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 2 

ABSTRACT 25 

 26 

Parkinson’s disease (PD) is a systemic disease clinically defined by the degeneration of 27 

dopaminergic neurons in the brain. While alterations in the gut microbiome composition have 28 

been reported in PD, their functional consequences remain unclear. Herein, we first analysed 29 

the gut microbiome of patients and healthy controls by 16S rRNA gene sequencing of stool 30 

samples from the Luxembourg Parkinson’s study (n=147 typical PD cases, n=162 controls). 31 

All individuals underwent detailed clinical assessment, including neurological examinations 32 

and neuropsychological tests followed by self-reporting questionnaires. Second, we predicted 33 

the potential secretion for 129 microbial metabolites through personalised metabolic modelling 34 

using the microbiome data and genome-scale metabolic reconstructions of human gut 35 

microbes. Our key results include: 1. eight genera and nine species changed significantly in 36 

their relative abundances between PD patients and healthy controls. 2. PD-associated microbial 37 

patterns statistically depended on sex, age, BMI, and constipation. The relative abundances of 38 

Bilophila and Paraprevotella were significantly associated with the Hoehn and Yahr staging 39 

after controlling for the disease duration. In contrast, dopaminergic medication had no 40 

detectable effect on the PD microbiome composition. 3. Personalised metabolic modelling of 41 

the gut microbiomes revealed PD-associated metabolic patterns in secretion potential of nine 42 

microbial metabolites in PD, including increased methionine and cysteinylglycine. The 43 

microbial pantothenic acid production potential was linked to the presence of specific non-44 

motor symptoms and attributed to individual bacteria, such as Akkermansia muciniphila and 45 

Bilophila wardswarthia. Our results suggest that PD-associated alterations of gut microbiome 46 

could translate into functional differences affecting host metabolism and disease phenotype. 47 

 48 

 49 
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INTRODUCTION 50 

Parkinson’s Disease (PD) is a complex multifactorial disease, with both genetic and 51 

environmental factors contributing to the evolution and progression of the disease (Kalia et al. 52 

2015). While several studies have elucidated the role of genetic factors in the pathogenesis of 53 

the disease (Kitada et al. 1998; Bonifati et al. 2003; Paisan-Ruiz et al. 2004; Di Fonzo et al. 54 

2009), the role and the contribution of various environmental and lifestyle factors are still not 55 

completely understood (Gatto et al. 2010). Importantly, about 60% of the PD patients suffer 56 

from constipation (Fasano et al. 2015), which can start up to 20 years before the diagnosis and 57 

is one of the prodromal syndromes (Savica et al. 2009; Cersosimo et al. 2013). 58 

The human being is considered to be a superorganism recognising a complex interplay 59 

between the host and microbes (Sleator 2010). For instance, the human gut microbiome has 60 

been shown to complement the host with essential functions (trophic, metabolic, protective) 61 

and to influence the host’s central nervous system (CNS) via the gut-brain axis through the 62 

modulation of neural pathways and GABAergic and serotoninergic signalling systems 63 

(Carabotti et al. 2015).  64 

Recent studies have reported an altered gut composition in PD (Hasegawa et al. 2015; 65 

Keshavarzian et al. 2015; Scheperjans et al. 2015; Bedarf et al. 2017; Hill-Burns et al. 2017; 66 

Hopfner et al. 2017; Petrov et al. 2017; Heintz-Buschart et al. 2018; Barichella et al. 2019). 67 

One of these studies has been conducted using samples from recently diagnosed, drug-naive 68 

patients (Bedarf et al. 2017). These studies have demonstrated that PD patients have an altered 69 

microbiome composition, compared to age-matched controls. However, the functional 70 

implications of the altered microbiome remain to be elucidated, e.g., using animal models 71 

(Sampson et al. 2016). A complementary approach is computational modelling, or constraint-72 

based reconstruction and analyses (COBRA) (Orth et al. 2010), of microbiome-level 73 

metabolism. In this approach, metabolic reconstructions for hundreds of gut microbes 74 
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(Magnusdottir et al. 2017) are combined based on microbiome data (Baldini et al. 2018; 75 

Heirendt et al. 2019)). Flux balance analysis (FBA) (Orth et al. 2010) is then used to compute, 76 

e.g., possible metabolite uptake or secretion flux rates of each microbiome model (microbiome 77 

metabolic profile) (Heinken et al. 2019) or to study of microbial metabolic interactions (cross-78 

feedings) (Klitgord and Segre 2010; Heinken and Thiele 2015). This approach has been applied 79 

to various microbiome data sets to gain functional insights (Thiele et al. 2018; Heinken et al. 80 

2019; Hertel et al. in revision), including for PD where we propose that microbial sulphur 81 

metabolism could contribute to changes in the blood metabolome of PD patients (Hertel et al. 82 

in revision).  83 

In the present study, we aim at investigating microbial changes associated with PD 84 

while focusing on possible covariates influencing microbial composition and at proposing 85 

functional, i.e., metabolic, consequences arising from the microbiome changes. First, we 86 

analysed the faecal microbial composition of PD patients and controls from the Luxembourg 87 

Parkinson’s study (Hipp et al. 2018) (Figure 1). Second, based on the observed significant 88 

differences in the composition of microbial communities between PD patients and controls, we 89 

created and interrogated personalised computational models representing the metabolism of 90 

each individual’s microbial community. We demonstrate that the combined microbial 91 

composition and functional metabolite analysis provides novel hypotheses on microbial 92 

changes associated with PD and disease severity, enabling future mechanism-based 93 

experiments. 94 

 95 

RESULTS 96 

The Luxembourg Parkinson’s Disease study includes patients with typical PD and 97 

atypical parkinsonism, as well as matched healthy control subjects from Luxembourg and its 98 

neighbouring regions from a broad age-range (Hipp et al. 2018). For the present study, we 99 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/691030doi: bioRxiv preprint 

https://doi.org/10.1101/691030
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

focused on typical PD patients and healthy controls over the age of 50 (Table 1, Methods). 100 

Stool samples were analysed for 147 PD patients and 162 controls using 16S rRNA gene 101 

sequences (Methods: Analysis of the microbial composition with 16S rRNA gene sequencing). 102 

 103 

 104 

Figure 1: Overview of the study approach and the key methods used. Relative abundances 105 

were derived from 16S rRNA gene sequences (Methods: Analysis of the microbial composition 106 

with 16S rRNA gene sequencing) and used as input for the personalised community modelling 107 

to simulate metabolites secretion profiles. Relative abundances and secretion profiles were 108 

statistically analysed to identify microbial or metabolic differences between PD patients and 109 

controls.  110 

 111 
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Variable PD Control Missing values, in 
% 

Genera influenced by  
PD-covariate interaction 

effects  
Genera associated with 

trait 
NMPCs associated with 

trait 
      PD  Control (FDR<0.05) (up/down, FDR<0.05) (up/down, FDR<0.05) 

Cases vs. Controls 147 162 0% 0% -- 
Anaerotruncus, 
Christensenella, 
Lactobacillus, 
Streptococcus, 
Akkermansia, Bilophila, 
Turicibacter 

D-alanine, Oxalate, D-
Mannitol, 
Cysteinylglycine, L-
Methionine, L-alanine, D-
Ribose, 4Hydroxybenzoic 
acid, Uracil,  

Sex (female subjects) 31.5 % 35.8% 0% 0% Paraprevotella -- -- 
Age at basic assessment

a 69.3 ± 8.6 63.3 ± 8.3 0% 0% Anaerotruncus, Roseburia -- Phosphate, Glycine 
Body mass index

a 27.3 ± 4.5 27.9 ± 4.8 0.7% 0%  Paraprevotella Victivallis -- 
Sniff score

a 7.1 ± 3.4 12.7 ± 2.1 0% 0%   --   
Metabolic diabetes  4.1 % 3.1% 0% 0% -- -- -- 
Non-motor symptoms 
questionnaire score

a 9.3 ± 5.1 3.9 ± 3.9 9.5% 3.7% -- --- Pantothenate 
Constipated 36.7% 6.2 % 0% 0% Bifidobacterium Bifidobacterium Xanthine, D-Alanine, 

Pantothenate, L-Lactate, 
D-Ribose 

PD disease duration  5.9 ± 5.7 -- 6.1% -- -- Lactobacillus -- 
UPDRS-part I 10.0 ± 5.9 4.5 ± 4.4 3.4%  3.1% -- -- -- 
UPDRS-part II 11.8 ± 8.1 1.3 ± 2.8 1.4% 2.4% -- -- -- 
UPDRS-part III 34.6± 16.1 2.3± 2.9 1.4%  0% -- 

Peptococcus, 
Flavonifractor, 
Paraprevotella 

-- 
UPDRS-part IV 1.7 ± 3.2 -- 1.4% -- -- -- -- 
Hoehn and Yahr 2.2 ± 0.6 -- 0%  -- -- Bilophila, 

Paraprevotella -- 
L-DOPA intake 66.7% 0% 0% 0% -- -- -- 
Dopamine agonist intake 56.5% 0% 0% 0% -- -- -- 
MAO-B COMT 
inhibitors intake 41.5% 0% 0% 0% -- -- -- 
Table 1: Descriptive statistics of the analyses sample from the Luxembourg Parkinson’s 113 

Disease study and overview over associations. A red label means increased in PD, blue 114 

decreased in PD, while -- “nothing to report”. PD disease duration refers to time since diagnosis 115 

at the date of stool sampling. UPDRS=Unified Parkinson Rating Scale, L-DOPA=levodopa, 116 

MAO-B=monoaminooxidase B, COMT=Catecholamine-Methyl-Transferase, NMPC=Net 117 

maximal production capability. 118 

 119 

Species and genus level changes in PD microbiomes 120 

We investigated disease-associated microbial changes at the species level. We found 121 

that the mean species diversity (i.e., the alpha-diversity) did not significantly differ between 122 

PD cases and controls (b=-0.04351, 95%-CI:(-.107;0.177), p=0.177), in agreement with earlier 123 

studies (Scheperjans et al. 2015; Bedarf et al. 2017) (Hopfner et al. 2017), but in disagreement 124 
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with two other studies (Keshavarzian et al. 2015; Heintz-Buschart et al. 2018). However, seven 125 

species were significantly altered in PD (FDR<0.05, Figure 2). Note that when comparing 126 

results between different taxonomic levels, changes observed for Ruminococcus and Roseburia 127 

species were not significant on the genus level but only on the species level, highlighting the 128 

importance of species-level resolution. The highest effect size was associated with 129 

Akkermansia muciniphila (Odds ratio (OR)=1.80, 95%-CI=(1.29, 2.51), p=6.02e-04, 130 

FDR<0.05; Supplementary Table 1) in agreement with the previously reported higher 131 

abundance of A. muciniphila in PD patients (Bedarf et al. 2017; Heintz-Buschart et al. 2018)). 132 

Subsequently, we examined possible differences at the genus level by performing 133 

semiparametric fractional regressions while adjusting for age, sex, the body mass index (BMI), 134 

batch, and total read counts. We identified eight genera to be significantly increased in PD 135 

(FDR<0.05; Figure 3A, Table 1), with Lactobacillus showing the highest effect size (Odds 136 

ratio (OR)=5.75, 95%-CI=(2.29, 14.45), p=1.96e-04, FDR<0.05; Supplementary Table 2). In 137 

contrast, the genera Turicibacter decreased significantly in PD cases (FDR<0.05). To 138 

summarise, significant changes could be observed on the species and genus level. 139 

 140 

PD modifies the effects of basic covariates on the microbiome 141 

Furthermore, we investigated whether the genus level alterations in PD were affected 142 

by basic confounding factors. This interaction analyses uncovered rich effect modifications, 143 

revealing that microbiome changes in PD have to be considered in the context of age, BMI, 144 

and gender. Our analyses demonstrate that the effects of PD are not homogeneous among 145 

important sub-groups of patients. For example, Paraprevotella was exclusively reduced in 146 

female patients but not in female controls (Figure 3B), highlighting gender-dependent 147 

alterations of microbial communities in PD. In addition, the effects of BMI and age were 148 

modified in PD cases. The PD cases had increased Anaerotruncus abundance with age, while 149 
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 8 

non-linear, overall decreasing abundances of Roseburia and Paraprevotella were observed 150 

with age and BMI, respectively (Figure 3C). Taken together, these analyses suggest that 151 

microbial abundances are shifted in PD cases and that also the effects of important covariates 152 

were altered in PD, reflecting the systemic and complex nature of PD.  153 

 154 

 155 

Figure 2: Boxplots of seven significantly changed species in PD versus controls 156 

(FDR<0.05). Significance levels were determined using multivariable semi-parametrical 157 

fractional regressions with the group variable (PD vs. control) as predictor of interest, including 158 

age, gender, BMI, and technical variables (i.e., total read-counts and batch effect) as covariates. 159 

FDR=false discovery rate. 160 
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 161 

Figure 3: Genus alterations in PDs due to interactions with basic covariates. Relative 162 

abundance is given on a logarithmic scale. A. Boxplots of the seven significant species 163 

(FDR<0.05). B. Female PD patients have a reduced abundance of Paraprevotella (FDR<0.05). 164 
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C. Genus abundance age and BMI dependencies of Anaerotruncus, Roseburia, and 165 

Paraprevotella (global test on all interaction terms, FDR<0.05). For graphical assessment of 166 

the interaction terms the z-transformed residual abundances are displayed after correction for 167 

technical covariates (batch and read counts). D. The genus relative abundance of 168 

Bifidobacterium was increased in patients reporting to be constipated (FDR<0.05). E. Genus 169 

association with disease staging showed a decrease of relative abundance of Paraprevotella 170 

and an increase of Bilophila genus over increasing Hoehn and Yahr scale values (FDR<0.05). 171 

F. An increased score in motor symptoms (UPDRS III) was associated with an increased trend 172 

in abundances of Flavonifractor and Peptococcus and a decreased trend in Paraprevotella 173 

abundance (FDR<0.05). UPDRS=Unified Parkinson Rating Scale, BMI=body mass index, 174 

FDR=false discovery rate. 175 

 176 

Microbial abundances, medication intake, and constipation in PD 177 

The Luxembourg Parkinson’s study enrols patients of all stages of PD. Therefore, the 178 

patients have considerable inter-individual variance in PD-related features, such as constipation 179 

and intake of medication (Table 1). We analysed whether these features had an impact the 180 

microbiome composition in PD. In our data, we could not find any evidence for an effect of the 181 

three medication types on the microbiome, i.e., levodopa, COMT inhibitors, or MAO-B 182 

inhibitors, when correcting for multiple testing (Supplementary Table 2). In contrast, 183 

constipation, a prevalent non-motor symptom in PD patients (Lesser 2002), was associated 184 

with an increased abundance of Bifidobacterium, with a clear effect in constipated PD cases 185 

(Figure 3D). However, since there were only ten constipated controls (Table 1), these results 186 

must be confirmed in larger cohorts.  187 

 188 

 189 
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Genus association with the disease severity 190 

We next investigated whether the stage of the disease, i.e., defined by Hoehn and Yahr 191 

staging, NMS, and UPDRS (Unified Parkinson Rating Scale) scores, and its subscales, was 192 

associated with altered genus abundance. For the Hoehn and Yahr staging, Paraprevotella 193 

showed a negative association and Bilophila showed a positive association, both of which were 194 

significant after multiple testing (Figure 3E). For the UPDRS III subscale score (i.e., motor 195 

symptoms, Table 1), three genera, being Peptococcus, Flavonifractor, and Paraprevotella, 196 

survived correction for multiple testing (Figure 3F). In contrast, the other UPDRS subscales 197 

and the NMS were not significantly associated with microbial changes, after correction for 198 

multiple testing. Note that these analyses were performed while adjusting for disease duration. 199 

When analysing the association pattern of disease duration, we found Lactobacillus positively 200 

correlated with the disease duration (FDR<0.05, Supplementary Figure S1). In conclusion, our 201 

data suggest that the microbial composition may be utilised as a correlate of disease severity.  202 

 203 

Metabolic modelling reveals distinct metabolic secretion capabilities of PD microbiomes 204 

To obtain insight into the possible functional consequence of observed microbiome 205 

changes in PD, we used metabolic modelling (cf. Methods). Briefly, we mapped each of the 206 

309 microbiome samples on the generic microbial community model consisting of 819 gut 207 

microbial reconstructions (Magnusdottir et al. 2017; Heinken et al. 2019) (cf. Supplementary 208 

Material) to derived personalised microbiome models (Baldini et al. 2018). We then computed 209 

a net maximal production capability (NMPC) for 129 different metabolites that could be 210 

secreted by each microbial community model (cf. Methods), providing thereby a 211 

characterisation of the differential microbial metabolic capabilities in PDs and controls. The 212 

secretion of nine metabolites had differential NMPCs in PD (Figure 4A, all FDR<0.05) as 213 

determined by multivariable regressions adjusting for age, sex, BMI, and technical covariates. 214 
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Moreover, although less dominant in comparison to the abundance data, PD-covariate 215 

interactions were also prevalent, with the uracil secretion potential showing a sex-specific 216 

effect and cysteine-glycine showing a BMI-dependent PD-effect (Figure 4B, 4C). In 217 

subsequent analyses, we tested for associations of the NMPCs with constipation, medication, 218 

disease duration, Hoehn-Yahr staging, NMS, and UPDRS III scores, complementing thereby 219 

the analyses on the abundance level. Notably, we found xanthine, D-alanine, L-lactic acid, D-220 

ribose, and pantothenic acid positively associated with constipation (Figure 4B), while no 221 

NMPC was associated with medication or with disease duration. However, the pantothenic acid 222 

secretion potential was positively associated with higher NMS scores, interestingly both in PD 223 

and in controls (Figure 4D), while no NMPC survived correction for multiple testing regarding 224 

associations with the UPDRS III score and Hoehn-Yahr staging. To conclude, these results 225 

suggest that the altered microbial composition in PD could result in broad changes in metabolic 226 

capabilities, which manifested themselves additionally in non-motor symptoms and 227 

constipation.  228 

  229 

PD specific secretion profiles were altered due to changed community structure and 230 

species abundances 231 

Next, we analysed which microbes contributed to the differential secretion profiles by 232 

correlating the NMPCs to the abundance data (Figure 4E/F, Supplementary Table 3). Six 233 

metabolite NMPCs had strong contribution or where even dominated by single genera (Figure 234 

4D), while for the other four NMPCs no single dominant genus could be identified. We then 235 

computed the contribution value of each genus to the production of each secreted metabolite 236 

(NMPC). From the aforementioned genera, which were associated on genus or species level 237 

with PD, only Akkermansia, Acidaminococcus, and Roseburia had substantial metabolic 238 

contributions (over 25%). Acidaminococcus was responsible for 64% of the variance in 239 
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cysteine-glycine production and Roseburia for 30% of the variance in uracil production 240 

potential. Akkermansia impacted the secretion profiles the most and substantially contributed 241 

to the metabolism of nine metabolites (Figure 4F), including the neurotransmitter gamma-242 

aminobutyric acid (GABA) and two sulphur species, being hydrogen sulphide and methionine. 243 

GABA was also significantly altered between PD and controls on a nominal level missing FDR 244 

corrected significance narrowly (b=0.18, 95%-CI:(0.06;0.30), p=0.003, FDR=0.0501). These 245 

analyses demonstrate the added value of metabolic modelling to investigate altered metabolic 246 

functions from the whole microbial composition.  247 

 248 

 249 

Figure 4: Result of analysing secretion profiles of microbial communities. A. Box plots for 250 

NMPCs differential between cases and controls with FDR<0.05. B. NMPCs with sex-specific 251 

PD signature or constipation effects (all FDR<0.05). C. Differential age trajectory between 252 

cases and controls for cysteine-glycine (p<0.05). D. Association of pantothenic acid with non-253 

motor symptoms. E. Genera contributing more than 25% to NMPCs different between cases 254 

and controls. F. Akkermansia contribution to community production of 12 metabolites 255 

expressed as a percentage of total production for each compound. Metabolites highlighted in 256 

A C D

Metabolite Genus Explained	Variance Effect	sign
D-Alanine Veillonella 27.47% +
L-Alanine Akkermansia,	Prevotella 27.97%,31.02% +,-
Cysteine-Glycine Acidaminococcus 66.18% +
4-Hydroxybenzoate Faecalibacterium 85.16% +
L-Methionine Akkermansia 65.89% +
Uracil Roseburia 29.76% +

Pantothenic	 acidCysteine-Glycine

Genera	contributing	 above	25%	Variance	 to	NMPC	s	different	between	cases	and	controls

E

Metabolite Explained	Variance Effect	sign
GABA 66.51% +
Alanine 27.97% +
L-Asparagine 26.29% -
Ethanol 30.06% +
Glycerol 32.71% +
Hydrogen	sulphide 53.16% +
L-Methionine 65.89% +
Phosphate 34.30% +

NMPCs	 for	which	Akkermansia abundance	 explained	more	than	25%	of	variance
F

B
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red were significantly increased in PD (FDR<0.05). NMPC=net maximal production capacity, 257 

GABA=gamma-aminobutyrate, H2S=hydrogen sulphide, FDR=false discovery rate. Effect 258 

sign “–“: negative correlation. Effect sign “+“: positive correlation. 259 

 260 

DISCUSSION 261 

In this study, we aimed to elucidate compositional and functional changes in the faecal 262 

microbiome of PD patients. Therefore, we analysed 16S rRNA data from a cohort of typical 263 

PD patients (n=147) and controls (n=162), and performed personalised microbial 264 

computational modelling. We identified i) eight genera and nine species that changed 265 

significantly in their relative abundances between PD patients and healthy controls. ii) PD-266 

associated microbial patterns that were dependent on sex, age, BMI, constipation, and iii) in 267 

PD patients altered secretion potentials, particularly in sulphur metabolism, using metabolic 268 

modelling of microbial communities. Overall, our work demonstrated compositional and 269 

functional differences in the gut microbial communities of Parkinson’s disease patients 270 

providing novel experimentally testable hypothesis related to PD pathogenesis.  271 

The microbial compositional analyses of our cohort identified significantly different 272 

microbial abundance distributions between PD patients and healthy controls (Table 1). Up to 273 

date, 13 studies have described altered colonic microbial compositions associated with PD and 274 

an overall picture starts to arise (Figure 5). For instance, the microbial the families of 275 

Verrucomicrobiaceae and Lactobacillaceae have been consistently found to have an increased 276 

abundance in PD (Figure 5).  In accordance, our study also reports increased abundance in PD 277 

of Akkermansia, Christensenella, and Lactobacillus. Similarly, Bifidobacteria has also been 278 

repeatedly associated with PD (Figure 5) but in our study, we could show that the 279 

Bifidobacteria association dependent on constipation (Figure 3) highlighting the need for 280 

incorporating disease-specific phenotypes as covariates into the statistical design.  281 
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 282 

Figure 5: Reported microbial changes at the family level associated with PD in different 283 

studies. Only those bacterial families are shown, for which significant associations with 284 

species or genera have been reported in at least two studies comparing stool samples from 285 

patients and controls. Red - increased in PD, Blue - decreased in PD. a: Actinomycetales, b: 286 

Bacteroides fragilis, c: Bifidobacterium, d: Christensenella, e: Clostridium coccoides/ leptum, 287 

f: Faecalibacterium, Dorea, g: Clostridium IV/XVIII, Butyricicoccus, Anaerotruncus, h: 288 

Anaerotruncus, i: Aquabacterium, j: Holdemania, k: Lactobacillus, l: Oscillospira, m: 289 

Ruminococcus romii, Ruminococcus torques, n: Sphingomonas, o: Streptococcus, p: 290 

Akkermansia. * Drug-naive, de novo PD patients only. Based on (Barichella et al. 2019). 291 

 292 

At the same time, inconsistencies between the studies remain and they may be due to 293 

differences in study design, inclusion criteria, faecal sampling, RNA extraction protocols, and 294 

metagenomic and statistical methods. For instance, we used a relatively large, PD cohort while 295 
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Bedarf and colleagues (Bedarf et al. 2017) studied a small cohort of drug-naïve, male PD 296 

patients and male controls (Figure 5). Three studies included individuals of Chinese descent 297 

(Li et al. 2017; Lin et al. 2018; Qian et al. 2018) while the other studies focused on Caucasian 298 

individuals. It has been shown that microbial composition is associated with ethnic 299 

background, geography, and dietary habits (Turnbaugh et al. 2008; De Filippo et al. 2010; 300 

Yatsunenko et al. 2012), which may explain some of the discrepancies. The differences 301 

between the studies hence highlight the importance of performing meta-analysis to identify 302 

global microbial signatures, as it has been done for, e.g., colorectal cancer (Wirbel et al. 2019). 303 

Such meta-analysis may also permit to investigate subgroups of PD, as the number of cases 304 

and controls would be substantially increased and thus provide higher statistical power. For 305 

instance, we observed various effect modulators that were not reported before in humans (Table 306 

1), such as Paraprevotella abundance reduction being specific to women. This result is 307 

apparently in contradiction with findings from Bedarf and colleagues (Bedarf et al. 2017) who 308 

reported decreased levels of Prevotellaceae in a cohort of only male PD patients. However, 309 

once again, differences might be explained by different inclusion criteria, methodologies, and 310 

related possible sex-specific effects. Interestingly, a recent study reported a higher abundance 311 

of Paraprevotella in male mice compared to female mice (Huang et al. 2018). Despite the lack 312 

of extensive studies on gender-specific differences in microbiome composition, we suggest that 313 

machine learning procedures on microbiome data should be performed in a sex-stratified 314 

manner. Larger cohorts, e.g., through meta-analysis of published cohorts would allow the 315 

identification of generalizable microbial differences in PD patients and also, specific microbial 316 

changes associated with certain traits and physiological characteristics, as suggested by our 317 

data. 318 

We could not detect an effect of the dopaminergic, PD specific medication on the 319 

microbiome composition, after correction for multiple testing. Also the fact that key findings 320 
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from the study of Bedarf and colleagues were reproduced in other cohorts of PD patients under 321 

medication, including ours, support that notion. Nonetheless, in previous studies, Dorea and 322 

Phascolarctobacterium genera have been negatively associated with levodopa equivalent doses 323 

(Qian et al. 2018) and members of the family of Bacillaceae have been correlated with 324 

levodopa treatment (Heintz-Buschart et al. 2018). Consequently, it cannot be excluded that 325 

medication is associated with microbial changes, albeit the association may be weaker than the 326 

effects of other covariates. As PD drugs are often taken in combinations, it would require a 327 

larger sample size than used in our study to permit the investigation of all possible drug 328 

combinations. The lack of clear association is somewhat expected as levodopa is absorbed in 329 

the upper part of the small intestine (Streubel et al. 2006) and thus small intestinal rather than 330 

large intestinal microbes may play a more prominent role in levodopa bioavailability. 331 

Consistently, a recent study showed that bacterial tyrosine decarboxylases restrict the 332 

bioavailability of levodopa (van Kessel et al. 2019). Interestingly, 193/818 reconstructed 333 

microbes (Magnusdottir et al. 2017), commonly found in the human gut, carry genes encoding 334 

for proteins that convert levodopa into dopamine (Noronha et al. 2019). Levodopa is always 335 

given with decarboxylase inhibitors, such as carbidopa or benserazide, targeting the human 336 

decarboxylases, but it cannot be excluded that they also act on the microbial counterpart. 337 

However, Van Kessel et al. have shown that carbidopa as well as benserazide is only a weak 338 

inhibitor of the microbial tyrosine decarboxylase (van Kessel et al. 2019).  339 

We identified a positive association of Bilophila abundance with the Hoehn and Yahr 340 

staging, which captures motor impairment and disability independent of disease duration. 341 

Indeed, the abundance of Bilophila was not associate with disease duration, indicating mainly 342 

dependency on the progression of symptoms. This finding is consistent with experimental mice 343 

studies demonstrating the pro-inflammatory effect of Bilophila overgrowth (Devkota et al. 344 

2012; Natividad et al. 2018). Notably, the Hoehn and Yahr staging was also positively 345 
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associated on a nominal level with the predicted pyruvate secretion profile (Supplementary File 346 

4), which was accordingly significantly increased in PD patients on a nominal level alongside 347 

with L- and D-alanine. Bilophila has the rare capability to use taurine, an inhibitory 348 

neurotransmitter with neuroprotective effects (Saransaari and Oja 2007; Wu et al. 2009), as an 349 

energy source (Laue and Cook 2000). This pathway is initiated by the taurine: pyruvate 350 

aminotransferase (Laue and Cook 2000), converting pyruvate and taurine into L-alanine and 351 

sulfoacetaldehyde. The only microbe of the 818 species in our AGORA collection encoding 352 

the corresponding gene was Bilophila, which was significantly increased (FDR<0.05) and 353 

hence, the corresponding reaction (VMH ID: TAURPYRAT) was increased in abundance in 354 

PD microbiomes as well. In a previous study (Hertel et al. in revision), we have shown that 355 

blood taurine conjugated bile acids were positively associated with motor symptoms. Bilophila 356 

may be a marker of disease progression in PD, and it could modulate human sulphur 357 

metabolism through its taurine degradation capabilities. Alterations in sulphur metabolism 358 

have been already described when using computational modelling of microbiomes from a 359 

cohort of early diagnosed and levodopa naive PD patients (Bedarf et al. 2017; Hertel et al. in 360 

revision) as well as an increased concentration of methionine and derived metabolites in blood 361 

samples (Hertel et al. in revision). Furthermore, we and others have reported alterations in bile 362 

acids and taurine-conjugated bile acids in PD patients (Graham et al. 2018; Hertel et al. in 363 

revision). Our present study suggests again a key role of Bilophila in host-microbiome sulphur 364 

co-metabolism, which may link with bile acid metabolism.  365 

Interestingly, an increased abundance of B. wadsworthia has been linked to constipation 366 

(Vandeputte et al. 2017). B. wadsworthia is the only microbe in the AGORA collection capable 367 

of the metabolic reaction converting pyruvate and taurine to L-alanine and sulphoacetaldehyde 368 

(VMH ID: TAURPYRAT). Therefore, an increased production of L-alanine might be due to 369 

the increased B. wadsworthia abundance. This resulting higher production rate of L-alanine 370 
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could then lead to an increased conversion into D-alanine via the alanine racemase (VMH ID: 371 

ALAR), which was present in 808/818 gut microbes in the AGORA collection. Accordingly, 372 

D-alanine was one of the three metabolite secretion profiles increased in constipated PD 373 

patients (Figure 4E). This hypothesis of B. wadsworthia playing a role in constipation of PD 374 

patients would need to be experimentally validated, especially since we could not find 375 

statistically significant changes in the association between the abundance of B. wadsworthia 376 

and constipated individuals. In contrast, we found an increase in Bifidobacteria abundance in 377 

constipated individuals and particularly in constipated PD patients. This result disagreed with 378 

an earlier study on individuals with chronic constipation, which reported a decrease in 379 

Bifidobacteria abundance (Khalif et al. 2005). Overall, the available data suggest that complex 380 

alterations in microbial composition are associated with constipation but may differ between 381 

diseases.  382 

The mucin degrading microbe, A. muciniphila, represents about 1-4% of the faecal 383 

microbiome in humans (Naito et al. 2018). Numerous diseases have been associated with a 384 

decrease in A. muciniphila abundance (Schneeberger et al. 2015; Grander et al. 2018), while 385 

an increase has been consistently reported in PD patients (Figure 5). The A. muciniphila 386 

abundance had the largest contribution to the significantly altered metabolite secretion profiles 387 

(Figure 4E), including the neurotransmitter gamma-aminobutyric acid (GABA). While its 388 

predicted secretion potential was only nominally increased in PD patients the present study, 389 

higher GABA secretions rates have also been predicted based on microbiome data from early 390 

stage levodopa naive PD patients (Hertel et al. in revision). Importantly, GABA receptors have 391 

been found in the enteric nervous system, gut muscle, gut epithelial layers, and endocrine-like 392 

cells (Hyland and Cryan 2010) and its gut receptors are thought to be related to gastric motility 393 

(peristalsis), gastric emptying, and acid secretion (Hyland and Cryan 2010). Experiments with 394 

the GABAb agonist baclofen have shown that GABAb receptors can reduce gastric mobility 395 
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in the colon of rabbits (via cholinergic modulation) (Tonini et al. 1989). Interestingly, A. 396 

muciniphila has been shown to be positively associated with gastrointestinal transit time 397 

(Gobert et al. 2016; Vandeputte et al. 2016). GABA could reach the CNS via blood stream as 398 

a lipophilic compound, being able to pass the blood brain barrier.  Additionally, microbial 399 

GABA could affect the brain-gut axis by contributing the human GABA pools, especially as it 400 

has been shown that the microbiome can affect GABA receptor density in the CNS via the 401 

vagus nerve (Bravo et al. 2011). To establish whether and which role A. muciniphila and GABA 402 

may play a role in prodomal PD, further experimental studies will be required. 403 

In order to move beyond mere cataloguing of microbial changes associated with 404 

diseases, pathway-based tools (Abubucker et al. 2012) have been developed, in which 405 

microbial sequences (or reads) are mapped, e.g., onto KEGG ontologies present in the KEGG 406 

database (Kanehisa et al. 2017). Using such tools, Bedarf et al reported decreased glucuronate 407 

degradation and an increase in tryptophan degradation and formate conversion (Bedarf et al. 408 

2017). Similarly, Heinz-Buschart et al. reported 26 KEGG pathways to be altered in PD 409 

microbiomes (Heintz-Buschart et al. 2018). In our study, we complemented the compositional 410 

analysis with computational modelling to gain insight into potential functional, i.e., metabolic, 411 

consequences of changed microbe abundances in PD. The advantage of our approach is that 412 

the functional assignments may be more comprehensive than more canonical methods, such as 413 

KEGG ontologies because (1) the underlying genome-scale metabolic reconstructions have 414 

been assembled based on refined genome annotations and have been manually curated to 415 

ensure that the reaction and gene content is consistent with current knowledge about the 416 

microbe’s physiology, and (2) each of these reconstructions, alone or in combinations, are 417 

amenable to metabolic modelling and thus functional and metabolic consequences of a changed 418 

environment (e.g., nutrients or other microbes in the models) can be computed. These 419 
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simulations are thus allowing to predict functional consequences and not only pathway or 420 

reaction enrichment, as typically done. 421 

 422 

Strength and limitation  423 

Here, we present microbiome analyses in a large population-based, monocentric case-424 

control study on PD from a defined area (Figure 5). Capitalising on the overall clinical spectrum 425 

of PD of the LuxPark cohort, which reflects a representative sample of PD patients of different 426 

disease stages from a defined geographical area, we demonstrated that microbial composition 427 

is not only altered in PD but also that the observed associations of PD with changes in the 428 

composition of the microbiome should be interpreted in the context of age, sex, BMI, and 429 

constipation. This information is of importance for clinical translation, highlighting the need 430 

for both, (i) a personalised and (ii) a holistic approach, to understand the role of microbial 431 

communities in PD pathogenesis. In a second step targeting the potential functional changes 432 

related to PD-associated microbiomes, we performed metabolic modelling based on the 433 

AGORA collection (Magnusdottir et al. 2017) of genome-scale metabolic reconstructions, 434 

allowing for the predictions of metabolite secretion profiles. Thus, our analyses facilitated a 435 

detailed investigation of the altered metabolism of PD-related microbial communities in the 436 

gut, pointing towards a role of the known pro-inflammatory species B. wadsworthia interacting 437 

with the host on sulphur metabolism. Hence, metabolic modelling provides a valuable tool for 438 

deciphering the metabolic activity of microbial communities in PD.  439 

However, despite the partial confirmation of previous results by our study (Table 5), 440 

several limitations should be kept in mind. First, certain covariates were not investigated, such 441 

as diet, exercise, and smoking. Whether these covariates alter the PD-specific signature is yet 442 

to be analysed. Although our study belongs to the three largest studies performed yet on PD, 443 

our sample size was still too small to deliver insights on combinations of drugs. Furthermore, 444 
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16S RNA sequencing, as applied in our study, is not allowing analyses on the strain level and 445 

may lead to misclassifications (Janda and Abbott 2007), and follow-up studies based on 446 

shotgun sequencing are needed to further corroborate our results. However, our results are 447 

notably well aligned with a previous shotgun sequencing study (Bedarf et al. 2017), which 448 

would further support a role of 16S RNA sequencing as a cost-efficient screening method. 449 

Being cross-sectional in nature, causal inference is not possible. Consequently, although 450 

metabolic modelling has been numerous times been shown to correctly predict attributes of 451 

living systems (Oberhardt et al. 2009; Aurich and Thiele 2016; Nielsen 2017), our hypothesis 452 

on the role of B. wadsworthia in PD interlinking sulphur metabolism with disease severity 453 

requires experimental validation. To conclude, by combining metabolic modelling with 454 

comprehensive statistical analyses, we identified a promising research target in PD and refined 455 

the understanding of PD-related microbial changes. 456 

 457 

METHODS 458 

Description of the Luxembourg Parkinson’s study 459 

For this study, data and biospecimen of the LuxPark cohort were utilised (Hipp et al. 460 

2018). The Luxembourg Parkinson’s study includes a variegated group of patients with typical 461 

PD and atypical parkinsonism, and controls from Luxembourg and its neighbouring regions 462 

(Hipp et al. 2018). Controls were partly sampled among relatives of patients. The 463 

corresponding information on the family relation between controls and cases was not available. 464 

Cancer diagnosis with ongoing treatment, pregnancy, and secondary parkinsonism (drug-465 

induced parkinsonism and parkinsonism in the frame of normotensive hydrocephalus) were 466 

exclusion criteria for enrolling in the patient or healthy control group. For 454 individuals 467 

(controls: n=248, PD: n=206) from the LuxPark cohort, stool samples were available and used 468 

for 16S RNA gene sequencing data (see below). Within LuxPark, controls were selected among 469 
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spouses of chosen patients and volunteers and individuals from other independent 470 

Luxembourgish studies (Crichton and Alkerwi 2014; Ruiz-Castell et al. 2016). As we aimed to 471 

target specifically typical PD (IPD), we excluded all individuals with age below 50 (controls: 472 

n=47, PD: n=9) and all individuals with an unclear status of PD diagnosis or an atypical PD 473 

diagnosis (PD: n=47). PD patients were defined as typical PD, according to the inclusion 474 

criteria by the United Kingdom Parkinson’s Disease Society Brain Bank Clinical Diagnostic 475 

Criteria (Hughes et al. 1992). Furthermore, we excluded control patients with a United 476 

Parkinson’s Disease Rating Scale (UPDRS) III score above ten, except for one control where 477 

the high UPDRS III score was caused by an arm injury. Furthermore, we excluded control 478 

persons who took dopaminergic medications (n=5), and individuals who reported to have taken 479 

antibiotics in the last six months (controls: n=20, PD: n=13). Note that excluded observations 480 

behave sub-additive, because of overlap between the exclusion criteria (i.e. individuals below 481 

age 50 and taking antibiotics). Finally, 309 individuals (controls: n=162, cases: n=147) were 482 

included in the statistical analyses. 483 

All study participants gave written informed consents, and the study was performed in 484 

accordance with the Declaration of Helsinki. The LuxPark study (Hipp et al. 2018) was 485 

approved by the National Ethics Board (CNER Ref: 201407/13) and Data Protection 486 

Committee (CNPD Ref: 446/2017).  487 

 488 

Measurements and neuropsychiatric testing 489 

All patients and healthy controls were assessed by a neurologist, neuropsychologist or 490 

trained study nurse during the comprehensive battery of clinical assessment. Olfaction testing 491 

was conducted using the Sniffin’ Sticks 16-item version (SS) within the LuxPark cohort (Hipp 492 

et al. 2018). Antibiotics usage was defined as intake of antibiotic within the previous six months 493 

to stool collection. For assessing PD-related motor and non-motor symptoms, the UPDRS 494 
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rating scales I-IV were used (Goetz et al. 2008). The severity of the disease was reflected by 495 

the Hoehn and Yahr staging (Hoehn and Yahr 1967). Non-motor symptoms were measured via 496 

the NMS questionnaire (Romenets et al. 2012). The use of medication was recorded, and PD-497 

specific medication was classified into three classes, 1) levodopa, 2) dopamine receptor 498 

agonist, and 3) MAO-B/COMT inhibitors. 499 

 500 

Collection and processing of stool samples 501 

All samples were processed following standard operating procedures (Lehmann et al. 502 

2012; Mathay et al. 2015): stool samples were collected at home by patients using the 503 

OMNIgene.GUT stool tubes (DNA Genotek) and sent to the Integrated Biobank Luxembourg 504 

(IBBL) where one aliquot of 1 ml was used for DNA extraction. For the DNA extraction, a 505 

modified Chemagic DNA blood protocol was used with the MSM I instrument (PerkinElmer), 506 

the Chemagic Blood kit special 4 ml (Ref. CMG-1074) with a lysis buffer for faecal samples, 507 

and MSM I software. Samples were lysed using the SEB lysis buffer (included in the kit) and 508 

vortexed to obtain a homogenous suspension that was incubated for 10min at 70°C, then 5min 509 

at 95°C. Lysates (1.5mL) were centrifuged for five minutes at 10,000 g at RT. Supernatants 510 

were transferred to a 24XL deep-well plate. Plates were processed using the MSM I automated 511 

protocol. 512 

 513 

Analysis of the microbial composition with 16S rRNA gene sequencing 514 

The V3-V4 regions of the 16S rRNA were sequenced at IBBL using an Illumina 515 

Platform (Illumina MiSeq) using 2x300bp paired-end reads (Hipp et al. 2018). The gene-516 

specific primers targeted the V3 - V4 regions of the 16S rRNA gene. These primers were 517 

designed with Illumina overhang adapters and used to amplify templates from genomic DNA. 518 

Amplicons were generated, cleaned, indexed, and sequenced according to the Illumina-519 
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demonstrated 16S Metagenomic Sequencing Library Preparation Protocol with certain 520 

modifications. In brief, an initial PCR reaction contained at least 12.5 ng of DNA. A subsequent 521 

limited-cycle amplification step was performed to add multiplexing indices and Illumina 522 

sequencing adapters. Libraries were normalised, pooled, and sequenced on the Illumina MiSeq 523 

system using 2x300 bp paired-end reads.  524 

The demultiplexed samples were processed merging forward and reverse reads and 525 

quality filtered using the dedicated pipeline "Merging and Filtering tool (MeFit)" (Parikh et al. 526 

2016) with default parameters. To obtain a reliable microbial identification, identification to 527 

both genus and species taxonomic level was obtained using the SPINGO (SPecies level 528 

IdentificatioN of metaGenOmic amplicons) classifier (Allard et al. 2015) with default 529 

parameters. Relative abundances were computed, for each sample, using an R (R Foundation 530 

for Statistical Computing, Vienna, Austria) (Ihaka and Gentleman 1996) custom script. Briefly, 531 

for each sample, the counts of each genera/species were retrieved, and then the sum of the 532 

counts of all the genera/species was used to normalise to a total value of 1 each genera/species 533 

count. 534 

 535 

Personalised constraint-based modelling of microbial communities 536 

AGORA consists of a set of 819 strains of microbes commonly found in the human gut 537 

(Magnusdottir et al. 2017; Noronha et al. 2019). To match species taxonomic resolution, we 538 

combined strain models of the same species in one species model (‘panSpeciesModel.m’) using 539 

the function ‘createPanModels.m’ of the microbiome modelling toolbox (Baldini et al. 2018). 540 

Briefly, reactions of multiple strains are combined into one pan-reconstruction. The pan-541 

biomass reaction is built from the average of all strain-specific biomass reactions. Microbial 542 

abundances were mapped onto a set of 646 species performing an automatic name matching 543 

between SPINGO species taxonomic assignment and panSpecies names. A threshold for 544 
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assessing the bacterial presence of a relative abundance value of 0.0001 was used to reduce the 545 

time of computations while limiting the order of magnitude simulations results of 546 

stoichiometric coefficients to ten. A total of 259 species overlapped between our set of species 547 

models and SPINGO species assignment when considering species identified at least in 10 % 548 

of samples (Supplementary Material). The retrieved microbial abundance information for each 549 

sample was integrated into a community modelling setup obtaining personalised microbiome 550 

models using the automated module of the microbiome modelling toolbox (Baldini et al. 2018) 551 

called mgPipe within the COBRA toolbox (Heirendt et al. 2019) (commit: 552 

b097185b641fc783fa6fea4900bdd303643a6a7e). Briefly, the metabolic models of the 553 

community members are connected by a common compartment, where each model can 554 

secrete/uptake metabolites. An average European diet was set as input for each microbiome 555 

model (Noronha et al. 2019). A community objective function was formulated based on the 556 

sum of each microbial model objective function and constrained to a lower bound of 0.4 per 557 

day and upper bound of one per day. A set of exchange reactions connects the shared 558 

compartment to the environment enabling to predict metabolite uptake and secretion flux rates 559 

(metabolic profiles/NMPCs) consistent with the applied constraints. The personalisation of 560 

each microbiome model was achieved by adjusting stoichiometric coefficients in the 561 

community biomass reactions to each sample’s relative microbial abundance and removing 562 

species undetected from the community models.  563 

Relative reactions abundances were calculated by summing the number of species 564 

having the reaction in a microbiome model and scaling the sum by the respective species 565 

relative abundance. Community metabolic profiles of these microbial communities were 566 

assessed using flux variability analysis on the exchange reactions (Gudmundsson and Thiele 567 

2010). AGORA microbial metabolic reconstructions used for the construction of the 568 

community models were downloaded from the VMH (www.vmh.life, (Noronha et al. 2019)). 569 
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All computations were performed in MATLAB version 2018a (Mathworks, Inc.), using the 570 

IBM CPLEX (IBM, Inc.) solver through the Tomlab (Tomlab, Inc.) interface. 571 

 572 

Analyses of relative abundances  573 

For descriptive statistics, metric variables were described by means and standard 574 

deviations, while nominal variables were described by proportions. Missing values were not 575 

imputed, and the pattern of missing values was not assessable via the ADA platform (Hipp et 576 

al. 2018). The read counts for each metagenomic feature (e.g., genera and species) were divided 577 

by total read counts such that relative abundances were retrieved. Relative abundances were 578 

checked for outliers. Observations with more than four standard deviations from the mean were 579 

excluded from analyses. Only genera and species detected in more than 50% of all samples 580 

were included in the analyses, resulting in 62 genera and 127 species. 581 

 582 

The metagenomic data was analysed using fractional regressions as developed by 583 

(Papke and Wooldridge 1996). Fractional regressions, first applied to econometric problems, 584 

are semiparametric methods designed to model fractional data without the need of specifying 585 

the distribution of the response variable. Fractional regressions are further inherently robust 586 

against heteroscedasticity and can be parametrised in odds ratios, delivering convenient 587 

interpretations of the regression coefficients. All statistical models included technical 588 

covariates, batch, total read counts, and unclassified read counts (reads for which a taxonomic 589 

assignment was not possible independently from any threshold of confidence estimate value 590 

used). The read count variables were included into the statistical model, as it has been shown 591 

that normalisation by division can introduce bias if certain statistical assumptions implied by 592 

the application of division are not fulfilled (Hertel et al. 2018). In the case of metagenomic 593 

data, the effect of read counts would be removed by division if the observations would be 594 
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sampled from a multinomial distribution. However, this is not a given as species and genera 595 

correlate amongst each other, violating the assumptions needed to construct multinomial 596 

distributions. In consequence, read count normalisation by division is prone to introduce a bias 597 

into metagenomic data; a potential bias, we corrected for by including the read counts as 598 

covariates into the model. 599 

Before fitting the final statistical models, we explored the associations of basic 600 

covariates (age, sex, and BMI) with metagenomic features using fractional regressions as 601 

described above to avoid misspecifications of the statistical models. Since the data showed a 602 

high range in age and BMI, we checked for potential non-linear associations by including these 603 

variables into the models as restricted cubic splines (Harrell 2001) using three knots defined 604 

by the 5%-percentile, the median, and the 95%-percentile. As in the case for age, we found 605 

species with indications of non-linear age-associations with p<0.01, age was modelled in all 606 

analyses via restricted cubic splines. 607 

All p-values are reported two-tailed. Statistical analyses were performed in STATA 608 

14/MP (College Station, Texas, USA). Summary statistics of the performed analyses are given 609 

in the Supplementary files ‘Supplementary Tables’ 1-4. 610 

 611 

Differences between PD and controls in microbial composition and the influence of 612 

covariates 613 

To analyse difference between genus abundances between PD and controls, fractional 614 

regressions were carried out with the relative abundance of the genus as the response variable, 615 

while including technical covariates, age (restricted cubic splines), sex, and BMI into the 616 

statistical modelling. The predictor of interest was the study group indicator variable. We 617 

corrected for multiple testing using the Benjamini-Hochberg procedure (Benjamini 2010) by 618 

setting the false discovery rate (FDR) to 0.05. Consequently, we corrected for 62 tests when 619 
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reporting genera results. These analyses were repeated analogously for the taxonomic level of 620 

species, while correcting for multiple testing via the FDR.    621 

Next, we explored the possibility of statistical interactions between basic covariates 622 

(age, sex, and BMI) and the group indicator. For these analyses, we once again modelled age 623 

and BMI via restricted cubic splines allowing for non-linear interaction terms. We only tested 624 

two-way interaction terms. All interaction terms were introduced simultaneously into the 625 

statistical model and tested on significance via a Wald test (Harrell 2001), correcting for 626 

multiple testing via the FDR. For the globally significant test, the single interaction terms were 627 

investigated to explore which covariate-group interaction contributed to the overall 628 

significance. For interpretation, the interaction terms were visually inspected by plotting the 629 

predictions conditional on technical covariates. These analyses were then rerun with species 630 

abundances as response variable instead of genus abundances. 631 

We assessed the influence of constipation on the microbial composition. We introduced 632 

the binary predictor constipation (yes/no) as additional predictor into the model and the 633 

corresponding group-constipation interaction term. Both terms were tested simultaneously on 634 

zero with a Wald test. The analyses were once again adjusted for technical covariates, age 635 

(restricted cubic splines), sex, and BMI, and we corrected for multiple testing via the FDR. 636 

 637 

Analyses of within PD phenotypes in relation to microbial composition 638 

We investigated the association pattern of medication and clinical features regarding 639 

the microbial composition. These analyses were only performed on the IPD cases, while 640 

controls were excluded from the analyses. First, we analysed the disease duration as measured 641 

in years between the date of the stool sampling and the year of the diagnosis. The analyses were 642 

conducted as before via fractional regressions with the genus abundances as the response 643 

variable, while adjusting for technical covariates, age (restricted cubic splines), sex, and BMI. 644 
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Then, we assessed in separate analyses the UPDRS III score as an indicator for motor 645 

symptoms, the non-motor symptoms as measured by the NMS, the Hoehn-Yahr staging of the 646 

disease as a global measure of disease progression, and the sniff-score. All these analyses were 647 

performed adjusted for technical covariates, age (restricted cubic splines), sex, BMI, and 648 

disease duration. Each of these series of regression represents 62 test, which was accounted for 649 

using the FDR. The impact of medication was analysed by examining three classes of 650 

medication, a) levodopa, b) mono-amino oxidase/catechol-O-methyltransferase inhibitors, and 651 

c) dopamine receptor agonists. We generated three corresponding binary phenotypes (intake/no 652 

intake) and added these three variables simultaneously to the statistical model determining the 653 

significance of this add-on via a Wald test. We then tested each medication-class in separate 654 

analyses, strictly correcting for multiple testing via the FDR (186 tests in total). The analyses 655 

were performed adjusted for technical covariates, age (restricted cubic splines), sex, BMI, and 656 

disease duration. 657 

 658 

Statistical analyses of fluxes 659 

The NMPCs were log transformed such that the skewness of the distribution was 660 

minimised (Box and Cox 1964)). This type of transformation was applied because of the very 661 

differently skewed distributions of the single NMPCs. Then, outliers were excluded using the 662 

4-SD outlier rule as before. Only fluxes with more than 50% non-zero values were retained in 663 

analyses. Furthermore, NMPCs with distributions not suitable for statistical analyses (e.g., 664 

distributions with a high number of observations with exact the same numerical value) were 665 

excluded resulting in 129 NMPCs included into analyses. 666 

The NMPCs were analysed with mixed linear regressions including the batch as random 667 

effects. Including the batch variable as a random effect has a higher statistical power in 668 

comparison to the fixed effect approach, but relies on more restrictive assumptions. We tested 669 
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the corresponding random effect assumption by Hausman specification tests and found no 670 

indications of violations of the Hausman specification test. Note that this possibility to account 671 

for batch effects via random effects is not available with fractional regressions where batch 672 

effects were corrected via fixed effects. 673 

We performed the same analyses as with the metagenomic data, with the sole exception 674 

of replacing the fractional regression model with the linear mixed model. In all other aspects, 675 

the analyses followed the same scheme. 676 

 677 

Analyses of species contribution to fluxes 678 

To investigate the contribution of species and genera, we calculated for all included 679 

genera and all analysed fluxes the pairwise correlation and the corresponding variance 680 

contribution (the squared correlation). We classified every correlation above 0.5 (equal to 25% 681 

of variance contribution) as a strong correlation in accordance with classical classifications of 682 

effect size (Cohen 1988). 683 

 684 

Material availability 685 

All 16S rRNA sequences can be requested from I.T. (ines.thiele@nuigalway.ie). The 686 

mgPipe pipeline is available within the COBRA toolbox 687 

(https://github.com/opencobra/cobratoolbox), and the custom scripts with related 688 

documentation are available at the GitHub repository: 689 

https://github.com/ThieleLab/CodeBase/ND_collect. 690 
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