1	Druggable genome screen identifies new regulators of the abundance and toxicity of
2	ATXN3, the Spinocerebellar Ataxia Type 3 disease protein
3	
4	Naila S. Ashraf ¹ , Joanna R. Sutton ² , Yemen Yang ¹ , Bedri Ranxhi ² , Kozeta Libohova ² , Emily D.
5	Shaw ¹ , Anna J. Barget ¹ , Sokol V. Todi ^{2,3} , Henry L. Paulson ^{1*} , Maria do Carmo Costa ^{1*}
6	
7	¹ Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA;
8	² Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA;
9	³ Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA.
10	
11	
12	*Corresponding authors:
13	Henry L. Paulson, M.D., Ph.D.
14	Department of Neurology, Michigan Medicine, University of Michigan
15	A. Alfred Taubman Biomedical Sciences Research Building, Room 4001
16	109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
17	Phone: +1 734-615-5632
18	E-mail address: <u>henryp@med.umich.edu</u>
19	
20	Maria do Carmo Costa, Ph.D.
21	Department of Neurology, Michigan Medicine, University of Michigan
22	A. Alfred Taubman Biomedical Sciences Research Building, Room 4027
23	109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
24	Phone: +1 734-764-4094
25	E-mail address: mariadoc@med.umich.edu
26	

27 Abstract

28 Background: Spinocerebellar Ataxia type 3 (SCA3, also known as Machado-Joseph disease) 29 is a neurodegenerative disorder caused by a CAG repeat expansion encoding an abnormally 30 long polyglutamine (polyQ) tract in the disease protein, ataxin-3 (ATXN3). No preventive 31 treatment is yet available for SCA3. Because SCA3 is likely caused by a toxic gain of ATXN3 32 function, a rational therapeutic strategy is to reduce mutant ATXN3 levels by targeting pathways 33 that control its production or stability. Here, we sought to identify genes that modulate ATXN3 34 levels as potential therapeutic targets in this fatal disorder. 35 Methods: We screened a collection of siRNAs targeting 2742 druggable human genes using a 36 cell-based assay based on luminescence readout of polyQ-expanded ATXN3. From 317 37 candidate genes identified in the primary screen, 100 genes were selected for validation. 38 Among the 33 genes confirmed in secondary assays, 15 were validated in an independent cell 39 model as modulators of pathogenic ATXN3 protein levels. Ten of these genes were then 40 assessed in a Drosophila model of SCA3, and one was confirmed as a key modulator of 41 physiological ATXN3 abundance in SCA3 neuronal progenitor cells. 42 Results: Among the 15 genes shown to modulate ATXN3 in mammalian cells, orthologs of CHD4, FBXL3, HR and MC3R regulate mutant ATXN3-mediated toxicity in fly eyes. Further 43 44 mechanistic studies of one of these genes, FBXL3, encoding a F-box protein that is a 45 component of the SKP1-Cullin-F-box (SCF) ubiquitin ligase complex, showed that it reduces 46 levels of normal and pathogenic ATXN3 in SCA3 neuronal progenitor cells, primarily via a SCF 47 complex-dependent manner. Bioinformatic analysis of the 15 genes revealed a potential 48 molecular network with connections to tumor necrosis factor-a/nuclear factor-kappa B (TNF/NF-49 kB) and extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathways. 50 **Conclusions:** We identified 15 druggable genes with diverse functions to be suppressors or 51 enhancers of pathogenic ATXN3 abundance. Among identified pathways highlighted by this

screen, the FBXL3/SCF axis represents a novel molecular pathway that regulates physiological
 levels of ATXN3 protein.

54

55 **Keywords:** polyglutamine, spinocerebellar ataxia, Machado-Joseph disease,

56 neurodegeneration, high-throughput screen, human embryonic stem cells, Drosophila

57

58 Introduction

59 The polyalutamine (polyQ) diseases are inherited neurodegenerative diseases caused by 60 expanded CAG repeats that encode abnormally long glutamine repeats in the disease proteins 61 [1, 2]. Spinocerebellar Ataxia type 3 (SCA3) is one of nine known polyQ disorders and the most 62 common dominant ataxia, primarily manifesting with degeneration of the cerebellum, brainstem, 63 spinal cord, and basal ganglia [3-7]. The CAG repeat in the ATXN3 gene, which normally is 12 to 44 triplets, becomes expanded to \sim 60 to 87 repeats in SCA3 [8, 9]. Despite sharing a 64 65 propensity to misfold and aggregate, polyQ disease proteins differ in size, cellular localization and biological function. Moreover, polyQ disorders show distinctive symptomatology and 66 67 neuropathology, indicating that the specific protein context in which expanded polyQ is 68 embedded influences the pathogenic mechanisms in each disease [2]. 69 While many advances have been made in understanding pathomechanisms and promising 70 therapies may be on the horizon for polyQ diseases, no disease-modifying treatments exist vet. 71 Reducing levels of mutant ATXN3 transcripts and/or protein using nucleotide-based approaches 72 or small molecules has been reported by us and others as an encouraging therapeutic strategy 73 for SCA3 [10-19]. Another route to suppressing polyQ disease protein abundance in the 74 mammalian brain is to manipulate specific pathways used by cells to control mutant protein 75 production, stability, or clearance. Unfortunately, the mechanisms underlying cellular handling of 76 ATXN3 and other mutant polyQ proteins remain poorly understood.

Here, we carried out an unbiased druggable genome siRNA screen in a cell-based assay to identify genes and pathways that modulate levels of expanded-polyQ ATXN3. Downstream validation of identified genes was then performed in *Drosophila* models of SCA3 and neuronal progenitor cells (NPCs) derived from human embryonic stem cells (hESCs) harboring an expanded CAG repeat in *ATXN3*. We identified novel genes that regulate ATXN3 levels in mammalian cells and modulate mutant ATXN3-mediated toxicity in *Drosophila*, suggesting new therapeutic targets in SCA3 and perhaps similar disorders.

84

85 Materials and Methods

86

87 Druggable genome siRNA primary screen

88 High-throughput screens were carried out at the University of Michigan Center for Chemical 89 Genomics (CCG). We screened the druggable genome subset of the human siGENOME siRNA 90 SMARTpool library (Dharmacon) targeting 2742 genes. Each library stock plate comprising 280 91 siRNA SMART-pools targeting druggable genes and four internal library siRNA controls for 92 viability at 500 nM was screened in triplicate by reverse transfection of stably transfected 93 293/ATXN3Q81:FF-Luc (ATXN3-Luc) cells. Sample siRNAs were screened at a final 94 concentration of 50 nM and control siGENOME siRNAs (RISC-Free Non-targeting, and 95 SMARTpools for ATXN3 and BECLN1) at 20 nM, siRNAs (4 uL) were transferred from each 96 library stock plate (500 nM) and a control stock plate (200 nM) to three 384-well black tissue 97 culture-treated assay plates (Greiner-Bio CellStar) using Biomek FX (Beckman Coulter, 98 Fullerton, CA) (Supplementary Figure 1). Lipofectamine RNAiMAX transfection reagent (Thermo 99 Fisher Scientific) was diluted in OPTIMEM (Thermo Fisher Scientific) (0.1 µL of RNAiMax + 5.9 100 μ L of OPTIMEM) and 6 μ L of the mixture were added per well to the assay plates containing the 101 siRNAs using an automated dispenser (Multidrop Combi, Thermo Fisher). Plates were briefly

102 centrifuged and incubated at room temperature (RT) for 30 min. ATXN3-Luc cells in DMEM/ 103 10% fetal bovine serum were added to the assay plates (10^4 cells in 30 μ L per well) and briefly 104 centrifuged. Cell lysis buffer (Promega) (10 µL) was added to wells A1, A24, P1 and P24 105 (positive controls for viability) and plates were incubated at 37°C, 5% CO₂ for 48 hours. After 106 incubation, medium was aspirated leaving about 10 µL per well, and 5 µL of CellTiter-Fluor Cell 107 Viability Assay reagent (Promega) was added to each well. Plates were incubated at 37°C, 5% 108 CO₂ for 1 hour and viability was assessed by fluorescence reading (Exc 390/ Em 505 nm) at the 109 PHERAstar (BMG Labtech). Ten µL of Steady-Glo Luciferase Assay System were subsequently 110 added to each well, and after 10 min incubation at room temperature, the activity of firefly 111 Luciferase was measured by PHERAstar (BMG Labtech). Data was uploaded and computed by 112 MScreen Database [20] for negative and positive controls on a plate by plate basis. Percent 113 viability for sample siRNAs was calculated based on Lysed cells (0%) and siRNA control RISC-114 Free Nontargeting (100%). The resulting percent luminescence activity for the siRNAs was 115 computed relative to the negative siRNA control (RISC-Free Nontargeting) at 0% and the 116 positive siRNA control (targeting ATXN3) at 100%. 117 118 siRNA confirmation screens 119 A customized library of four individual siGENOME siRNAs per gene for 100 genes was 120 screened in parallel in ATXN3-Luc and Luc (counter-screen) cells in triplicate using the above 121 protocol. Genes for which at least one individual siRNA showed selective activity on the ATXN3-122 Luc assay and not on the Luc-assay were considered for follow-up validation. 123

124 siRNA reverse transfection of stably transfected HEK293 cells

125 HEK293 cells stably expressing FLAG-ATXN3Q80 [21] were cultured in DMEM/ 10% FBS/ 1%

126 Penicillin-Streptomycin. Sample individual siGENOME siRNAs were screened at 50 nM and

127	control siRNAs (RISC-Free Non-targeting, and SMARTpool for ATXN3) at 20 nM in 24-well
128	plate setups. Briefly, 40 μL of siRNA were incubated with 60 μL of transfection mixture (1 μL of
129	RNAiMax + 59 μL of OPTIMEM) for 30 min at room temperature, after which 10 5 cells in 300 μL
130	of medium were added per well. Cells were incubated at 37° C, 5% CO ₂ for 48 hours.
131	
132	Generation and culture of human control and SCA3 neuronal progenitor cells (NPCs)
133	Control and SCA3 human embryonic stem cells (hESCs), respectively, UM4-6 NIH registry
134	#0147 and UM134-1 PGD NIH registry #0286), were acquired from the MStem Cell Lab,
135	University of Michigan. All experiments using hESCs were previously approved by the Human
136	Pluripotent Stem Cell Research Oversight (HPSCRO) of the University of Michigan (Application
137	1097). Control and SCA3 NPCs were generated from the respective hESC lines (passages 18
138	(P18) and 15 (P15), respectively) using the STEMdiff Neural System (STEMCELL
139	Technologies). Briefly, 2 $\times 10^6$ SCA3 hESCs were resuspended in 2 mL of STEMdiff Neural
140	Induction Medium (NIM)/ SMADi/ 10 μM Y-27632 and plated in one well of a 6-well plate coated
141	with poly-L-ornithine (PLO) and laminin (lam) and incubated at 37°C, 5% CO ₂ . Daily full medium
142	changes were performed with NIM/ SMADi until Day 6, when cells (80-90% confluent) were
143	passaged into two 60 mm plates coated with PLO/lam (P1) using ACCUTASE and NIM/ SMADi/
144	10 μM Y-27632. Medium was changed daily and cells were passaged as above at Day 10 (P2).
145	At Day 13 (P3), cells were passaged and plated in STEMdiff Neural Progenitor Medium (NPM)
146	and since then cells were expanded and maintained in NPM. Control and SCA3 NPCs (P4)
147	were evaluated for expression of NPC markers and cells of passage four or higher were frozen
148	in STEMdiff Neural Progenitor Freezing Medium in liquid nitrogen. Cells were thawed and re-
149	expanded as needed for experiments.
150	

151 Electroporation of SCA3 neuronal progenitor cells (NPCs)

Approximately 10⁶ SCA3 NPCs (P8-P11) were electroporated with 1 µg of pCMV-152 SPORT6.FBXL3 (Dharmacon, MHS6278-202759846) or 1 µg of pCMV-SPORT6.FBXL3 and 40 153 154 nM ON-TARGETplus human CUL1 (8454) siRNA SMARTpool (Dharmacon, L-004086) using 155 the Neon transfection system (Invitrogen) following the manufacturer instructions and 1400 V, 156 20 ms, 2 pulses per condition. Cells were plated in 1.5 mL of NPM of a 12-well plate and 157 incubated at 37°C, 5% CO₂. Medium was changed after 32 hours either with NPM or NPM/ 2 158 µM MLN4924 and cells were incubated for 16 additional hours. Forty-eight hours after 159 transfection, cells were collected in 200 µL of RIPA buffer/ COMPLETE (Roche Diagnostics)/ 160 PhosSTOP (Sigma) for protein extraction or 200 µL of RLT buffer (Qiagen) for RNA extraction 161 and stored at -80°C until further sample processing. 162 163 Western Blotting 164 Total proteins from mammalian cells were extracted from cells by resuspension and 165 homogenization in RIPA buffer containing protein inhibitors (Complete, Roche Diagnostics) and 166 phosphatase inhibitors (Phospho-STOP, Sigma), followed by sonication and centrifugation at

167 4°C. Supernatants (soluble proteins) were collected and total proteins were quantified using the

168 BCA method (Pierce). For fly-based samples, 10 dissected heads per group were mechanically

homogenized in boiling 2% SDS lysis buffer, sonicated, boiled for 10 minutes and centrifuged at

170 14,400 X g before loading. Total protein lysates (20 µg) were resolved in 10% SDS-PAGE gels,

and corresponding PVDF membranes were incubated overnight at 4°C with primary antibodies:

172 mouse anti-ATXN3 (1H9) (1:2000, MAB5360, Millipore), rabbit anti-MJD [22] (1:20000), rabbit

173 anti-FBXL3 (1:500, ab96645, Abcam), rabbit anti-CUL1 (EPR3103Y) (1:1000, ab75817,

Abcam), and rabbit anti-α-Tubulin (11H10) (1:10000, #2125, Cell Signaling Technology).

175 Primary antibodies were detected by incubation with peroxidase-conjugated anti-mouse and

176 anti-rabbit antibodies (1:10000, Jackson Immuno Research Laboratories) followed by reaction

- 177 with ECL-Plus reagent (Western Lighting, PerkinElmer) and exposure to autoradiography films.
- 178 Film band intensity was quantified by densitometry by Image J.
- 179

180 Immunofluorescence

- 181 PLO/lam-coated coverslips with SCA3 NPCs were washed with PBS, fixed with 4%
- 182 paraformaldehyde/ PBS for 15 min, washed three times with PBS and stored at 4°C until further
- processing. Cells were permeabilized with 0.5% Triton X-100/ PBS for 20 min, washed with
- 184 Tween-20/ PBS (PBS-T), blocked in 5% goat serum/ PBS for one hour, and incubated overnight
- at 4°C with primary antibodies diluted in 5% goat serum/ PBS: rabbit anti-PAX6 (1:250, 60433S,
- 186 Cell Signaling), rabbit anti-SOX1 (1:1000, 4194S, Cell Signaling), mouse anti-NESTIN (1:250,
- 187 33475S, Cell Signaling), rabbit anti-MJD (1:1000), and mouse anti-ATXN3 (1H9) (1:250,
- 188 MAB5360, Millipore). Cells were washed with PBS-T, incubated with corresponding secondary
- antibodies goat anti-rabbit and anti-mouse conjugated with Alexa Fluor 488 or 568 (1:1000,
- 190 Invitrogen) diluted in 5% goat serum/ PBS for 1h, incubated with DAPI for 10 min, and washed
- 191 with PBS-T. Immunostained coverslips were then mounted in slides using Prolong Gold medium
- 192 (Invitrogen) and saved at 4°C until imaged on a Nikon A1 high sensitivity confocal microscope.

193

- **194 RNA extraction and quantitative RT-PCR**
- 195 Total RNA from cells was extracted using the RNeasy mini kit (Qiagen) following manufacturer's
- 196 instructions. Reverse transcription of 1 µg of total RNA per sample was performed using the
- 197 iScript cDNA synthesis kit (Bio-RAD). Transcript levels were determined by quantitative real-
- time RT-PCR as previously reported [14] using primers provided in Supplementary Table 1 and
- 199 normalizing expression to *ATCB* transcript levels.

200

201 Drosophila experiments

For all stocks and for experimental procedures, adult males and virgin females were crossed. 202 203 raised and maintained at 25°C under diurnal conditions in standard cornmeal media. All 204 examined flies were heterozygous for driver and transgenes. Once offspring emerged from 205 pupal cases, they were aged under the same conditions described above for seven days, at 206 which time heads were dissected and imaged using an Olympus BX53 microscope equipped 207 with a DP72 digital camera for GFP fluorescence experiments, or whole flies were fixed and 208 processed for histological sections, described below. Fluorescence from each eye was 209 guantified using the publicly available ImageJ software. Average retinal fluorescence for each 210 treatment condition was calculated as previously described [23-27]. RNAi fly lines used for the 211 work described in this manuscript are listed in Supplementary Table 2. The GMR-Gal4 driver 212 (#8605) and UAS-mCD8-GFP (#5137) were from the Bloomington Drosophila Stock center. The 213 UAS-ataxin-3Q77 line has been described before [13, 28]. For histological sections, adult fly 214 wings and proboscises were removed, and flies were fixed in 2% glutaraldehyde/2% 215 paraformaldehyde in Tris-buffered saline with 0.1% Triton X-100. The fixed flies were 216 dehydrated in a series of 30%, 50%, 75%, and 100% ethanol, and 100% propylene oxide. 217 Dehydrated specimens were embedded in Poly/Bed812 (Polysciences) and fly heads were 218 sectioned at 5 µm. Sectioned heads were stained with toluidine blue.

219

220 **Bioinformatic analysis**

Gene lists were analyzed for biological functions and network analysis was performed with the
Ingenuity Pathway Analysis software (Qiagen) using the whole-human genome as the reference
gene set and known direct and indirect gene relationships.

224

225 Statistical analysis

- 226 Levels of proteins and transcripts, and fluorescence in Drosophila were compared using one-
- tailed or two-tailed student's t-test. A *P*<0.05 was considered statistically significant for all

analyses. Data were analyzed using IBM SPSS Statistics 22.

- 229
- 230 Results

231 Mammalian cell-based siRNA screen identifies modulators of pathogenic ATXN3

To identify genes that regulate levels of pathogenic ATXN3 in mammalian cells, we used our

previously developed ATXN3-Luc cellular assay (Figure 1A,B) [13] to screen the druggable

genome subset of the human siGENOME siRNA library (Dharmacon). This library comprises

- 235 SMARTpools of four individual siRNAs targeting 2742 genes that are considered potential
- therapeutic targets, including G-protein coupled receptors (GPCRs), ion channels, protein

kinases, proteases, phosphatases and ubiquitin conjugation enzymes

238 (https://dharmacon.horizondiscovery.com/rnai/). The ATXN3-Luc assay measures

chemiluminescence in HEK293 cells stably overexpressing FLAG-tagged human ATXN3

harboring an expanded polyQ repeat in the disease range (Q81) fused to firefly Luciferase,

under the control of a CMV promoter (Figure 1A,B) [13]. We reasoned that by screening for

242 steady state levels of the ATXN3/Luciferase fusion protein (reported as chemiluminescence),

and because its expression is driven by the CMV promoter, we would identify genes that

regulate ATXN3 abundance at post-transcriptional steps (e.g. mRNA stability/degradation, and

protein translation, folding and turnover). To circumvent false-positive siRNAs that interfere with

246 CMV promoter activity or Luciferase itself, we developed a counter-screen assay for use in

247 confirmation/ validation screens: HEK293 cells stably overexpressing firefly Luciferase

controlled by the CMV promoter (Luc assay) (Figure 1A,B).

We performed the primary screen in ATXN3-Luc cells, employing a 384-well plate format with pools of four individual siRNAs targeting a single gene per well. Pooled siRNAs were tested in triplicate plates for their efficacy to decrease or increase levels of luminescence and to affect

cell viability (Figure 1C). All plates included built-in controls for luminescence and cell viability
readouts (Supplementary Figure 1): 1) siGENOME RISC-Free Non-Targeting was used as a
negative control for both readouts; 2) pooled siGENOME siRNAs targeting ATXN3 were used
as a positive control for suppressors of luminescence; 3) because BECN1 was shown to clear
ATXN3 in SCA3 mouse models [29, 30], pooled siGENOME siRNAs against BECN1 were used
as positive control for enhancers of luminescence; and 4) cell lysis buffer was used as a positive
control for suppressors of cell viability.

A total of 33 plates were screened in two assays, showing an average plate Z factor of 0.82 for luminescence assessment. Some hits that reduce luminescence may be false positives due to cell death caused by depletion of an essential gene; thus, to identify genes whose knockdown decreases levels of ATXN3 with minimal cell toxicity, we only considered hits that showed cell viability higher than 70% relative to controls. siRNA pools for 317 genes passed this viability cutoff and led to statistically significant increased (N=163) or decreased (N=154) luminescence of at least 50% relative to negative control.

These 317 identified candidate genes were similarly distributed throughout the screened protein families: kinases (N=73 of 675, 10.8%), followed by peptidases (N=44 of 412, 10.7%),

G-protein coupled receptors (N=43 of 364, 11.8%), proteins with other functions (N=41 of 271,

269 15.1%), ion channels (N=38 of 304, 12.5%), enzymes (N=32 of 311, 10.3%), phosphatases

270 (N=30 of 247, 12.1%), transcription regulators (N=10 of 89, 11.9%), transmembrane receptors

271 (N=3 of 39, 7.7%), transporters (N=2 of 29, 7.7%), and growth factors (N=1 of 2, 50%)

272 (Supplementary Figure 2). Analysis of subcellular localization of these 317 genes showed that

they are mainly distributed through the cytoplasm (N=116), plasma membrane (N=111) and

274 nucleus (N=51) (Supplementary Figure 2).

Among these 317 hits, we selected 100 genes for confirmation: the top 80 genes whose knockdown decreased luminescence by at least 60%, and the top 20 genes whose knockdown increased luminescence by at least 100% (Figure 1C). We chose to select more genes whose

278 knockdown reduced luminescence because our primary goal is to identify the apeutically 279 compelling targets, and it is more feasible to knock down or suppress the activity of a modifier 280 gene as a therapeutic approach. In the confirmation screens, we assessed in parallel the four 281 individual siGENOME siRNAs per gene in ATXN3-Luc and Luc cells (Figure 1C). For 33 of the 282 100 genes, we confirmed that at least one siRNA selectively and significantly modulated 283 luminescence levels in ATXN3-Luc cells (Supplementary Table 2): 15 were genes whose 284 knockdown decreased luminescence, and 18 were genes whose knockdown increased 285 luminescence (Figure 1C).

286

Fifteen genes confirmed to regulate ATXN3 levels in an independent SCA3 cell line

288 We next tested whether knockdown of these 33 genes (Supplementary Table 2) modulated 289 levels of ATXN3 in an independent HEK293 cell model stably overexpressing FLAG-tagged 290 human ATXN3 with a polyQ repeat of 80 (ATXN3Q80 cells) [21]. Cells were transiently 291 transfected individually with each of the four siRNAs targeting an identified gene. The efficiency 292 of transcript depletion was confirmed by quantitative RT-PCR (Supplementary Figures 3 and 4), 293 and levels of ATXN3 protein were assessed by Western blot (Figures 2 and 3). In this 294 secondary screen, we considered a gene validated as a modifier of ATXN3 abundance if at 295 least two of the four siRNAs altered levels of expanded ATXN3 in the same direction as in the 296 primary screen.

Using these criteria, we confirmed 15 of the 33 genes (Table 1): three enhancers of
ATXN3 abundance (i.e. gene knockdown resulted in decreased ATXN3Q80 levels) – *MAP3K14*, *NT5C3A*, and *FASTK* (Figures 2A and B); and twelve suppressors of ATXN3 levels (i.e. gene
knockdown resulted in increased ATXN3Q80 levels) – *CDK8*, *RNF19A*, *SIK3*, *CACNG7*, *FBXL3*, *FES*, *CHD4*, *HR*, *MC3R*, *PKD2*, *P2RX5*, and *TACR1* (Figures 3A, B, D and E). While
most of these genes modulated the abundance of both expanded ATXN3Q80 and endogenous
wild-type ATXN3, three preferentially regulated expanded ATXN3Q80 levels: *MAP3K14*,

304	RNF19A, and FES (Figures 2 and 3). Bioinformatic analysis of these 15 genes revealed a
305	potential molecular network with connections to tumor necrosis factor- α /nuclear factor-kappa B
306	(TNF/NF-kB) and extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathways (Figure 4).
307	
308	Orthologs of CHD4, FBXL3, HR and MC3R regulate ATXN3Q77-induced toxicity in
309	Drosophila
310	To assess whether the above findings in two cell models are physiologically relevant in vivo, we
311	tested the efficacy of 10 orthologs of identified genes to alter mutant ATXN3-mediated toxicity in
312	a Drosophila model of SCA3 [13, 28, 31]: CACNG7, CHD4, CDK8, FASTK, FBXL3, FES, HR,
313	MC3R, PKD2, and TACR1. For simplicity, we focused on the fly eye expression model which is
314	commonly used to examine the role and pathogenicity of various misfolded proteins [32].
315	Expression of pathogenic ATXN3 (Q77) in fly eyes is insufficiently toxic to cause marked
316	degeneration of external structures [28, 31], necessitating the examination of internal eye
317	structures for degenerative phenotypes or the use of a membrane-targeted GFP molecule
318	(CD8-GFP) as a simple readout of the loss of the functional unit of the fly eye, the ommatidium
319	[23]. Through this second assay, a toxic protein such as pathogenic ATXN3 is expressed in fly
320	eyes independently of CD8-GFP; whereas the outside part of the fly eye seems unperturbed by
321	the presence of the toxic protein, internal structures degenerate and photoreceptor cells
322	disappear, resulting in the loss of GFP fluorescence [23]. Thus, increased GFP fluorescence
323	reflects improved eye structure, whereas loss of fluorescence signifies internal eye structure
324	degeneration [23, 25, 26]. In other words, this assay provides a quantifiable degenerative
325	phenotype (reduced GFP) that facilitates screening [25]. In this model, UAS-CD8-GFP and
326	UAS-ATXN3Q77 are driven independently by an eye-restricted driver, GMR-Gal4, through the
327	binary Gal4-UAS system [33]. As shown in Figure 5A, expression of pathogenic ATXN3 in fly
328	eyes leads to a statistically significant loss of GFP signal, as shown before [23].

For each of the 10 genes described above, we crossed RNAi Drosophila lines identified 329 330 by BLAST analysis and FlyBase reports (Supplementary Table 3) to CD8-GFP & ATXN3Q77 331 flies, and then guantified GFP signal in dissected fly heads at day 7 (Figures 5B.C). RNAi 332 targeting seven of 10 genes (orthologs of CHD4, FBXL3, FES, HR, MC3R, PKD2, and TACR1) 333 resulted in statistically significant effects on ATXN3-mediated changes in GFP fluorescence in flt 334 eves (Figures 5B,C), consistent with the observed modulation of ATXN3 levels in mammalian 335 cells (Figures 2 and 3), that is increased toxicity in fly eyes and increased levels of mutant 336 ATXN3 in cells. In contrast, knockdown of orthologs of CACNG7, CDK18 and FASTK in CD8-337 GFP & ATXN3Q77 flies led to results incongruent with cell-based data (Figure 5B). To evaluate 338 the baseline effect of knockdown of these 10 genes on eye toxicity, we crossed the RNAi lines 339 with CD8-GFP flies in the absence of ATXN3Q77 and observed the following compared with 340 controls: 1) no differences on GFP signal for crosses with CHD4-1,2,3, FBXL3-1, MC3R-3, 341 PKD2-1, TACR1-1,2 and FASTK-1 lines; 2) decreased GFP intensity in FES-1, HR-1,2, and 342 MC3R-2,4 crosses; and 3) increased fluorescence in CACNG7-1, FASTK-2, CDK18-1,2,3 and 343 PKD2-2 crosses (Supplementary Figure 5). Overall, the baseline toxicity of the RNAi lines on fly 344 eyes did not interfere with the observed effect on ATXN3-mediated toxicity in crosses of CD8-GFP & ATXN3Q77 flies. 345

346 We next evaluated the effect of these seven genes on ATXN3-mediated disruption of 347 internal eye structures (Figure 6A). Histological analyses of eye sections confirmed that 348 knockdown of the orthologs for four genes (CHD4, FBXL3, HR, and MC3R) enhanced 349 ATXN3Q77 toxicity (Figure 6A), highlighted by increased separation of retinal structures from 350 the underlying lamina. While no apparent differences in eye structure were observed in crosses 351 of ATXN3Q77 with RNAi lines for orthologs of FES, PKD2 and TACR1, fly heads from all seven 352 crosses showed increased levels of ATXN3Q77 protein (Figure 6B and Supplementary Figure 353 6), in accordance with our expectations from the cell-based assays described above (Figure 3). 354 Among the seven orthologs for which we confirmed modulation of ATXN3Q77-mediated toxicity,

355 *CHD4*, *FBXL3*, *HR*, and *MC3R* surfaced as the top toxicity suppressor genes to pursue further

356 because gene knockdown resulted in concordant outcomes in all three readouts of toxicity or

357 protein abundance in flies (fluorescence intensity, histology and Western blot).

358

Overexpression of *FBXL3* **suppresses ATXN3 abundance in a CUL1-dependent manner in**

360 SCA3 neuronal progenitor cells (NPCs)

361 We selected FBXL3 to further confirm its role in regulating mutant ATXN3 abundance in human 362 cells expressing pathogenic ATXN3 from the endogenous locus, namely SCA3 hESC-derived 363 NPCs. FBXL3 was chosen for further analysis because its protein is directly implicated in 364 mechanisms of protein degradation. FBXL3 encodes a F-box protein that is a component of the 365 ubiquitin protein ligase complex SKP1-Cullin1-F-box (SCF) involved in ubiquitin-dependent 366 protein degradation [34]. We first generated NPCs from control and SCA3 hESCs [35] and 367 confirmed that these cells express the markers of neural progenitor lineage PAX6, SOX1 and 368 Nestin (Figure 7A). In confirming ATXN3 expression in these cells by immunofluorescence, we 369 observed increased ATXN3-positive puncta in the nucleus and cytoplasm of SCA3 NPCs 370 compared to control NPCs (Figure 7B).

We overexpressed FBXL3 in SCA3 NPCs and confirmed that high levels of FBXL3 371 372 reduce endogenous levels of both wild-type and mutant ATXN3 proteins to 58% and 64%, 373 respectively, of control levels (Figure 7C). To evaluate if FBXL3-mediated reduction of ATXN3 374 abundance occurs via the SCF/CUL1 ubiquitination complex, we co-electroporated plasmid 375 overexpressing FBXL3 while also decreasing CUL1 with siRNAs against CUL1 (Figure 7C). 376 Knockdown of CUL1 abolished FBXL3-mediated reduction of normal ATXN3, but only 377 accounted for about half of the observed FBXL3-facilitated decrease of pathogenic ATXN3 378 (Figure 7C), suggesting that FBXL3 handles or recognizes normal and mutant ATXN3 379 differently. Overexpression of FBXL3 and knockdown of CUL1 were confirmed at the transcript 380 level (Supplementary Figure 7). ATXN3 transcript levels, although variable across experiments,

were actually higher when FBXL3 was overexpressed, with or without knockdown of CUL1 381 382 (Supplementary Figure 7) indicating that the observed FBXL3-mediated reduction of ATXN3 383 levels occurs at the protein rather than transcriptional level, as expected. 384 To further explore the role of FBXL3/SCF in modulating ATXN3 protein levels we treated 385 SCA3 NPCs with MLN-4924, an inhibitor of Cullin-RING E3 ubiguitin ligase (CRL) activation, in 386 the presence or absence of FBXL3 overexpression. Baseline MLN-4924 treatment increased 387 levels of wild-type ATXN3 to 277% of control levels and showed a trend, albeit not statistically 388 significant, to increase mutant ATXN3 to 131% of controls (Figure 7D). This result implies that 389 SCF and CRL complexes mediate normal ATXN3 clearance, presumably via ubiquitin-390 dependent degradation, to a greater extent than mutant ATXN3 clearance. In addition, the effect 391 of MLN-4924 on normal ATXN3 was largely countered by overexpressing FBXL3 (134% of 392 control levels) (Figure 7D). Collectively, while these results implicate SCF and CRL complexes 393 as regulators of ATXN3 protein levels; they also suggest that the action of FBXL3 on ATXN3 394 may be multifaceted. The fact that FBXL3 can counter some of the effects of inhibiting SCF and 395 CRL on wild-type ATXN3, but not pathogenic ATXN3, raises the possibility of differential 396 regulation of the two forms of ATXN3. 397

398 Discussion

399 There are currently no disease-modifying therapies for SCA3. Reducing levels of mutant ATXN3 400 transcript or encoded protein, however, has effectively mitigated disease phenotypes in 401 preclinical trials in SCA3 transgenic mouse models [10-19, 36]. Accordingly, therapeutic 402 approaches that deplete pathogenic ATXN3 proteins in the SCA3 brain appear promising. While 403 some evidence suggests that expanded polyQ ATXN3 can be degraded by the proteasome [37-404 42] or macroautophagy [43, 44] and that its stability is affected by specific protein interactions 405 [38, 45, 46], we lack comprehensive knowledge of the pathways controlling the abundance of 406 mutant ATXN3. Because ATXN3 is a deubiquitinating enzyme that participates in ubiquitin-

dependent protein quality control pathways [47-50], the way cells handle this particular protein
could be unusually complex. This knowledge prompted the unbiased druggable genome siRNA
screen reported here, which identified several genes as regulators of ATXN3 protein
abundance. Because proteins encoded by druggable genes can be inhibited or activated by
drugs, the genes discovered here represent compelling therapeutic targets in SCA3 and
possibly other polyQ diseases. Our additional studies of one identified gene, *FBXL3*, also offer
new insights into the cellular pathways by which ATXN3 is likely degraded.

414 Employing an iterative screening platform that leveraged a broad range of methods to 415 detect changes in pathogenic ATXN3 levels and toxicity, we successively identified: i) 33 of 416 2742 druggable genes as specific modulators of ATXN3 using a cell-based ATXN3-Luc assay: 417 ii) 15 of 33 genes whose knockdown significantly decreased or increased levels of pathogenic 418 ATXN3 protein in a secondary SCA3 cell model; iii) seven of 10 ortholog genes in Drosophila 419 whose knockdown increased mutant ATXN3-mediated toxicity, assessed by fluorescence signal 420 in eyes of CD8-GFP & ATXN3Q77 flies; and iv) four of seven fly ortholog genes whose 421 knockdown increased mutant ATXN3 abundance and showed disrupted internal eye structures 422 in ATXN3Q77 flies. Of these four genes we then selected one, FBXL3, for further mechanistic studies, which showed that FBXL3 regulates wild-type and pathogenic ATXN3 levels in human 423 424 SCA3 NPCs, primarily via a SCF complex-dependent pathway.

425 Our primary screen identified 317 genes equally distributed through the categories of 426 enhancers (N=163) and suppressors (N=154) of ATXN3-Luc signal in controls. These genes 427 distributed similarly over different protein function categories, implying that a variety of classes 428 of proteins are involved at some level with handling ATXN3. This is not an unexpected outcome 429 since ATXN3 has been implicated in various cellular processes through its DUB activity [3, 47-430 52]. Among the genes that arose from secondary assays, fifteen are related to TNF/NF-kB and ERK1/2 pathways, indicating that pathogenic ATXN3 levels may be affected by TNF- or 431 432 mitogen-dependent signaling. TNF, a cytokine mainly produced by glial cells in the brain, either

433 promotes inflammation through the NF-kB pathway and apoptotic cell death, or is 434 neuroprotective, depending on the precise receptors it binds to [53]. The mitogen-activated 435 protein kinases (MAPKs) ERK1/2, also connected with the TNF/NF-kB pathway, likewise can 436 either promote neuronal survival or neuronal death [54]. Glia is understudied in SCA3, but 437 several recent findings suggest key roles for glia and inflammatory signaling in SCA3: early 438 transcriptional changes in SCA3 mouse oligodendrocytes [55], the contribution of astrocyte-like 439 glia to non-cell autonomous degeneration in SCA3 flies [56], and neuroprotection from the 440 NSAID ibuprofen in a SCA3 mouse model [57]. Our findings that pathogenic ATXN3 protein 441 levels can be regulated by TNF/NF-kB and ERK1/2 pro-inflammatory and cell death/survival 442 pathways highlight the need for further investigation of their role in SCA3. 443 Genes and proteins that regulate pathogenic ATXN3 abundance and toxicity yet have a 444 limited number of substrates and/or effectors would be ideal targets for intervention in SCA3. 445 Among such candidates, the F-box protein FBXL3, which binds substrates and promotes their 446 ubiquitination and subsequent degradation [34], peeked our interest. Our observation that 447 FBXL3 regulates levels of endogenous wild-type and pathogenic ATXN3 in human SCA3 NPCs, 448 supports the view that ATXN3 is a substrate for FBXL3 under physiological conditions reflective 449 of the human disease. While only a few FBXL3 substrates have been validated, 141 proteins were recently identified as being potentially recruited to SCF^{FBXL3} complexes by cryptochromes 450 451 CRY1 and CRY2, which are themselves FBXL3 substrates [58-60]. It remains, however, to be 452 determined whether targeting FBXL3 will prove to be a viable therapeutic strategy in SCA3. On 453 the one hand, null FBXL3 mutations cause autosomal recessive developmental delay and 454 intellectual disability [61] suggesting that FBXL3 mediates the stability of numerous proteins and 455 that complete loss of FBXL3 function is harmful for cells, at least during development. On the 456 other hand, FBXL3 knockdown in our mammalian cell lines and in flies did not show 457 accompanying toxicity (Supplementary Table 2 and Supplementary Figure 5). Further studies 458 will be needed to establish whether increasing or decreasing FBXL3 has effects on the fully

developed adult brain, which is the relevant target in age-related neurodegenerative diseasessuch as SCA3.

If FBXL3 knockdown increases ATXN3 abundance, then its overexpression would be 461 462 expected to decrease ATXN3 protein levels. Exogenous expression of FBXL3 in SCA3 NPCs 463 indeed reduced the levels of both wild-type and pathogenic ATXN3. The potential role of the 464 SCF and potentially other CRL complexes in ubiguitinating and regulating ATXN3 levels 465 appears to span to both wild-type and pathogenic forms of this DUB. Supporting evidence for 466 the particular involvement of the SCF complex in ATXN3 ubiquitination comes from a recent 467 report showing that CUL1 and FBXO33 specifically interact and promote ubiquitination and 468 solubility of a truncated form of pathogenic ATXN3 [62], and from an independent yeast-two-469 hybrid study that identified the mouse homologs Cul1 and Atxn3 as interacting partners (Costa 470 et al. unpublished observations). As ATXN3 shows both DUB and deneddylase activities in vitro 471 [63], future work should investigate its functions in pathways regulated by SCF and CRL 472 complexes and the effect that these complexes have on ATXN3.

473

474 Conclusions

We identified 15 druggable genes that implicate the involvement of TNF- or mitogendependent signaling cascades in regulating pathogenic ATXN3 levels. One of these potential candidates for SCA3 intervention, *FBXL3*, is directly involved in protein quality control and was effective in modulating the levels of mutant and wild-type ATXN3 under physiological conditions in human cells. The proteins encoded by these genes and the pathways in which they are implicated demand further evaluation to understand the pathobiology of SCA3 and to seek disease-modifying therapies for this fatal disorder.

482

List of Abbreviations: ATXN3 = ataxin-3; CRL = Cullin-RING E3 ubiquitin ligase; DUB =
 deubiquitinating enzyme; GFP + green fluorescent protein; hESC = human embryonic stem cell;

485	MJD = Machado-Joseph disease; NPC = neuronal progenitor cell; PBS = phosphate buffered
486	saline; polyQ = polyglutamine; RIPA = radioimmunoprecipitation assay buffer; RT = room
487	temperature; SCA3 = Spinocerebellar ataxia type 3; SCF = SKP1-Cullin1-F-box; SEM =
488	standard error of the mean.
489	
490	Declarations
491	
492	Ethics approval
493	All human embryonic stem cells studies were approved by the Human Pluripotent Stem Cell
494	Research Oversight (HPSCRO) of the University of Michigan (application 1097).
495	
496	Consent for publication
497	Not applicable.
498	
499	Availability of data and materials
500	All data generated or analyzed during this study are included in this article and its
501	supplementary information files.
502	
503	Competing interests
504	The authors declare that they have no competing interests.
505	
506	Funding
507	This work was funded by NINDS/NIH R01NS086778 to S.V.T., National Ataxia Foundation
508	Pioneer in SCAs Award (2019) to SVT, NINDS/NIH R01NS038712 to H.L.P, Protein Folding
509	Disease Initiative (PFDI)/ drug screen grant, University of Michigan, to M.C.C and H.L.P, Becky

510	Babcox Research Fund/	nilot research award	LIniversity	of Michigan	to M C C	and National
310		pilot i coc ai chi awalu,		UT MICHIGAN,	10 101.0.0.	anu national

- 511 Ataxia Foundation Young SCA Investigator Award (2015) to M.C.C.
- 512

513 Authors' Contributions

- 514 MCC, HLP and SVT designed the study. NSA, JRS, YY, BR, KL, EDS, AJB, SVT and MCC
- 515 executed experiments. NSA, JRS, SVT and MCC analyzed data. MCC prepared the figures and
- 516 drafted the manuscript. SVT and HLP reviewed the manuscript critically.
- 517

518 Authors' Information

- 519 NSA, MSc, Research Lab Technician Lead, currently applying to a Physician Assistant Program
- 520 JRS, Ph.D., Ph.D. student, currently Pharmaceutical Industry Scientist
- 521 YY, BSc, Research Assistant, currently Pharm. D. Resident
- 522 BR, BSc, Undergraduate Researcher, currently applying to medical schools
- 523 KL, M.D., Research Associate
- 524 EDS, BSc, Research Assistant
- 525 AJB, BSc, Research Laboratory Technician Associate
- 526 SVT, Ph.D., Associate Professor & Associate Dean
- 527 HLP, M.D., Ph.D., Professor
- 528 MCC, Ph.D., Research Assistant Professor
- 529

530 Acknowledgements

- 531 The authors thank Steve Swanson and Martha J. Larsen from the Center of Chemical Genomics
- 532 at the University of Michigan for assistance with high-throughput siRNA screen, Dr. Richard
- 533 McEachin for bioinformatics support, and Dr. Garry Smith and Laura Keller for initial training with
- hESCs and NPCs.
- 535

536 Figure Legends

537

538	Figure 1. Unbiased cell-based siRNA screen of the druggable genome identifies novel
539	modulators of ATXN3 levels. A) Schematic of constructs expressing firefly Luciferase by itself
540	(Luc assay) or FLAG-tagged human ATXN3Q81 fused to Luciferase (ATXN3-Luc assay) in
541	stably expressing HEK293 cell lines. FF: firefly. B) Western blots with anti-ATXN3 (1H9) and
542	anti-Luciferase (Luc) antibodies show expression of ATXN3Q81:FF-Luc fusion protein and FF-
543	Luc, respectively, in ATXN3-Luc and Luc assays. C) Summary of the iterative screens using the
544	ATXN3-Luc and Luc assays to select 33 genes that modulate levels of mutant ATXN3 for
545	subsequent studies.
546	
547	Figure 2. Three identified genes increase pathogenic ATXN3 levels in mammalian cells.
548	A) Representative ATXN3 Western blots confirm the efficacy of two or more siRNAs targeting
549	MAP3K14, NT5C3, and FASTK in decreasing levels of pathogenic FLAG-tagged human
550	ATXN3Q80 in a stably expressing HEK293 cell line. Green arrows: siRNAs that effectively
551	decrease ATXN3 levels. B, C) Histograms show quantification of ATXN3Q80 (B) and
552	endogenous ATXN3 (end ATXN3) (C) from blots in (A) and another independent experiment.
553	Bars represent the mean percentage of each protein relative to cells transfected with siRNA
554	buffer alone, normalized for $\alpha\text{-tubulin}$ (± standard error of mean in two independent
555	experiments). Green bars represent a statistically significant increase or decrease of ATXN3
556	levels compared to controls. * P<0.05, ** P<0.01, and *** P<0.001 are from student's t-tests
557	comparing each siRNA to siRNA buffer control.
558	
559	Figure 3. Twelve identified genes suppress pathogenic ATXN3 abundance in mammalian
560	cells. A, D) Representative Western blots detecting ATXN3 reveal the efficacy of two or more

561 siRNAs targeting CDK8, RNF19A, SIK3, CACNG7, FBXL3, FES, CHD4, HR, MC3R, PKD2, and

562	P2RX5, TACR1 in increasing levels of mutant ATXN3Q80. Red arrows: siRNAs that effectively
563	increased ATXN3Q80 levels. B, C, E, F) Histograms showing the quantification of ATXN3Q80
564	(B, E) and endogenous ATXN3 (end ATXN3) (C, F) from blots in (A and D) and another
565	independent experiment. Bars represent the mean percentage of each protein relative to cells
566	transfected with siRNA buffer alone, normalized for α -tubulin (± standard error of mean in two
567	independent experiments). Red and green bars represent, respectively, statistically significant
568	increase or decrease of ATXN3 levels compared to controls. * P<0.05, ** P<0.01, and ***
569	P<0.001 are from student's t-tests comparing each siRNA to siRNA buffer control.
570	
571	Figure 4. Molecular network formed by genes identified to modulate levels of pathogenic
572	ATXN3 in HEK293 cells. IPA analysis of 15 genes reveals a molecular network with
573	connections to TNF/NF-kB and ERK1/2 pathways. Genes whose knockdown decreased or
574	increased ATXN3 levels are shown in green or red, respectively. Other genes relevant to the
575	network but not identified as hits in our screen are don't know depicted in grey. Legend for
576	biological function of genes/proteins and gene relationships can be consulted at the left of
577	network.
578	
579	Figure 5. Effect of knockdown of specific fly genes on ATXN3-mediated degeneration. A)
580	Expression of expanded ATXN3Q77 leads to degeneration in fly eyes, demonstrated by
581	reduced CD8-GFP fluorescence. GMR-Gal4 was used to drive the independent expression of
582	membrane-targeted GFP (CD8-GFP) and mutant ATXN3Q77 in fly eyes. Histograms on the
583	right show quantification of GFP signal from images on the left and additional independent
584	repeats. Scale bar: 200 μ M. *** <i>P</i> <0.001 based on student's t-test comparing GFP signal in the
585	presence of ATXN3Q77 to signal in its absence. N \geq 30 per genotype (note that these images
586	were collected at a time and with a fluorescent bulb different than the ones in panel C). B)
587	Quantification of the GFP signal from dissected fly heads that expressed pathogenic

588 ATXN3Q77 as well as RNAi targeting the indicated genes. Numbers in RNAi lines indicate 589 independent constructs. Grey bars highlight genes whose knockdown had an effect as 590 expected, based on the observed modulation of ATXN3 levels in mammalian cells, whereas 591 white bars highlight genes with opposite behavior compared to cell-based assays. Shown are 592 means ± standard deviations. N \ge 30 per genotype. * P<0.05, and *** P<0.001 are from 593 student's t-tests comparing each RNAi line to its respective control. C) Representative images 594 of dissected fly heads expressing CD8-GFP alongside pathogenic ATXN3Q77 in the absence 595 (Ctrl) or presence of RNAi targeting the noted genes (grey bars in (B)). Flies in all panels were 596 seven days old. Numbers on the left side denote different RNAi transgenes used for targeted 597 genes. All flies for the experiments shown here (C) and others that were used for quantification 598 (B) were collected at the same time and imaged with the same fluorescent bulb. Scale bar: 200 599 μM.

600

Figure 6. Depletion of four fly genes increases ATXN3-dependent toxicity in fly eyes. A)

602 Representative images of histological sections from fly eyes expressing pathogenic ATXN3Q77 603 in the absence (Ctrl) or presence of RNAi constructs targeting the indicated genes. Numbers on 604 the left indicate that more than one RNAi line was used for each gene. Scale bar: 50 µM. White 605 asterisks (*) highlight separation of basal retinal structures. White brackets highlight shortening 606 of ommatidial length. B) Graph showing the guantification of ATXN3Q77 protein Western blot bands detected by anti-MJD antibody (Supplementary Figure 6) relative to controls in fly heads 607 608 from crosses of ATXN3Q77 flies with RNAi lines for selected genes, normalized to total protein 609 levels measured by Direct Blue 71. Bars show means \pm standard deviations. N \geq 3 independent 610 experimental repeats. Red histograms show increased levels of ATXN3 compared to controls. * 611 P<0.05 is from student's t-tests comparing each RNAi line to its respective control.

612

613 Figure 7. FBXL3 suppresses ATXN3 levels in SCA3 neuronal progenitor cells (NPCs). A)

- 614 Control (CTRL) and SCA3 NPCs showing immunostaining for NPC markers PAX6 (white),
- 615 SOX1 (white) and Nestin (green). B) CTRL and SCA3 NPCs immunostained for ATXN3 (red)
- using anti-MJD antibody. Nuclei were stained with DAPI (blue). Photographs are 2 μm z-stacks
- 617 acquired by confocal imaging. Scale bar: 25 μM. C) Western blots detecting ATXN3 (anti-MJD)
- 618 in protein extracts of SCA3 NPCs overexpressing FBXL3, with or without concomitant siRNA-
- 619 mediated knockdown of CUL1 for 48 hours. D) Representative immunoblot blot detecting
- ATXN3 (anti-MJD) in SCA3 NPCs overexpressing FBXL3 for 48 hr and treated with 2 μ M of
- 621 CUL1 inhibitor MLN-4924 for the final 16 hours. Quantification of bands corresponding to mutant
- and normal ATXN3 are shown in the accompanying graphs. Bars represent the mean
- 623 percentage of ATXN3 relative to mock-electroporated cells and normalized to total protein levels
- 624 measured by Direct Blue 71 (± SEM) in three independent experiments. Red and green bars
- 625 represent, a statistically significant increase or decrease, respectively, of ATXN3 levels
- 626 compared to controls. * *P*<0.05 is from one-tailed *t*-test comparing the different conditions.
- 627

628 References

- 629 1. Orr HT, Zoghbi HY: **Trinucleotide repeat disorders.** *Annu Rev Neurosci* 2007, **30:**575-621.
- 630 2. Williams AJ, Paulson HL: Polyglutamine neurodegeneration: protein misfolding
 631 revisited. *Trends Neurosci* 2008, 31:521-528.
- 632 3. Costa Mdo C, Paulson HL: Toward understanding Machado-Joseph disease. *Prog*633 *Neurobiol* 2012, 97:239-257.
- 634 4. Paulson H: **Spinocerebellar Ataxia Type 3.** 1993.
- 635 5. Coutinho P, Andrade C: Autosomal dominant system degeneration in Portuguese
 636 families of the Azores Islands. A new genetic disorder involving cerebellar,

637		pyramidal, extrapyramidal and spinal cord motor functions. <i>Neurology</i> 1978, 28:703-
638		709.
639	6.	Schols L, Bauer P, Schmidt T, Schulte T, Riess O: Autosomal dominant cerebellar ataxias:
640		clinical features, genetics, and pathogenesis. Lancet Neurol 2004, 3:291-304.
641	7.	Ashizawa T, Oz G, Paulson HL: Spinocerebellar ataxias: prospects and challenges for
642		therapy development. Nat Rev Neurol 2018, 14:590-605.
643	8.	Lima M, Costa MC, Montiel R, Ferro A, Santos C, Silva C, Bettencourt C, Sousa A, Sequeiros J,
644		Coutinho P, Maciel P: Population genetics of wild-type CAG repeats in the Machado-
645		Joseph disease gene in Portugal. Hum Hered 2005, 60:156-163.
646	9.	Maciel P, Costa MC, Ferro A, Rousseau M, Santos CS, Gaspar C, Barros J, Rouleau GA,
647		Coutinho P, Sequeiros J: Improvement in the molecular diagnosis of Machado-Joseph
648		disease. Arch Neurol 2001, 58:1821-1827.
649	10.	Alves S, Nascimento-Ferreira I, Auregan G, Hassig R, Dufour N, Brouillet E, Pedroso de Lima
650		MC, Hantraye P, Pereira de Almeida L, Deglon N: Allele-specific RNA silencing of mutant
651		ataxin-3 mediates neuroprotection in a rat model of Machado-Joseph disease. <i>PLoS</i>
652		<i>One</i> 2008, 3: e3341.
653	11.	Alves S, Nascimento-Ferreira I, Dufour N, Hassig R, Auregan G, Nobrega C, Brouillet E,
654		Hantraye P, Pedroso de Lima MC, Deglon N, de Almeida LP: Silencing ataxin-3 mitigates
655		degeneration in a rat model of Machado-Joseph disease: no role for wild-type ataxin-
656		3? Hum Mol Genet 2010, 19: 2380-2394.
657	12.	Ashraf NS, Duarte-Silva S, Shaw ED, Maciel P, Paulson HL, Teixeira-Castro A, Costa MDC:
658		Citalopram Reduces Aggregation of ATXN3 in a YAC Transgenic Mouse Model of
659		Machado-Joseph Disease. Mol Neurobiol 2019, 56:3690-3701.
660	13.	Costa MD, Ashraf NS, Fischer S, Yang Y, Schapka E, Joshi G, McQuade TJ, Dharia RM,
661		Dulchavsky M, Ouyang M, et al: Unbiased screen identifies aripiprazole as a modulator

662		of abundance of the polyglutamine disease protein, ataxin-3. Brain 2016, 139:2891-
663		2908.
664	14.	do Carmo Costa M, Luna-Cancalon K, Fischer S, Ashraf NS, Ouyang M, Dharia RM, Martin-
665		Fishman L, Yang Y, Shakkottai VG, Davidson BL, et al: Toward RNAi Therapy for the
666		Polyglutamine Disease Machado-Joseph Disease. Mol Ther 2013, 21:1898-1908.
667	15.	McLoughlin HS, Moore LR, Chopra R, Komlo R, McKenzie M, Blumenstein KG, Zhao H,
668		Kordasiewicz HB, Shakkottai VG, Paulson HL: Oligonucleotide therapy mitigates disease
669		in spinocerebellar ataxia type 3 mice. Ann Neurol 2018, 84:64-77.
670	16.	Moore LR, Rajpal G, Dillingham IT, Qutob M, Blumenstein KG, Gattis D, Hung G, Kordasiewicz
671		HB, Paulson HL, McLoughlin HS: Evaluation of Antisense Oligonucleotides Targeting
672		ATXN3 in SCA3 Mouse Models. Mol Ther Nucleic Acids 2017, 7:200-210.
673	17.	Nobrega C, Nascimento-Ferreira I, Onofre I, Albuquerque D, Hirai H, Deglon N, de Almeida
674		LP: Silencing mutant ataxin-3 rescues motor deficits and neuropathology in machado-
675		joseph disease transgenic mice. PLoS One 2013, 8:e52396.
676	18.	Rodriguez-Lebron E, Costa MD, Luna-Cancalon K, Peron TM, Fischer S, Boudreau RL,
677		Davidson BL, Paulson HL: Silencing Mutant ATXN3 Expression Resolves Molecular
678		Phenotypes in SCA3 Transgenic Mice. Mol Ther 2013, 21:1909-1918.
679	19.	Toonen LJA, Rigo F, van Attikum H, van Roon-Mom WMC: Antisense Oligonucleotide-
680		Mediated Removal of the Polyglutamine Repeat in Spinocerebellar Ataxia Type 3
681		Mice. Mol Ther Nucleic Acids 2017, 8:232-242.
682	20.	Jacob RT, Larsen MJ, Larsen SD, Kirchhoff PD, Sherman DH, Neubig RR: MScreen: an
683		integrated compound management and high-throughput screening data storage and

analysis system. *J Biomol Screen* 2012, **17**:1080-1087.

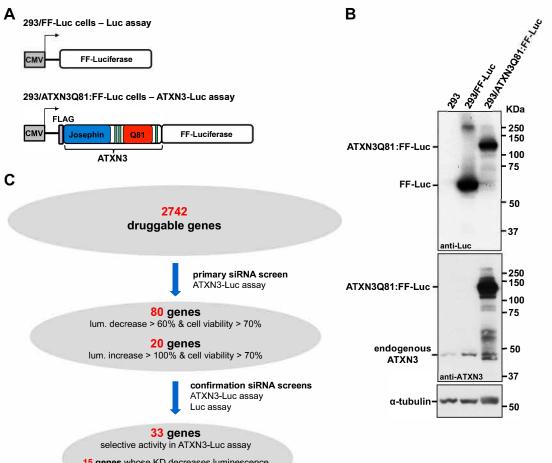
685	21.	Winborn BJ, Travis SM, Todi SV, Scaglione KM, Xu P, Williams AJ, Cohen RE, Peng J, Paulson
686		HL: The deubiquitinating enzyme ataxin-3, a polyglutamine disease protein, edits
687		Lys63 linkages in mixed linkage ubiquitin chains. J Biol Chem 2008, 283:26436-26443.
688	22.	Paulson HL, Das SS, Crino PB, Perez MK, Patel SC, Gotsdiner D, Fischbeck KH, Pittman RN:
689		Machado-Joseph disease gene product is a cytoplasmic protein widely expressed in
690		brain. Ann Neurol 1997, 41: 453-462.
691	23.	Burr AA, Tsou WL, Ristic G, Todi SV: Using membrane-targeted green fluorescent
692		protein to monitor neurotoxic protein-dependent degeneration of Drosophila eyes. J
693		Neurosci Res 2014, 92: 1100-1109.
694	24.	Das B, Rajagopalan S, Joshi GS, Xu L, Luo D, Andersen JK, Todi SV, Dutta AK: A novel iron
695		(II) preferring dopamine agonist chelator D-607 significantly suppresses alpha-syn-
696		and MPTP-induced toxicities in vivo. Neuropharmacology 2017, 123:88-99.
697	25.	Tsou WL, Hosking RR, Burr AA, Sutton JR, Ouyang M, Du X, Gomez CM, Todi SV: DnaJ-1 and
698		karyopherin alpha3 suppress degeneration in a new Drosophila model of
699		Spinocerebellar Ataxia Type 6. Hum Mol Genet 2015, 24:4385-4396.
700	26.	Tsou WL, Qiblawi SH, Hosking RR, Gomez CM, Todi SV: Polyglutamine length-dependent
701		toxicity from alpha1ACT in Drosophila models of spinocerebellar ataxia type 6. Biol
702		<i>Open</i> 2016, 5: 1770-1775.
703	27.	Yedlapudi D, Joshi GS, Luo D, Todi SV, Dutta AK: Inhibition of alpha-synuclein
704		aggregation by multifunctional dopamine agonists assessed by a novel in vitro assay
705		and an in vivo Drosophila synucleinopathy model. Sci Rep 2016, 6:38510.
706	28.	Sutton JR, Blount JR, Libohova K, Tsou WL, Joshi GS, Paulson HL, Costa MDC, Scaglione KM,
707		Todi SV: Interaction of the polyglutamine protein ataxin-3 with Rad23 regulates
708		toxicity in Drosophila models of Spinocerebellar Ataxia Type 3. Hum Mol Genet 2017,
709		26: 1419-1431.

710	29.	Nascimento-Ferreira I, Nobrega C, Vasconcelos-Ferreira A, Onofre I, Albuquerque D,
711		Aveleira C, Hirai H, Deglon N, Pereira de Almeida L: Beclin 1 mitigates motor and
712		neuropathological deficits in genetic mouse models of Machado-Joseph disease. Brain
713		2013, 136: 2173-2188.
714	30.	Nascimento-Ferreira I, Santos-Ferreira T, Sousa-Ferreira L, Auregan G, Onofre I, Alves S,
715		Dufour N, Colomer Gould VF, Koeppen A, Deglon N, Pereira de Almeida L: Overexpression
716		of the autophagic beclin-1 protein clears mutant ataxin-3 and alleviates Machado-
717		Joseph disease. Brain 2011, 134:1400-1415.
718	31.	Ristic G, Sutton JR, Libohova K, Todi SV: Toxicity and aggregation of the polyglutamine
719		disease protein, ataxin-3 is regulated by its binding to VCP/p97 in Drosophila
720		melanogaster. Neurobiol Dis 2018, 116:78-92.
721	32.	Perrimon N, Bonini NM, Dhillon P: Fruit flies on the front line: the translational impact
722		of Drosophila. Dis Model Mech 2016, 9:229-231.
723	33.	Brand AH, Perrimon N: Targeted gene expression as a means of altering cell fates and
724		generating dominant phenotypes. Development 1993, 118:401-415.
725	34.	Cenciarelli C, Chiaur DS, Guardavaccaro D, Parks W, Vidal M, Pagano M: Identification of a
726		family of human F-box proteins. Curr Biol 1999, 9:1177-1179.
727	35.	Moore LR, Keller L, Bushart DD, Delatorre R, Li D, McLoughlin HS, Costa MC, Shakkottai VG,
728		Smith GD, Paulson HL: Antisense oligonucleotide therapy rescues aggresome
729		formation in a novel Spinocerebellar Ataxia type 3 human embryonic stem cell line.
730		bioRxiv 2019.
731	36.	Ashraf NS, Duarte-Silva S, Shaw ED, Maciel P, Paulson HL, Teixeira-Castro A, Costa MDC:
732		Citalopram Reduces Aggregation of ATXN3 in a YAC Transgenic Mouse Model of
733		Machado-Joseph Disease. Mol Neurobiol 2018.

734	37.	Jana NR, Dikshit P, Goswami A, Kotliarova S, Murata S, Tanaka K, Nukina N: Co-chaperone
735		CHIP associates with expanded polyglutamine protein and promotes their
736		degradation by proteasomes. J Biol Chem 2005, 280:11635-11640.
737	38.	Matsumoto M, Yada M, Hatakeyama S, Ishimoto H, Tanimura T, Tsuji S, Kakizuka A,
738		Kitagawa M, Nakayama KI: Molecular clearance of ataxin-3 is regulated by a
739		mammalian E4. EMBO J 2004, 23:659-669.
740	39.	Mishra A, Dikshit P, Purkayastha S, Sharma J, Nukina N, Jana NR: E6-AP promotes
741		misfolded polyglutamine proteins for proteasomal degradation and suppresses
742		polyglutamine protein aggregation and toxicity. J Biol Chem 2008, 283:7648-7656.
743	40.	Sugiura A, Yonashiro R, Fukuda T, Matsushita N, Nagashima S, Inatome R, Yanagi S: A
744		mitochondrial ubiquitin ligase MITOL controls cell toxicity of polyglutamine-
745		expanded protein. Mitochondrion 2010, 11:139-146.
746	41.	Tsai YC, Fishman PS, Thakor NV, Oyler GA: Parkin facilitates the elimination of expanded
747		polyglutamine proteins and leads to preservation of proteasome function. J Biol Chem
748		2003, 278: 22044-22055.
749	42.	Ying Z, Wang H, Fan H, Zhu X, Zhou J, Fei E, Wang G: Gp78, an ER associated E3, promotes
750		SOD1 and ataxin-3 degradation. Hum Mol Genet 2009, 18:4268-4281.
751	43.	Berger Z, Ravikumar B, Menzies FM, Oroz LG, Underwood BR, Pangalos MN, Schmitt I,
752		Wullner U, Evert BO, O'Kane CJ, Rubinsztein DC: Rapamycin alleviates toxicity of
753		different aggregate-prone proteins. Hum Mol Genet 2006, 15:433-442.
754	44.	Menzies FM, Huebener J, Renna M, Bonin M, Riess O, Rubinsztein DC: Autophagy induction
755		reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar
756		ataxia type 3. Brain 2010, 133:93-104.

757	45.	Boeddrich A, Gaumer S, Haacke A, Tzvetkov N, Albrecht M, Evert BO, Muller EC, Lurz R,
758		Breuer P, Schugardt N, et al: An arginine/lysine-rich motif is crucial for VCP/p97-
759		mediated modulation of ataxin-3 fibrillogenesis. EMBO J 2006, 25:1547-1558.
760	46.	Blount JR, Tsou WL, Ristic G, Burr AA, Ouyang M, Galante H, Scaglione KM, Todi SV:
761		Ubiquitin-binding site 2 of ataxin-3 prevents its proteasomal degradation by
762		interacting with Rad23. Nat Commun 2014, 5:4638.
763	47.	Burnett B, Li F, Pittman RN: The polyglutamine neurodegenerative protein ataxin-3
764		binds polyubiquitylated proteins and has ubiquitin protease activity. Hum Mol Genet
765		2003, 12: 3195-3205.
766	48.	Chai Y, Berke SS, Cohen RE, Paulson HL: Poly-ubiquitin binding by the polyglutamine
767		disease protein ataxin-3 links its normal function to protein surveillance pathways. J
768		<i>Biol Chem</i> 2004, 279: 3605-3611.
769	49.	Donaldson KM, Li W, Ching KA, Batalov S, Tsai CC, Joazeiro CA: Ubiquitin-mediated
770		sequestration of normal cellular proteins into polyglutamine aggregates. Proc Natl
771		Acad Sci U S A 2003, 100: 8892-8897.
772	50.	Todi SV, Winborn BJ, Scaglione KM, Blount JR, Travis SM, Paulson HL: Ubiquitination
773		directly enhances activity of the deubiquitinating enzyme ataxin-3. Embo J 2009,
774		28: 372-382.
775	51.	Nicastro G, Masino L, Esposito V, Menon RP, De Simone A, Fraternali F, Pastore A: Josephin
776		domain of ataxin-3 contains two distinct ubiquitin-binding sites. Biopolymers 2009,
777		91: 1203-1214.
778	52.	Scheel H, Tomiuk S, Hofmann K: Elucidation of ataxin-3 and ataxin-7 function by
779		integrative bioinformatics. Hum Mol Genet 2003, 12:2845-2852.
780	53.	Aggarwal BB: Signalling pathways of the TNF superfamily: a double-edged sword. Nat
781		<i>Rev Immunol</i> 2003, 3: 745-756.

782	54.	Subramaniam S, Unsicker K: ERK and cell death: ERK1/2 in neuronal death. <i>FEBS J</i> 2010,
783		277: 22-29.
784	55.	Ramani B, Panwar B, Moore LR, Wang B, Huang R, Guan Y, Paulson HL: Comparison of
785		spinocerebellar ataxia type 3 mouse models identifies early gain-of-function, cell-
786		autonomous transcriptional changes in oligodendrocytes. Hum Mol Genet 2017,
787		26: 3362-3374.
788	56.	Li YX, Sibon OCM, Dijkers PF: Inhibition of NF-kappaB in astrocytes is sufficient to delay
789		neurodegeneration induced by proteotoxicity in neurons. J Neuroinflammation 2018,
790		15: 261.
791	57.	Mendonca LS, Nobrega C, Tavino S, Brinkhaus M, Matos C, Tome S, Moreira R, Henriques D,
792		Kaspar BK, de Almeida LP: Ibuprofen enhances synaptic function and neural
793		progenitors proliferation markers and improves neuropathology and motor
794		coordination in Machado-Joseph disease models. Hum Mol Genet 2019.
795	58.	Siepka SM, Yoo SH, Park J, Song W, Kumar V, Hu Y, Lee C, Takahashi JS: Circadian mutant
796		Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene
797		expression. Cell 2007, 129:1011-1023.
798	59.	Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG, Egan DF, Vasquez DS,
799		Juguilon H, Panda S, Shaw RJ, et al: AMPK regulates the circadian clock by cryptochrome
800		phosphorylation and degradation. Science 2009, 326:437-440.
801	60.	Correia SP, Chan AB, Vaughan M, Zolboot N, Perea V, Huber AL, Kriebs A, Moresco JJ, Yates
802		JR, 3rd, Lamia KA: The circadian E3 ligase complex SCF(FBXL3+CRY) targets TLK2. Sci
803		<i>Rep</i> 2019, 9: 198.
804	61.	Ansar M, Paracha SA, Serretti A, Sarwar MT, Khan J, Ranza E, Falconnet E, Iwaszkiewicz J,
805		Shah SF, Qaisar AA, et al: Biallelic variants in FBXL3 cause intellectual disability,
806		delayed motor development and short stature. Hum Mol Genet 2019, 28:972-979.


807 62.	Chen ZS, Wong AKY,	Cheng TC, Koon AC	, Chan HYE: FipoQ	/FBXO33, a Cullin-1-based
---------	--------------------	-------------------	--------------------------	---------------------------

ubiquitin ligase complex component modulates ubiquitination and solubility of

polyglutamine disease protein. *J Neurochem* 2019.

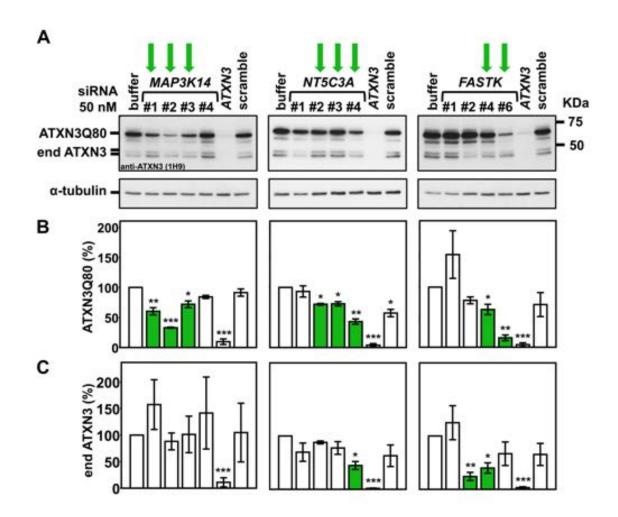
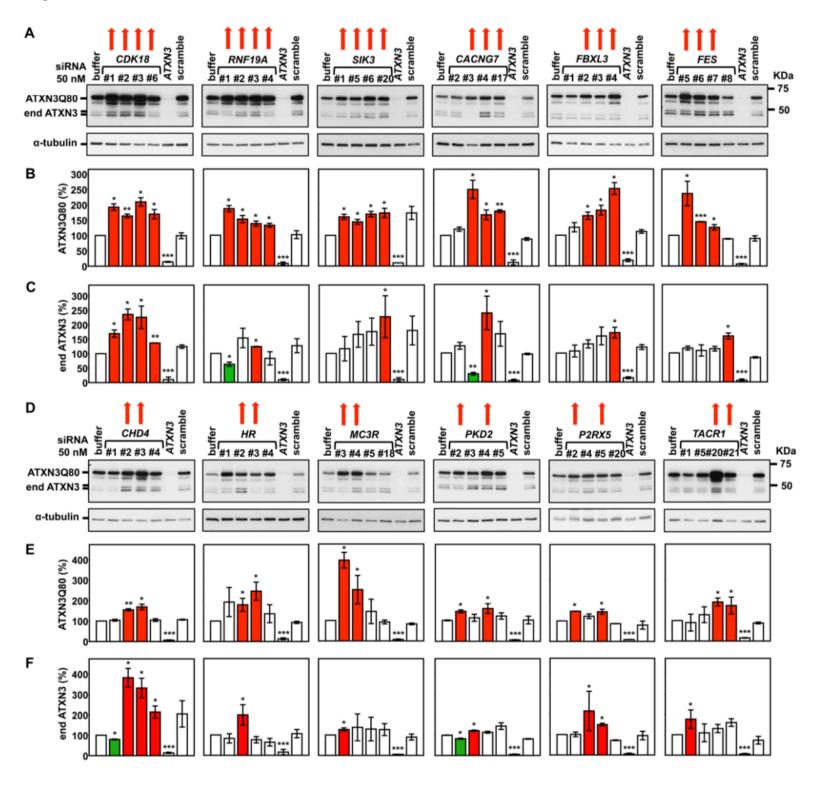
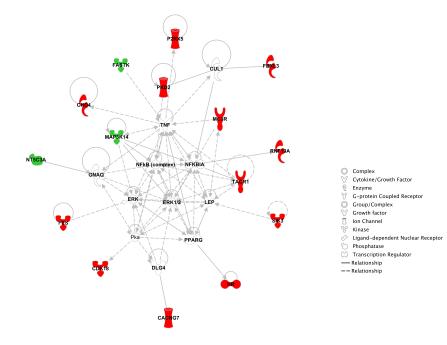
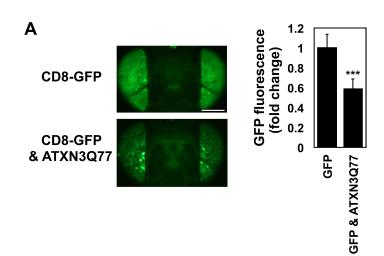
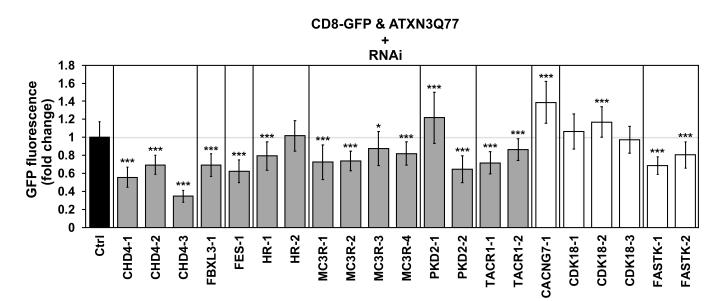

- 810 63. Ferro A, Carvalho AL, Teixeira-Castro A, Almeida C, Tome RJ, Cortes L, Rodrigues AJ,
- 811 Logarinho E, Sequeiros J, Macedo-Ribeiro S, Maciel P: **NEDD8: a new ataxin-3 interactor.**
- *Biochim Biophys Acta* 2007, **1773**:1619-1627.

Figure 1

15 genes whose KD <u>decreases</u> luminescence 18 genes whose KD <u>increases</u> luminescence

Figure 2

Figure 3

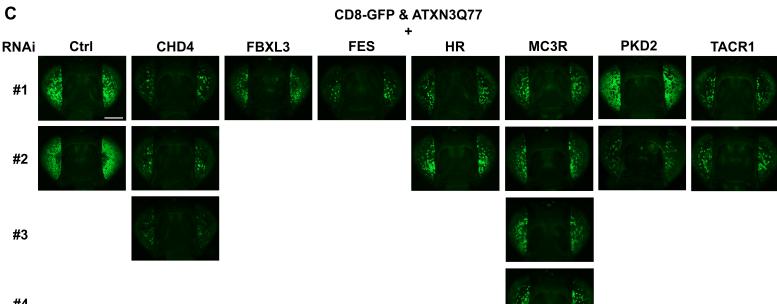

Figure 4

Figure 5

#4

В

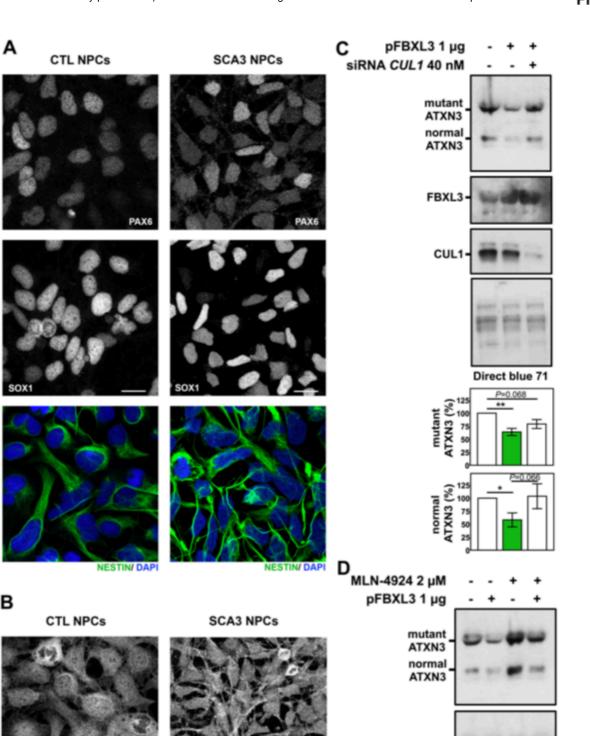
RKD2-1

FBXL3-1 CHD4-2 MC3R-3 FES-2 HR-2 PKD2-2 CHD4-3 MC3R-4 TACR1-1 TACR1-2 B 400 300 200 100 0 Ę FBXL3-1 CHD4-3 FES-1 HR-1 HR-2 MC3R-3 PDK2-2 CHD4-1 CHD4-2 PKD2-1 TACR1-2 MC3R-2 MC3R-4 TACR1-1

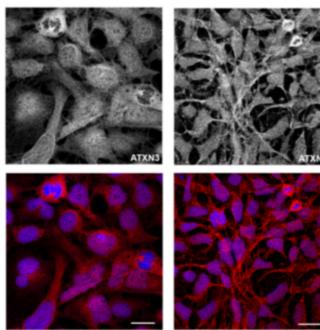
A

ATXN3Q77 (%)

Ctrl


CHD4-1

ATXN3Q77 + RNAi


FES-1

HR-1

MC3R-2

в

ATXN3/ DAPI

ATXN3/ DAPI

Direct blue 71

20

Mutant ATXN3 (%) 10

ATXN3 (%) 30

Gene Symbol	Entrez Gene Name	Entrez Gene ID	Cell location	Protein function
CACNG7	calcium voltage-gated channel auxiliary subunit gamma 7	59284	Plasma Membrane	ion channel
CDK18	cyclin dependent kinase 18	5129	Cytoplasm	kinase
CHD4	chromodomain helicase DNA binding protein 4	1108	Nucleus	enzyme
FASTK	Fas activated serine/threonine kinase	10922	Cytoplasm	kinase
FBXL3	F-box and leucine rich repeat protein 3	26224	Nucleus	enzyme
FES	FES proto-oncogene, tyrosine kinase	2242	Cytoplasm	kinase
HR	HR, lysine demethylase and nuclear receptor corepressor	55806	Nucleus	transcription regulator
MAP3K14	mitogen-activated protein kinase kinase kinase 14	9020	Cytoplasm	kinase
MC3R	melanocortin 3 receptor	4159	Plasma Membrane	G-protein coupled receptor
NT5C3A	5'-nucleotidase, cytosolic IIIA	51251	Cytoplasm	phosphatase
P2RX5	purinergic receptor P2X 5	5026	Plasma Membrane	ion channel
PKD2	polycystin 2, transient receptor potential cation channel	5311	Plasma Membrane	ion channel
RNF19A	ring finger protein 19A, RBR E3 ubiquitin protein ligase	25897	Nucleus	enzyme
SIK3	SIK family kinase 3	23387	Cytoplasm	kinase
TACR1	tachykinin receptor 1	6869	Plasma Membrane	G-protein coupled receptor

Table 1. Druggable genes that passed the secondary screen in ATXN3Q80 cells.