to considerable attenuation along the dendritic cable and thus have a strong effect only in62

their direct neighbourhood2. This leads to a division of complex dendritic arbors into functional subunits [34, 35, 36],63

which we here refer to as dendritic segments. How local plateau potentials in these segments interact within a dendritic64

tree depends on its morphology. In particular, the depolarizing effect on other directly connected dendritic segments65

is effectively raising their resting potential for the whole duration of the plateau potential, thus lowering the amount66

of coinciding spikes required to initiate a plateau potential there [37]. As [38] demonstrates, this local nonlinear67

interaction of dendritic segments due to NMDAR-gated channels can allow neural dendrites to become selective to68

specific sequences of synaptic inputs. While their work uses a biophysical, spatially extended neuron model to explain69

this behaviour, we instead derive a much simplified model composed of discrete dendritic segments. This helps explain70

how local interactions between connected segments lead to cascades of plateau potentials, which in turn allow the71

detection of specific long-lasting sequences within the dendritic tree.72

Each segment of a dendritic tree tends to receive strongly correlated volleys of spikes on clustered synaptic inputs73

from some subpopulation of neurons [39, 40]. We propose, that such incoming spike volleys constitute elementary74

events that convey relevant information. The morphology of the dendritic tree then determines how this information is75

processed and retained in memory, and thereby endows the ADSP neuron with an intricate computational function.76

2Unlike EPSPs, this attenuation cannot be circumvented by synaptic scaling as for dendritic democracy.
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The interaction of active dendritic processes realizes event-based computation.77

Based on the biological observations in the previous section, we can derive an abstract mathematical model of active78

dendritic sequence processing: Conceptually, the complex dynamics of dendritic membrane potentials can be reduced to79

the interactions of two kinds of events, EPSPs and actively generated plateau potentials, in a tree structure of dendritic80

segments. Since both of these events result in localized stereotypical effects on the dendritic membrane potential,81

we abstractly model them as rectangular pulses of unit magnitude and fixed duration τ syn and τ den, respectively. The82

qualitative behaviour of the dendritic arbor can thus be explained purely in terms of the locations and times at which83

EPSPs and plateau potential are initiated in its dendritic segments.84

Only those incoming spikes that are successfully transmitted by the probabilistic synapses induce EPSPs in the85

postsynaptic segment, which sum up and constitute the total synaptic input into the segment. This input is particularly86

strong when a volley of multiple spikes occurs in a time-window short enough for their EPSPs to overlap. In addition to87

synaptic input, the electric coupling between directly connected dendritic segments provides another source of dendritic88

input.89

When both the synaptic and dendritic input into a segment exceed critical thresholds, the segment enters a prolonged90

plateau state. For the whole duration of the plateau, all other directly connected segments receive depolarizing dendritic91

input. Segments of the dendritic tree therefore act as coincidence detectors that respond to highly synchronized volleys92

of spikes with plateau potentials. The precise thresholds for synaptic and dendritic input depend on the segment’s93

location within the dendritic tree. While a large volley of spikes alone suffices to trigger a plateau in the outermost94

segments of the dendritic tree, internal segments require the additional dendritic input due to plateau potentials in95

connected segments. For segments that lie at branching points in the dendritic tree, more than one of their neighbours96

may have to be in a plateau state concurrently to have a sufficient effect. If the soma, which lies at the root of the97

dendritic tree, receives sufficient synaptic and dendritic input, a somatic action potential, rather than a plateau potential,98

is generated.99

Since the small effects of EPSPs remain confined to the postsynaptic dendrite segment, they can only affect the neuron’s100

behaviour indirectly by contributing to the generation of local plateau potentials. It is the plateau potentials and their101

interaction across neighbouring segments that drives the dendritic membrane potential, and therefore implements102

an event-based framework of dendritic computation on two distinct timescales orders of magnitude apart. On a fast103

timescale, the combined effect of a volley of coincident spikes can initiate a localized plateau potential. On a much104

slower timescale, the interaction of these plateaus provides an ephemeral memory of the recent history. The computation105

we have described here can be fully formalized in terms of synaptic spikes and plateau events as provided in the106

Methods section.107

In Fig. 1 we describe an exemplary ADSP neuron that receives input from five populations of neurons on five segments108

(Fig. 1a). Each segment, if sufficiently excited, responds to a spike volley in its respective input populations by emitting109

a plateau event at the time of the volley (Fig. 1b). The morphology of the dendritic tree determines how these plateaus110

interact along the dendritic tree. For example, segment C will only activate if both segments A and B are already active111

once segment C receives a spike volley. We can formalize the relative timing requirement for these three segments by112

the expression (A+B)→2 C, which indicates that all two child branches A and B must be simultaneously active to113

enable the parent segment C, allowing it to emit a plateau in response to a spike-volley. We can read this as "A and B,114

and then C" (see also Fig. 1d). If the threshold was lowered, such that input from either segment A or B alone would115

suffice, the expression would correspondingly become (A+B)→1 C, which translates to "A or B, and then C" (see116

also Fig. 1 e). Generally, the expression (X1 +X2 + . . .+Xn)→m Y translates to "At least m out of the n segments117

X1, X2, . . . , Xn must be simultaneously active to enable segment Y ". By chaining multiple segments together, these118

timing relations and nonlinear combinations can be arbitrarily nested, as for example in Fig. 1f that shows a neuron119

implementing A→1 B →1 C, which can be read as "A, and then B, and then C". Using this formal notation, we can120

express the complex ADSP neuron example in Fig. 1a as (((A + B) →2 C) + D) →1 E, a computation on spike121

volleys originating from the input populations associated with segments A, . . . , E.122

The interaction between connected dendritic segments facilitates cascades of plateau potentials along the dendritic tree,123

as illustrated in Fig. 1b. Starting in a distal segment, a leaf-node in our diagrams, a spike volley can initiate a plateau,124

which then provides dendritic input for the parent segment. Next, that segment responds to an incoming spike volley125

with a plateau of its own, in turn providing dendritic input to yet another segment. Whenever such a continuous chain126

of plateau potentials proceeds all the way to the soma, it culminates in a somatic action potential.127

This signals to other neurons, that a specific sequence of spike volleys has been detected – on a timescale that may128

be as long as the number of segments times the plateau duration, i.e. hundreds of milliseconds. The precise timing129

between spike volleys is not prescribed exactly, as long as the distance between two successive volleys does not exceed130

the duration of one plateau potential.131
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Figure 1: Schematic representation of a complex dendritic tree and its function. a A neuron receives on each of its 5
dendritic segments 10 synaptic connections from a corresponding neural population. Sufficiently many coincident spikes
(here ≥ 6 out of 10) from population A can lead the corresponding dendritic segment to generate a plateau potential
(tA). Similarly, coincident spikes from population B can induce a plateau in a parallel branch (tB). A third segment
requires simultaneous input from both of these segments in addition to coincident synaptic input from population C,
in order to fire a plateau of its own (tC). On another branch, a fourth segment receives its input from population D
but does not trigger a plateau. A somatic spike is triggered when coincident synaptic input from population E arrives
(tE) during dendritic input from either of its two upstream segments (in this case C). b Local membrane potentials
show a cascade of plateau potentials. c The steps involved in the generation of a plateau: The membrane potential
is already elevated due to a plateau potential in a neighbouring segment (0). Presynaptic input arrives at a synapse
(1), which leads to a postsynaptic EPSP via AMPAr mediated ion channels (2). Once the local membrane potential is
sufficiently depolarized due to coincident EPSPs and prior depolarization, voltage gated, NMDAr mediated ion channels
open, causing additional depolarization (4) which can be further facilitated by the opening of voltage gated calcium
channels (5). This strong depolarization initiates a longer lasting plateau potential in the dendritic segment, which
has a modest depolarizing effect on other neighbouring segments (6). Different dendritic morphologies correspond to
different computed functions, indicated in the respective formula under each schematic illustration. d If activating one
of two dendritic branches with input from either population A or B, followed by a somatic spike initiated by input from
population C, is sufficient to produce a spike, the neuron implements the operation (A+B)→1 C, which constitutes
an "or"-operation between population A and B. e If simultaneous input from A and B is required, the neuron calculates
an "and"-operation between inputs A and B. f A simple neuron that requires sequential activation of first A "and then"
B before C.

The branching morphology of a dendritic tree therefore determines the computation performed by the neuron, which132

allows even single neurons to detect complex compositions of sequential patterns. This event-based computation is133

what we call active dendritic sequence processing (ADSP).134

4
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Results135

Dendritic processing allows the rapid detection of long, time-invariant patterns136

To demonstrate the practical implications of such neuronal sequence detection, we return to the example of a rat137

navigating an environment. We assume that the rat has an internal representation of its environment, tiled by the138

receptive fields of distinct populations of place cells. While the animal resides within such a receptive field, the139

corresponding population emits spike volleys with a magnitude that is largest when the animal is close to the center of140

the receptive field. Different paths lead the animal through some of these receptive fields in different order, and result in141

different sequences of spike volleys.142

Each individual spike volley consists of several coincident spikes, the EPSPs of which have to be integrated and143

thresholded on a millisecond time-scale to detect sufficiently significant events in the presence of noise. To detect144

whether the animal has taken a specific path through the environment, only specific sequences of such significant spike145

volleys must be detected on a much slower behavioural time-scale. These two distinct time-scales pose a challenge for146

conventional spiking neuron models, which is further exacerbated by the fact, that the precise timing of the spike-volleys147

can vary substantially, depending e.g. on the speed with which the animal traverses its environment. While a solution to148

this problem may be found on a population level, we illustrate in Fig. 2 how a single neuron can implement a solution149

very elegantly with just three active dendritic segments.150

To simulate the rat’s behaviour, we generate random movement trajectories through the environment by a stochastic151

process (see Methods section). Each place-cell population fires spike-volleys with a magnitude determined by the152

population’s tuning-curve, a two-dimensional Gaussian function centered at the population’s preferred location on a153

hexagonal grid. In this example, we are interested in paths that traverse three specific receptive fields, respectively154

color-coded in blue, orange and purple, and hence look at a neuron that consists of a chain of three dendritic segments,155

each receiving input from just one of these place-cell populations (Fig. 2b). The only trajectories that effectively156

drive the neuron to spike are those that sequentially traverse the three receptive fields in the correct order Blue →1157

Orange→1 Purple (Fig. 2a).158

During the example path shown in solid black, the three place cell populations are activated in the correct order over the159

course of 200ms and emit sufficiently large spike volleys to trigger a cascade of plateau potentials that lead the neuron160

to emit a somatic spike Fig. 2b. To illustrate how reliable of a detector an individual neuron can be — even when its161

synaptic inputs are stochastic with a transmission probability of 0.5 —, we systematically evaluate the probability of the162

neuron to fire in response to different paths with varying directions and lateral offsets. For an ideal straight 200ms long163

path through the center of all three place cell populations, the firing probability of the neuron is around 75%. When164

the orientation of the path is varied, this probability sharply decreases to 0%, indicating that the neuron is both highly165

sensitive and highly specific for paths with this orientation (Fig. 2c). Similarly, when the path is shifted orthogonally to166

the movement direction, the response probability falls quickly, confirming that the neuron is sensitive to the absolute167

location of the path as well as its direction (Fig. 2d).168

A remarkable feature of this mechanism is, that it is invariant to changes in the precise timing of the individual volleys169

as long as two consecutive segments are activated within one plateau duration τ of each other. The ADSP Neuron can170

therefore detect paths of any duration from 0ms to Nτ denms, where N = 3 is the number of consecutive segments.171

We believe this source of timing-invariance to be a highly beneficial feature for generalization that might help explain172

phenomena, where the same sequence of events must be detected across multiple time-scales.173

Plateaus integrate evidence on long time-scales174

In the previous example, specific paths are recognized by memorizing the sequential activation of different neural175

populations on a slow behavioural time-scale. A seemingly different, yet in fact closely related problem is the integration176

of individually unreliable bits of evidence over time. Consider, for example, a population of neurons that extract some177

relevant feature of a stimulus, such as the local movement direction in a visual moving dots stimulus. If we assume178

a retinotopic mapping, neighbouring neurons are highly correlated, and whenever the local movement direction is179

apparent, we expect a couple of neighbouring neurons coding for that direction to produce a volley of spikes. However,180

these events are unlikely to occur at the exact same point in time throughout the entire input space. The decision,181

whether or not the visual flow is in a certain direction, therefore requires that a neuron can integrate many such pieces of182

evidence, each indicated by a spike volley event, over a longer time-scale. Despite the all-or-none response of dendritic183

plateaus, a neuron with sufficiently many dendritic segments can in fact approximate such a smooth integration of184

evidence on time-scales of hundreds of milliseconds!185

We give an example of evidence integration using dendritic plateau potentials in a simplified experiment, in which a186

neuron with 1000 dendritic compartments receives input from a population of 1000 input neurons through a total of187
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a. b.

c. d.

Figure 2: A simple neuron with three dendritic segments arranged as shown to the right of panel b can detect directed
paths on a timescale of 300ms. a. The receptive fields of place cell populations tile the environment through which the
animal moves in a hexagonal grid. Random trajectories are generated through a stochastic process with randomized
initial positions, velocities and angular heading to simulate the animal’s movements. b. While the animal follows the
black trajectory through space, the response of the place cell populations’ tuning curves show the sequential activation
of the populations over time (top panel). The generated spikes (middle panel) lead to a temporal sequence of dendritic
plateaus (bottom panel) that results in a somatic spike. c. and d. The neuron responds with high probability to
exactly those paths that traverse the desired receptive fields in the correct direction and with little lateral offset. The
empirical firing probabilities to the black paths are shown by the superimposed density plot in red in polar and Cartesian
coordinates, respectively.
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... ...

a.

b.

c. d. e.

Figure 3: Dendritic plateaus can be used to gradually integrate evidence over long time periods. a A neuron with 1000
dendritic segments is driven by 1000 incoming spike-trains. Embedded in these spike-trains are spike volleys of 10
coincident spikes each, spread across 10 neighbouring neurons (shown in red). b The rate of spike volleys is determined
by an input signal (organge line). Each segment receives input from 20 consecutive neurons through stochastic synapses
with transmission probability p = 0.5, and requires 5 coincident spikes to trigger a plateau potential. The total number
of co-activated dendritic segments (blue line) follows the convolution of the stimulus signal with a rectangular filter of
length 100ms (black dashed line). c-e For increasing levels of stimulation, the number of co-activated segments rises
faster and saturates at a higher level, crossing the threshold required for spike initiation (horizontal red line) at an earlier
point in time or not at all, resulting in a sequence of spikes (vertical purple lines).
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Figure 4: A rate-based analysis reveals well-known computational primitives. a A single dendritic compartment that
receives independent Poisson-spike trains at a fixed rate rA from a population of 25 neurons responds with plateaus
at a rate that can be expressed as a non-linear sigmoidal function %(rA). For multiple dendritic segments, each of
which receives input from an identical but independent population A,B or C, the neuron’s computation depends on the
dendritic morphology. d and e If both segments C and B are required to enable a somatic spike, the neuron’s firing rate
is proportional an b idealized "and" operation between the two inputs. f If either of the two segments suffices, c the
firing rate instead resembles an idealized "or" operation.

20, 000 stochastic synapses (Fig. 3). The weak signal to be integrated by the ADSP neuron is encoded into spike volleys188

of 10 simultaneous spikes from adjacent neurons of the input population. Each dendritic segment of the ADSP neuron189

is connected to a different set of 20 adjacent neurons in the input population, and a total of 300 dendritic segments are190

required be in simultaneous plateau states for the neuron to emit a somatic spike.191

Because each spike volley is likely to activate a different dendritic segment, we expect the number of simultaneously192

active dendritic compartments to reflect the average rate of incoming spike volleys during a time-interval of one plateau193

duration. This corresponds to a filtering of the time-varying rate by a rectangular filter, and, for a brief interval after194

stimulus onset, represents an ideal integrator. We observe this exact behavior by driving the rate, at which spike volleys195

are generated by the input population, to three different levels for brief time-intervals (Fig. 3b, orange line). The number196

of co-activated dendritic segments (blue line) closely follows the theoretical prediction of an ideal rectangular filter197

(black dashed line) until saturation. In particular, during the rising flanks right after stimulus onset (Fig. 3c, d and e.),198

we see the number of co-active segments rise with a slope proportional to the intensity of the stimulus until it saturates199

after 100ms. The neuron begins firing spikes once sufficiently many segments are active (red line). This is exactly the200

behavior expected for evidence integration: The ADSP neuron will fire sooner if the amount of evidence encoded in the201

stimulus is stronger, and will not fire at all if it remains sub-critical.202

Interestingly, the stochasticity of synaptic transmission helps to further decorrelate the partially overlapping input to203

different dendritic segments, and can regulate the total amount of evidence required to reach the neuron’s physiologically204

fixed spiking threshold. Also, while the example here makes use of just a single "layer" of dendritic segments directly205

driving the soma, this idea can be extended to deeper chains of multiple segments, such as in the previous example, to206

allow for the integration of evidence and non-linear combination thereof on time-scales even longer than one plateau207

duration.208

Dendritic morphology determines computational function209

In the two previous examples, we assume that each dendritic segment is driven by well-timed volleys of coincident210

spikes, the magnitudes of which represent the magnitude of an underlying signal. But in theoretical neuroscience, the211

function of a neuron is often analyzed in a rate-based framework, which relates only the average firing rate of a neuron212

to the average firing rates of its spiking inputs.213
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a. b. c.

Figure 5: Dendritic morphology imposes timing constraints not revealed by rate-based analysis. For the neurons shown
in figure 4, the joint probability distribution of relative timings ∆tB ,∆tC of dendritic plateaus directly preceding a
somatic spike at tA show a distinct temporal structure (contour-plots). a For the "then" neuron, a plateau in segment C
must precede a plateau in segment B by at most 100ms, which in turn must occur at most 100ms before a somatic spike
can be triggered. This is evident by the fact that all unambiguous cases, where exactly one plateau in each segment C
and B was observed before a somatic spike, fall into the corresponding parallelogram-shaped domain (white dots). b
This is in contrast to the "and" neuron, which despite showing a similar rate-response requires both inputs to occur
within 100ms before the somatic spike. c The "or" neuron only requires either of the populations B or C to trigger a
plateau within 100ms before a somatic spike.

Applying this sort of analysis to our proposed neuron model reveals, how different morphologies of dendritic arbors give214

rise to different non-linear computations. A dendritic segment driven by independent Poisson spike-trains originating215

from some population A of 25 neurons respond by triggering plateau potentials at a rate %(rA) that continuously depend216

on the fixed firing-rate rA of the populations’ neurons. Here, 8 coincident spikes are required to trigger a plateau. As217

each plateau lasts for 100ms, % saturates at a rate of 10 plateaus per second for large inputs (Fig. 4a). In more complex218

neurons composed of three dendritic segments, each of which is driven by an identical but independent population of219

neurons, we analyze the relative contributions of the populations B and C in the same way. In these experiments, we220

hold the firing rate rA = 25 constant. For a neuron C →1 B →1 A, whose segments are sequentially chained together,221

a spike is generated if and only if both C and B are activated, and in the correct order. The resulting contour-plot, which222

shows how the output firing rate of this neuron scales with both rC and rB , illustrates that both a high firing rate of223

population C and B are required to result in a high firing rate of the neuron (Fig. 4d). This is similar to the neuron with224

two parallel segments (C + B) →2 A (Fig. 4e), only that simultaneous activation of both segments, not sequential225

activation, is required. The shape of this function closely matches an idealized "and" operation (Fig. 4b), the firing rate226

of which can be derived as just the product of the rates at which plateaus are triggered in all dendritic segments:227

%(A,B,C) ∝ τ den%(rA)fand(B,C) where fand(B,C) = τ den2%(rC)%(rB)

Here, %(A,B,C) is the firing rate of the neuron, and fand(B,C) is the factor due to the segments B and C.228

For a different dendritic morphology (C +B)→1 A, where a plateau in either segment C or B is sufficient (Fig. 4f),229

we see a response that closely resembles an idealized "or" operation (Fig. 4c):3230

for(B,C) ∝ τ den%(C) + τ den%(B)− fand(B,C)

For a derivation of fand and for see the Methods section. This rate-based functional description offers a very useful231

abstraction of the neurons’ behaviours, but it necessarily neglects questions of timing. As we saw in the previous232

sections, depending on the morphology, a dendritic arbor can impose stringent requirements on the order in which233

different segments can be activated. For example, while both neurons C →1 B →1 A and (C + B) →2 A require234

strong input from both input population B and C and hence show the same "and"-like response in the rate-coding235

3 As the last equation shows, referring to this operation as an "or" is justified in the sense that the resulting rate is proportional
to the addition of the segments’ individual plateau-firing-rates minus the "and" operation applied to both, which generalizes the
Boolean operation to real values.
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paradigm, the former imposes the constraint that the input from population C must arrive before that from population B236

while the latter does not. Rather than an "and"-like operation, neuron C →1 B →1 A in fact implemented an "and then"237

operation. This is apparent when looking at the joint probability density of the relative timing of dendritic plateaus in238

the respective segments directly preceding a somatic spike (Fig. 5). In particular, if we only consider the unambiguous239

cases of one dendritic plateau each occurring in each segment within a brief window before a somatic spike (shown by240

the white dots (Fig. 5)), we observe that for neuron C →1 B →1 A , a dendritic plateau in segment B can occur at241

most 100ms before the somatic spike and is preceded by a dendritic plateau in segment C by at most another 100ms242

for a maximum total delay of 200ms. In contrast for neuron (C + B) →2 A, both segments must trigger a plateau243

within 100ms to elicit a somatic spike. For neuron (C +B)→1 A, a plateau in either segment within a 100ms window244

suffices to trigger a somatic spike.245

Discussion246

In this theoretical study we showed how a well-known biological phenomenon, dendritic plateau potentials, can247

drastically improve the computational capabilities of spiking neurons, turning them into powerful spatio-temporal248

pattern detectors. Due to the long-lasting memory provided by these plateau potentials, it becomes possible for249

individual neurons to integrate evidence or distinguish specific sequences of input on a timescale of hundreds of250

milliseconds – an order of magnitude larger than commonly observed membrane time constants [41]. In our model, the251

morphology of a neural dendrite determines its computational function and, when viewed in a conventional rate-coding252

paradigm, allows an individual neuron to implement a wide range of nonlinear behaviours in a modular and intuitive253

way.254

This is in line with the two-layer neuron model proposed in [42], which used a detailed biophysical simulation of a255

pyramidal neuron to investigate the nonlinear effect on the neuron’s firing rate due to synaptic input at different dendritic256

branches. Using a diverse array of stimuli, they showed that a two-layer network of sigmoidal subunits provides a257

substantially better approximation of the neuron’s firing rate than a linear point-neuron. They speculated, however, that258

the prediction could be improved further, if the nonlinear interactions between the branches were considered, which we259

did here. We also investigated the use of dendritic plateau potentials as long-lasting memory traces, which our results260

revealed to be particularly important for evidence integration and the detection of temporal sequences. Remarkably, our261

drastically simplified and inherently event-based model could qualitatively reproduce properties of the model in [42],262

such as the sigmoidal input-output firing rate response of each dendritic segment and the linear-nonlinear combination263

thereof at the soma (see methods section).264

But on the fast time-scale of individual spikes, our model differs substantially from this and other rate-based point-265

neuron models, since it relies on the detection of volleys of coincident spikes on a millisecond time-scale as the basic266

units of information, which are then integrated on the slower time-scale of dendritic plateau potentials. Our model267

is more closely related to recent work by [43], which proposed the use of active coincidence detection in dendritic268

segments to model prolonged effects of basal dendrites on the soma. A similar line of reasoning can also be found269

in [44], which presented a very elegant two-compartment neuron model and corresponding learning rule with one270

somatic and one dendritic compartment. Both models assign a specific functional role to the (basal) dendrite segments,271

namely to predict subsequent activation at the soma from their local synaptic inputs, which allows individual neurons272

to learn to predict state-transitions (“prospective coding”). Longer sequences are then detected by networks of such273

laterally connected neurons, endowing the networks with a form of temporal sequence-memory (“hierarchical temporal274

memory”). In our work, we have focused on a more mechanistic model that heavily relies on biological phenomena275

observed in single neurons. This allowed us to describe a neuron’s computational capability concretely as that of a276

sophisticated pattern detector with long-lasting memory, and to illustrate how these mechanisms at play would appear277

under a rate based analysis. We believe our results offer a very appealing explanation of spike-based computation that278

has wider implications in neuroscience and raises several important questions, which we briefly discuss in the following:279

What is the role of inhibition for dendritic computation?280

Our model only takes into account excitatory synapses, but has clear implications for the role of inhibition. The281

all-or-none response of dendritic plateau potentials in our model implies that the only significant effect an inhibitory282

synapse can have on the far-away soma is by either reducing the likelihood of plateaus, preventing the generation of283

plateaus altogether, or by disrupting already ongoing plateau potentials. In the first two cases, an inhibitory synapse’s284

post-synaptic potential must be either well-timed to coincide with the volley of excitatory spikes or exhibit a longer285

time-scale. Experiments suggest that inhibition can affect the ability of dendrites to generate active plateaus and prevent286

them [45]. The disruption of ongoing plateaus has also been reported and analyzed [46] and requires no such precise287

timing a-priori, as long as the spike occurs within the plateau’s duration. Inhibition may, however, exhibit different288

effects depending on when during the plateau processes it is received. In all cases, the likely effect is shunting, rather289
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than substractive, inhibition.290

Shunting inhibition can provide an efficient mechanism to improve the computational capabilities of the neurons291

described above, for example as it would allow individual neurons to exclusively respond to a sequence a→ c but not292

to the sequence a→ b→ c, which is impossible for a neuron with purely excitatory synapses. Inhibition may therefore293

play an important and distinct role in ADSP neuron that warrants further investigation.294

What are the implications of this model for plasticity?295

We discussed a fundamental mechanism of dendritic computation and its capabilities, but did not cover the important296

topic of learning and plasticity. Nevertheless, the model presented here imposes constraints on potential plasticity297

mechanisms. Due to the long-lasting plateau potentials, a synaptic input can have a relevant causal effect for a somatic298

spike at a much later time. This makes the temporal assignment of credit for spiking outputs to synaptic inputs299

fundamentally difficult. The timing-invariance shown by our model and the dependency on the complex nonlinear300

dynamics within a dendritic tree further exacerbate this problem.301

The most prominent example of synaptic learning is spike-time dependent plasticity [47], which tunes synaptic efficacy302

based on the relative timing of pre- and post-synaptic activity. Since the active dendritic processes discussed here303

both dominate the post-synaptic membrane potential as well as local Ca2+ concentration, they have a major effect on304

Hebbian plasticity [48, 49].305

This is at odds with the common assumption, that backpropagating action potentials (bAPs) from the soma into the306

dendrite act as the primary post synaptic signal driving synaptic plasticity [50]. Since dendritic plateau potentials307

strongly depolarize dendrite segments for an extended period of time and should similarly “backpropagate” throughout308

the dendritic tree, it seems unlikely to us that bAPs are the primary factor for synaptic plasticity in neurons with active309

dendritic processes. Resolving this inconsistency is an important, but open research question.310

Additionally, our model is based on binary stochastic synapses, and which segment the synapse terminates on plays311

a more important role than its efficacy. We therefore believe that structural plasticity mechanisms are particularly312

relevant for this kind of model. Furthermore, homeostatic plasticity mechanisms, e.g. scaling synaptic transmission313

probabilities[51], could be important here to ensure that only sufficiently large spike-volleys, but not randomly correlated314

inputs, can reliably trigger plateau potentials.315

Is neuronal computation based on plateau processes?316

Dendritic processes are thought to implement solutions to a number of specific computational problems in neurons [52],317

often distributed across many functional dendritic compartments [53, 54]. Based on convincing biological evidence318

for the mechanism of plateau generation and the interaction of such plateaus, we have argued that they are indeed the319

primary building block for the implementation of behaviorally highly relevant computations. How can this claim be320

experimentally verified or falsified?321

Direct experimental verification, that computation in single neurons is well described by our proposed ADSP neuron322

model requires simultaneous measurement of synaptic inputs and local membrane potentials along a single neuron’s323

dendrite on a fine temporal and spatial resolution over a long-time span.324

As a first step, since our model is driven by incoming spike volleys from multiple intact neuron populations, in vivo325

measurements could verify the existence of patterns of spike-volleys over different time-scales using newly developed326

statistical techniques [55, 56].327

Secondly, a key part of the model, the detection and integration of information across two timescales, one on the order328

of a few milliseconds, the other on the order of a hundred milliseconds or more, can be refuted for any type of neuron329

that achieves this without reliance on active dendritic processes. This may be the case either for neurons incapable of330

generating plateaus in the first place, or if plateau-generating processes have been pharmacologically disabled.331

Thirdly, we predict single neurons that use active dendritic sequence processing to have spatio-temporal receptive332

fields on long temporal time-scales, but with high tolerance to variations in the precise timing of individual plateaus,333

qualitatively described in Fig. 2. Because of this invariance, we propose to go beyond linear analysis such as spike-334

triggered averages and instead measure both somatic response, as well as the timing of plateaus across the dendritic335

tree to find structures in the joint distributions as demonstrated in Fig. 5. Experimentally, spatio-temporal receptive336

fields of this kind could also be found by systematically varying stimuli, and should disappear when plateau-generating337

processes are disrupted.338

While we have based our analysis on NMDAr-mediated plateaus in pyramidal cells [20], the same computational339

principle may be found in other neuron types, as well. For example, Purkinje cells in the cerebellum also generate340

localized Ca2+ events in response to coincident input on individual dendritic segments [57, 58], and thalamo-cortical341

neurons respond to strong synaptic input by localized plateaus in distal dendritic branches [59]. This indicates that the342

underlying ADSP mechanism, possibly implemented through diverse means in a case of convergent evolution, may be343

very general and ubiquitous in the brain.344
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Methods345

Formal description of the event-based framework for computation in active dendrites346

Mathematically, we approximate both EPSPs and plateau potentials by rectangular pulses with fixed duration τ syn and347

τ den, respectively. Here, we chose τ syn = 5ms and τ den = 100ms for all experiments if not stated otherwise. The348

dynamics of each dendritic segment can then be fully described in terms of the arrival times of incoming spikes as well349

as the times at which plateau potentials are initiated within the segment itself or in other directly connected segments.350

For some segment i, the synaptic input Xi and the dendritic input Yi take the form of equations (1) and (2), respectively:351

Xi(t) =
∑
j∈Si

∑
k

χi,j,k · 1[sjk,s
j
k+τ

syn](t) where χi,j,k ∼ Bernoulli(ωi,j) (1)

Yi(t) =
∑
j∈Di

∑
k

1[tjk,t
j
k+τ

den](t) (2)

tim+1 = min
{
t ∈ R

∣∣ t ≥ tim + τ den, Xi(t) ≥ θsyn
i and Yi(t) ≥ θden

i

}
, (3)

where 1[a,b] represents a unit pulse during the time interval [a, b], and sjk and tij are the times of spikes arriving from352

some presynaptic neuron j and the plateau onset times on segment i, respectively. The random variable χi,j,k represents353

the independent probabilistic transmission of every spike k from source j via a synapse to dendritic segment i, where the354

transmission occurs with the synapse specific probability ωi,j . The sets Si and Di respectively identify the segment’s355

synaptic connections to other neurons and which other dendritic segments it is directly coupled to, and therefore reflect356

the morphology of the neuron’s dendritic tree. Equation (3) states that, if the segment is not in a plateau state already, a357

new plateau is initiated as soon as both synaptic and dendritic inputs exceed their respective thresholds θsyn
i and θden

i .358

Implementation of the navigation experiments359

To simulate the stochastic movements of a rat, random paths are generated with time-varying location l(t) =360

(X(t), Y (t)) ∈ R2 as solutions of the following system of stochastic differential equations:361

dX = cos(2πA)V dt

dY = sin(2πA)V dt

dA = 0.25dWA

dV = 10.0(0.25− V )dt+ 0.1dWV

A represents the angular heading of the animal, V represents its velocity in m
s and WA,WV represent independent362

standard Brownian motion processes. Each path is generated with a randomized initial position within a rectangular363

domain of 10cm × 9.5cm , a random angular heading and a random velocity according to the marginal stationary364

distribution of V in the equation above, and is simulated for a fixed duration of 200ms. Three populations of place cells,365

each 20 neurons strong, are centered on a hexagonal grid with center-to-center distance of r ≈ 2.9cm. Each population366

randomly emits spike volleys following a homogeneous Poisson process with rate λ = 50Hz. The magnitude of each367

spike volley is determined by the population’s mean activity at the time, which depends on the animal’s location within368

the environment through a receptive field tuning curve. The tuning curves model the probability of each individual369

neuron within the population to participate in a given spike volley by the bell-curves fi(x) = exp(−x−µi

2σ2 ) with370

coefficient σ = 9.7mm, centered on the tiles of the hexagonal grid. The total number of spikes emitted during a371

volley from population i at time t is therefore a random variable distributed according to a Binomial distribution with372

population size n = 20 and probability p = fi(l(t)). Additionally, each neuron in the population emits random spikes373

at a rate of 5Hz to emulate background activity. Each spike is transmitted through stochastic synapses independently374

with probability 0.5.375

Each of the simulated neuron’s dendritic segments receives spiking input from the 20 neurons of one population and376

requires at least 5 coincident spikes to trigger a plateau potential. The three segments are connected in a chain that377

requires sequential activation by spike volleys from the input populations in correct order to fire a spike. A random378

path is considered to be accepted by the neuron, if the neuron responds with a spike at any point in time during the379

corresponding simulation run.380
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To evaluate the rotation and location sensitivity of the neuron, we also generate straight paths with constant movement381

speed v = 3r
200ms ≈ 43cm/s that are either rotated around the center of the environment by an angle α or offset from382

the center by a distance ∆x orthogonal to the optimal movement direction. For each angle or offset, respectively, the383

empirical firing probability of the neuron in response to that path is estimated by simulating the path and the neuron’s384

responses for 500 times each.385

Implementation of the evidence-integration experiments386

The input to the evidence-integrating neuron is generated by superimposing spike volleys onto 1000 independent387

Poisson processes with a constant firing rate of 10Hz. The volleys times are generated by a Poisson process with a388

time-varying rate λ(t) representing the incoming "evidence". Here, λ(t) = 200Hz · (1[0.25,0.5](t) + 2 · 1[0.75,1.0](t) +389

3 · 1[1.25,1.5](t)) + 20Hz. Each volley consists of simultaneous spikes from a randomly chosen set of ten input neurons390

with consecutive indices (wrapping around from 1000 to 1). Since each EPSP is assumed to last for a duration of 5ms,391

volleys and individual spikes are discarded if they occur less than 5ms after a preceding volley or spike. Each of the392

neuron’s 1000 dendritic segments receives synaptic input via stochastic synapses with transmission probability 0.5 from393

20 consecutive input neurons. As the number of input neurons and dendritic segments matches in this example, there394

is exactly one dendritic segment for every group of 20 consecutive input neurons, and each input neuron projects to395

exactly 20 dendritic segments. The total number of the neuron’s synapses in this example is therefore 20000. Over396

time, the number of simultaneously active dendritic compartments as well as the times of generated somatic spikes is397

recorded. As a reference, the convolution (λ ?Π)(t) of the time-varying rate-function λ with a rectangular filter Π of398

length 100ms and unit-integral is calculated.399

Implementation of the rate-based analysis400

For the rate-based analysis, four different neurons are constructed. First, a neuron consisting of a single dendritic401

compartment is driven by a total of 25 independent Poisson spike-trains with constant firing rate rA. As in all other402

experiments, the duration of each spike is set to τsyn = 5ms, the duration of a plateau potential is set to τden = 100ms.403

By systematically varying rA and, for each choice, recording the number of plateau potentials generated during a404

simulation time-interval of 250s we can estimate the smooth function %(rA), which relates the firing rate of the input405

population A to the resulting rate at which plateau potentials are generated.406

For each of the three morphologies representing the C →1 B →1 A neuron, the (C + B) →2 A neuron and the407

(C +B)→1 A neuron, we systematically vary the input firing rates of both populations B and C independently while408

keeping the firing rate of population A fixed at a constant 25Hz. For each combination, we again record the number of409

somatic spikes generated over a time-interval of 250s. As a reference for these two-dimensional functions, we use an410

idealized "and" and "or" function defined as:411

fand(B,C) = τ den2%(rC)%(rB) (4)

for(B,C) = τ den%(C) + τ den%(B)− fand(B,C) (5)

= 1− (1− τ den%(C))(1− τ den%(B)) (6)

At a firing rate rX , a segment driven by population X is in a plateau state at a given point in time with probability412

τ den%(rX), therefore the probability that a segment driven by population C is active at the time that an input from413

population B arrives, which could in turn activate the next segment, is τ den%(rC). The probability that this second414

segment is still active, when yet another volley from population A arrives to possibly trigger a somatic spike is also415

τ den%(rB). Therefore the neuron’s firing rate is proportional to τ den2%(rC)%(rB). Similarly, the probability that two416

parallel upstream segments driven by populations C and B are simultaneously active at a given point in time is417

τ den2%(rC)%(rB). In contrast, the probability that either upstream segment is active at a given point in time is just418

the probability that not both are simultaneously inactive, i.e. 1− (1− τ den%(C))(1− τ den%(B)). This expression has419

the nice alternative form c+ b− cb, where c = τ den%(C), b = τ den%(B) and cb = fand(B,C), which generalizes the420

Boolean "or" operation to real-valued firing rates. When identifying true with 1 and false with 0, the truth-table of421

this expressions matches that of the logic expression "c or b".422

To evaluate timing requirements for each of these three neuron morphologies, we run another simulation at constant input423

rates rA = rB = rC = 25Hz for a duration of 1h of simulated time. We record the time of each plateau-initiation-event424

in both upstream segments driven by population C and B for a time-interval of 200ms preceding each somatic spike. If425

there is exactly one plateau-event from each segment in such a time-interval, we record this as an unambiguous pair426

of plateau events. If there is more than one plateau-event on either of the dendritic segments, we record all pairs of427

13

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 7, 2020. ; https://doi.org/10.1101/690792doi: bioRxiv preprint 

https://doi.org/10.1101/690792


PREPRINT: EVENT-BASED PATTERN DETECTION IN ACTIVE DENDRITES- AUGUST 7, 2020

plateau-events in that time-interval composed of one plateau event for each segment. We refer to these latter pairs as428

ambiguous. Using these ambiguous pairs, we estimate the joint probability distribution Pi(∆tB ,∆tC |tA) over relative429

times ∆tB and ∆tC between a plateau triggered by population B or C and a somatic spike triggered at time tA by430

population A. For a more reliable estimate of the timing constraints, we consider only the unambiguous pairs, which431

evidently fall into distinct domains of these joint probability distributions that uniquely characterize the precise timing432

requirements of the respective neuron morphologies. This can be seen in figure 5. E.g. for the C →1 B →1 A neuron,433

all plateaus triggered by population C must precede those triggered by B, but cannot precede them by more than one434

plateau duration of 100ms, therefore they fall into a parallelogram below the diagonal. For the (C +B)→2 A neuron,435

on the other hand, both plateau events must independently occur within 100ms before a somatic spike, and hence fall436

into the upper quadrant of the joint density.437

Code availability438

All simulations are implemented in a custom developed package in the Julia programming language [60], publicly439

available via the code repository hosted at https://github.com/jleugeri/ADSP.jl. Further documentation of the simulator440

and implementation details can be found there.441
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