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ABSTRACT

Over the last two decades, advances in neurobiology have established the essential role of active
processes in neural dendrites for almost every aspect of cognition, but how these processes contribute
to neural computation remains an open question. We show how two kinds of events within the
dendrite, synaptic spikes and localized dendritic plateau potentials, interact on two distinct timescales
to give rise to a powerful model of neural computation. In this theoretical model called dendritic
plateau computation, a neuron’s computational function is determined by the compartmentalization
of its dendritic tree into functionally independent but mutually coupled segments. We demonstrate
the versatility of this mechanism in a simulated navigation experiment, where it allows an individual
neuron to reliably detect a specific movement trajectory over hundreds of milliseconds with a high
tolerance for timing variability. We conclude by discussing the implications of this model for our
understanding of neural computation.

1 Introduction1

The vast majority of neural tissue is occupied by neural dendrites [1], the extensively branching tree structures on which2

almost all synapses terminate. Yet, most simplified neuron models have focused on the diverse dynamics underlying3

somatic spike generation [2]. In recent years, however, it has become increasingly evident that the computational4

function of a neuron is largely determined by properties and dynamics of its dendrite [3]. In particular, a steadily5

increasing number of studies find dendrites that generate active responses to spiking input. Further, these active dendritic6

processes appear to be fundamental to brain function [4, 5, 6, 7]. The observed effects range from short-lived Na+7

spikes [8] to the particularly striking dendritic plateau potential [9] — an intricate dynamic response mediated by8

NMDA receptors that maintains a strong depolarization of the local dendritic membrane potential for long periods9

of time. The complexity of these mechanisms and the diversity of neuron types makes determining the right level of10

abstraction for a single model of neural computation difficult [10].11

For example, a recent study by Ujfalussy et al. [11] concluded that the somatic membrane potential in layer II/III12

pyramidal neurons can largely be explained by a linear statistical model. A simple non-linear model can improve the13

result, but the introduction of additional non-linearities only leads to minor improvements. Li et al. [12] also argue, that14

the properties of dendritic integration can be approximated well by a point-neuron model, if specific synaptic current15

effects are incorporated. On the other hand, seminal work by Poirazi et al. [13] suggests that in fact a 2-layer artificial16

neural network may be necessary to capture the input-output mapping of a single neuron, implying that the neuron’s17

expressive power may be on a similar level. Whereas these earlier results analyzed the neuron in a static framework,18

Beniaguev et al. [14] incorporate temporal dynamics as well, and instead conclude that a temporally convolutional deep19
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neural network is better suited to model the single neuron’s behavior. However, it is difficult to draw direct conclusions20

about the computational capabilities of a complex neuron from the complexity of a quantitative model of the neuron’s21

membrane potential.22

The most popular metaphor for neural computation to date is the linear-nonlinear (LN) point neuron that inspired the23

development of artificial neural networks [15]. LN neuron models make no use of dendritic complexity at all, and24

instead rely on a complex network of synaptic interconnections between individually simple neurons. This approach25

has worked exceedingly well for deep learning [16] and provides a compelling model for some forms of fast sensory26

processing e.g. in early visual areas [17], but it neglects a dimension critical for any interaction with the real world —27

time. Many behavioral or higher cognitive tasks require the ability to integrate, process and retain information across28

multiple, dynamically varying time scales. Consider, for example, a rodent navigating an environment in search of food.29

Receptive fields of place and grid cells tile a spatial map of this environment and encode the current position by their30

population activities [18, 19]. To navigate successfully, the animal needs to know not only its present location, but also31

the path it took through the environment. Decoding this path from sequential place and grid cell activity requires the32

integration of information on behavioral time scales that can span hundreds of milliseconds or more [20, 21]. Similar33

long sequential patterns can be found also in olfaction [22, 23] and cortical auditory processing [24], and they are likely34

involved in higher cognitive tasks such as language understanding, as well.35

But how can such long temporal patterns of neural activity be processed by volatile neurons with membrane dynamics36

on the time scale of only tens of milliseconds or less [25]?37

Our main idea is this: Neurons with active dendrites that generate dendritic plateau potentials have a form of working38

memory on a much longer time scale than that of individual spike responses. The interaction of these dendritic plateaus39

establishes a computation that enables single neurons to process information on long time scales and in a structured40

way. We derive this concept from a wealth of recent biological findings, which we categorize into four fundamental41

modelling assumptions (Section 2), and find that:42

• A qualitative neuron model captures dendritic plateau computation in a tree structure of dendrite segments. The43

computational complexity of the model results from the interactions of these segments on the long timescale44

of plateau potentials (Section 3)45

• The computational capabilities of dendritic trees can be characterized by a small set of elementary motifs46

(Section 4)47

• Dendritic segments can robustly decode sequential activations of neuron populations. An example of path48

detection from place cell activity illustrates two key properties of dendritic plateau computation, timing49

invariance and a graded stochastic response, that lead to an intricate spatiotemporal receptive field (Section 5)50

• Single neurons can implement structured computations over symbol-like inputs, motivating a new view on51

neural computation (Section 6)52

2 Biological evidence for neural computation based on dendritic plateaus53

Active generation of localized dendritic plateau potentials. Most of a cortical pyramidal neuron’s excitatory synaptic54

inputs terminate on dendritic spines [26], where post-synaptic ion channels are activated via the stochastic, pre-synaptic55

release of glutamate-carrying vesicles [27, 28]. The activated channels, primarily controlled by α-amino-3-hydroxy-56

5-methyl-4-isoxazolepropionic acid receptors (AMPArs) [29], become conductive to a mixture of ions, which leads57

to a brief depolarization in the corresponding spine, referred to as the excitatory post-synaptic potential (EPSP) [30].58

In addition to AMPArs, the synaptic release of glutamate can also activate N-methyl-D-asparate receptor (NMDAr)59

gated ion-channels [29], but they do not become conductive unless a channel-blocking Mg+ ion is first displaced by a60

sufficiently strong depolarization [31, 32]. However, coincident EPSPs from multiple nearby spines can accumulate61

and thus induce this required depolarization of the local dendritic membrane potential [33]. Experimental as well as62

simulation studies report that this requires a volley of 4-20 or even up to 50 spikes within 1 ms to 4 ms, depending63

on the location along the dendritic tree [33, 34, 35, 36]. The opening of NMDAr channels triggers a massive influx64

of different ionic currents that lead to a full depolarization of the local dendritic membrane potential. Although the65

isolated NMDAr response itself is reported to only last on the order of around 25 ms [37], in vivo recordings reveal66

that voltage-gated channels in the dendritic membrane [38] prolong this effect, resulting in an actively maintained67

depolarization that can last from tens to hundreds of milliseconds [39] (see Fig. 1b for an illustration of this mechanism).68

Such active long-lasting dendritic processes, dendritic plateau potentials, are ubiquitous [9, 40], and provide neurons69

with potentially useful memory traces that can last hundreds of milliseconds. Because NMDAr channels are gated by70

both depolarization and the presence of glutamate, plateau potentials remain localized, and do not actively propagate71

along the dendrite [41].72
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Figure 1: How dendritic plateau potentials are generated, and how they interact. (a.) A stylized neuron with
dendritic arbor. (b.)Summary of the biological processes involved. A spike (1) releases glutamate, which opens
AMPAr-gated ion-channels that depolarize the post-synaptic spine and cause an EPSP (2). If sufficiently many EPSPs
coincide with up-stream dendritic input (0), the local membrane potentials rises (3) and NMDAr-gated ion-channels
become de-inactivated, causing a further localized depolarization (4). Additional voltage-gated calcium channels
can amplify and prolong this process (5) and cause a plateau potential, which can in turn moderately depolarize the
parent segment (6 & 0). (c.) An algorithmic approximation of the biological mechanisms. If a dendrite segment is
depolarized by sufficiently strong input from its child segments (1) and receives sufficiently strong excitatory input from
its stochastic synapses (2), a local plateau potential is initiated. If the plateau is not interrupted by shunting inhibitory
input (3), it depolarlizes the parent segment for an extended period of time.

Passive asymmetrical propagation of membrane potentials. The passive propagation of membrane potential through73

the dendrite is described by neural cable theory [42]. Only for very specific branching patterns, the complex dendritic74

tree can be reduced to an equivalent model of a cylinder, Rall’s ball-and-stick model, in which the contribution of75

individual synaptic inputs sum (sub-)linearly and nearly instantaneously [43]. Due to its simplicity, this special case is76

often used to motivate abstract point-neuron models such as leaky integrate-and-fire neurons, which ignore the spatial77

dimension of the dendritic tree entirely and instead model the neuron as if it were a single electric compartment [44].78

But in general, the passive spread of membrane potentials depends on the morphology and electrical impedance of79

the dendritic tree, specifically on the relationships of branch-diameters at the branching points [8]. For example, a80

back-propagating action potential moving in retrograde direction from soma to apical dendrite is only slightly attenuated81

if the dendritic branches become progressively thinner. However, the attenuation of singals in the anterograde direction82

is so strong, that synaptic input onto thin apical dendrites has little measurable effect on the membrane potential at the83

soma [45, 38]. One proposed solution to restoring “dendritic democracy” [46] and ensuring similar contribution of84

all synapses to the somatic membrane potential regardless of its position along the dendrite is an increased synaptic85

efficacy at distal synapses, which has been observed in hippocampal pyramidal neuron [47]. Another solution is86

the active amplification of distal synaptic input by active dendritic processes, which was shown to be required for87

somatic spiking [48]. Complex spike bursts in particular require the activation of NMDA receptors [49]. The resulting88

plateau potentials are also subject to anterograde attenuation along the dendritic cable, and thus only have a moderately89

depolarizing effect on their immediate neighborhood [50]. This effectively raises the local resting potential for the90

duration of the plateau potential, thus lowering the amount of coinciding spikes required to initiate a plateau potential in91

this neighbourhood [51].92

Functional compartmentalization of dendrites. The structure of dendritic arbors has long been conjectured to play an93

important role for neural computation. Koch et al. [52] calculated, that due to impedance mismatch at branching points94

in the dendrites of various types of retinal ganglion cells, distinct electrically isolated functional subunits emerge, i.e.95

regions with a roughly equal local membrane potential throughout, which are only weakly coupled to their neighboring96

regions. For example, experiments in rats confirmed that thin dendrites in neorcortical pyramidal neurons can act as97

independent computational subunits that provide neurons with an additional non-linear integration site, increasing98

the potential computational power of the single neuron [53]. This behavior is not limited to pyramidal neurons, but99

rather appears to be a general principle that can be found in various forms across different cell types. For example,100

Purkinje cells in the cerebellum also generate localized Ca2+ events in response to coincident input on individual101

dendrite segments [54, 55], and thalamo-cortical neurons respond to strong synaptic input by localized plateaus in distal102

dendritic branches [56]. Branco and Häusser [57] identify such functional subunits with individual dendritic branches,103
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which they suggest constitute the “atomic unit” of computation in neural systems.104

Rather than a single branch, one such functional compartment can also, stretch across multiple nearby branches, as105

long as synapses carrying correlated input signals cooperate to trigger local, regenerative events. Wybo et al. [58]106

present evidence for such compartmentalization and point out that structural plasticity may even allow the neuron to107

dynamically change the structure of its functional compartmentalization. We view dendrites as complex structures108

composed of functional subunits in this sense and will refer to them as dendrite segments.2. The segmentation implies,109

that only nearby synapses cooperate to trigger local regenerative events such as plateau potentials. To effectively drive a110

neuron, inputs therefore have to be clustered such that correlated spikes arrive at the same dendrite segment at the same111

time. This is observed in experiments [59] and suggests an alternative view of spike-based communication in which112

clustered groups of synaptic spines receive highly synchronized spiking inputs [60]. Since the resulting simultaneous113

EPSPs are required to trigger the NMDAr response, we therefore consider these highly synchronized spike volleys as114

the atomic unit of spike-based communication.115

Stochastic excitation and shunting inhibition. An AMPAr or NMDAr response to an afferent neuron’s input spike116

requires the prior release of neurotransmitter at the pre-synaptic terminal of a synapse. This process, however, is117

stochastic and best described by a “quantal” theory of neurotransmitter release [27, 28], according to which the118

successful transmission of a spike at a synapse is a random event with probability pr. Branco et al. [61] found that in119

hippocampal synapses, pr is distributed with a median of 0.22, which emphasizes the fundamentally stochastic nature120

of neural computation. The considerable variance of this distribution can be largely explained by the location of the121

synapse in the dendritic tree. The release probabilities of nearby synapses are much more homogeneous, which provides122

further evidence of the aforementioned functional segmentation of the dendrite.123

AMPAr mediated EPSP responses as well as NMDAr mediated plateau responses can also be modified by inhibitory124

input at GABAA or GABAB synapses. The resulting shunting inhibition current can have both a subtractive and divisive125

effect on post-synaptic membrane potential [62]. The effect of shunting inhibition on active dendrites can be even more126

dramatic, outright stopping the generation of plateau potentials [63]. The interactions of plateaus and inhibition can127

be intricate [64], and inhibitory synapses tend to be placed critical positions within the dendrite to control dendritic128

excitability [65] or gate layer specific input from reaching the soma [66].129

3 A computational model for dendritic plateau computation130

From the biological observations outlined above, we derive a simple, qualitative model of active dendrites. At the core131

of this model lies the interaction of two types of events on distinct time-scales — short, spike-triggered EPSPs and long,132

actively generated dendritic plateau potentials — in a tree structure of dendrite segments. We define a segment as a133

minimal part of the dendritic tree, e.g. a single physical branch or stretching across multiple branches, that behaves as134

one functional, electrically isolated integration site. In other words, the synaptic inputs of a segment can cooperatively135

generate a plateau potential that stays confined to the segment. These dendrite segments form a tree structure with the136

soma at its root and thin dendrite branchlets as leaves.137

Let’s consider the function of one individual dendrite segment i in more detail (see figure 1c for a schematic).138

We distinguish excitatory and inhibitory synapses, which respectively produce excitatory (EPSPs) and inhibitory139

postsynaptic potentials (IPSPs). An excitatory synapse from neuron k to segment i only successfully transmits each140

spike with probability pi,k. If the synapse transmits the spike, it induces an EPSP κE(t) with duration τE and a141

magnitude wi,k, which depends on the synaptic efficacy. Likewise for an inhibitory synapse, only that the duration τI of142

the IPSP is typically slightly longer. We model the shape of the post-synaptic potentials by rectangular pulses:143

κE(t) =

{
1 if 0 ≤ t ≤ τE
0 otherwise

, κI(t) =

{
1 if 0 ≤ t ≤ τI
0 otherwise

We use exci and inhi to represent the set of excitatory and inhibitory neurons targeting segment i, we denote the time144

of the mth spike by neuron k with tmk , and introduce the i.i.d. random variables ξmi,k ∼ Bernoulli(pi,k) to simplify145

notation. We can then define the combined effect of excitatory as well as inhibitory input for segment i3:146

2We avoid the term “compartment” to prevent confusion with the concept of multi-compartment neuron models, which are
commonly used as a spatially discretized solution to partial differential equation models of neurons.

3We assume that spike arrival times tmi,k are at least τE apart.
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EPSPi(t) =
∑
k∈exci

∑
m|tmk ≤t

ξmi,kwi,kκE(t− tmk ) (1)

IPSPi(t) =
∑
k∈inhi

∑
m|tmk ≤t

ξmi,kwi,kκI(t− tmk ) (2)

PSPi(t) = EPSPi(t)− IPSPi(t) (3)

One of the necessary preconditions for generating a dendritic plateau potential is a sufficiently strong net depolarization147

of the dendrite by synaptic input, i.e. larger than a segment-specific synaptic threshold TSi, caused by the coincidence148

of multiple synchronous spikes. In thin dendrite branchlets, i.e. the leaf nodes of our tree structure, this is sufficient149

to trigger a plateau potential. But in the general case, additional depolarizing input from dendritic child branches is150

required. Here, we are only interested in the large depolarizing effects that actively generated plateau potentials have on151

directly adjacent segments, and we ignore the much weaker passive propagation of sub-threshold voltages along the152

dendrite.153

We therefore introduce additional notation: childi denotes the set of the direct children of segment i (if any), and154

Ok(t), k ∈ childi is the effect that the child segment k exerts on i at time t. Just like we did for the post-synaptic155

potentials, we can then define the total dendritic input Di(t) into segment i:156

Di(t) =
∑

k∈childi

Ok(t) (4)

The segment-specific dendritic threshold TDi determines, how much dendritic input is required in addition to synaptic157

input to trigger a plateau potential in segment i. For leaf nodes of the dendritic tree, i.e. segments without any children158

of their own, we set TDi = 0.159

When both conditions become satisfied, i.e. there is sufficient synaptic and dendritic input, then a plateau potential is
initiated. We use Tmi to denote the starting-time of the mth plateau potential in segment i:

Tmi = min t ≥ Tm−1i such that PSPi(t) ≥ TSi ∧Di(t) ≥ TDi (5)

The plateau plateau then typically ends at time T̃mi = Tmi + τP after the fixed duration τP , unless it is interrupted by160

shunting inhibition, or it is prolonged by additional synaptic inputs.4 We formalize these special cases as follows: The161

first inhibitory spike, if any, from neuron k ∈ inhi at time tlk ∈ [Tmi ;Tmi + τP ] can end the plateau, i.e. in that case162

T̃mi = tlk. Otherwise, if another plateau is triggered at time Tm+1
i ∈ [Tmi ;Tmi + τP ] before the previous plateau has163

run its course, the first seamlessly flows into the second, i.e. T̃mi = Tm+1
i .164

We can now define the output of segment i as a sequence of binary pulses, the plateau potentials:165

Oi(t) =

{
1 if ∃m : t ∈ [Tmi ; T̃mi ]

0 otherwise
(6)

This formalism can be iteratively applied to all segments of a neuron, including the soma, only that the segment produces166

a spike event followed by a brief refractory period τrefrac instead of each long-lasting plateau potential. 5167

Conceptually, each dendrite segment acts first and foremost as a coincidence detector for a volley of synchronized168

spikes on the fast time scale of EPSPs. On the second, slower time scale of dendritic plateaus each segment is gated169

by its children in the dendritic tree. The computation of the neuron thus depends on a sequence of activations of its170

segments by spike volleys, which can be interrupted by shunting inhibition.171

4 Motifs of dendritic plateau computation172

The structure of the tree of dendrite segments determines which activation patterns lead to dendritic plateau potentials in173

all dendrite segments of a neuron, and therefore determines the computation implemented by the neuron. Each segment174

4In engineering terms, this resembles a re-triggerable monoflop with reset.
5In addition to the forward-propagation of membrane potentials that we focused on so far (i.e. from child branches to the parent),

the reverse direction typically has an even stronger effect — strong enough for the parent segment to depolarize its child segments by
itself. To capture this effect, we recursively define that a neuron segment k’s membrane potential Vk(t) = Ok(t)∨ Vi(t), k ∈ childi

is depolarized whenever either the segment itself or any of its ancestors produces a plateau potential. However, while this peculiarity
may be relevant for learning, it cannot impact the forward model of dendritic plateau computation that we present here.

5
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Figure 2: Various dendrite motives respond to different inputs. dendrite segments A, B and C receive spike volleys
from corresponding neuron populations (color coded). We indicate for each segment, when it is enabled by its children
(weakly shaded) or in a plateau state itself (shaded). (a.) If segments A, B and C form a chain, then C can only be
activated while B is in a plateau state, whereas B can only be activated while A is in a plateau state. (b.) If both A and
B are child-branches of C, either of which suffices to enable C, then C can be activated at any point where either A or B
is in a plateau state. (c.) If both A and B are required, then C can only be activated while both A and B are in a plateau
state.

is a coincidence detector for spike volleys, but additional input from a number of child segments may be necessary for175

a plateau potential to be triggered. The morphology of the dendritic tree defines these parent-child relations and the176

thresholds TD for required dendritic input. Changing these two variables changes the computation implemented, which177

we demonstrate in three prototypical motifs of dendritic plateau computation. Inhibition augments these motifs, for178

example to increase the specificity of pattern detection. Finally, stochastic synapses turn the otherwise deterministic179

neuron into a probabilistic pattern detector.180

In the following examples, we look at neurons with several dendrite segments, each of which is connected to a small181

population of neurons that occasionally emits a volley of synchronized spikes. We are primarily interested in which182

patterns of spike volleys successfully trigger a somatic spike, and which do not. All experiments are simulated using183

open-source software (Section 8.2).184

Dendrite structure determines computation185

For example, dendritic segments can form a chain (Fig. 2 a), where each segment requires the previous one to be active186

(TDi = 1). A spike volley of at least five coincident spikes (TDi = 1) can therefore only trigger the most proximal187

segment, if a specific sequence of spike volleys activates each segment in the chain in the correct consecutive order.188
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Figure 3: Shunting inhibition can prevent false detections. (a.) A neuron receives a sequence of spike volleys from
three populations A, B and C. (b.) A neuron with a chain of dendrite segments A and B and soma C fires whenever
they are activated in the correct order A → B → C, e.g. at time t1. This also results in a false detection at t2 if the
desired sequence A→ B → C is contained in fast repetitions of the undesired sequence C → B → A. (c.) By adding
shunting inhibition, the false detection at t2 can be prevented.

However, because plateau potentials last for a comparatively long duration, the exact timing of the spike volleys within189

these time-intervals is not crucial, making the detection of spike-volley sequences largely timing invariant.190

In the example Fig. 2 a, a spike volley from population A can trigger a plateau in the first segment, which in turn191

enables the second segment for the duration of the plateau τP = 100 ms. If a volley from population B arrives at the192

second segment during that time-interval, it will trigger another plateau there, which in turn enables the third segment,193

and so on. If the first segment is not triggered first, or if its plateau has already ended, a volley from population B to194

the second segment remains ineffective. The chain of three segments shown here would therefore detect the sequence195

A→ B → C of spike volleys from populations A, B and C in that order, as long as the volleys come within 100 ms of196

each other or less.197

What happens when one dendrite segment branches into two child segments? If either of the two child segments can198

provide enough dendritic input to enable the parent segment, i.e. TDi = 1 (see Fig. 2 b), then a spike volley from199

either population A or B can trigger a plateau that enables the third segment. In this motif, the third segment fires200

whenever a volley from C occurs within 100 ms after a volley from A or a volley from B. If instead the dendritic input201

from both child segments is required, i.e. TDi = 2 (see Fig. 2 c), then the third segment only fires if a volley from C202

occurs within 100 ms after both a volley from A and B.203
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Shunting inhibition prevents false positives204

So far, we only looked at excitatory synaptic inputs and how they generate plateau potentials, but the shunting effect of205

inhibitory synapses plays an equally important role. To illustrate this, consider the example in Fig. 3. Our objective206

is to detect (within some timing constraints) any sequence A→ B → C of spike volleys from the populations A, B207

and C in that order. A chain of two dendrite segments and the soma, a motif we already saw above, will do just that.208

However, if we rely solely on excitatory synaptic input, any additional unnecessary inputs have no effect. This may be209

desirable in some cases but it may lead to false positives in others. For example, we might actually want to recognize210

the sequence A → A → B → B → C → C to contain the desired sub-sequence A → B → C. But the sequence211

C → B → A→ C → B → A→ C → B → A shows three fast repetitions of the undesired sequence C → B → A,212

while still containing the desired sub-sequence A→ B → C, and the neuron would fire all the same (see Fig. 3 a).213

To prevent the response to the anti-pattern C → B → A, we can add inhibitory input from population C to the two214

dendrite segments tasked with detecting A and B (see Fig. 3 b). In that case, a volley from population C would215

terminate any ongoing plateau potentials in these two segments, thus preventing a response to the undesired sequence216

C → B → A → C → B → A → C → B → A while leaving the response to the desired sequence A → B → C217

unaffected. We can write this sequences with inhibition as (A ∧ ¬C)→ (B ∧ ¬C)→ C.218

Shunting inhibition is therefore an important complementary mechanism for dendritic plateau computation, in particular219

if we consider that in our model, inhibiting the output of one segment at a branching point can effectively “veto” the220

entire computation of the corresponding subtree.221

Stochastic synapses enable probabilistic computation222

The various motifs shown above in combination with shunting inhibition can realize a wide range of operations via223

dendritic plateau computation. However, this mechanism responds to a rather long sequence of incoming spike volleys224

(potentially hundreds of milliseconds long) with an all-or-none response, i.e. a somatic spiking or nothing. Because the225

inputs to a neuron are also typically noisy, this might make an individual neuron’s output too sparse and unreliable226

to base important decisions on it. We can overcome this problem, because the inherent stochasticity of synaptic227

transmission turn the probability that the neurons response into a graded response.228

Let’s consider an individual dendrite segment i = 0, that receives a spike volley from a population of n = 10 neurons229

(see Fig. 4 a). If each synapse independently transmits each spike it receives with the same probability P0, then the230

number of actually transmitted spikes in a spike volley is a binomial random variable ∼ Binomial(P0, n), and the231

probability that this number suffices to trigger a plateau potential depends on both P0 and the segment’s synaptic232

threshold TD0. For a given threshold, the plateau probability Pplateau = f(P0) is hence a non-linear, sigmoidal function233

of both the volley size and the synaptic transmission probability. Despite the fact that the neuron has an all-or-none234

response for any individual spike volley, the expected value of its output, i.e. the probability to fire, is non-linear, graded235

response that reflects the size of the incoming volley.236

If we extend this analysis to motifs of multiple dendrite segments, then the neuron’s probability to fire is a non-linear237

function of the size of all incoming spike volleys. For example, to trigger a chain of two sequential segments with high238

probability, both segments have to be individually triggered with high probability, i.e. the neuron will only respond with239

high probability if both incoming spike volleys are large (see Fig. 4 b). The AND-like operation between plateaus that240

we observed in the deterministic case thus becomes a multiplication Pchain = f(P1) · f(P2) of plateau probabilities in241

the stochastic case. Similarly, if only one of two parallel segments needs to be activated (see Fig. 4 c), this happens242

with a probability Por = 1 − (1 − f(P1)) · (1 − f(P2)) = f(P1) + f(P2) − f(P1) · f(P2). The shown simulation243

results confirm this prediction.244

This procedure can be applied inductively to more complex dendritic trees, as well. The neuron responds with a245

probability that depends on the size of all incoming spike volleys, and the expected value of the spike response thus246

encodes the “confidence” of the neuron in the result of a computation or detection. By combining multiple neurons247

with identical structure and synaptic input from the same source populations, we can construct an ensemble of neurons248

with a graded, probabilistic response. This ensemble can then respond to any potentially relevant sequence of incoming249

spike volleys with a volley of its own, such that the size of the emitted volley encodes the “confidence” of the ensemble250

in this detection.251

5 Detecting movement trajectories from place cell activity252

A good example to illustrate how dendritic plateau computation can function in a close-to-real-world example is253

the detection of sequential patterns in place cells. The location of an animal in its environment is represented by254

8

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 31, 2021. ; https://doi.org/10.1101/690792doi: bioRxiv preprint 

https://doi.org/10.1101/690792


A PREPRINT - MAY 31, 2021

Figure 4: Stochastic synapses allow for graded responses. (a.) Out of a volley of ten spikes, the number of transmitted
spikes is a Binomial distribution B(10, P1). A single dendrite segment, excited by such a volley, thus generates a
plateau with a probability that depends on the synaptic transmission probability P1 and the threshold TS1 (color
coded). (b.) Assuming two appropriately timed spike volleys activate two chained segments, then the probably that the
second segment fires depends on both transmission probabilities P1 and P2 of the two synapse populations. The result
resembles a probabilistic AND-gate. (c.) The probability of triggering at least one of two parallel segments resembles a
probabilistic OR-gate.

place-cells [18, 19], each of which has a “receptive field” centered at a specific location. Navigation naturally produces255

sequential activation patterns as different locations are visited. The time scale of these patterns can be long and is256

variable because it is directly linked to the movement speed of the animal [21]. Further, active dendritic process257

have been shown to be selective for specific sequences of synaptic inputs [67] and dendritic spikes occur much more258

frequently in cortical pyramidal neurons of freely moving rats [68]. Applying our model to the problem of path decoding259

at varying movement shows how single neurons can solve this detection problem across multiple time scales.260

We numerically simulate a rat moving through a small, 2-dimensional environment by generating stochastic paths at261

varying movement speed (more details in Section 8.1). The environment is tiled in a hexagonal grid by the receptive262

fields of place cell populations, each 20 neurons strong. These populations emit spike volleys with a varying magnitude263

that depends on the animal’s distance to the center of the respective receptive field (Figure 5 a and b). Dendritic264

plateau computation allows a single neuron to detect specifically those paths, that traverse the receptive fields of three265

place cell populations in the correct order: from the bottom left (in green) through the center (in orange) to the top266

right (in purple). The neuron is composed of two sequentially chained dendrite segments and the soma, each of which267

receives synaptic input from exactly one of the place-cell populations and requires TSi = 8 coincident spikes to fire a268

plateau. In the presence of noise, this requires the fast detection of coincident spikes from each place cell population in269

order to distinguish legitimate spike volleys from background noise, as well as the interaction of long-lasting plateau270

potentials to detect the slow transition from one receptive field to the next on a behavioral time-scale. The problem thus271

has to two distinct time scales: fast estimation of the current location and slow integration of the traversed path.272
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Figure 5: A simple neuron with three dendrite segments as shown to the right of panel b can detect directed paths
on a timescale of 300 ms. (a.) The receptive fields of place cell populations tile the environment into a hexagonal
grid. Random trajectories are generated through a stochastic process with randomized initial positions, velocities and
angular heading to simulate the animal’s movements. Only those trajectories are shown that elicit a spike response by
the neuron. (b.) While the animal follows the highlighted trajectory (purple) through space, the place cell populations
generate spikes, which in turn trigger plateau potentials in the corresponding dendrite segments (color coded). After
initiation, plateau potentials can be extended by super-threshold inputs, as shown by the vertical lines. (c.) The neuron
responds with highest probability to a path that traverses the center of the desired receptive fields at an optimal speed
(top). Varying the movement speed (bottom) affects the probability of the neuron to detect the sequence (solid line).
For a decreased threshold, the neuron’s sensitivity is decreased, and the overall firing-probability is increased (dotted
line). (d.) Changing the orientation or (e.) laterally shifting the path away from the optimal path rapidly decreases the
probability of the neuron to fire, as well. Note that while the neuron is highly selective to orientation and offset, the
firing probability only gradually changes as speed varies over an order of magnitude.
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We can characterize the behavior of this path-detecting neuron by changing the speed, orientation and lateral offset of273

the path through then environment, and recording the neuron’s probability to respond with a spike (Fig. 5 c-e). Firstly,274

the response probability for the optimal path is largest (almost 90 %) with an optimal run-speed of around 0.5 m s−1,275

but even for a three times faster run speed, the neuron would still be able to detect it with roughly 30 % probability.276

This is due to the fact that the dendritic plateau computation is, within some limits, invariant to the specific timings of277

individual spike volleys. However, if the animal moves so slowly that the time-difference between spike volleys exceeds278

the plateau duration, or if it moves so quickly that a place-cell population fails to produce a spike volley, at all, then279

the probability to fire decreases. If a lower threshold TSi = 4 is chosen for each segment i, the sensitivity decreases,280

because even locations relatively far from the center of a receptive field can occasionally generate spike volleys of small281

magnitude (Fig. 5 c dashed line).282

Secondly, our model neuron can be highly sensitive to the specific orientation and lateral offset of the desired path283

in space (Fig. 5 d and e). For a high threshold TSi = 8, only a narrow range of ±30° around the optimal direction284

of 60° are reliably detected. By lowering the threshold to TSi = 4, each segment can be made less selective and285

the orientation-specificity of the neuron decreases substantially (Fig. 5 d dashed line), but as a side-effect the false286

detection probability also increases. When we shift the path orthogonally to the direction to the optimal path, only287

those pathes shifted by at most ±10 mm from the center are reliably detected (Fig. 5 e). Just like for the rotated paths,288

decreasing the plateau firing threshold in each segment decreases sensitivity and increases the noise floor in the neuron’s289

expected response.290

6 Structured computation in single neurons291

The issue of how working memory bridges the fast time scales of synaptic responses and the slower time scales of292

behavior is often addressed in recurrent networks of neurons, for example by slow emergent network dynamics [69], by293

fast synaptic plasticity [70], or as fading memory inherent in network dynamics [71]. However, if neurons generate294

dendritic plateaus in dendrite segments, then they already have access to internal memory. Moreover, this internal295

memory enables structured computation: the plateaus maintain a hidden state that can only be advanced if the correct296

input is seen at the correct segment in the correct time-frame. More formally, the single neuron is a (hidden-) state297

machine that accepts expressions of the form “A and B, then C” or similar, where the relative timing is restricted to the298

interval in which plateau potentials remain active. The specific form of the expression is determined by the dendritic299

tree itself, i.e. by the location of synapses and the strength of the coupling between the individual segments.300

The “symbols” in these expressions are encoded into spike volleys and the timing of these spike volleys matters. Their301

order is particularly important, because it determines whether a sequence of spike volleys can activate a neuron or302

not. Therefore, neurons can process information in an event-based fashion where coherent spike events on a fast time303

scale trigger interacting plateau events on a slower time scale. This mode of computation allows neurons to respond304

much faster than a rate-code would permit, which is in line with empirical evidence on the level of single spikes in305

somatosensory cortex [72].306

Structured, symbolic representations of information have been explored extensively in cognitive psychology, cognitive307

science, linguistics and artificial intelligence, but the most widely used analogy for neural computation are artificial308

neural networks, which are rooted in a connectionist view of cognition [73]: Simple and homogeneous individual units309

interact in a complex network to form distributed representations. Our perspective lies between these two extremes, and310

may help to resolve the apparent disconnect [74]: We conjecture that much of the richness of neural computation is311

derived from the structured internal memory processes of diverse and intricate neurons.312

In our model, dendritic plateau computation allows neurons to detect specific, rare sequences of events and indicate313

this detection with as little as a single spike. This can result in an extremely sparse and hence metabolically efficient314

code, but it naturally comes at a price: if each pattern to be detected can last hundreds of milliseconds, then each neuron315

can only reliably detect one of these every couple of hundred milliseconds. The independent response of neurons in316

an ensemble can help in this regard. We suggest that the temporal coherence of spikes reflected in the magnitude of317

spike volleys is a mechanism through which a graded response can be encoded, for example the uncertainty about318

the occurrence of an input symbol A . As a result of the independent and stochastic synaptic transmission of spikes,319

dendrite segments can respond to this input symbol with a probability proportional to the volley magnitude. This in320

turn leads ensembles of neurons, which are sensitive to the same incoming patterns of spike volleys, to respond with321

spike volleys of their own. We therefore expect such ensembles that decode and encode information in spike timing and322

magnitude of spike volleys to be an integral building block in neural computation.323
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7 Discussion324

Our qualitative model of dendritic plateau computation aims to explain and formalize the mounting biological evidence325

of neural computation in active dendrites. It asserts, that dendrites are segmented into functional units, each of which326

can generate and maintain a plateau potential when excited by a volley of spikes, and that the interaction of these plateau327

states allows a single neuron to detect remarkably complex temporal patterns. Our work is closely related to recent work328

by Hawkins and Ahmad [75], which proposes the use of active coincidence detection in dendrite segments to generate a329

long UP state at the soma. Similarly, Brea et al. [76] present an elegant two compartment model and a corresponding330

learning rule in which a basal dendrite segment learns to predict activation at the soma. In the “hierarchical temporal331

memory” model of neural computation, longer temporal sequences are detected by laterally connected neurons of this332

type [77].333

We analyzed computation in single neurons, but what are the broader implications of this shift in perspective? Firstly, we334

have not addressed plasticity and learning. In fact, the reliance of our model on long-lasting plateau potentials and the335

ordering, rather than precise timing, of spike volleys poses a real challenge to most commonly used learning rules: On336

the one hand, this complicates temporal credit assignment for training paradigms that rely on instantaneous error signals,337

such as gradient backpropagation or related methods. On the other hand, the substantial, long-lasting depolarization of338

the membrane potential by localized plateau potentials within the dendrite with an accompanying high Ca2+ was shown339

to be the primary driver of synaptic plasticity [78, 79], which calls the role of backpropagating action potentials into340

question. In our model, the plateaus precede any potential somatic spiking. Besides the magnitude of synaptic weights,341

our model also makes extensive use of other properties of synapses, namely the transmission probability, the location of342

the synapse within the dendrite, and the delay, which can affect the synchronization of spike volleys. This increases the343

importance of structural plasticitity [80], homeostatic processes that adjust synaptic transmission probabilities [81]344

and recently proposed mechanisms for optimizing transmission delays through controlled (de-)myelinization [82] and345

opens the door for new learning rules insipred by these mechanisms.346

Given a better understanding of plasticity and learning in dendritic plateau computation, we can approach the second347

challenge: constructing and optimizing large and useful networks from such complex neurons. The central theoretical348

questions are how the structured representation of information inside a neuron can be utilized in the context of a network,349

and in turn, how networks can reliably produce the synchronous spike volleys that encode relevant information in their350

magnitude, for example feature familiarity [83]. Recent advances in analysis techniques of brain data have shown351

promising results in this direction, which may help to establish direct empirical evidence of the spike-volley based352

representation of information we have proposed in this paper [84, 85]. On a more conceptual level, this event-based,353

symbolic view of neural computation could help to substantially reduce the gap between neural networks and cognitive354

architectures [74].355

The prospect of energy efficient dendritic computation has also motivated research of potential implementations in356

neuromorphic hardware. For example, Intel’s Loihi chip [86] and the DYNAPSE architecture [87] support some form357

of active non-linear processing in functionally isolated dendrite segments. Our model provides a new perspective358

on how these existing capabilities could be utilized for computation. But the simplicity of our proposed mechanism359

also suggests novel hardware implementations that use complex dendrite structures, rather than complex ion-channel360

dynamics or larger networks, to boost computational efficiency. We believe that this trade-off between structural and361

dynamic complexity of neurons will remain a critical topic for further research.362

8 Materials and Methods363

8.1 Implementation of the navigation experiment364

To simulate the stochastic movements of an animal in a two-dimensional environment, random paths are generated365

with time-varying location l(t) = (X(t), Y (t)) ∈ R2 as solutions of the following system of stochastic differential366

equations:367

dX = cos(2πA)V dt

dY = sin(2πA)V dt

dA = 0.25dWA

dV = 10.0(0.25− V )dt+ 0.1dWV

(7)

A represents the angular heading of the animal, V represents its velocity in m s−1 and WA,WV represent independent368

standard Brownian motion processes. Each path is generated with a randomized initial position within a rectangular369
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domain of 10 cm × 9.5 cm , a random angular heading and a random velocity according to the marginal stationary370

distribution of V in the equation above, and is simulated for a fixed duration of 200 ms. Three populations of place cells,371

each 20 neurons strong, are centered on a hexagonal grid with center-to-center distance of r ≈ 2.9 cm. Each population372

randomly emits spike volleys following a homogeneous Poisson process with rate λ = 50 Hz. The magnitude of each373

spike volley is determined by the population’s mean activity at the time, which depends on the animal’s location within374

the environment through a receptive field tuning curve. The tuning curves model the probability of each individual375

neuron within the population to participate in a given spike volley by the bell-curves fi(x) = exp(−x−µi

2σ2 ) with376

coefficient σ = 9.7 mm, centered on the tiles of the hexagonal grid. The total number of spikes emitted during a377

volley from population i at time t is therefore a random variable distributed according to a Binomial distribution with378

population size n = 20 and probability p = fi(l(t)). Additionally, each neuron in the population emits random spikes379

at a rate of 5 Hz to emulate background activity. Each spike is transmitted through stochastic synapses independently380

with probability 0.5.381

Each of the simulated neuron’s dendrite segments receives spiking input from the 20 neurons of one population and382

requires either 8 or 4 coincident spikes to trigger a plateau potential. The three segments are connected in a chain that383

requires sequential activation by spike volleys from the input populations in correct order to fire a spike. A random384

path is considered to be accepted by the neuron, if the neuron responds with a spike at any point in time during the385

corresponding simulation run.386

To evaluate the rotation and location sensitivity of the neuron, we also generate straight paths with constant movement387

speed v = 3r
200ms ≈ 43 cm s−1 that are either rotated around the center of the environment by an angle α or offset from388

the center by a distance ∆x orthogonal to the optimal movement direction. For each angle or offset, respectively, the389

empirical firing probability of the neuron in response to that path is estimated by simulating the path and the neuron’s390

responses 500 times each.391

8.2 Simulation framework for dendritic plateau computation392

All simulations are implemented in a custom package developed in the Julia programming language [88], publicly393

available via the code repository hosted at https://github.com/jleugeri/DPC.jl. The simulator implements the neuron394

model outlined in this paper using a fast and extensible event-based formalism. All experiments and configuration files395

can be found in the examples subfolder of the repository.396

Further documentation of the simulator, its interfaces ,and implementation details can be found there as well.397
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