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 25 

Abstract:  Aging manifests itself through a decline in organismal homeostasis and a multitude of 26 

cellular and physiological functions1. Efforts to identify a common basis for vertebrate aging 27 

face many challenges; for example, while there have been documented changes in the 28 

expression of many hundreds of mRNAs, the results across tissues and species have been 29 
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inconsistent2. We therefore analyzed age-resolved transcriptomic data from 17 mouse organs 30 

and 51 human organs using unsupervised machine learning3-5 to identify the architectural and 31 

regulatory characteristics most informative on the differential expression of genes with age. We 32 

report a hitherto unknown phenomenon, a systemic age-dependent length-driven 33 

transcriptome imbalance that for older organisms disrupts the homeostatic balance between 34 

short and long transcript molecules for mice, rats, killifishes, and humans. We also demonstrate 35 

that in a mouse model of healthy aging, length-driven transcriptome imbalance correlates with 36 

changes in expression of splicing factor proline and glutamine rich (Sfpq), which regulates 37 

transcriptional elongation according to gene length6. Furthermore, we demonstrate that 38 

length-driven transcriptome imbalance can be triggered by environmental hazards and 39 

pathogens. Our findings reinforce the picture of aging as a systemic homeostasis breakdown 40 

and suggest a promising explanation for why diverse insults affect multiple age-dependent 41 

phenotypes in a similar manner. 42 

 43 
Main text: 44 

 45 

The transcriptome responds rapidly, selectively, strongly, and reproducibly to a wide variety of 46 

molecular and physiological insults experienced by an organism7. While the transcripts of 47 

thousands of genes have been reported to change with age2, the magnitude by which most 48 

transcripts change is small in comparison with classical examples of gene regulation2,8 and there 49 

is little consensus among different studies. We hence hypothesize that aging is associated with 50 

a hitherto uncharacterized process that affects the transcriptome in a systemic manner. We 51 

predict that such a process could integrate heterogenous, and molecularly distinctive, 52 

environmental insults to promote phenotypic manifestations of aging1. 53 

 54 

We use an unsupervised machine learning approach3-5 to identify the sources of age-dependent 55 

changes in the transcriptome. To this end, we measure and survey the transcriptome of 17 56 

mouse organs from 6 biological replicates at 5 different ages from 4 to 24 months raised under 57 

standardized conditions (Fig. 1A).  We consider information on the structural architecture of 58 

individual genes and transcripts, and knowledge on the binding of regulatory molecules such as 59 
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transcription factors and microRNAs (miRNAs) (Fig. 1B). We define age-dependent fold-changes 60 

as the log2-transformed ratio of transcripts of one gene at a given age relative to the transcripts 61 

of that gene in the organs of 4-month-old mice. As expected for models capturing most 62 

measurable changes in transcript abundance, the predicted fold-changes (Fig. S1) match 63 

changes empirically observed between distinct replicate cohorts of mice (Figs. S2 and S3).  64 

 65 

Further supporting the sensitivity of our machine learning approach, transcriptome-wide 66 

predictions reach statistical significance in 9-month-old organs (Fig. S4) for which 67 

complementary gene-specific differential gene expression analyses had not yet identified any 68 

age-regulated gene (Fig. 1B, Figs. S5 and S6). This demonstrates that architectural and 69 

regulatory features of genes inform on age-dependent changes of the transcriptome across 70 

multiple organs. 71 

 72 

Fig. 1. Discovery of length-driven transcriptome imbalance in aging. 73 
(A) At 4, 9, 12, 18, and 24 months of age, mice were sacrificed in two cohorts of three mice 74 
each and assayed by RNA sequencing for the listed organs. (B) A machine learning (ML) model 75 
was developed to predict fold-change of transcripts between samples from two ages for a given 76 
tissue using 2,236 features corresponding to known gene-specific regulators (transcription 77 
factors, miRNAs) and structural characteristics of genes and transcripts. A high-performance 78 
example of ML model is shown (middle panel). Analysis of features with greatest impact on 79 
performance of ML model (right panel) shows that length (median transcript length, gene 80 
length, or median length of coding sequence) consistently ranks among the most important 81 
features across all tissue- and age-specific models. (C) Dependence of fold-change observed 82 
between kidney samples from 4- and 24-month-old mice on median transcript length. 83 
Transcriptome imbalance (ρT) was defined at the Spearman correlation of the data. Grey shows 84 
kernel density estimate of all genes whereas red dots highlight genes identified by gene-specific 85 
differential expression. Right panel shows transcriptome imbalance (ρT) for the 17 organs of our 86 
study. P values were estimated by two-sided Mann-Whitney U tests. 87 
 88 
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To identify whether there are universal architectural or regulatory features informative on age-90 

dependent changes, we systematically analyze feature importance across models. The most 91 

informative feature to those models is the median length of mature transcript molecules (Fig. 92 

1B, Table S1), which is closely followed by the number of transcription factors, the length of the 93 

gene, and the median length of the coding sequence (see Fig. S7 for additional details). We 94 

conclude that during aging, transcript length is the most informative feature. 95 

 96 

To determine whether transcript length could directly associate with age-dependent changes of 97 

the transcriptome, or whether transcript length solely contributes to our models through 98 

combinatorial interactions with additional architectural or regulatory features, we directly 99 

compare observed fold-changes against transcript length. We find significant support (at P 100 

values of <10−40) for such a direct association for every organ (Fig. S8). For several organs, such 101 

as 24-month-old kidneys, this relation is visually apparent (Fig. 1C, Figs. S9 and S10). For the 102 

vast majority of organs, we find that expression changes and transcript length are 103 

anticorrelated, indicating a systematic upregulation of short transcripts with age and a 104 

systematic downregulation of long transcripts, which is already visible for 9-month-old animals 105 

and further increases for 18- and 24-month-old animals (Fig. 1C). To emphasize the systemic 106 

nature of the anticorrelation between transcript length and fold-change in older animals, we 107 

term this phenomenon “length-driven transcriptome imbalance.” 108 

 109 

To determine whether length-driven transcriptome imbalance extends beyond our own 110 

experimental conditions in mice, we next inspect genes reported to be down- and upregulated 111 

with age within recent surveys of vertebrates5,9,10. In an independent mouse study, we can 112 

confirm a reduced expression among long transcripts that change across multiple organs, and 113 

for 2 of 4 organ-specific sets of transcripts (differentially expressed across 3-, 12-, and 29-114 

month-old animals). Furthermore, we find a reduced expression of long transcripts in older 115 

animals for 3 of 3 killifish organs (differentially expressed between 5- and 39-week-old animals), 116 

and 10 of 11 rat organs (8 organs between 2- and 6-week-old animals, 3 organs between 6- and 117 

21-week-old animals, and 2 organs between 21- and 104-week-old animals) (Fig. 2A, Fig. S11). 118 
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 119 

To resolve, whether the length-driven imbalance observed among the bulk-transcriptomes of 120 

entire organs reflected upon a change of cellular composition or a molecular process occurring 121 

in a subset of cell types, we next reanalyze the data of a recent preprint which measured 122 

transcriptomes for single cells of three organs of 7-month-old and 22-23-month-old mice11. For 123 

every single cell we correlate transcript lengths against the level of expression. In strong 124 

support of systemic changes, we observe a significant reduction of transcripts from long genes 125 

among single cells of 6 of 11 cell types of the kidney – including cell types with organ-specific 126 

roles such as mesangial cells (Fig. 2B, Fig. S12) –, 10 of 12 cell types of the lung, and 4 of 4 cell 127 

types of the spleen. When reanalyzing the data provided for 17 mouse organs by another 128 

recent preprint by the Tabula Muris Senis consortium12, we find 93 of 111 cell types to have a 129 

significant reduction of long transcripts in 24-month-old animals relative to 3-month-old 130 

animals (Fig. 2C, Fig. S13). We conclude that an imbalance of transcripts occurs in most cell 131 

types of mice, and – paralleling our earlier findings on entire organs – mainly disfavors long 132 

genes in aged individuals.  133 

 134 

Fig. 2. Length-driven transcriptome imbalance in other vertebrates. 135 
(A) Genes reported as significantly up- and downregulated with age significantly differ in the 136 
median length of their transcripts in 2 of 4 mouse organs, 10 of 11 rat organs, and 3 of 3 killifish 137 
organs (P < 0.05; two-sided Mann-Whitney U test). (B) Increased imbalance in old kidney 138 
mesangial cells. Single-cell length correlations are defined as the spearman correlations 139 
between transcript length and transcript levels. ***P < 0.001 in two-sided Mann-Whitney U 140 
test. (C) Significance of shifted single-cell length correlations between older and younger 141 
animals for data by Kimmel et al.11 and Tabula Muris Senis et al.12; Red indicates that median 142 
single-cell length correlations are lower in older animals and blue indicates that median single-143 
cell length correlations are higher in older animals. Yellow indicates absence of data (e.g.: if cell 144 
type absent or not detected); K is kidney, L is lung, S is spleen. 145 
 146 
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 147 
 148 

To determine, whether length-driven transcriptome imbalance also occurred during human 149 

aging, we next reanalyze transcriptomes collected by the GTEx consortium13 generated from 150 

human tissues at the time of their death (Fig. 3A). Supporting our initial findings in mice, 151 

machine learning models trained on those transcriptomes recover gene length as the most 152 

informative feature (Fig. 3B). Also informative were the guanine-cytosine (GC) content of 153 

transcripts, the number of different transcription factors bound to the transcriptional start site, 154 

and the length of the transcript molecules (Figs. S14 and S15, Table S2). Further matching our 155 

findings on mice, length-driven transcriptome imbalance is already apparent for the majority of 156 

organs among middle-aged donors (40–59 years) in comparison with young donors (20–39 157 

years). In contrast to our own experiments, GTEx sampled several regions of individual organs, 158 
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revealing that, among humans, transcriptome imbalance is most pervasive in the brain (Fig. 3D) 159 

both among female and male donors (Fig. S16). We conclude that transcriptome imbalance 160 

occurs in multiple vertebrates, including humans, and affects individual organs to a varying 161 

extent. 162 

 163 
Fig. 3. Length-driven transcriptome imbalance in humans. 164 
(A) Number of samples archived by the GTEx consortium for individual tissues as function of 165 
donor age. “Y” marks donors aged 20–39 years; “M” marks donors aged 40–59 years; “O” 166 
marks donors aged 60–79 years. (B) Same as Fig. 1B, but for human regulatory elements, and 167 
transcriptomes measured by the GTEx consortium. (C) Transcriptome imbalance in human 168 
GTEx. Pink box plots are for tissues from different brain regions. P values were estimated by 169 
two-sided Mann-Whitney U tests 170 
 171 

 172 

 173 

We hypothesize that transcriptome imbalance may primarily challenge or promote cellular 174 

processes important to aging. Since length-driven transcriptome imbalance most strongly 175 
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affects short and long transcripts (Fig. 4A, Fig. S17), we focus on them. Consistent with current 176 

knowledge, the mapping of known longevity mutants recovered from model organisms onto 177 

human and mouse genes yields a finding that the shortest transcripts are significantly depleted 178 

from genes beneficial to longevity and significantly enriched for deleterious effects, whereas 179 

long transcripts are opposingly enriched for beneficial effects and opposingly depleted from 180 

deleterious effects (Fig. 4B, Fig. S18). More broadly, Gene Ontology analysis for annotations 181 

enriched among transcripts of one length extreme and simultaneously depleted among 182 

transcripts of the other length extreme recover well-established facts in the literature 183 

concerning molecular, cellular, and physiological processes associated with aging (Tables S3–184 

S6). Short genes are enriched for proteostasis, mitochondrial function, telomere maintenance, 185 

chromatin organization, and immune function14,15. Long genes are enriched for transcriptional 186 

regulation16, developmental processes17, ATP binding18, cytoskeletal structure, and synaptic 187 

activity19 (Fig. 4C). Collectively, these findings demonstrate a remarkably high overlap between 188 

the functions encoded by the shortest and longest transcripts and the biological hallmarks of 189 

aging15,20. 190 

 191 

Fig. 4. Short and long transcripts enrich for biological processes previously associated with 192 
aging. 193 
(A) Direction of fold-change for transcripts relative to 4-month-old mice across all organs. An 194 
average sign of +1 would indicate that all genes are upregulated, whereas an average sign of −1 195 
would indicate that all are downregulated. Colors indicate age comparisons as in Fig. 1A. Circles 196 
show median values of fold-change across all samples and error bars represent 95% confidence 197 
intervals. Dashed brown line is linear approximation to slope seen in 24-month-old animals. 198 
Histogram shows genes with indicated transcript length. Genes with the 5% shortest and 5% 199 
longest median lengths are colored in red. Note the visible and significant negative correlation 200 
between transcript length and fold-change. (B) Fold enrichment for beneficial (B, green) and 201 
deleterious (D, orange) genes among the genes with the 5% shortest and 5% longest median 202 
transcript lengths in humans. Negative enrichment indicates depletion. (C) Human Gene 203 
Ontology analysis for annotations enriched (depleted) among genes within transcripts in the 204 
bottom (top) 5% of gene lengths. Area of circle is proportional to number of enriched genes. 205 
Edges represent highest embedding of a smaller annotation within a larger one. Red (blue) 206 
indicates genes enriched in genes with shortest (longest) transcripts (P < 0.05; Benjamini-207 
Hochberg corrected Fisher’s exact test). 208 
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Next, we investigate possible origins of transcriptome imbalance. Genes whose transcript 211 

expressions correlate with transcriptome imbalance beyond the correlation expected by their 212 

own transcript length (Fig. 5A) might reveal molecular processes underlying the observed 213 

length-driven transcriptome imbalance. Within our own experimental data of male C57BL/6 214 

mice housed under specific pathogen free conditions (Fig. 1A,B), those genes (Table S7) enrich 215 

for roles in RNA binding, transcription, and splicing. The 1st and 2nd strongest associations are 216 

Neuroblast differentiation-associated protein AHNAK (AHNAK) and fused in sarcoma (Fus), 217 

respectively. The former gene was initially identified to encode for an unusually large 700-kDa 218 

protein21, which was since shown to compete for its expression with a short 17-kDa protein 219 

isoform of AHNAK22. Fus is a partner23 of the polyfunctional age-associated23-28 splicing factor 220 

proline and glutamine rich (Sfpq), which has the 27th strongest association and was recently 221 

found to be essential to the transcriptional elongation of genes than 100 kb6,29 (Fig. 5A). Our 222 

finding that impaired transcriptional efficiency disproportionally disfavoring long transcripts is 223 

thus consistent with prior literature30-34 and provides a molecular association to the length-224 

driven transcriptional imbalance. 225 

 226 

As environmental factors contribute to aging35, we surmise that environmental insults may 227 

promote length-driven transcriptome imbalance. Consequently, we perform a meta-analysis of 228 

2,155 mouse and 2,641 human transcriptomic studies represented in the EBI-GXA database, 229 

which includes gene expression data for multiple species under different biologic conditions 230 

(Fig. 5B). This approach recovers an anticorrelation between transcript length and fold-changes 231 

inflicted by inhibitors of transcriptional elongation31,36 or exposure to several environmental 232 

factors contributing to phenotypic manifestations of aging, such as exposure to pollution37, 233 

sleep deprivation38, heat39, and pathogens14. Furthermore, we observe an anticorrelation 234 

among neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS) and Alzheimer’s 235 

disease (Fig. 5B, Tables S8 and S9).  236 

 237 

To determine whether those environmental factors could suffice to trigger transcriptome 238 

imbalance, we infected mice with a clinically important pathogen in aging40, influenza A virus, 239 
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since its primary target, the lung, is one the two organs that did not yield detectable 240 

transcriptome imbalance in 24-month-old mice and elderly humans at the organ level (Fig. S19). 241 

In strong support of our hypothesis, we find that influenza A infection causes a downregulation 242 

of long transcripts and an upregulation of short transcripts throughout the lifespan of mice, 243 

with the effects being strongest in 24-month-old mice (Fig. 5C,D and Fig. S20), the oldest age 244 

tested.  We conclude that environmental insults that have already been associated with aging40 245 

can trigger transcriptome imbalance, and that old individuals may have a reduced capacity to 246 

counter environmentally inflicted length-driven transcriptome imbalance.  247 

 248 

Fig. 5. Insults promote length-driven transcriptome imbalance. 249 
(A) The dependence of gene expression fold-change on gene length, here shown for kidneys 250 
from 4- versus 24-month-old mice, can be used to correct the fold-change of specific genes. In 251 
the bottom panel, we plot corrected fold-changes of splicing factor proline and glutamine rich 252 
(Sfpq) versus overall transcriptome imbalance as measured by ρT. Squares represent individual 253 
organs. Colors represent age as in Fig. 1C. Light grey area shows 95% confidence interval of 254 
bootstrapped linear fit. (B) Survey of the EBI–Gene Expression Atlas (GXA) for environmental 255 
conditions for inducers of transcriptome imbalance. Shown is direction of fold-change for 256 
transcripts following exposure to influenza A virus compared with (C) 4-month-old uninfected 257 
mice or (D) age-matched uninfected mice. An average sign of +1 would indicate that all genes 258 
are upregulated, whereas an average sign of −1 would indicate that all are downregulated. 259 
Dashed brown line is linear approximation of age-dependent trend identified in Fig. 4A. In all 260 
cases, we find that influenza promotes a length-driven transcriptome imbalance with a negative 261 
slope (ρ < 0). Grey line in (C) represents transcriptomes of uninfected lungs. 262 
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 263 
 264 
Length-driven transcriptome imbalance differs from individual gene-specific regulatory 265 

mechanisms by being more informative on transcriptome-wide changes observed during aging. 266 

It further differs by inherently and preferentially modulating distinctive processes important to 267 

the biology of aging. Finally, transcriptome imbalance differs by causing comparatively subtle 268 

changes to the transcript levels of individual genes. Conceptually, this matches the notion that 269 

manifestations of aging can be observed among living individuals, whereas strong perturbations 270 
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of essential processes can cause immediate lethality. Moreover, transcriptome imbalance may 271 

help to explain the compounding multimorbidity encountered in elderly humans41 , and why 272 

qualitatively distinct insults funnel into similar phenotypes during aging1. Our study further 273 

opens fundamental questions on the organization of transcriptomes and the interplay between 274 

epigenetic, transcriptional, and proteomic homeostasis42,43. 275 
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 341 

Materials and Methods 342 

Animals 343 

All mouse procedures were approved by the Institutional Animal Care and Use Committee at 344 

Northwestern University (Chicago, IL, USA). All strains including wild-type mice are bred and 345 

housed at a barrier and specific pathogen–free facility at the Center for Comparative Medicine 346 

at Northwestern University. Male C57BL/6 mice were provided by NIA NIH and were housed at 347 

Northwestern University Feinberg School of Medicine Center for Comparative Medicine for 4 348 

weeks prior to sacrifice.  349 

 350 

Mice were euthanized by pentobarbital sodium overdose. Immediately the chest cavity was 351 

opened and animals were perfused via the left ventricle with 10 mL of HBSS (Ca/Mn+). The 352 

following organs were harvested: lung, heart, liver, kidney, adrenal gland, white (perigonadal) 353 

and brown adipose tissue, skin, skeletal muscles, frontal cortex, cerebellum, esophagus, 354 

stomach, and small and large intestine. Gut epithelial cells were isolated after flushing large 355 

intestine with EDTA/EGTA solution. Lung and skeletal muscle were subjected to enzymatic 356 

digestion to release stromal and immune cells and sorted by fluorescence-activated cell sorting 357 
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as described elsewhere 44. All tissues and cells were immediately frozen on dry ice and stored at 358 

−80°C for processing.  359 

 360 

RNA isolation and RNA sequencing 361 

RNA was isolated using an RNeasy DNA/RNA kit after homogenization and lysis in guanidine 362 

thiocyanate buffer supplemented with β-mercaptoethanol. RNA concentration and quality 363 

were assessed using an Agilent TapeStation. RNAseq libraries were prepared using an NEB Next 364 

RNA Ultra kit with polyA enrichment module using an Agilent Bravo NGS Automated fluidics 365 

handling platform as described elsewhere44. Libraries were multiplexed and sequenced on an 366 

Illumina NextSeq 500 platform using 75 cycles of high-output flow cells and a dual indexing 367 

strategy. 368 

 369 

Bioinformatics  370 

Sequencing reads were analyzed using an implementation of Ceto 371 

(https://github.com/ebartom/NGSbartom) in Nextflow45. Briefly, BCL files were demultiplexed 372 

and converted to fastq files using bcl2fastq, version 2.17.1.14, with default parameters. The raw 373 

reads were trimmed using trimmomatic46, version 0.36, with the following parameters: trailing 374 

= 30 and minlen = 20. Trimmed reads were aligned to the mouse reference genome 375 

(GRCm38.p3) with annotations from Ensembl v78 using tophat, version 2.1.047, with the 376 

following parameters: no novel junctions, read-mismatches = 2, read-edit-distance = 2, and 377 

max-multihits = 5. Aligned reads were counted using Htseq-count from htseq48, with the 378 

following parameters: intersection-nonempty, reverse strand, feature-type = exons, and id-379 

attribute = gene_id. 380 

 381 

For GTEx13, count matrices (version 7) were downloaded from GTExPortal. Samples 382 

corresponding to cell lines were dismissed from any further analysis. 383 

 384 

Differential expression 385 
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Differential gene expression analysis was performed with DESeq2, version 1.20 (mouse) and 386 

1.2249 using an α value of 0.05 for the adjusted P value cutoff. We subsequently only kept genes 387 

that mapped unambiguously been Ensembl Gene Identifiers and NCBI (Entrez) gene identifiers4. 388 

 389 

Characteristics of genes 390 

For transcription factors, we mapped the Gene Transcription Regulatory Database v18_0650 to 391 

±200 nucleotides to transcriptional start sites supplied by BioMart for the human reference 392 

genome build GRCh38.p12 and the mouse reference genome build GrCm38.p6. For miRNAs we 393 

used miRDB_v5.051. For mature transcripts, length parameters and CG content were identified 394 

from GenBank and mapped to genes as described elsewhere using the median across different 395 

transcripts4. Number of exons, and their minimal, median, and maximal length, were extracted 396 

from BioMart. For genes and chromosomes, characteristics were extracted as described 397 

elsewhere4. 398 

 399 

Modeling 400 

Gradient boosting regression models were built in scikit-learn, version 0.20.33. Of the 401 

transcripts, 90% were included and 10% were used as a test set. We only considered protein-402 

coding genes with at least one research publication and an official gene symbol, and which 403 

unambiguously mapped in a 1:1 relation between NCBI (Entrez) gene identifiers and Ensembl 404 

Gene Identifiers. 405 

 406 

Kernel-density visualizations 407 

Kernel density visualizations were created with Seaborn 408 

(https://github.com/mwaskom/seaborn) using default parameters. 409 

 410 

Symbols 411 

Pictures of killifish, mice, and rats were obtained from wiki-commons, and pictures of humans 412 

from the Noun Project and OliM, under creative commons license. 413 

 414 
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Reanalysis of prior studies 415 

We considered genes reported to be significantly up- or downregulated in earlier studies. For 416 

mice and rats we used protein-coding genes with at least one research publication and an 417 

official gene symbol, and the median transcript lengths derived from GenBank. For killifish we 418 

used genes and gene lengths as reported by Reichwald et al. 201510. 419 

 420 

Transcriptome imbalance 421 

We defined the extent of the transcriptome imbalance as the Spearman correlation between 422 

transcript length and fold-change of transcripts in older individuals over younger ones. 423 

Significance was obtained through the scipy.stats, version 1.2.1, implementation of the 424 

Spearman correlation52. 425 

 426 

Single-cell length correlation 427 

Data of Kimmel et al. 11 and Tabula Muris Senis12 were downloaded from 428 

http://mca.research.calicolabs.com/ and 429 

https://figshare.com/articles/Processed_files_to_use_with_scanpy_/8273102, respectively. As 430 

cell types we considered the cell_type and cell_ontology_class columns within the respective 431 

meta-date tables contained in the h5ad files. For consistency between the two studies, we 432 

further renamed “classical monocyte” to “monocyte”, “natural killer cell” to “NK cell”, “Lung 433 

endothelial cell” to “endothelial cell”, and “alveolar macrophage” to “macrophage”. We only 434 

considered protein-coding genes which were detected in at least one cell of a given cell type in 435 

an individual organ in a given study. We determined the single-cell length correlation by 436 

measuring the Spearman correlation between transcript length and signal reported by the 437 

studies of Kimmel et. al and Tabula Muris Senis, respectively. For Tabula Muris Senis we solely 438 

considered the subset of the data corresponding to FACS-isolated single cells as they 439 

demonstrated the highest sensitivity according to their study12. 440 

 441 

Functional enrichments 442 
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We considered the genes with the 5% shortest and 5% longest median transcript length. We 443 

obtained the categorization of mutants from HAGR53,54 and mapped them to human and mouse 444 

orthologues through Homologene, version 68 (https://ftp.ncbi.nlm.nih.gov/pub/HomoloGene). 445 

We considered genes labeled as pro-longevity to be beneficial, and genes labeled as anti-446 

longevity to be deleterious. For Gene Ontologies we used the mapping to NCBI provided by the 447 

National Library of Medicine (https://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz) and 448 

considered any nonnegating annotation. For differential enrichment we considered genes 449 

enriched among the genes with transcripts of one length extreme (5% shortest and 5% longest 450 

median) at a Benjamini-Hochberg P value of <0.05 and depleted among the genes with the 451 

other length extreme. 452 

 453 

Annotation network construction 454 

Annotations were represented as nodes, and we drew edges between them if at least one gene 455 

carried either annotation and had been identified by the preceding enrichment analysis. 456 

Subsequently we trimmed edges. First, we kept those edges where the largest fraction of the 457 

genes of the smaller node were included in the larger. Second, for a given pair of the smaller 458 

and larger node, we kept the link if the larger node was the smallest larger node connected to 459 

the smaller node. Third—if there were still multiple distinct edges for a smaller node—we kept 460 

those where overall there would be fewer genes annotated for the larger node (irrespective of 461 

number observed in enrichment analysis). 462 

 463 

Identification of genes correlating with transcriptome imbalance 464 

First, the global relation between transcript length and fold-change was approximated through a 465 

Lowess fit using Statsmodels, version 0.955. Second, we defined residual fold-changes by 466 

subtracting the Lowess fits from the observed fold-changes. For mice, we considered the 467 

differential gene expression analyses of our own census of mice between 4-month-old and 9-, 468 

12-, 18-, or 24-month-old mice. For humans, we considered GTEx differential gene expression 469 

analyses between donors in their 2nd decade and donors in their 4th, 5th, 6th, or 7th decade, as 470 

well as between donors in their 3rd decade and donors in their 4th, 5th, 6th, or 7th decade (hence 471 
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yielding up to eight comparisons per gender and subregion). We defined the correlation between 472 

gene and transcriptome imbalance as the Spearman correlation between transcriptome 473 

imbalance and the residual fold-changes. 474 

 475 

Comparison to EBI-GXA 476 

We downloaded the EBI-GXA7 in spring 20174. We parsed the experimental descriptions from 477 

the config files supplied and the fold-changes from the supplied differential expression reports. 478 

We only considered protein-coding genes with at least one research publication and an official 479 

gene symbol, and which unambiguously mapped in a 1:1 relation between NCBI (Entrez) gene 480 

identifiers and Ensembl Gene Identifiers. 481 

 482 

Influenza A virus infection 483 

Influenza virus strain A/WSN/1933 (WSN) was grown for 48 h at 37.5°C and 50% humidity in the 484 

allantoic cavities of 10–11-d-old fertile chicken eggs (Sunnyside Hatchery, WI). Viral titers were 485 

measured by plaque assay in Madin-Darby canine kidney epithelial cells (American Type Culture 486 

Collection). Virus aliquots were stored in liquid nitrogen and freeze/thaw cycles were avoided. 487 

For infection, mice were anesthetized with isoflurane and infected intratracheally with 150 488 

plaque forming units (PFU) in 50 μL of PBS. Mice were sacrificed after 4 days. 489 

  490 
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 491 
Fig. S1. Prediction accuracy. 492 

Prediction accuracy was defined as the Spearman correlation between observed and predicted 493 

fold-changes.  494 

495 
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 496 
 497 

Fig. S2. Replicability of fold-changes among cohorts. 498 

(A) Fold-changes of 18-month-old gut epithelium over 4-month-old gut epithelium. (B) Fold-499 

changes of 24-month-old large intestine over 4-month-old large intestine. (C) Empirically 500 

observed accuracy was defined as the Spearman correlation between the fold-changes of both 501 

cohorts. 502 
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 503 
Fig. S3. Comparison of prediction accuracy and empirically observed accuracy. 504 

Comparison of empirically observed accuracy between cohorts (Fig. S2) and accuracy of 505 

predictions (Fig. S1). Colors indicate ages as in Fig. 1A. 506 
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 507 
Fig. S4. Significance of prediction. 508 

Significance of Spearman correlation between observed and predicted fold-changes reported in 509 

Fig. S1.  510 
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 511 
Fig. S5. Differentially expressed genes. 512 

Number of differentially expressed genes relative to 4-month-old organs at different thresholds 513 

for false discovery rate (0.1, 0.05, 0.01, 0.001, and 0.0001). Values are log10(differentially 514 

expressed genes + 1). 515 
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 516 
 517 

Fig. S6. Comparison between prediction accuracy and differential expression. 518 

Prediction accuracy, defined as Spearman correlation between observed and predicted fold-519 

change for individual organs of our study, is compared with the number of genes differentially 520 

expressed at a false discovery rate of 0.05. Colors represent age as in Fig. 1A, and symbols 521 

indicate ranking of transcript length (one of multiple length-related features) within age- and 522 

organ-specific models. 523 
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 524 
Fig. S7. Cluster map of most informative features in mice. 525 

Most informative features (median rank across organs and ages lie in top 30) grouped by Ward 526 

clustering. 527 
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 528 

Fig. S8. Transcript length and fold-changes. 529 

(A) Spearman correlation between median transcript length and observed fold-changes. (B) 530 

Significance of correlations. 531 
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 532 
Fig. S9. Organ-specific representation of transcript length and fold-changes, part 1. 533 

Comparison for adrenal gland, blood, brown adipose tissue, cerebellum, esophagus, frontal 534 

cortex, gut epithelium, heart, and kidney. Grey dots are genes. Red dots are genes identified to 535 

be differentially expressed at a false discovery rate of 0.05. 536 
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 537 
Fig. S10. Organ-specific representation of transcript length and fold-changes, part 2. 538 

Comparison for large intestine, liver, lung, muscle, skin, small intestine, stomach, and white 539 

adipose tissue. Grey dots are genes. Red dots are genes identified to be differentially expressed 540 

at a false discovery rate of 0.05. 541 
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 542 

Fig. S11. Differential length of down- and upregulated genes. 543 

(A) Median transcript length for mouse genes reported to be differentially expressed across 3-, 544 

12-, and 29-month-old animals by Benayoun et al. 20195. (B) Median gene length for killifish 545 

genes reported to be differentially expressed between 5 and 39 weeks of age by Reichwald et 546 

al. 201510. Gene lengths are as reported. (C) Median transcript length for rat genes reported to 547 

be differentially expressed by Yu et al. 20149. W2, W6, W21, and W104 indicate weeks after 548 

birth. *P < 0.05, **P < 0.01, and ***P < 0.001 in two-sided Mann-Whitney U test. 549 
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 550 

 551 
Fig. S12. Differential correlation between transcript length and transcript counts in single cells. 552 

Single cells of indicated cell types of 7- and 22-23-months old mice11 for (A) Kidney (B) Lung (C) 553 

Spleen. *P < 0.05, **P < 0.01, and ***P < 0.001 in two-sided Mann-Whitney U test. 554 

 555 
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 556 
Fig. S13. Significance of difference in single-cell length correlations. 557 

As in Fig. 2C, but with labels of cell types assigned by authors11,12.  558 

 559 
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 560 

 561 

Fig. S14. Cluster map of most informative features in human GTEx. 562 

Most informative features (median rank across organs and ages lie in top 30) grouped by Ward 563 

clustering. 564 
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 565 
 566 

Fig. S15. Prediction accuracy and number of differentially expressed genes for human GTEx. 567 

Analogous to Fig. S6, but for human GTEx samples. Shown are comparisons between donors in 568 

the indicated decade relative to donors aged 20–29 years. Male and female donors are 569 

represented separately. 570 
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 571 

 572 

Fig. S16. Gender-specific imbalance among human donors. 573 

As Fig. 3C, but displaying length-driven transcriptome imbalance separately for tissues of 574 

female (top) and male donors (bottom). 575 
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 576 

Fig. S17. Distribution of median transcript length. 577 

(A) For mouse protein-coding genes. (B) For human protein-coding genes. Red indicates the 578 

genes with the 5% shortest and 5% longest transcripts. 579 
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 580 
 581 

Fig. S18. Human changes with transcript length. 582 

(A) Direction of age-dependent change of transcripts, analogous to Fig. 4A, but for humans. 583 

Additionally, the dotted curve shows samples with strong imbalance (ρIB < −0.3). The shortest 584 

and longest genes get most affected by transcriptome imbalance. (B) Fold enrichment for 585 

beneficial (B, green) and deleterious (D, orange) genes among the genes with the 5% shortest 586 

and 5% longest median transcript lengths in humans. Negative enrichment indicates depletion.  587 

 588 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 3, 2019. ; https://doi.org/10.1101/691154doi: bioRxiv preprint 

https://doi.org/10.1101/691154


 589 

 590 

Fig. S19. Changes with transcript length in uninfected lung of mice. 591 

An average sign of +1 would indicate that all genes are upregulated, whereas an average sign of 592 

−1 would indicate that all are downregulated. 593 
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 594 
Fig. S20. Transcript length dependency following influenza. 595 

Fold-changes observed in lung after influenza relative to lung without influenza exposure for 596 

individual genes. Graphs show mice of different ages. Red dots indicate differential expression 597 

at false discovery rate of <0.05.  598 
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Table S1.  599 

Importance of individual contributing features. 600 

 601 

Table S2.  602 

Importance of individual contributing features in human GTEx. 603 

 604 

Table S3.  605 

Annotations enriched among human genes with short transcripts. 606 

 607 

Table S4. 608 

Annotations enriched among human genes with long transcripts. 609 

 610 

Table S5. 611 

Annotations enriched among mouse genes with short transcripts. 612 

 613 

Table S6. 614 

Annotations enriched among mouse genes with long transcripts. 615 

 616 

Table S7. 617 

Mouse genes correlating with transcriptome imbalance. 618 

 619 

Table S8. 620 

Correlation between transcript length and fold-changes of mouse studies in EBI-GXA. 621 

 622 

Table S9. 623 

Correlation between transcript length and fold-changes of human studies in EBI-GXA.  624 
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