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Abstract

Integrating association results from both genome-wide association studies (GWASs) and
expression quantitative trait locus (eQTL) mapping studies has the potential to shed light on the
molecular mechanisms underlying disease etiology. Several statistical methods have been
recently developed to integrate GWASs with eQTL studies in the form of transcriptome-wide
association studies (TWASS). These existing methods can all be viewed as a form of two sample
Mendelian randomization (MR) analysis, which has been widely applied in various GWASs for
inferring the causal relationship among complex traits. Unfortunately, most existing TWAS and
MR methods make an unrealistic modeling assumption and assume that instrumental variables
do not exhibit horizontal pleiotropic effects. However, horizontal pleiotropic effects have been
recently discovered to be wide spread across complex traits, and, as we will show here, are also
wide spread across gene expression traits. Therefore, not allowing for horizontal pleiotropic
effects can be overly restrictive, and, as we will be show here, can lead to a substantial inflation
of test statistics and subsequently false discoveries in TWAS applications. Here, we present a
probabilistic MR method, which we refer to as PMR-Egger, for testing and controlling for
horizontal pleiotropic effects in TWAS applications. PMR-Egger relies on an MR likelihood
framework that unifies many existing TWAS and MR methods, accommodates multiple
correlated instruments, tests the causal effect of gene on trait in the presence of horizontal
pleiotropy, and, with a newly developed parameter expansion version of the expectation
maximization algorithm, is scalable to hundreds of thousands of individuals. With extensive
simulations, we show that PMR-Egger provides calibrated type | error control for causal effect
testing in the presence of horizontal pleiotropic effects, is reasonably robust for various types of

horizontal pleiotropic effect mis-specifications, is more powerful than existing MR approaches,
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and, as a by-product, can directly test for horizontal pleiotropy. We illustrate the benefits of
PMR-Egger in applications to 39 diseases and complex traits obtained from three GWASSs
including the UK Biobank. In these applications, we show how PMR-Egger can lead to new

biological discoveries through integrative analysis.
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Introduction

Genome-wide association studies (GWASSs) have identified many SNPs associated with common
diseases or disease related traits. Parallel expression quantitative trait loci (eQTL) mapping
studies have also identified many cis-acting SNPs associated with the expression level of nearby
genes. Integrating the existing association results from both GWASs and eQTL mapping studies
has the potential to shed light on the molecular mechanisms underlying disease etiology. Several
statistical methods have been recently proposed to integrate GWASs with eQTL mapping studies.
For example prediXcan® proposes to perform a weighted SNP set test in GWAS by inferring
SNP weights from eQTL studies. TWAS? proposes to infer the association between gene
expression and disease trait by leveraging the shared common set of cis-SNPs. SMR? or GSMR*
directly tests the causal association between gene expression and disease trait under a Mendelian
randomization (MR) framework through selecting a single instrument or multiple independent
instruments. While each of these integrative methods was originally proposed to solve a different
problem, all of them can be viewed as a two-sample MR method with different modeling
assumptions. Because of their relationship to MR, these methods effectively attempt to identify
genes causally associated with diseases or complex traits in the context of transcriptome-wide
association studies (TWAS).

MR analysis is a form of instrumental variable analysis that was originally developed in the
field of causal inference®. MR aims to determine the causal relationship between an exposure
variable (e.g. gene expression) and an outcome variable (e.g. complex trait) in observational
studies. MR treats SNPs as instrumental variables for the exposure variable of interest and uses
these SNP instruments to estimate and test the causal effect of the exposure variable on the

outcome variable. MR methods have been widely applied to investigate the causal relationship
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among various complex traits®®, and, through a two-sample design, can be easily adapted to
settings where the exposure and outcome are measured on two different sets of individuals®:!.
However, MR analysis for TWAS is not straightforward and requires the development of new
methods that can accommodate two important features of TWAS analysis.

First, both GWASs and eQTL mapping studies collect SNPs that are in high linkage
disequilibrium (LD) with each other. Traditional MR methods, such as the random effects
version or the fixed effect version of the inverse variance weighted regression'?, MR-Egger®?,
median-based regression'*, SMR3, or GSMR?*, can only make use of a single SNP instrument or
multiple independent SNP instruments. Handling only independent SNPs is restrictive, as most
exposure variables/molecular traits are polygenic/omni-genic and are influenced by multiple
SNPs that are in potential LD with each other. As a result, incorporating multiple correlated
SNPs can often help explain a greater proportion of variance in the exposure variable than using
independent SNPs, and thus can help increase power and improve estimation accuracy of MR
analysis>*>1. Due to the benefits of using multiple correlated instruments, most TWAS methods
(e.g. PrediXcan!, TWAS?, CoMM8, DPR'®, TIGAR%) rely on polygenic modeling priors to
incorporate all cis-SNPs that are in high LD for TWAS applications. (Certainly, while the prior
used in PrediXcan is polygenic, the parameter estimates obtained from PrediXcan is sparse as it
uses posterior mode instead of posterior mean.) By incorporating all cis-SNPs, as we will show
below, these methods can lead to substantial power improvement over standard MR approaches
that use only a few independent SNPs. Unfortunately, many TWAS methods rely on a two-stage
MR inference procedure: they estimate SNP effect sizes in the exposure study and plug in these
estimates to the outcome study for causal effect inference. The two-stage inference procedure in

MR fails to account for the uncertainty in parameter estimates in the exposure study and can
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94  often lead to biased causal effect estimates and power loss, especially in the presence of weak

95 instruments®®. Indeed, similar to what have been observed in the MR filed, our previous study

96  also suggests that the likelihood based inference can substantially improve power for TWAS®,

97  Therefore, it is important to incorporate multiple correlated instruments in a likelihood inference

98  framework for MR analysis in TWAS.

99 Second, perhaps more importantly, SNP instruments often exhibit pervasive horizontal
100  pleiotropic effects?’. Horizontal pleiotropy occurs when a genetic variant affects the outcome
101  variable through pathways other than or in addition to the exposure variable??. Horizontal
102  pleiotropy is in contrast to the vertical pleiotropy, which characterizes instrument effects on the
103  outcome variable through the path of the exposure. Horizontal pleiotropy is widely distributed
104  across the genome, affects a wide spectrum of complex traits, and can be driven by LD and
105  extreme polygenicity of traits?! 2, Despite its wide prevalence, however, only a limited number
106  of MR methods have been developed to test and control for horizontal pleiotropy; even fewer are
107  applicable for TWAS applications. For example, some existing methods (e.g. MR-PRESSO?%)
108 test for horizontal pleiotropic effects without directly controlling for them. Some methods (e.g.
109 CaMMEL?% control for horizontal pleiotropic effects without directly testing them?2¢. Some
110  methods (e.g. Egger regression'®?’, GLIDE?®, GSMR*, MR-median method®*, profile score
111 approach?®, MRMix*® and Bayesian MR3!%2) test and control for horizontal pleiotropic effects,
112 but can only accommodate independent instruments. As far as we are aware, there is only one
113 two-sample MR method currently developed for testing and controlling for pleiotropic effects in
114  the presence of correlated instruments: LDA MR-Egger®. Unfortunately, as we will show below,

115  LDA MR-Egger cannot handle realistic LD pattern among cis-SNPs for TWAS applications.


https://doi.org/10.1101/691014
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/691014; this version posted August 27, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

116 Here, we develop a generative two-sample MR method in a likelihood framework, which we
117  refer to as the probabilistic two-sample Mendelian randomization (PMR), to perform MR
118  analysis using multiple correlated instruments for TWAS applications. We illustrate how the
119 PMR framework can facilitate the understanding of many existing MR approaches as well as
120 many existing integrative analysis approaches. Within the PMR framework, we focus on a
121 particular horizontal pleiotropy effect modeling assumption based on the burden test assumption
122 commonly used for rare variant test. This particular horizontal pleiotropy effect, as we will show
123 later, effectively generalizes the Egger regression assumption commonly used for MR analysis to
124  correlated instruments. Our method allows us to test the causal effect in the presence of
125  horizontal pleiotropy, and, with a parameter expansion version of the expectation maximization
126  algorithm (PX-EM), is scalable to hundreds of thousands of individuals. We refer to our method
127  as PMR-Egger. With simulations, we show that PMR-Egger provides calibrated type | error for
128  causal effect testing in the presence of horizontal pleiotropic effects, is more powerful than
129  existing MR approaches, and, as a by-product, can directly test for horizontal pleiotropy. We
130  apply our method to perform TWAS for 39 diseases and complex traits obtained from three
131 GWASs with sample size ranging from 4,686 to 337,198.

132
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133 Methods

134  PMR-Egger Overview

135  We consider a probabilistic Mendelian randomization framework for performing two-sample
136 Mendelian randomization analysis with correlated SNP instruments. Two-sample Mendelian
137  randomization analysis aims to estimate and test for the causal effect of an exposure on an
138  outcome in the setting where the exposure and outcome variables are measured in two separate
139  studies with no sample overlap. In the TWAS applications we consider here, the exposure
140  variable is gene expression level that is measured in a gene expression study, while the outcome
141  variable is a quantitative trait or a dichotomous disease status that is measured in a GWAS. Often
142  times, the gene expression study and GWAS are performed on two separate samples. While we
143 mostly focus on TWAS applications in the present study, we note that the two-sample Mendelian
144  randomization is also commonly performed in settings where both the exposure and outcome
145  variables are complex traits that are measured in two separate GWASs. An illustrative diagram
146  of MR analysis is displayed in Supplementary Fig. 1.

147 We denote x as an n,-vector of exposure variable (i.e. gene expression measurements) that is
148  measured on n; individuals in the gene expression study and denote Z, as an n; by p matrix of
149  genotypes for p instruments (i.e. cis-SNPs) in the same study. Note that, unlike standard MR
150  methods that select independent instruments, we follow existing TWAS approaches and use all
151  cis-SNPs that are in LD as instruments. We denote y as an n,-vector of outcome variable (i.e.
152 trait) that is measured on n, individuals in the GWAS and denote Z,, as an n, by p matrix of
153  genotypes for the same p instruments there. We consider three linear regressions to model the
154  two studies separately

155 x=1, m +Z,p+¢ (1)
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156 =1, +Z,B+5; (2)
157 y=1,p, +Xx+Zy+e (3)
158  where the equation (1) is for the gene expression data and the equations (2)-(3) are for the

159  GWAS data. Here, u, and u, are the intercepts; ¥ is an unobserved n, -vector of exposure

160  variable on the n, individuals in the GWAS; B is a p-vector of instrumental effect sizes on the
161  exposure variable; o is a scalar that represents the causal effect of the exposure variable on the
162  outcome variable; y is a p-vector of horizontal pleiotropic effect sizes of p instruments on the
163  outcome variable; &, is an n,-vector of residual error with each element independently and
164 identically distributed from a normal distribution N(0, 62); &; is an n,-vector of residual error
165  with each element independently and identically distributed from the same normal distribution
166  N(0,02); and e is an n,-vector of residual error with each element independently and identically
167  distributed from a normal distribution N(0, 62). We note that while the above three equations are
168  specified based on two separate studies, they are joined together with the common parameter
169  and the unobserved gene expression measurements ¥. Equations (2)-(3) can also be combined
170 into

171 y=1,u, +ZBa+Zy+g, (4)

172 where g, = g;a + €.

173 Our key parameter of interest in the above joint model is the causal effect a. The causal
174  interpretation of o requires two assumptions of MR analysis to hold: (i) instruments are
175  associated with the exposure; (ii) instruments are not associated with any other confounders that
176  may be associated with both exposure and outcome. Note that our model no longer requires the
177 general exclusion restriction condition of traditional MR (i.e. instruments only influence the

178  outcome through the path of exposure), as we make explicite modeling assumptions on the
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179  horizontal pleiotropy effects y. Certainly, PMR-Egger still need to satisfy the InSIDE
180  assumption that the instrument-exposure effects and instrument-outcome effects are independent
181  of each other, which is sometimes refered to as the weak exclusion restriction condition®3. In our
182  model, we derive the causal interpretation and identification of a under the decision-theoretic
183  framework of causal inference®34-% (details in Supplementary Note). Because the causal effect
184  interpretation of a depends on MR assumptions as well as other explicit modeling assumptions,
185 many of which are not easily testable in practice, MR analysis in observational studies likely
186  provides weaker causality evidence than randomized clinical trials. Therefore, while we follow
187  standard MR analysis and use the term “causal effect” through the text, we only intend to use this
188  term to emphasize the fact that a estimate from an MR analysis is more trustworthy than the
189  effect size estimate in a standard linear regression of y on %.

190 Because p is often larger than n,, we will need to make additional modeling assumptions on 8
191  to make the model identifiable. In addition, the two instrumental effect terms defined in equation
192 (4), the vertical pleiotropic effect Z,pa and the horizontal pleiotropic effect z,y, are also not
193 identifiable from each other, unless we make additional modeling assumptions on y. Here, we
194  follow standard polygenic model and assume that all elements in B are non-zero and that each

195  follows a normal distribution N(0,03). In addition, we follow the burden test assumption
196  commonly used for rare variant test and assume that equal horizontal pleiotropic effects across
197 SNPsy; =y for j=1,..p. With the burden test assumption on the horizontal pleiotropic
198  effects y, our model becomes a generalization of the commonly used MR-Egger regression
199  model. In the special case where instruments are independent and treated as fixed effects and
200 where a two-stage estimation procedure is used for inference, our model reduces to MR-Egger.

201 However, our method can handle general cases where MR-Egger does not apply to. In particular,

10
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202 unlike MR-Egger, our method can handle multiple correlated instruments and perform inference
203 ina likelihood framework.

204 In the above model, we are interested in estimating the causal effect a and testing the null
205  hypothesis Hy: a = 0 in the presence of horizontal pleiotropy effects y. In addition, we are
206 interested in estimating the horizontal pleiotropic effect size y and testing the null hypothesis
207  Hy:y = 0. We accomplish both tasks through the maximum likelihood inference framework. In
208  particular, we develop an expectation maximization (EM) algorithm for parameter inference by
209 maximizing the joint likelihood defined based on equations (1) and (4) (details in the
210  Supplementary Note). The EM algorithm allows us to obtain the maximum likelihood of the
211 joint model, together with maximum likelihood estimates for both a and y. In addition, we apply
212 the EM algorithm to two reduced models, one without @ and the other without y, to obtain the
213 corresponding maximum likelihoods. Afterwards, we perform likelihood ratio tests for either
214  Hy:a = 0o0r Hy:y = 0, by contrasting the maximum likelihood obtained from the joint model to
215 that obtained from each of the two reduced models, respectively. We refer to the above inference
216  procedure as probabilistic, as we place estimation and testing into a maximum likelihood
217  framework. Our inference procedure is in contrast to the commonly used two-stage estimation
218  procedure (as used in, for example, Egger regression**>?’, PrediXcan® and TWAS?), which
219  estimates B from equation (1) first and then plug in the estimates into equation (4) for inference.
220 The previous two-stage estimation procedure fails to properly account for the estimation
221 uncertainty in B and is known to lose power compared to a formal likelihood inference
222 procedure>1618,

223 We refer to our model and algorithm together as the two-sample probabilistic Mendelian

224  randomization with Egger regression (PMR-Egger). As explained above, we use “probabilistic”

11
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225  to refer to both the data generative model and the maximum likelihood inference procedure. We
226 use “Egger” to refer to the horizontal pleiotropic assumption on y that effectively generalizes the
227  Egger-regression assumption to correlated instruments. We also note that the joint generative
228 Mendelian randomization model defined in equations (1) and (4) is a useful conceptual
229  framework that unifies many existing MR methods. In particular, almost all existing MR
230  methods are built upon the joint model, but with different modeling assumptions on g and y, and
231 with different inference procedures (Table 1). Compared with these existing MR approaches,
232 PMR-Egger is capable of modeling multiple correlated instruments, effectively controls for
233 horizontal pleiotropy, and places inference into a likelihood framework.

234 Simulations

235  We performed simulations to assess the performance of PMR-Egger and compare it with existing
236  approaches. To do so, we first obtained 556 cis-SNPs for the gene BACE1 on chromosome 11
237 from the GEUVADIS data®” (data processing details in the next section) and simulated gene
238  expression values. We used the gene BACEL because the number of cis-SNPs in this gene
239  represents the median of all genes. With the scaled genotype data Z,., we simulated SNP effect
240  sizes B from a normal distribution N (0, PVE,,/556), where the scalar PVE,, represents the
241  proportion of gene expression variance explained by genetic effects. We summed the genetic
242  effects across all cis-SNPs as Z, 8. In addition, we simulated residual errors &, from a normal
243  distribution N(0,1 — PVE,y). We then summed the genetic effects and residual errors to yield
244 the simulated gene expression level.

245 Next, we obtained genotypes for the same 556 SNPs from 2,000 randomly selected control
246  individuals in the Kaiser Permanente/UCSF Genetic Epidemiology Research Study on Adult

247  Health and Aging (GERA)®3 and simulated a quantitative trait. Here, we directly used g8 from

12


https://doi.org/10.1101/691014
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/691014; this version posted August 27, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

248  the gene expression data, which, when paired with the causal effect a, yielded the vertical
249 pleiotropic effects af. We set a = \/PVE,,/PVE,y, and we simulated residual errors , from a
250  normal distribution N(0, 1 — PVE,,). Here, the scalar parameter PVE, represents the proportion
251 of phenotypic variance explained by vertical pleiotropic effects in the absence of horizontal
252 pleiotropic effects. Afterwards, we simulated horizontal pleiotropic effects y for these SNPs
253  (more details below). We summed the horizontal pleiotropic effects, vertical pleiotropic effects
254  and residual errors to yield the simulated trait.

255 In the simulations, we first examined a baseline simulation setting where we set PVE,, =
256 10%, PVE,, = 0, with all y; = 0. On top of the baseline setting, we varied one parameter at a
257  time to examine the influence of various parameters. For PVE,,, we set it to be either 1%, 5% or
258  10%, close to the median gene expression heritability estimates across genes*>*l. For B, we
259  examined alternative SNP effect size distributions that deviate from the polygenic assumption in
260 the baseline setting. Specifically, we randomly selected either 1 SNP, 1%, 10% or 100% of the
261  SNPs to have non-zero effect, while simulated their effects from a normal distribution to explain
262 afixed PVE,y. For PVE,,, we varied its value to be either 0% (for null simulations), 0.2%, 0.4%
263  or 0.6% (for power simulations). For the horizontal pleiotropy effects y, we randomly assigned a
264  fixed proportion of y; to be non-zero (proportion equals 10%, 30%, 50%, or 100%). Afterwards,
265  we set the absolute value of non-zero y; to be the same value of y. As a sensitivity analysis, we
266  also randomly assigned some of their signs to be positive and some of their signs to be negative,
267  with the ratio of positive effects to negative effects being either 1:9, 3:7, or 5:5. Here, we set y to
268 be1x107%5x107% 1x 1073 0or 2 x 1073, which corresponds to the 50%, 70%, 90%, 95%
269  quantiles of horizontal pleiotropic effect estimates across all genes and all traits in the WTCCC

270  data (more details below), respectively. For null simulations and type | error control examination,

13
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271 we performed 10,000 simulation replicates for each simulation scenario described above. For
272 power calculation, for each scenario, we performed 1,000 alternative simulations together with
273 9,000 null simulations and calculated power based on false discovery rate (FDR).

274 While we applied PMR-Egger to analyze individual-level data from all simulations, we also
275  applied PMR-Egger to analyze summary statistics in a subset of simulations to validate the
276  implementation of the summary statistics based PMR-Egger algorithm. These results are
277  presented in the Discussion section. Here, we considered the simulation settings with a fixed

278  sample size (n, = 465,n, = 2,000), different causal effect sizes (PVE,, = 0 or 0.6%) and

279  different pleiotropy effect sizes (y = 0 or 0.0005). In the analysis, we calculated the LD matrix
280 in the eQTL data using the observed individual-level genotypes in the eQTL study. We
281  calculated the LD matrix in the GWAS data from a reference panel. The reference panel is
282  constructed in three different ways, by using individual-level genotypes from either all
283 individuals in the GWAS (n=2,000), 10% of randomly selected individuals from the GWAS
284  (n=200), or the individuals with European ancestry from the 1,000 Genomes project (n=503).

285 Besides the single gene-based simulations, we also conducted cross-gene simulations.
286  Specifically, we randomly selected 10,000 genes from GEUVADIS. We extracted cis-SNPs for
287  these 10,000 genes, obtaining a median of 576 cis-SNPs per gene (min=11; max=7,409). For
288  each gene in turn, we used its cis-SNPs to simulate its gene expression level as described above.
289  Afterwards, we applied different methods to analyze simulated data. The cross-gene based
290 simulations reflect the varying LD pattern and the varying number of cis-SNPs across genes that
291  we observe in real data, and thus are likely to be realistic than the single gene-based simulations.

292 We performed cross-gene simulations under all simulation settings described above, including

14
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293  settings with varying gene expression heritability, varying genetic architectures underlying gene
294  expression, as well as varying causal and horizontal pleiotropy effects.

295 Real Data Applications

296  We applied our method to perform TWAS by integrating gene expression data with several
297  GWASs. Specifically, we obtained GEUVADIS data®’ as the gene expression data and examined
298 39 phenotypes from three GWASs. The three GWASs include the Wellcome trust case control
299  study (WTCCC)*, the Kaiser Permanente/UCSF Genetic Epidemiology Research Study on
300  Adult Health and Aging (GERA)* and the UK Biobank®*.

301 The GEUVADIS data®” contains gene expression measurements for 465 individuals collected
302  from five different populations that include CEPH (CEU), Finns (FIN), British (GBR), Toscani
303 (TSI) and Yoruba (YRI). In the expression data, we only focused on protein coding genes and
304 lincRNAs that are annotated in GENCODE (release 12)***°. Among these genes, we removed
305 lowly expressed genes that have zero counts in at least half of the individuals to obtain a final set
306 of 15,810 genes. We performed PEER normalization to remove confounding effects and
307 unwanted variations following previous studies!®4®. Afterwards, following®®, to remove
308 remaining population stratification, we quantile normalized the gene expression measurements
309 across individuals in each population to a standard normal distribution, and then further quantile
310 normalized the gene expression measurements to a standard normal distribution across
311 individuals from all five populations. Besides expression data, all individuals in GEUVADIS
312 also have their genotypes sequenced in the 1,000 Genomes Project. We obtained genotype data
313  from the 1,000 Genomes Project phase 3. We filtered out SNPs that have a Hardy-Weinberg
314  equilibrium (HWE) p-value < 10, a genotype call rate <95%, or a minor allele frequency (MAF)

315  <0.01. We retained a total of 7,072,917 SNPs for analysis.
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316 The WTCCC data consists of about 14,000 cases from seven common diseases and 2,938
317  shared controls*2. The diseases include type 1 diabetes (T1D; n=1,963), Crohn’s disease (CD;
318 n=1,748), rheumatoid arthritis (RA; n=1,861), bipolar disorder (BD; n=1,868), type 2 diabetes
319 (T2D; n=1,924), coronary artery disease (CAD; n=1,926), and hypertension (HT; n=1,952). We
320 obtained quality controlled genotypes from WTCCC and initially imputed missing genotypes
321 using BIMBAM?*' to arrive at a total of 458,868 SNPs shared across all individuals. Afterwards,
322 we further imputed SNPs using the 1,000 Genomes as the reference panel using SHAPEIT and
323 IMPUTE2*. We filtered out SNPs that have an HWE p-value < 10, a genotype call rate <95%,
324  or an MAF<0.01 to obtain a total of 2,793,818 imputed SNPs. For each trait in turn, we first
325  regressed the phenotype on the top 10 genotype principal components (PCs) and obtained
326 phenotype residuals. We then scaled the phenotype residuals to have a mean of zero and standard
327  deviation of one and used these phenotype residuals for TWAS analysis. In addition to the main
328 analysis that uses phenotype residuals, we also performed parallel analysis with PMR-Egger
329  where we used the original phenotype as the outcome variable and the top 10 genotype PCs as
330  covariates.

331 The GERA study consists of 61,953 individuals and 675,367genotyped SNPs. We filtered out
332 SNPs that had a genotype calling rate below 0.95, MAF<0.01, or HWE p value<10* to yield a
333  total of 487,609 SNPs. We phased genotypes using SHAPEIT*® and imputed SNPs based on the
334  Haplotype Reference Consortium (HRC version rl.1) reference panel®® on the Michigan
335  Imputation Server using Minimac3°. Afterwards, we further filtered out SNPs that have a HWE
336 p-value < 10, a genotype call rate <95%, an MAF<0.01, or an imputation score<0.30 to arrive
337 atatotal of 8,385,867 SNPs that are shared across 61,953 individuals. We examined 22 diseases

338 in GERA that include Asthma (number of cases n=10,101), Allergic Rhinitis (n=15,193),
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339  Cardiovascular Disease (CARD, n=16,431), Cancers (n=18,714), Depressive Disorder (n=7,900),
340 Dermatophytosis (n=8,443), Type 2 Diabetes (T2D, n=7,638), Dyslipidemia (n=33,071),
341  Hypertension (HT, n=31,044), Hemorrhoids (n=9,922), Abdominal Hernia (n=6,876), Insomnia
342 (n=4,357), Iron Deficiency (n=2,706), Irritable Bowel Syndrome (n=3,367), Macular
343  Degeneration (n=4,031), Osteoarthritis (n=22,062), Osteoporosis (n=5,909), Peripheral Vascular
344 Disease (PVD, n=4,718), Peptic Ulcer (n=1,007), Psychiatric disorders (n=9408), Stress
345  Disorders (n=4,706), and Varicose Veins (n=2,714). For each trait in turn, we first regressed the
346  phenotype on the top 10 genotype principal components (PCs) and obtained phenotype residuals.
347  We then scaled the phenotype residuals to have a mean of zero and standard deviation of one and
348  used these phenotype residuals for TWAS analysis. In addition to the main analysis that uses
349  phenotype residuals, we also performed parallel analysis with PMR-Egger where we used the
350 original phenotype as the outcome and the top 10 genotype PCs as covariates.

351 The UK Biobank data consists of 487,409 individuals and 92,693,895 imputed SNPs*. We
352 followed the same sample QC procedure in Neale lab

353  (https://github.com/Nealelab/UK Biobank GWAS/tree/master/imputed-v2-gwas) to retain a

354  total of 337,198 individuals of European ancestry. We filtered out SNPs with an HWE p-value <
355 107, a genotype call rate <95%, or an MAF<0.001 to obtain a total of 13,876,958 SNPs. We
356 selected 10 UK Biobank quantitative traits that have a phenotyping rate > 80%, a SNP
357  heritability > 0.2 and a low correlation among them following a previous study®2. The 10 traits
358 include Height (h? = 0.579;), Platelet count (h? = 0.404), Bone mineral density (h? = 0.401),
359  Red blood cell count (h? = 0.324), FEV1-FVC ratio (h? = 0.313), Body mass index (BMI,
360 h? = 0.308), RBC distribution width (h? = 0.288), Eosinophils count (h? = 0.277), Forced

361 vital capacity (h? = 0.277), White blood cell count (h? = 0.272). For each trait in turn, we
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362  regressed the resulting standardized phenotypes on sex and top 10 genotype principal
363  components (PCs) to obtain the residuals, standardized the residuals to have a mean of zero and a
364  standard deviation of one, and finally used these scaled residuals to conduct TWAS analysis. We
365 also performed parallel analysis with PMR-Egger by including the top 10 genotype PCs as
366  covariates.

367 We combined the GEUVADIS data with each of the three GWASs for TWAS analysis. To do
368  so, in the GEUVADIS data, for each gene in turn, we extracted cis-SNPs that are within either
369 100 kb upstream of the transcription start site (TSS) or 100 kb downstream of the transcription
370 end site (TES). We overlapped these SNPs in GEUVADIS with the SNPs obtained from each of
371 the three GWASs to obtain common sets of SNPs. The median number of the overlapped cis-
372 SNPs between GEUVADIS and WTCCC, GERA or UK Biobank are 200, 556 or 500,
373 respectively. Afterwards, for each pair of gene (from GEUVADIS) and trait (from GWAS) in
374  turn, we examined the causal relationship between gene expression and trait of interest while
375  testing and controlling for potential horizontal pleiotropic effects.

376  Compared Methods

377  For testing the causal effect, we compared the performance of PMR-Egger with five existing
378  methods that include: (1) SMR, which uses a single instrument and does not control for
379  horizontal pleiotropy. For SMR, we first performed a linear regression to choose the top
380  associated cis-SNP to be the instrumental variable. (2) PrediXcan, which uses multiple correlated
381 instruments but does not control for horizontal pleiotropy. For PrediXcan, we used all cis-SNPs
382  for the model and used ElasticNet implemented in the R package glmnet to obtain the coefficient
383  estimates for the cis-SNPs. (3) TWAS, which uses multiple correlated instruments but does not

384  control for horizontal pleiotropy. For TWAS, we used all cis-SNPs for the model and used

18


https://doi.org/10.1101/691014
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/691014; this version posted August 27, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

385 BSLMM® implemented in the GEMMA software® to obtain coefficient estimates for the cis-
386 SNPs. (4) CoMM, which uses multiple correlated instruments but does not control for horizontal
387  pleiotropy. We used all cis-SNPs for the model and used the R package CoMM for model fitting.
388 (5) LDA MR-Egger, which uses multiple correlated instruments and controls for horizontal
389  pleiotropy. We used all cis-SNPs for the model and contacted the authors of LDA MR-Egger to
390  obtain the method source code. All these methods are suitable for two-sample design and yield p
391  values for testing the causal effect a. Note that PrediXcan, TWAS and CoMM are not originally
392  described as an MR method but conceptually rely on the same joint MR model based on
393  equations (1) and (4). These three methods differ in their prior assumptions on B: PrediXcan
394  relies on ElasticNet assumption; TWAS relies on BSLMM?®? assumption; while CoMM relies on
395 the normal prior assumption. In addition, PrediXcan and TWAS rely on a two-stage regression
396  procedure while CoMM is based on maximum likelihood. We were unable to compare our
397  method with either GSRM or the standard Egger regression, as both require multiple independent
398  SNP instruments that are generally not feasible to obtain in TWAS applications.

399 Again, we used all cis-SNPs for methods that can make use of multiple correlated instruments
400 (i.e. PMR-Egger, TWAS, PrediXcan, CoMM, and LDA MR Egger). We performed a linear
401  regression to select the top associated cis-SNP as the instrumental variable for SMR, as it can
402  only use a single instrument. In all simulations and real data applications, methods that can use
403  either individual-level data or summary statistics (PMR-Egger, PrediXcan and TWAS) are
404  applied using individual-level data as input to ensure their optimal performance. Methods that
405 can only use individual-level data (CoMM) are applied using individual-level data as input.

406  Methods that can only use summary statistics (SMR and LDA MR-Egger) are applied using
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407  summary data as input. For PMR-Egger, we used individual-level data for all main analyses and
408  used summary data for a subset of analyses that are described in the Discussion section.

409 Besides the above methods, we also compared different methods to a recently published fine-
410  mapping TWAS method, FOCUS®. In the FOCUS analysis, we followed® and obtained a set of
411 independent non-overlapping genomic regions termed as LD blocks from LDetect®®. We
412 removed genomic regions that overlap with the MHC region due to the extensive LD structure.
413 Following®, we also focus our analysis on a subset of regions that harbor at least one genome-
414  wide-significant SNP (p <5 x 1078; the default threshold used in FOCUS), and for each
415 TWAS/MR method (i.e. PMR-Egger, TWAS, PrediXcan, CoMM, or SMR), also harbor at least
416 one TWAS gene that is declared significant by the given method. We then applied FOCUS to
417  analyze these remaining regions and identify genes that are in the 90% credible set.

418 For testing horizontal pleiotropic effect, we compared the performance of PMR-Egger with
419  two existing methods that include (1) LDA MR-Egger; and (2) the global test in MR-PRESSO,
420  which is implemented as an R package. Both these methods examine one gene at a time and
421  output a p value for testing horizontal pleiotropic effects.

422
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423  Results

424  Our method is described in the Methods (inside the method overview subsection there), with
425  technical details provided in the Supplementary Note. For TWAS applications, our method
426  examines one gene at a time and estimates and tests its causal effect on a trait of interest. Our
427  method models multiple correlated instruments, performs MR inference in a maximum
428  likelihood inference framework, and is capable of testing and controlling for horizontal
429  pleiotropic effects commonly encountered in TWAS. We refer to our method as the probabilistic
430  Mendelian randomization with Egger regression (PMR-Egger), which is implemented as an R
431  package. Our method is computationally efficient and can analyze each gene in minutes in a
432 GWAS with a few hundred thousand individuals (Table 2).

433  Simulations: Testing and estimating the causal effect

434  We performed simulations to examine the effectiveness of our method and compared it with
435  existing MR approaches. Simulation details are provided in the Methods. Briefly, we simulated
436 gene expression values based on genotypes from 456 individuals in GEUVADIS and simulated
437  phenotypes based on genotypes from 2,000 randomly selected individuals in GERA. In the
438  simulations, we varied the genetic architecture underlying gene expression from sparse (one SNP
439  or 1% of SNPs are causal) to polygenic (10% or 100% of SNPs are causal). We varied the
440  proportion of SNPs exhibiting horizontal pleiotropic effects in a wide range (from 0%, 10%,
441  30%, 50% to 100%). We examined directional pleiotropy setting (the ratio of SNPs with
442  negative vs positive horizontal pleiotropic effects is 0:10), approximately directional pleiotropy
443  setting (1:9 or 3:7) and balanced pleiotropy settings (5:5). We varied the magnitude of horizontal
444 pleiotropic effects y to be either 1x104, 5x10*, 1x1073, or 2x10°3, which corresponds to the 50%,

445  70%, 90%, 95% percentiles of the horizontal pleiotropic effect estimate in real data. We also
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446  varied the magnitude of causal effect a to be either 0, 0.14, 0.2 or 0.245, which corresponds to a
447  proportion of phenotypic variance explained by vertical pleiotropic effects (PVE,y) as 0, 0.2%,
448  0.4% and 0.6% respectively.

449 Our first set of simulations is focused on causal effect testing. Here, we compared PMR-Egger
450  with five different methods that include SMR, PrediXcan, TWAS, CoMM, and LDA MR-Egger.
451  We first examined type | error control of different methods under the null (¢ = 0). In the
452  absence of horizontal pleiotropic effects, PMR-Egger, together with PrediXcan, TWAS, and
453  CoMM, all provides calibrated type | error (Fig. 1a). Consistent with previous observations®’, we
454  found that SMR produces overly-conservative/deflated p-values. The deflation of SMR p-values
455 is presumably because SMR requires the selected instrument being a true causal SNP with a
456  large effect size, which is not always guaranteed in practice. In addition, we found that LDA
457  MR-Egger produces inflated p-values, presumably because LDA MR-Egger makes a fixed effect
458  assumption on . The fixed effect assumption on g is not expected to work well in TWAS
459  settings where the number of SNPs are on the same order of the sample size in the gene
460  expression study and where the cis-SNPs are all highly correlated with each other due to LD.
461  Such fixed effect assumption on B, when paired with the two-stage inference procedure that
462  ignores the estimation uncertainty in the first stage, makes LDA MR-Egger sensitive to the
463  collinearity induced by SNP correlations caused by LD. Indeed, we found that the p-values from
464 LDA MR-Egger are well calibrated when we followed the exact same simulation setting used
465 in®, where SNP genotypes were simulated based on an autoregressive covariance matrix with a
466  moderate correlation parameter. However, when such correlation parameter was set to be
467  realistically high (>0.9) or if we used SNPs from real data to carry out the same set of

468  simulations, then we observed p-value inflation from LDA MR-Egger (Supplementary Fig. 2).
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469 In the presence of horizontal pleiotropic effects, PMR-Egger becomes the only method that
470  produces calibrated (or slightly conservative) p-values (Fig. 1b, c, d). In contrast, the p-values
471 from all other methods become inflated, and more so with increasingly large horizontal
472  pleiotropic effect. For example, when y is 5x10, the genomic control factors from PMR-Egger,
473  SMR, PrediXcan, TWAS, CoMM, and LDA MR-Egger are 0.93, 1.30, 1.33, 1.33, 1.49 and 2.61
474  respectively. When y is increased to 1x10°3, the genomic control factors from PMR-Egger, SMR,
475  PrediXcan, TWAS, CoMM, and LDA MR-Egger become 0.93, 2.39, 2.27, 2.46, 4.03 and 2.57
476  respectively.

477 The null p-value distributions from different methods remain largely similar regardless of the
478  genetic architecture underlying gene expression being sparse or polygenic (Supplementary Fig.
479  3). Note that, the p-values from SMR become less deflated when there is a sparse set of SNPs
480 affecting gene expression; however, such deflation is not completely abolished even when one
481  SNP has non-zero effect on gene expression, presumably because we cannot always identify the
482  true non-zero effect SNP through eQTL mapping and may supply a tagged SNP for SMR
483  analysis. In addition, the p-value distribution pattern for different methods under the null does
484  not change much with reduced the gene expression heritability value PVE,,. When PVE,, is
485  either 5% or 1%, PMR-Egger still produces well-calibrated p values (Supplementary Fig. 4).

486 We note that, like the standard MR-Egger regression, our PMR-Egger also makes a relatively
487  strong assumption on the horizontal pleiotropic effect and assumes that all SNPs have the same
488  horizontal pleiotropic effect. To examine the robustness of such assumption, besides the above
489  settings where either 0% or 100% SNPs have horizontal pleiotropic effects, we varied the
490  proportion of horizontal pleiotropic SNPs to be either 10%, 30%, 50%. We found that the p-

491  values from PMR-Egger remain calibrated regardless of the sparsity of the horizontal pleiotropic
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492  SNPs (Supplementary Fig. 5). In addition, besides the above directional pleiotropy settings
493  where the ratio of SNPs with negative vs positive effects is set to be 0:10, we also examined two
494  approximately directional pleiotropy settings (1:9 or 3:7) and one balanced setting (5:5). We
495 found that the p-values from PMR-Egger remains calibrated in either the approximately
496  directional pleiotropy settings or the balanced setting when horizontal pleiotropic effect is small
497  or moderate (y =1x10% 5x10*%, or 1x103 Supplementary Fig. 6a, b, c). However, when
498  horizontal pleiotropic effect is large (y =2x107%), as one would expect, the p-values from PMR-
499  Egger becomes inflated, with genomic control factor being 1.08, 1.31 and 1.37, for settings
500 where the ratio is 1:9, 3:7 and 5:5, respectively (Supplementary Fig. 6d). Finally, we repeated all
501 the above analyses with cross-gene based simulations, which provide consistent results on the
502 type | error control of different methods for testing the causal effects (Supplementary Fig. 7-12).

503 Next, we examined the power of different methods to identify the causal effect for a range of
504  possible causal effect sizes . Because the same p-value from different methods may correspond
505 to different type I errors, we computed power based on FDR of 0.1 instead of a nominal p-value
506 threshold to allow for fair comparison across methods. In the absence of horizontal pleiotropic
507 effects or in the presence of small horizontal pleiotropic effects, PMR-Egger, TWAS and CoMM
508 have similarly power, all outperforming the other three methods, highlighting the importance of
509  making polygenic assumptions on f and modeling all cis-SNPs together (Fig. 2a, b). The power
510 of PMR-Egger is slightly lower than the other two, presumably because PMR-Egger uses extra
511  parameters to model horizontal pleiotropy, which leads to a loss of degrees of freedom and
512  subsequent loss of power in the absence of horizontal pleiotropy. The power of all methods
513 increases with a, though their relative performance rank does not change. In the presence of

514  horizontal pleiotropy, the power of all methods reduces (Fig. 2c, d). However, the power
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515  reduction from PMR-Egger is substantially smaller than all other methods. For example, when
516 PVE,, = 0.006 and y = 0.0005, PMR-Egger reaches a power of 41%; the power of SMR,
517  PrediXcan, TWAS, CoMM, and LDA MR-Egger are 7%, 24%, 31%, 33% and 1%, respectively.
518  When PVE,, = 0.006 but y = 0.001, the power of PMR-Egger remains similar and is 40%; the
519  power of SMR, PrediXcan, TWAS, CoMM, and LDAMR-Egger reduces to 3%, 13%, 16%, 16%
520 and 0.9%, respectively. Besides the horizontal pleiotropic effects y, we examined how power is
521 influenced by the genetic architecture underlying gene expression, B (Supplementary Fig. 13).
522  We found that the power of different methods in the setting where 10% of SNPs have non-zero
523  effects on gene expression are similar to the baseline setting where all SNPs have non-zero
524  effects, both in the absence (Supplementary Fig. 13e vs Fig. 2a) or in the presence of horizontal
525  pleiotropic effects (Supplementary Fig. 13F vs Fig. 2d). However, the relative performance of
526  different methods changes when there is only one SNP or 1% SNPs having non-zero effect on
527  gene expression. Specifically, in the absence of horizontal pleiotropic effects, the power of both
528  PrediXcan and SMR become slightly higher than PMR-Egger, TWAS and CoMM, all of which
529  have substantially higher power than LDA MR-Egger (Supplementary Fig. 13a, c). The higher
530 power of PrediXcan and SMR in the sparse setting presumably is because the ElasticNet
531  estimation procedure employed in PrediXcan favors sparse eQTLs while SMR explicitly makes a
532  single eQTL assumption. In the presence of horizontal pleiotropic effects, however, PMR-Egger
533  remains the most powerful, even in the setting where only one SNP has non-zero effect on gene
534  expression (Supplementary Fig. 13b, d). We also found that PMR-Egger produces accurate
535  estimate of the causal effect a, both under the null and under various alternatives, in the presence
536  or absence of horizontal pleiotropic effects (Supplementary Fig. 14). The causal effect estimates

537 remain reasonably unbiased in the two approximately directional pleiotropy settings and one
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538  hbalanced setting (Supplementary Fig. 15a, c, e). Finally, we repeated all the above analyses in
539  cross-gene based simulations, which provide consistent results on the power of different methods
540  for detecting causal effects (Supplementary Fig. 16-17).

541  Simulations: Testing and estimating horizontal pleiotropic effect

542  Our second set of simulations is focused on horizontal pleiotropic effect testing. Here, we
543  compared PMR-Egger with two different methods: LDA MR-Egger and MR-PRESSO. All three
544  methods examine one gene at a time and test whether cis-SNPs within the gene exhibit non-zero
545  horizontal pleiotropic effects. Note that, unlike PMR-Egger and LDA MR-Egger, MR-PRESSO
546  requires independent instruments and uses permutation to obtain the empirical p-values. Due to
547  the heavy computational burden resulting from permutations, we restricted the number of
548  permutations in MR-PRESSO to 10,000 (the lowest possible p value from MR-PRESSO is thus
549  10~%) and were only able to apply MR-PRESSO to a subset of simulation scenarios.

550 We first examined type | error control of different methods under the null, where there is no
551  horizontal pleiotropic effect. We found that the p-values from PMR-Egger provide calibrated
552  type | error control under a range of causal effect sizes a (Fig. 3). However, p-values from both
553 LDA MR-Egger and MR-PRESSO are inflated, and more so with increasingly large causal effect
554  a. For example, when PVE,, = 0, the genomic control factor from PMR-Egger and LDA MR-
555  Egger are 0.96 and 2.31, respectively. When PVE,, is increased to 0.6%, the genomic control
556  factor from PMR-Egger remains 0.96, while the genomic control factor from LDA MR-Egger
557  becomes 3.04. (We are unable to accurately compute the genomic control factor for MR-
558  PRESSO because its minimal p-value is 10.) The overly inflated p-values from LDA MR-Egger
559 is presumably due to its fixed effect modeling assumption on B and the subsequent failure to

560 control for realistic LD patterns. The inflation of MR-PRESSO p values is presumably because
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561 MR-PRESSO can only handle independent instruments and thus does not fare well in TWAS
562  settings. Inflation of p-value on testing horizontal pleiotropy would incorrectly identify genes
563  with no pleiotropic effects, thus likely reducing the power to detect true causal effect «.
564  Importantly, the p-values from PMR-Egger remain calibrated regardless of the genetic
565 architecture underlying gene expression (Supplementary Fig. 18). Finally, we repeated all the
566  above analyses in cross-gene based simulations, which provide consistent results on the type |
567 error control of different methods for testing pleiotropic effects (Supplementary Fig. 19-20).

568 Next, we examined the power of different methods in detecting non-zero horizontal
569  pleiotropic effect. Again, we computed power based on an FDR of 0.1 instead of the nominal p-
570 value to allow for fair comparison across methods. We dropped MR-PRESSO for comparison
571  here due to its heavy computational burden. We found that PMR-Egger outperforms LDA MR-
572  Egger in a range of possible horizontal pleiotropic effect sizes, and that the power of both
573  methods increases with increasing horizontal pleiotropy (Fig. 2e, f). For example, when PVE,, =
574  0.6% and y = 0.0005, PMR-Egger achieves a power of 1.6% while LDA MR-Egger achieves a
575  power of 1% (note that the power is relatively small due to the small sample size used in the
576  simulations). When PVE,, = 0.6% but y = 0.001, the power of PMR-Egger increases to 58.9%
577  while the power of LDA MR-Egger increases to 32%. In addition, the power to detect horizontal
578  pleiotropic effects is not influenced by the sparsity level of the genetic architecture underlying
579  gene expression (Supplementary Fig. 21). The power to detect horizontal pleiotropic effects does,
580 however, depend on the sparsity level of y (Supplementary Fig. 22a). Specifically, power of both
581 PMR-Egger and LDA MR-Egger reduces with increasing sparsity of y, though the power of
582 PMR-Egger remains higher than LDA MR-Egger across a range of sparsity values. Similarly, the

583  power to detect pleiotropic effects also suffers in the absence of directional pleiotropic effect
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584  (Supplementary Fig. 22b). In addition, PMR-Egger can estimate the horizontal pleiotropic effect
585  size accurately in the presence of directional pleiotropic effect (Supplementary Fig. 23).
586  However, in the absence of directional pleiotropic effect, as one would expect, the estimates of
587  pleiotropic effects become under-ward biased, more so in the balanced setting than in the
588  approximately directional pleiotropy settings (Supplementary Fig. 15b, d, f). Finally, we repeated
589 all the above analyses in cross-gene based simulations, which provide consistent results on the
590 power of different methods for detecting pleiotropic effects (Supplementary Fig. 24-25).

591 Real data applications

592  We performed TWAS to detect genes causally associated with any of the 39 phenotypes
593  collected from three GWASs (details in Methods). The examined gene expression data is
594  obtained from the GEUVADIS study and contains 15,810 genes. The examined phenotypes
595 include 7 common diseases from WTCCC, 22 diseases from GERA, and 10 quantitative traits
596  from UK Biobank. The GWAS sample size ranges from 4,686 (for Crohn’s disease in WTCCC)
597  to 337,198 (for UK Biobank). We applied PMR-Egger together with five other approaches (SMR,
598  PrediXcan, TWAS, CoMM, and LDA MR-Egger) to examine pairs of gene and phenotype one at
599 a time. In the analysis, we regressed phenotypes on the top 10 genotyping PCs to obtain the
600  phenotype residuals, which we used further to conduct TWAS analysis for all compared methods.
601  The p-values for testing the causal effect of each gene on the phenotype are shown for WTCCC
602  traits (Fig. 4a, b and Supplementary Fig. 26), GERA traits (Fig. 5a, b and Supplementary Fig.
603  27), and UK Biobank traits (Fig. 6a, b and Supplementary Fig. 28); with genomic control factors
604 listed in Supplementary Table 1 and visualized in Fig. 4c, Fig. 5¢c and Fig. 6¢. Besides these main
605 analyses, we also performed parallel analysis for PMR-Egger where we used the original

606  phenotype as the outcome and included the top 10 genotype PCs as covariates (Supplementary
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607  Figures 29-31). The results from these parallel analyses are largely consistent with the main
608  results. Therefore, we will mainly report the main results in the following text. For illustration
609  purpose, we display qg-plots for two selected traits in each data, one with a relatively low
610  number of gene associations and the other with a relatively high number of gene associations, in
611  Fig. 4a, b, Fig. 5a, b and Fig. 6a, b, respectively. Among the selected six traits, the one with zero
612  number of associated genes (BD in WTCCC; Fig. 4a) and the one with one associated gene
613  (Irritable Bowel Syndrome in GERA; Fig. 5a), represent approximately null traits with no
614  apparently associated genes. For the six selected traits, consistent with simulations, we found that
615  the p-values from PMR-Egger are well calibrated, more so than the other methods. In contrast,
616  the p-values from CoMM, TWAS, PrediXcan and LDA MR-Egger are inflated and deviated
617  upward from the diagonal line, while the p-values from SMR are overly conservative and lie
618  below the diagonal line. The results observed in these exemplary traits generalize to all other
619  examined traits. For example, the genomic control factor from PMR-Egger is the lowest among
620  all methods in 25 out of the 39 traits, and ranges from 0.93 to 1.04 in WTCCC (Fig. 4c), from
621  0.92 to 1.13 in GERA (Fig. 5c), and from 1.12 to 1.34 in UK Biobank (Fig. 6¢). (Note that the
622  higher genomic control factor in the large UK Biobank as compared to WTCCC and GERA is
623  expected under polygenic architecture®® and reflects at least in part the higher power in the UK
624  Biobank as compared to GERA and WTCCC.) In contrast, the genomic control factors from
625 CoMM, TWAS, PrediXcan are often higher than that from PMR-Egger for most traits examined.
626  For example, the genomic control factor from CoMM is often the highest among all other
627  methods (except for LDA MR-Egger) in 22 out of the 39 traits, and ranges from 1.13 to 1.23 in
628 WTCCC, 0.94 to 1.62 in GERA, and 1.45 to 1.90 in UK Biobank. The genomic control factor

629  from TWAS is the highest among all other methods (except for LDA MR-Egger) in 14 out of the
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630 39 traits, ranges from 1.20 to 1.31 in WTCCC, 0.98 to 1.15 in GERA, and 1.30 to 2.17 in UK
631  Biobank. The genomic control factor from PrediXcan is the highest among all other methods
632  (except for LDA MR-Egger) in 5 out of the 39 traits, and ranges from 1.21 to 1.31 in WTCCC,
633 1.00to 1.16 in GERA, and 1.09 to 1.46 in UK Biobank. In addition, consistent with simulations,
634  we observed a substantial inflation of LDA MR-Egger p-values: its genomic control factor
635  ranges from 17.60 to 18.56 in WTCCC, 32.13 to 34.74 in GERA, and 10.48 to 16.65 in UK
636  Biobank. Also consistent with simulations, the p-value from SMR often lies underneath the
637  expected null, even though its genomic control factors are often well behaved (Fig. 4a, b, Fig. 5a,
638 b, Fig. 6a, b and Supplementary Figs. 26-28).

639 We examined the number of associated genes detected by different methods based on a
640  Bonferroni corrected genome-wide threshold (Fig. 4d, Fig. 5d and Fig. 6d; Supplementary Table
641  2). We note that the number of detected genes based on this p-value threshold may artificially
642  favors those methods that have inflated type I error control. For this analysis, we excluded LDA
643  MR-Egger for comparison, as its p-values are overly inflated. Comparing across the remaining
644  methods, we found that SMR can barely detect any genes significantly associated with traits
645  across all three data sets, much less so than that detected by the other four methods. The much
646  lower number of genes detected by SMR than the other four methods are consistent with the
647  relatively low power of SMR observed in simulations. For the other four methods, we found that
648  the number of gene-trait pairs detected by CoMM and PMR-Egger is higher than that detected by
649  TWAS and PrediXcan in all three GWASs (Fig. 4d, Fig. 5d and Fig. 6d; Supplementary Table 2).
650  The higher number of discoveries by both CoMM and PMR-Egger in the three GWASSs is
651  consistent with our simulations as well as previous observations that likelihood-based inference

652  often achieves higher power than two-stage inference for MR analysis. However, we do notice
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653  that PMR-Egger detects slightly lower number of gene-trait pairs than CoMM based on the same

654  genome-wide p-value threshold, consistent with the inflated genomic inflation factors observed

655  for CoMM. Indeed, we found that the estimated |$| for the common set of genes detected by

656  both CoMM and PMR-Egger is higher than the set of genes only detected by CoMM across traits
657  (Supplementary Fig. 32a, b). Therefore, the genes detected by CoMM but not PMR-Egger tend
658 to have large |y| and small |a], likely reflecting false associations due to horizontal pleiotropic
659  confounding.

660 Overall, by controlling for horizontal pleiotropic effects, PMR-Egger detected many likely
661  causal genes that the other methods failed to detect. For example, the LNK/SH2B3 gene
662  (111,743,752-111,989,427 on chr 12) is only identified by PMR-Egger to be associated with
663  platelet count in the UK Biobank (PMR-Egger p = 1.17 x 107221, CoMM p=0.98; TWAS p =
664 8.6 x 10™>; PrediXcan p=0.68; SMR p=0.024). The association between LNK and plate count is
665  consistent with results from recent large-scale GWASs**%!, LNK/SH2B3 encodes the lymphocyte
666  adaptor protein (LNK) that is primarily expressed in hematopoietic and endothelial cells®2. In
667  hematopoietic cells, LNK functions as a negative regulator of cell proliferation as well as the
668  thrombopoietin-mediated cytokine signaling pathway, which is a key signaling pathway that
669 promotes megakaryocytes to form platelets®>%. Indeed, platelets are overproduced and
670  accumulated in LNK knockdown cells as well as Lnk knockout mouse®*%, supporting a causal
671 role of LNK in platelets production. As the second example, the NOD2 gene (50,627,514-
672 50,866,988 on chr 16) is identified by PMR-Egger to be associated with Crohn’s disease (CD;
673 p = 6.1 x 1071%), and, with a slightly less significance, also by CoOMM (p = 7.8 x 10715). The
674  association between NOD2 and CD was not identified by the other methods (TWAS p=0.005;

675  PrediXcan p=0.92; SMR p=0.15). NOD2 encodes a cytosolic pattern recognition receptor that
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676  acts both as a cytoplasmic sensor of microbial products and as an important mediator of innate
677  immunity and inflammatory response®” The NOD2 gene is a well-known susceptible gene for
678  CD and is perhaps one of the first genes ever implied for CD®. Multiple SNPs in NOD2 have
679 been found to be associated with CD in both early linkage studies®®’* and many recent
680 GWASs'23, NOD2 variants associated with CD often reside in the ligand recognition domain of
681  NOD2 and can lead to aberrant bacterial handling and antigen presentation’. Indeed, NOD2-
682  deficient mice displays dysregulated bacterial community in the ileum and NOD2-deficient ileal
683  epithelia exhibit impaired ability of inducing immune responses for bacteria elimination”. It is
684  thus hypothesized that mis-regulation of NOD2 can causally lead to altered interactions between
685 ileal microbiota and mucosal immunity, resulting in increased disease susceptibility to CD™. As
686  athird example, the TFRC gene (195,654,054-195,909,060 on chr 3) is identified by PMR-Egger
687  to be associated with red blood cell distribution width (RDW) in the UK Biobank (p = 3.3 X
688  10717). Such association is not identified by the other methods (CoMM p=0.95; TWAS p=0.76;
689  PrediXcan p=0.97; SMR p=0.38). TFRC encodes the classical transferrin receptor that is
690 involved in cellular iron uptake’®’’. Multiple SNPs in TFRC have been established to be
691  associated with various erythrocyte phenotypes in GWASs’®7. These associated erythrocyte
692  phenotypes include the mean corpuscular hemoglobin (MCH) and mean corpuscular volume
693  (MCV, the average volume of red blood cells) which is directly related to RDW'""8, The variants
694 in TFRC likely lead to decreased iron availability for red cell precursors, as has been observed in
695 mice deficient in TFRC, thus resulting in a compensatory increase of red blood cell size as
696  measured by RDW®. The regional association plots for all these three genes are presented in the

697  Supplementary Fig.33-35.
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698 We compared the results from different MR methods with a recently published TWAS fine-
699  mapping method, FOCUS®. The analysis details are provided in the Materials and Methods
700  section. Briefly, we follow > and focused on independent and non-overlapping genomic regions
701  that harbor at least one genome-wide-significant SNP and at least one TWAS gene that is
702  significant by the MR methods. The number of genes and regions analyzed by FOCUS for each
703 of the three data sets are shown in Supplementary Table 3, which also contains the number of
704  associated genes detected by FOCUS in the credible set. Due to the small number of associated
705  genes detected in WTCCC, we focus our main comparison in GERA and UK Biobank. In these
706  real data applications, we found that the results from PMR-Egger is largely consistent with that
707  of FOCUS, more so than the other methods (Supplementary Fig. 41). Specifically, the average
708  PMR-Egger -log10(p-value) for genes in the FOCUS 90% credible set is 22.43 in GERA and
709  10.67 in UK Biobank. The average -log10(p-value) of PMR-Egger is higher than CoMM (13.83
710 and 10.43), TWAS (5.71 and 7.55), PrediXcan (4.66 and 7.06) and SMR (NA for GERA, as no
711 gene in the credible set is detected by SMR; 1.78 for UKbiobank). In addition, the difference of
712 the average PMR-Egger -log10(p-value) between genes in the FOCUS credible set and genes
713 outside is large (16.61 in GERA and 7.43 in UK Biobank). The -log10(p-value) difference is
714  again larger than CoMM (8.41 and 6.02), TWAS (4.52 and 5.35), PrediXcan (3.50 and 4.74) and
715  SMR (NA and 0.28). Similarly, the proportion of significant genes detected by PMR-Egger in
716  the FOCUS credible set is 78% in GERA and 60% in UK Biobank. The proportion of significant
717  genes by PMR-Egger is higher than CoMM (75% and 53%), TWAS (50% and 47%), PrediXcan
718  (50% and 48%) and SMR (NA and 8%). In addition, the difference in the proportion of
719  significant genes detected by PMR-Egger between genes in the FOCUS credible set and genes

720  outside is high (53% in GERA and 41% in UK Biobank). This proportion difference by PMR-
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721 Egger is again higher than CoMM (51% and 39%), TWAS (46% and 36%), PrediXcan (50% and
722 35%) and SMR (NA and 1%). The consistency between PMR-Egger and FOCUS validates the
723 high power of PMR-Egger.

724 Next, we shift our focus to testing horizontal pleiotropic effects. The p-values for testing the
725  causal effect of gene on phenotype are shown for WTCCC traits (Fig. 4e, f and Supplementary
726  Fig. 26), GERA traits (Fig. 5e, f and Supplementary Fig. 36), and UK Biobank traits (Fig. 6e, f
727  and Supplementary Fig. 37); with genomic control factors visualized in Fig. 49, Fig. 5g and Fig.
728  60. We also display qq-plots for the previously selected exemplary traits in Fig. 4e, f, Fig. 5e, f,
729 and Fig. 6e, F. Overall, consistent with simulations, the p-values from PMR-Egger are well
730  behaved while the p-value from LDA MR-Egger display substantial inflation. For example, the
731 genomic control factor from PMR-Egger ranges from 0.93 to 1.01 in WTCCC (Fig. 4g), from
732 0.921t0 1.09 in GERA (Fig. 5g), and from 1.13 to 1.71 in UK Biobank (Fig. 6g). In contrast, the
733 genomic control factor from LDA MR-Egger ranges from 34.00 to 36.00 in WTCCC, from 69.82
734 10 72.19 in GERA and from 17.75 to 29.85 in UK Biobank (Supplementary Table 1). With the
735  same Bonferroni adjusted genome-wide p-value threshold, PMR-Egger detected 33 gene-trait
736  pairs in WTCCC in which the cis-SNPs exhibit significant horizontal pleiotropy, 37 gene-trait
737  pairsin GERA, and 626 gene-trait pairs in the UK Biobank.

738 Horizontal pleiotropic effect tests can help us explain some of the discrepancy in terms of the
739  causal associations detected by PMR-Egger and the other methods. For example, for the trait of
740  red blood cell count in UK Biobank, the MAPT gene on chromosome 17 shows a significant
741 pleiotropy effect (p = 2.35 x 10™°) but displays no significant causal effect (p=0.98) by PMR-
742 Egger. In contrast, MAPT is detected to be significantly associated with red blood cell count by

743 PrediXcan (p = 8.11 x 10719), and, to a much lesser extent, by TWAS (p = 1.72 x 1073).
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744  However, no previous evidence suggests that MAPT is associated with red blood cell count.
745  Indeed, we found that the genomic location of MAPT (43,871,748-44,205,700) is close to and
746  partially overlapped with KANSL1 (44,007,282-44,402,733), which has been previously
747  identified to be associated with red blood cell traits®®2, The association between KANSL1 and
748  red blood cell count is also detected by PMR-Egger (p = 1.02 x 10~7), by CoMM (p = 2.72 X
749  1078), and, to a much lesser extent, by TWAS (p = 1.66 x 1073) in the present study. By
750  controlling for the expression level of the KANSL1 gene in the PrediXcan framework, the
751  association between the predicted MAPT expression level and red blood cell count is no longer
752  significant (p = 0.10). Therefore, the causal association between MAPT and red blood cell count
753  detected by PrediXcan likely reflects either the true horizontal pleiotropic effect of MAPT cis-
754  SNPs on red blood cell count through KANSL1 or their tagging effects of the neighboring eQTLs
755  of KANSL1. As another example, for height in the UK Biobank, the pseudogene RP11-9E13.2
756  (70,137,755-70,340,521) on chromosome 10 has a significant pleiotropy effect (p = 1.08 %
757  10713) but displays no significant causal effect (p=0.93) by PMR-Egger. In contrast, RP11-
758  9E13.2 is detected to be significantly associated with height by PrediXcan (p = 4.34 x 10719),
759 and, to a lesser extent, by TWAS (p = 9.05 X 107°). The pseudogene RP11-9E13.2 is in the
760  neighborhood of MYPN (69,765,912-70,071,774), which has been previously identified to be
761  associated with height®. The association between MYPN and height is also detected by PMR-
762  Egger (p = 1.82 x 1077), COMM (p = 2.13 x 1071%), and to a lesser extent, PrediXcan (p =
763 3.94 x 107*) and TWAS (p = 1.55 x 1073), in the present study. By controlling for the
764  predicted expression level of MYPN gene in the PrediXcan framework, the association between
765  the predicted RP11-9E13.2 expression level and height is no longer significant at the genome-

766  wide threshold (p = 3.37 x 10~*). Therefore, the causal association between the pseudogene
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767 RP11-9E13.2 and height as detected by PrediXcan and TWAS likely reflects either the
768  horizontal pleiotropic effect of RP11-9E13.2 cis-SNPs on height through MYPN or their tagging
769  effects of the neighboring eQTLs of MYPN. The results suggest the practical importance of
770  testing and controlling for pleiotropic effects in TWAS applications. Certainly, we acknowledge
771 that, both these examples are focused on the special case where the false gene association with
772 the trait disappears when conditional on a neighboring gene. We did not provide examples where
773 the apparently false gene association with the trait may be explained by horizontal pleiotropic
774  effects acted upon/through a gene far away, as it is often challenging to convincingly identify
775  trans eQTL effects. In the special case we focused on, while it is possible that SNPs display true
776  horizontal pleiotropic effects through the neighboring gene, it is equally likely that SNPs used in
777 the model are simply tagging nearby eQTLs of the neighboring causal gene®>® and thus display
778  apparent “horizontal pleiotropic effects” through the neighboring gene, as also mentioned above.
779  Subsequently, the horizontal pleiotropic effect term in PMR-Egger may represent the apparent
780  “horizontal pleiotropic effects” through SNP tagging to the nearby eQTLs of the causal gene,
781  rather than the truly horizontal pleiotropic effect acted through other molecular pathways.
782  Regardless of the interpretation of the horizontal pleiotropic effect term, we found it reassuring
783 that by modeling the horizontal pleiotropic effect term in PMR-Egger can reduce false
784  discoveries in the case of SNP tagging.

785 We note that an important feature of PMR-Egger is its ability to test both causal effect and
786  horizontal pleiotropy effect simultaneously. We contrast the p-values obtained from these two
787  different tests across genes for those traits in which at least one gene is detected as significant
788  from either of the two tests (Supplementary Figs. 38-40). We found that different traits exhibit

789  different gene association patterns. For example, some traits may only contain genes with a
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790  significant causal effect but without a significant horizontal pleiotropic effect (e.g. CD and CAD
791  in WTCCC,; Allergic Rhinitis, Irritable Bowel Syndrome and Psychiatric disorders in GERA).
792  Some traits may only contain genes with a significant horizontal pleiotropic effect but without a
793  significant causal effect (e.g. Dermatophytosis in GERA). Some traits may contain genes with a
794  significant causal effect as well as genes with a significant horizontal pleiotropic effect, but with
795  the two sets of genes being non-overlapped (e.g. Asthma, Dyslipidemia, HT, Abdominal Hernia
796  and Macular Degeneration in GERA; Fored Vitral Capacity in UK Biobank). While the majority
797  of traits contain genes with both a significant causal effect and a significant horizontal
798  pleiotropic effect. The top gene which is most significant for both causal effect test and
799  pleiotropy test is highlighted in the plots. Being capable of testing both causal effect and
800 horizontal pleiotropy effect facilitates our understanding of the gene association pattern with
801  various different complex traits.

802

803
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804  Discussion

805  We have presented a data generative model and a likelihood framework for MR analysis that
806 unifies many existing transcriptome wide association analysis methods and many existing MR
807  methods. Under the framework, we have presented PMR-Egger, a new method that conducts MR
808  analysis using multiple correlated instruments while properly controlling for horizontal
809 pleiotropic effects. By properly controlling for horizontal pleiotropic effects and making
810 inference under a likelihood framework, PMR-Egger yields calibrated p-values across a wide
811 range of scenarios and improves power of MR analysis over existing approaches. We have
812  illustrated the benefits of PMR-Egger through extensive simulations and multiple real data
813  applications of TWAS.

814 One important modeling assumption we made in PMR-Egger is that the horizontal pleiotropic
815  effects of all SNPs equal to each other. The equal effect size assumption directly follows the
816  commonly used Egger regression modeling assumption for MR analysis and is analogous to the
817  burden effect size assumption commonly used for rare variant tests. Consistent with existing
818 literature on applications of the Egger regression and burden test, we also found that equal effect
819  size assumption employed in PMR-Egger works reasonably robust for causal effect estimation
820 and testing with respect to a range of model mis-specifications and appears to be effective in
821  several real data applications examined here. However, we do acknowledge that our equal effect
822  size assumption in PMR-Egger can be overly restrictive in many settings. For example, as
823  described in the Results, in the absence of direction pleiotropy, the pleiotropic effect estimate
824  becomes down-ward biased and the pleiotropic effect test loses power. We have attempted to
825 alleviate this restrictive modeling assumption by imposing an alternative modeling assumption

826  on the horizontal effect sizes based on variance component assumption. In particular, we have
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827  attempted to assume that the horizontal pleiotropic effect of each SNP follows a normal
828  distribution with mean zero and a certain variance component parameter, i.e. analogous to the
829  SKAT test assumption®. Such variance component assumption is a more flexible modeling
830 assumption than the equal effect size assumption, potentially alleviating much of the concern
831  with respect to the sensitivity and robustness of equal effect size assumption. Unfortunately,
832  under the variance component assumption, inference for the resulting PMR model becomes
833  overly complicated. In particular, due to the estimation uncertainty in the hyper-parameter
834  estimates, the p-values from the PMR variance component model becomes severely deflated
835 even under simple null simulations (Supplementary Fig. S42). Such deflation of p-values has
836  been previously observed in variance component tests for microbiome applications®®. Only few
837 methods exist to address such p-value in-calibration issue resulting from hyper-parameter
838  estimation uncertainty®’, and it is not straightforward to adapt any of these methods to our PMR
839  variance component model. Besides the equal effect size modeling restriction, we also note that
840  neither PMR-Egger nor the PMR variance component model is capable of accounting for
841  correlation between horizontal pleiotropic effects y and the SNP effects on gene expression .
842  Therefore, while we view PMR-Egger as in important first step towards effective control of
843  horizontal pleiotropic effects in TWAS applications, we emphasize that imposing more realistic
844  modeling assumptions on the horizontal pleiotropic effects in the PMR framework will likely
845  yield more fruitful results in the future.

846 We have primarily focused on modeling continuous traits with PMR-Egger. For case control
847  studies, we have followed previous approaches and directly treated binary phenotypes as
848  continuous outcomes!®®3888% which appears to work well in both WTCCC and GERA data

849  applications we examined. Treating binary phenotypes as continuous outcomes can be justified
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850 by recognizing the linear model as a first order Taylor approximation to a generalized linear
851  model>. However, it would be desirable to extend PMR-Egger to accommodate case control
852  data or other discrete data types in a principled way, by, for example, extending PMR-Egger into
853  the generalized linear model framework. In particular, we could use a probit or a logistic link to
854  extend PMR-Egger to directly model case control data. Extending PMR-Egger to model discrete
855  data types using the generalized linear model framework would likely lead to wider applications
856  of PMR-Egger and is thus an important avenue for future research.

857 We have primarily focused on modeling individual-level data with PMR-Egger. However, like
858  many other linear model-based methods in statistical genetics, PMR-Egger can also be easily
859  extended to make use of summary statistics. The summary statistics version of PMR-Egger is
860  described in detail in the Supplementary Text. Briefly, the summary statistics version of PMR-
861  Egger requires marginal SNP effect size estimates and their standard errors, both on the gene
862  expression and on the trait of interest. In addition, it requires a SNP by SNP correlation matrix
863  that can be constructed based on a reference panel. We validated the implementation of the
864  summary statistics-based approach of PMR-Egger in simulations (details in Materials and
865  Methods). In the comparison, we constructed the SNP by SNP correlation matrix from three
866  different reference panels, by using either all individuals from the GWAS data, 10% randomly
867  selected individuals from the GWAS data, or individuals of European ancestry from the 1,000
868  Genomes project. We applied the summary statistics-based approach of PMR-Egger to each
869  reference panel and compared results with the individual level data-based approach of PMR-
870  Egger that was applied to the complete data. The p values from both approaches for testing
871  causal effects as well as for testing pleiotropy effects are largely consistent with each other,

872  demonstrating the effectiveness of summary statistics-based approach of PMR-Egger
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873  (Supplementary Fig. 43). The summary statistics-based approach of PMR-Egger is implemented
874 in the same software package. Being able to make use of summary statistics extends the
875  applicability of PMR-Egger to data sets where individual-level genotype or phenotype are not
876  available.

877 Finally, in addition to what we have already mentioned in the Materials and Methods, we
878  emphasize here again, that, while we have followed the previous MR literature and use “causal
879  effect” through the text, the effect is causal only when certain MR modeling assumptions hold.
880 These MR assumptions are often not straightforward to prove. For example, without measuring
881 all potential confounders, it is not straightforward to argue that the SNP instruments are not
882  associated with any other confounders that may be associated with both exposure and outcome.
883  Therefore, we caution against the over-interpretation of causal inference in observation studies
884  such as TWAS applications. However, we do believe MR is an important step that allows us to
885  move beyond standard linear regressions and is an important analysis that can provide potentially
886  more trustworthy evidence with regard to causality compared to simpler approaches.
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Code availability. Our method is implemented in the R package PMR, freely available at

http://www.xzlab.org/software.html and https://cran.r-roject.org/web/packages/PPMR/index.html.

The code to reproduce all the analyses are available on GitHub

(https://github.com/yuanzhongshang/PMRreproduce).

Data availability. No data were generated in the present study. The GEUVADIS gene

expression data is publicly available at http://www.geuvadis.org. The WTCCC genotype and

phenotype data is publicly available at https://www.wtccc.org.uk. The GERA genotype and

phenotype data is available in dbGaP (https://www.ncbi.nlm.nih.gov/gap) with accession number

phs000788. The UK Biobank data is from UK Biobank resource under Application Number

30686.
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Table 1 Summary of some existing MR methods

PrediXcan!
TWAS?
SMR3
GSMR*
MR-Egger*?
CoMM?8
CaMMEL*
Kang et al.?®
MRMix30
Berzuini et al.3!
LDA MR-Egger®?
DPR™
TIGAR®

PMR-Egger

Design
Two-sample
Two-sample
Two-sample
Two-sample
Two-sample
Two-sample
Two-sample
One-sample
Two-sample
One-sample
Two-sample
Two-sample
Two-sample

Two-sample

Instrumental variable

Correlated
Correlated
Univariate
independent
Independent
Correlated
Correlated
Correlated
Independent
Correlated
Correlated
Correlated
Correlated

Correlated

[ effect assumption
Elastic net
BSLMM
Fixed effect
Fixed effect
Fixed effect
Normal
Fixed effect
Fixed effect
Normal Mixture
Fixed effect
Fixed effect
Latent Dirichlet process
Latent Dirichlet process

Normal

y effect assumption

N/A
N/A
N/A
N/A
Equal effect size
N/A
Normal
Lasso
Normal Mixture
Horseshoe
Equal effect size
N/A
N/A

Equal effect size

Estimation procedure
Two-stage
Two-stage
Two-stage
Two-stage
Two-stage

MLE
Variational Bayes
Two-stage
Estimating equation
MCMC
Two-stage
Two-stage
Two-stage

MLE

Methods are categorized based on the experimental design (two-sample vs one-sample vs both), the characterizes of selected instrumental variables (univariate vs multiple
independent vs multiple correlated), 8 effect size assumption, y effect size assumption, estimation/inference procedure (ratio-based vs two-stage estimation vs maximum
likelihood vs Bayesian), and input data type (individual-level vs summary; which is now removed per reviewer’s request). The categorization of inference procedure generally
follows ref [5]. In the inference procedure, the two-stage estimation procedure comprises two regression stages: the first-stage regression of the exposure on the instrumental
variables, and the second-stage regression of the outcome on the fitted values of the exposure from the first stage. Some inference procedures, such as the inverse variance
weighted (IVW) procedure (e.g. MR-Egger®®) or the ratio method (e.g. for SMR?) are categorized as two-stage procedure here, as both are asymptotically equivalent to a two-stage
estimation procedure in the case of independent instruments. We only list MR methods that directly take input instruments into the model; many MR methods that performs
various selection procedures on the instruments (e.g. Guo et al?®) are not included in the table. Some recently developed methods that only test for horizontal pleiotropy, such as

GLIDE? and MR-PRESSO? are not included in the table.
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Table 2. Mean computational time (in second) of various MR methods

Trait exi?nl\:)lljair; tg:fne CoMM PMR-Egger TWAS LDA MR-Egger SMR PrediXcan MR-PRESSO

300 0.51(0.19) 0.80(0.57) 1.97(0.86) 0.08(0.02) 0.0003(0.0005) 26.74(2.81) 408.27(74.76)

T1D from 500 1.21(0.41) 1.42(0.77)  3.48(1.16) 0.14(0.03) 0.0004(0.0005) 11.77(0.64)  829.04(135.79)
2/::4331(:) 983 5.85(1.50) 9.79(1.56) 4.69(1.73) 0.60(0.09) 0.0004(0.0005)  9.96(0.78) 2023.77(260.43)
2106 111.00(12.87)  97.33(7.63)  5.87(2.26) 4.18(0.59) 0.0005(0.0005) 22.90(2.63)  4913.22(554.47)

300 1.47(0.29) 2.06(0.22) 2.61(1.48) 0.05(0.02) 0.0002(0.0004) 33.39(3.09) 464.64(62.18)

Asthma 500 1.21(0.33) 4.21(0.81) 2.54(0.87) 0.09(0.03) 0.0002(0.0004) 11.71(0.70) 919.66(102.83)

from GERA

(n=61,953) 1000 2437(5.13)  21.68(1.66)  3.07(2.55) 0.46(0.13) 0.0002(0.0004) 14.29(1.30)  2275.42(263.95)
2008 59.01(4.98)  52.52(4.47)  4.51(1.48) 2.33(0.71) 0.0004(0.0005) 20.18(3.28)  5213.73(601.46)

latelet 300 2.56(0.53) 557(4.54)  5.04(4.19) 0.09(0.02) 0.0008(0.0004)  10.93(1.96) 471.55(50.44)

Count from 500 6.82(2.75) 7.61(2.30) 5.44(4.30) 0.15(0.02) 0.0007(0.0005) 12.17(1.04) 876.06(92.90)
Bifb';nk 1052 24.92(6.28)  23.59(3.21)  5.91(4.79) 0.81(0.09) 0.0008(0.0004) 16.05(2.38)  2133.03(77.56)
(n=337.198) 2605 186.14(28.45) 178.68(16.75)  5.37(0.73) 8.11(1.20) 0.0008(0.0004) 9.89(1.74)  6949.72(245.75)

Computation is carried out on a single thread of a Xeon Gold 6138 CPU. The computation time is averaged across 20 replicates, with values inside parentheses denoting the
standard deviation. #SNP denotes the number of cis-SNPs for four exemplary genes in each study. The computational time for MR-PRESSO is based on 10,000 permutations.
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Fig. 1 Quantile-quantile plot of -log10 p-values from different methods for testing the causal effect
either in the absence or in the presence of horizontal pleiotropic effect under null simulations.
Compared methods include CoMM (green), PMR-Egger (red), TWAS (blue), LDA MR-Egger
(black), SMR (orange), and PrediXcan (purple). Null simulations are performed under different
horizontal pleiotropic effect sizes: (a) y =0; (b) ¥ =0.0001; (c) y =0.0005; (d) y=0.001. Only p-values
from PMR-Egger adhere to the expected diagonal line across a range of horizontal pleiotropic effect
sizes.
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Fig. 2 Power of different methods under various simulation scenarios. Power (y-axis) at a false discovery
rate of 0.1 to detect the causal effect (a-d) or the horizontal pleiotropic effect (e-f) is plotted against
different causal effect size characterized by PVE_zy (x-axis). Compared methods include CoMM (green),
PMR-Egger (red), TWAS (blue), LDA MR-Egger (black), SMR (orange), and PrediXcan (purple).
Simulations are performed under different horizontal pleiotropic effect sizes: (a) y=0; (b) y=0.0001; (c, e)

v=0.0005; (d, f) y=0.001.
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Fig. 3 Quantile-quantile plot of -logl0 p-values from different methods for testing the horizontal
pleiotropic effect either in the absence or in the presence of causal effect under null simulations.
Compared methods include PMR-Egger (red), LDA MR-Egger (black), and MR-PRESSO (dodger blue).
Null simulations are performed under different causal effect sizes characterized by PVE,,: (a) PVE,=0;
(b) PVE,;=0.2%; (¢) PVE,;=0.4%; and (d) PVE,=0.6%. Only p-values from PMR-Egger adhere to the
expected diagonal line across a range of horizontal pleiotropic effect sizes. Due to heavy computational
burden, we are only able to run 10,000 permutations for MR-PRESSO. Therefore, the minimal p-value
from MR-PRESSO is 104,
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Fig. 4 TWAS analysis results by different methods for traits in the WTCCC data. Compared methods include CoMM (green),
PMR-Egger (red), TWAS (blue), LDA MR-Egger (black), SMR (orange), and PrediXcan (purple). (a) Quantile-quantile plot
of -log10 p-values from different methods for testing the causal effect for an exemplary trait BD. (b) Quantile-quantile plot of
-log10 p-values from different methods for testing the causal effect for another exemplary trait T1D. (¢) Genomic inflation
factor for testing the causal effect for each of the 7 traits by different methods. (d) Number of causal genes identified for each
of the 7 traits by different methods. (e) Quantile-quantile plot of -logl0 p-values from different methods for testing the
horizontal pleiotropic effect for an exemplary trait BD. (f) Quantile-quantile plot of -log10 p-values from different methods for
testing the horizontal pleiotropic effect for another exemplary trait T1D. (g) Genomic inflation factor for testing the horizontal
pleiotropic effect for each of the 7 traits by different methods. (h) Number of genes identified to have significant horizontal
pleiotropic effect for each of the 7 traits by different methods. For ¢, d, g, h, the number on the x-axis represents seven traits in
order: T1D, CD, RA, BD, T2D, CAD, HT.
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Fig. 5 TWAS analysis results by different methods for traits in the GERA data. Compared methods include CoMM (green),
PMR-Egger (red), TWAS (blue), LDA MR-Egger (black), SMR (orange), and PrediXcan (purple). (a) Quantile-quantile plot
of -logl10 p-values from different methods for testing the causal effect for an exemplary trait Irritable Bowel Syndrome. (b)
Quantile-quantile plot of -logl0 p-values from different methods for testing the causal effect for another exemplary trait
Asthma. (¢) Genomic inflation factor for testing the causal effect for each of the 22 traits by different methods. (d) Number of
causal genes identified for each of the 22 traits by different methods. (e) Quantile-quantile plot of -logl0 p-values from
different methods for testing the horizontal pleiotropic effect for an exemplary trait Irritable Bowel Syndrome. (f) Quantile-
quantile plot of -log10 p-values from different methods for testing the horizontal pleiotropic effect for another exemplary trait
Asthma. (g) Genomic inflation factor for testing the horizontal pleiotropic effect for each of the 22 traits by different methods.
(h) Number of genes identified to have significant horizontal pleiotropic effect for each of the 22 traits by different methods.
For ¢, d, g, h, the number on the x-axis represents 22 traits in order: Asthma, Allergic Rhinitis, CARD, Cancers, Depressive
Disorder, Dermatophytosis, T2D, Dyslipidemia, HT, Hemorrhoids, Abdominal Hernia, Insomnia, Iron Deficiency, Irritable
Bowel Syndrome, Macular Degeneration, Osteoarthritis, Osteoporosis, PVD, Peptic Ulcer, Psychiatric disorders, Stress
Disorders, Varicose Veins.
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Fig. 6 TWAS analysis results by different methods for traits in the UK Biobank data. Compared methods include CoMM
(green), PMR-Egger (red), TWAS (blue), LDA MR-Egger (black), SMR (orange), and PrediXcan (purple). (a) Quantile-
quantile plot of -logl0 p-values from different methods for testing the causal effect for an exemplary trait BMI. (b)
Quantile-quantile plot of -log10 p-values from different methods for testing the causal effect for another exemplary trait
Platelet Count. (c) Genomic inflation factor for testing the causal effect for each of the 10 traits by different methods. (d)
Number of causal genes identified for each of the 10 traits by different methods. () Quantile-quantile plot of -log10 p-
values from different methods for testing the horizontal pleiotropic effect for an exemplary trait BMI. (f) Quantile-quantile
plot of -logl0 p-values from different methods for testing the horizontal pleiotropic effect for another exemplary trait
Platelet Count. (g) Genomic inflation factor for testing the horizontal pleiotropic effect for each of the 10 traits by different
methods. (h) Number of genes identified to have significant horizontal pleiotropic effect for each of the 10 traits by different
methods. For ¢, d, g, h, the number on the x-axis represents 10 traits in order: Height, Platelet count, Bone mineral density,
Red blood cell count, FEV1-FVC ratio, BMI, RDW, Eosinophils count, Forced vital capacity, White blood cell count.
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