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Glossary  
 
Term Meaning 

ELS Epitope likelihood score  

GELS General epitope likelihood score 

IRS Immune relevance score, based on the 

mutation frequency (ReFrame) and the GELS 

M1 Reading frame resulting from the deletion of 

one nucleotide or insertions of two 

nucleotides 

M2 Reading frame resulting from the deletions 

of two nucleotides or insertion of one 

nucleotide 

m1, m2, m3, etc. Minus one, two, three base pair deletions 

p1, p2, p3, etc.  Plus one, two, three base pair insertions 

ReFrame REgression-based FRAMEshift quantification  
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Abbreviations 
  

B2M Beta2-microglobulin 

cMS Coding microsatellites  

CRC Colorectal cancer 

MMR  Mismatch repair  

EC Endometrium cancer 

FSP neoantigens Frameshift peptide neoantigens 

HLA Human leukocyte antigen 

ICB Immune checkpoint blockade 

MSI Microsatellite instability, microsatellite-

unstable 

NGS Next generation sequencing  
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Abstract: 
The immune system can recognize and attack cancer cells, especially those with a high load 
of mutation-induced neoantigens. Such neoantigens are particularly abundant in DNA 
mismatch repair (MMR)-deficient, microsatellite-unstable (MSI) cancers. MMR deficiency 
leads to insertion/deletion (indel) mutations at coding microsatellites (cMS) and to 
neoantigen-inducing translational frameshifts. The abundance of mutational neoantigens 
renders MSI cancers sensitive to immune checkpoint blockade. However, the neoantigen 
landscape of MMR-deficient cancers has not yet been systematically mapped. In the present 
study, we used a novel tool to monitor neoantigen-inducing indel mutations in MSI 
colorectal and endometrial cancer. Our results show that MSI cancers share several highly 
immunogenic neoantigens that result from specific, recurrent indel mutation events. 
Notably, the frequency of such indel mutations was negatively correlated to the predicted 
immunogenicity of the resulting neoantigens. These observations suggest continuous 
immunoediting of emerging MMR-deficient cells during tumor evolution. 
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Main text: 
DNA MMR deficiency is a major mechanism causing genomic instability in human cancer. 
MMR-deficient cancers accumulate an exceptionally high number of somatic mutations. 
These mutations encompass certain types of single nucleotide alterations, but mostly 
insertion/deletion (indel) mutations at repetitive sequence stretches termed microsatellites 
(microsatellite instability, MSI) (1, 2). 
About 15% of colorectal cancers (CRC), up to 30% of endometrial cancers (EC) and multiple 
other tumors display the MSI phenotype (3). MSI tumors can develop sporadically or in the 
context of Lynch syndrome, the most common inherited cancer predisposition syndrome. 
Due to this very specific process of genomic instability, the pathogenesis of MSI cancers can 
be precisely dissected (4): Indel mutations affecting coding microsatellites (cMS), 
predominantly coding mononucleotide repeats, in genomic regions encoding tumor 
suppressor genes are considered major drivers of MSI tumorigenesis (5-7). Importantly, the 
same indels that inactivate tumor suppressor genes simultaneously cause translational 
frameshifts, thereby generating unique frameshift peptide (FSP) neoantigens (4, 8).  
For the recognition of neoantigens by the immune system, processing through the cellular 
antigen processing machinery and presentation by human leukocyte antigen (HLA) class I 
molecules on the tumor cell surface are essential prerequisites. These HLA class I molecules 
consist of a heavy chain and a non-covalently bound light chain (encoded by the Beta-2-
microglobulin [B2M] gene), both of which are essential for functional antigen presentation. 
The likelihood of HLA binding for a defined peptide depends on the HLA genotype, as every 
individual harbors six alleles (HLA-A, HLA-B, HLA-C, two alleles each) which encode for HLA 
class I heavy chains (9). 
The specific mutational steps required for malignant transformation during the evolution of 
MSI tumors are thus also responsible for their pronounced immunogenicity. MSI tumors are 
commonly associated with dense lymphocyte infiltration and pronounced local responses of 
the adaptive immune system at the tumor site (10-14). Immune recognition of MSI tumor 
cells is not only responsible for a comparatively favorable clinical course, but also reflected 
by the high sensitivity of advanced stage MSI cancers towards immune checkpoint blockade 
(ICB) (15, 16). However, some patients do not respond to ICB treatment. 
We and others previously showed that specific T cell responses against a few MMR 
deficiency-induced frameshift neoantigens occur prior to and after immune checkpoint 
blockade (15, 17, 18). However, the landscape of neoantigens and potential epitopes in MSI 
cancer has not been described systematically. One important reason for this gap of 
knowledge is the fact that short-read next-generation sequencing (NGS) approaches have a 
limited sensitivity for the detection of indel mutations at homopolymer sequences such as 
neoantigen-related cMS (19-21). 
Here, we map the FSP neoantigen and epitope landscape of the two most common MMR-
deficient cancer types, colorectal and endometrial cancer, using a newly developed tool for 
the quantification of cMS mutation patterns (ReFrame) combined with NetMHCpan 4.0, a 
state-of-the-art in silico epitope prediction tool (9). Using ReFrame, we were able to reveal a 
set of previously unknown shared FSP neoantigens in MSI cancers.  
Our results provide strong evidence for continuous immunoediting during MSI tumor 
evolution and underline the potential of neoantigen-based vaccines against MSI cancers. 
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cMS mutation frequencies in MSI CRC and EC 
Short-read NGS approaches are not ideally suited for mutational and neoantigen profiling of 
MSI cancers (19-21), showing a high variability in mutation frequency regarding the 
detection of mutations in different cMS candidates like i.e. TGFBR2, SLC35F5 or TFAM (Table 
S1). Importantly cMS repeats of increased length which are most susceptible to mutations 
and therefore encompass the most important mutational targets during MMR-deficient 
tumorigenesis, are missed by NGS technology that is in common use today (3, 5, 19, 22-26).  
To fill this gap and precisely quantify cMS mutation patterns and their resulting neoantigen 
frames in MMR-deficient cancers, we developed a novel algorithm based on fragment length 
analysis as the current gold standard for the detection of MSI. ReFrame, our REgression-
based FRAMEshift quantification algorithm, allows unbiased quantitative detection of indel 
mutations by solving a linear system of mathematical equations to remove stutter band 
artifacts, which result from polymerase slippage events during PCR amplification and 
subsequent nucleotide gains and losses similar to MSI-induced indels (Fig. S1). 
We used ReFrame in a series of MSI colorectal cancers (MSI CRCs; n=139) (Table S2) to 
screen for mutations in 41 cMS residing in 40 target genes derived from the first 
comprehensive cMS database (Seltarbase) (27). Additionally, we investigated mutation 
profiles in a cohort of MSI endometrial cancers (MSI ECs; n=14). 
In agreement with previous reports (23, 27), our results show that the load of indels at cMS 
in MSI CRC and EC is high and that multiple concomitant indels at several cMS in the same 
tumor are very common. Although most CRC and EC were distinguishable based on the cMS 
mutation patterns, a large set of cMS mutations were shared by the majority of MSI CRC 
and/or MSI EC (Fig. 1, Fig. S2).  
Moreover, we observed a significant variation of the number of mutations per tumor, 
ranging from 8 to 29 (median=20) out of 41 analyzed cMS in MSI CRC and from 8 to 25 in 
MSI EC (median=18). The observed variation suggests potential differences in the neoantigen 
load of MSI tumors. Potential clinical consequences, e.g. for the sensitivity towards ICB, 
should be assessed in future clinical studies (28-30).  
ReFrame is not only able to quantify mutation frequency, but also to distinguish mutation 
types, which is crucial for the prediction of the frame of the resulting neoantigen. As the 
translation of nucleotide into amino acid sequences is based on three base codons, every 
mutation in a homopolymer region can either result in a simple deletion or insertion of 
amino acids or in two entirely different neoantigen reading frames: Deletions of one 
nucleotide (further referred to as minus 1 or m1) or insertions of two nucleotides (plus 2, p2) 
will result in a shift to a frame here referred to as “minus-one” (M1), while deletions of two 
nucleotides (minus 2, m2) or insertion of one nucleotide (plus 1, p1) will result in a shift to a 
frame referred to as “minus-two” (M2) (Fig. 2, Fig. S3, Table S3). The results demonstrate 
that m1 mutations, resulting in M1 reading frames, were the predominant mutation type 
(77% in MSI CRC, Fig. 2). The M1/M2 distribution varied significantly across distinct cMS, 
with significantly elevated numbers of M2 mutation in BANP, TAF1B and ELAVL3, whereas in 
ACVR2A, HPS1, SLC35F5 and TCF7L2 there were significantly more mutations leading to an 
M1 frameshift than expected by chance (Bonferroni corrected binomial test, p<0.05; Table 
S4 and S5). 
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Epitope landscape of MSI neoantigens   
Following the detection of shared indel mutations in MSI colorectal and endometrial 
cancers, we evaluated the possible immunogenic potential of the frameshift neoantigens 
and associated neopeptides resulting from antigen processing. 
We used NetMHCpan 4.0, a state-of-the-art HLA binding prediction tool based on artificial 
neural networks, to predict neopeptides that are possibly presented as epitopes by HLA class 
I antigens encoded by the most important HLA supertypes (9, 31, 32). Applying commonly 
accepted IC50 thresholds we distinguished between three classes of peptides with high (IC50 < 
50 nM), low (50 nM < IC50 < 500 nM) and very low (500 nM < IC50 < 5000 nM) predicted HLA 
binding affinity (31, 33). As a first step, we analyzed all possible frameshift neoantigen 
sequences derived from the M1 and M2 frameshifts of the 41 cMS. We then complemented 
this set to cover all possible FSP neoantigens (n=524) derived from 264 cMS with a length of 
8 or more nucleotides published in Seltarbase (Data S1) (27). Our results indicate multiple 
FSPs resulting from M1 or M2 frameshift mutations, that are potentially recognized by the 
immune system. We detected a wide range of variability with regard to the number of 
predicted putative epitopes maximally contained within a defined neoantigen. The highest 
number of predicted putative high-affinity epitopes within a neoantigen was 23 (for the M1 
frame of P4HB), (low affinity: 92 predicted putative epitopes in M1 SPINK5; very low-affinity: 
375 predicted putative epitopes in M1 P4HB). Other cMS mutation-induced neoantigens 
showed a complete lack of predicted epitopes (Fig. 3, Data S2 and S5).  
For HLA-A*02:01, the most common HLA allele in the USA European Caucasian population 
(34), one or more high-affinity peptides were predicted for 19.8% of the FSP neoantigens. 
HLA-A*02:01 epitopes with lower affinity were present in 39.5% (≤ 500 nM) and 59.8% (≤ 
5000 nM) of candidates (Fig. S4, Table S6, Data S3). 
To make the potential impact of certain cMS candidates more tangible and to identify 
frameshift neoantigens with potentially highest relevance for immune recognition, we 
defined a “general epitope likelihood score” (GELS; see method section “Computation of 
immunological scores”). GELS accounts for HLA binding prediction and the prevalence of the 
respective HLA allele in a defined population, as the latter influences the probability of a 
neopeptide to be an epitope recognized by the immune system in a patient of this 
population (9, 34). We calculated GELS for all FSP neoantigens using HLA allele frequencies 
for USA European Caucasians (calculations for additional ethnic groups are provided in Data 
S3). 
Accounting for a potential relation between immunogenicity and mutation frequency, we 
noticed that the most commonly mutated cMS located in the ACVR2A gene showed a very 
low GELS (𝑝𝑚𝑢𝑡 = 91%, GELS = 5.1%), whereas very high GELS candidates seemed to be 
associated with a low mutation frequency (i.e. TMEM97, 𝑝𝑚𝑢𝑡 = 27%, GELS = 91.1%; 
SPINK5, 𝑝𝑚𝑢𝑡 = 26%, GELS = 91.1%; RUFY2, 𝑝𝑚𝑢𝑡 = 16%, GELS = 90.4%; 𝑝𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = 50% in 

USA European Caucasian population; Data S3). Hierarchical clustering of cMS candidates on 
all tumor samples revealed the existence of three distinct populations of cMS (Fig. 4A), 
which was retained in B2M-wild type, but not B2M-mutant tumors (Fig. 4B). 
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Immunoselection during MSI carcinogenesis 
In order to systematically evaluate whether these observations may result from 
immunoediting, i.e. counterselection of emerging cancer cell clones that harbor highly 
immunogenic cMS mutations (high GELS neoantigens), we analyzed potential differences 
between the observed and expected distribution of cMS mutations. We observed a 
significant inverse correlation between GELS and mutation frequency with Pearson’s 
𝑟 = −0.45, 𝑝 = 0.0078 at 𝑛 = 41 cMS for endometrial tumors and 𝑟 = −0.42, 𝑝 = 0.0149 
for colon tumors, with a conservative estimate of predicted HLA binding probability of 
𝑝𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = 50%, indicating that a high GELS was related to lower mutation frequency (Fig. 

4C). The correlation remained significant even at the lowest epitope fidelity levels of 
𝑝𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = 10% , with 𝑝 = 0.0145  for endometrial and 𝑝 = 0.0031  for colon cancers 

respectively.  
The observation suggests that emerging tumor cell clones with highly immunogenic 
neoantigens are counterselected (Fig. 5), showing for the first time that immunoediting 
leaves its traces in neoantigen/cMS mutation patterns in MSI cancers (35-38). Interestingly, 
the significant inverse correlation was only detected among B2M-wild type tumors. B2M-
mutant tumors, in which immune selection on the basis of HLA class I antigen presentation 
should not apply, only a trend was observed (Fig. 4D), which possibly reflects effects of 
immune surveillance prior to B2M mutation (see Data S4 for detailed test parameters).  
We ruled out a potential influence of cMS length, a well-known factor influencing the 
likelihood of indel mutations on the observed mutation frequency (Fig. S54), (23, 27, 39) 
further supporting the concept of immunosurveillance-induced negative selection. 
Despite the statistically significant negative correlation between GELS and mutation 
frequency, we also observed some outliers (Fig. 4C) . We hypothesize that these outliers may 
reflect distinct effects that potentially influence the probability of a certain cell clone 
harboring a defined mutation to survive and thrive during tumor evolution. In addition to 
potential enhancement of immunogenicity, cMS mutations in tumor suppressor genes are 
predicted to lead to a growth advantage, at least in cancer or pre-cancer cell clones not 
directly under attack of the immune system. Such cMS candidates with high GELS and 
mutation frequencies should be of great relevance for the interaction between the immune 
system and MMR-deficient tumor cells. The presence of a neoantigen-inducing mutation is a 
prerequisite for presentation of corresponding neoepitopes that can be recognized by the 
host’s immune system. To simultaneously account for mutation frequency and GELS as 
factors influencing the likelihood of the neoantigen being presented to the immune system, 
we defined an “immune relevance score” (IRS), which combines GELS with the mutation 
frequency in tumors computed via ReFrame (see Materials and Methods section 
“Computation of immunological scores“).  
The M1 FSP neoantigen derived from TGFBR2, the first described cMS driver mutation in MSI 
cancer and also the first ever FSP neoantigen characterized for its immunological properties 
in MSI cancer in pioneering studies (18, 40, 41), displays the highest IRS (28.57%). In addition 
to this well-characterized FSP neoantigen, our study uncovered various novel candidates 
with predicted importance for the immune biology of MMR-deficient cancers. The 
candidates LTN1, SLC22A9, SLC35F5, CASP5, TTK, TCF7L2, MYH11, MARCKS (all M1) and 
BANP (M2) all displayed an IRS above 10% (Fig. 4C, Data S3). The spatial distribution of 
predicted HLA-binding peptides within these high-IRS FSP neoantigens is visualized in Fig. S6.  
Interestingly, candidate genes with a possible tumor suppressor function were common 
among the high-IRS genes: CASP5 (apoptosis induction; IRS: 17.15%), TTK (maintenance of 
chromosomal stability; IRS: 12.38%), TCF7L2 (beta-catenin signaling; IRS: 11.32%), MYH11 
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(cell structure and proliferation; IRS: 11.11%) and BANP (migration and invasiveness; IRS: 
10.73%) were all previously reported in the literature (42-50). This observation may suggest 
that highly immunogenic neoantigens are ‘tolerated’ preferentially if the cells gain a 
compensatory survival advantage from the mutation by switching off a tumor-suppressive 
pathway, supporting their role of propelling MSI tumor evolution (Fig. 5).  
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Discussion 
MMR-deficient tumors, due to their well-defined mechanism of genomic instability, 
represent an ideal tumor type to study the evolution of solid cancer development and the 
role of the immune system during this process. By analyzing a broad spectrum of cMS-
encompassing genes that are susceptible to mutation in MMR-deficient cells, we were able 
to identify recurrent mutations and neoantigens, and to provide first evidence for 
immunoediting during MSI cancer development.  
The results of our study (Fig. 5) demonstrate that, in contrast to neoantigens in many other 
cancer types, which are typically differing between tumors or even occur as ‘private’ 
mutational neoantigens, MMR-deficient cancers share a large pool of FSP neoantigens. 
Thereby, most of the alterations are of the M1 type, resulting from one-basepair deletions 
(m1), with several candidates displaying a high likelihood of immunogenicity. This 
observation points towards a common evolutionary pathway of MSI tumorigenesis. The 
apparent dominance of m1 mutations emphasizes that MMR-deficient cancers not only 
share similar sets of genes inactivated by MMR deficiency-induced mutations, but also 
precisely the same FSP neoantigens resulting from these mutations, allowing the definition 
of a shared neoantigen set for MMR-deficient cancers. 
Using NetMHCpan 4.0, we identified a plethora of potential MHC binding peptides in FSP 
neoantigens. This number may even increase when using looser prediction thresholds, as 
recommended in a recent study evaluating the performance of MHC ligand prediction tools 
(51). Although many FSP neoantigens do not encompass such peptides for any of the 
common HLA types, our calculations demonstrate that the vast majority of MSI cancers are 
predicted to generate one or more neoantigens potentially recognizable by the host’s 
immune system. This hypothesis is supported by the observation of common FSP 
neoantigen-specific T cell responses in patients with MSI cancer and Lynch syndrome 
mutation carriers (8). As demonstrated by previous studies, even very low-affinity peptides 
may encompass relevant epitopes (52, 53). Moreover, several of the FSP neoantigens 
derived from common cMS mutation encompass “hot spot sequences” for which multiple 
HLA-binding peptides have been predicted (indicated by dark colors in Fig. 3), suggesting 
that these might be of increased interest for further evaluation (52, 53). 
Our study has the following limitations. The list of neoantigens analyzed with ReFrame is not 
exhaustive, as additional frameshift mutations resulting from shorter, less frequently 
mutated cMS can occur in MSI cancers. In addition, we can only propose an atlas of 
predicted potential neoepitopes in MSI cancers. Although previous studies evaluated a few 
of the predicted candidates (18, 54), supporting the general validity of the in silico 
predictions, functional validation of individual predicted epitopes will be required to 
demonstrate that they can in fact be processed by tumor cells and recognized by immune 
cells.   
By combining quantitative cMS mutation analysis with a neoantigen-specific immune score 
that accounts for the prevalence of the epitope-binding HLA molecules in the population, we 
for the first time are able to provide evidence that the cMS mutation patterns in MSI cancers 
show signs of immune selection: Candidates that encompass immunogenic epitopes 
predicted to bind to common HLA types tend to occur less frequently in manifest MSI 
cancers. This observation supports the concept that immune surveillance is a major force 
shaping the natural course of MMR-deficient cancer development (4, 25, 26, 37, 55). 
Depletion of expressed neoantigens, similar to what our data suggest, has recently been 
reported in lung cancer (56).  
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Other studies failed to detect evidence for negative selection of immunogenic, neoantigen-
inducing mutations in cancer and thereby immunoediting (57, 58). This discrepancy may in 
part be related to the fact that our approach specifically compares individual cMS mutations 
based on their immunological consequences, accounting not only for the presence of 
predicted epitope sequences, but also for the population frequency of the respective HLA 
type, to which the predicted epitope is supposed to bind. In addition, the detectability of 
specific counterselection events is supported by three specific features of MMR deficiency: 
first, MMR-deficient cancers in contrast to other tumors share precisely the same mutations, 
because the location of a cMS within a gene determines its susceptibility for indel mutations 
in MMR-deficient cells; second, MMR-deficient cancers due to the dramatically elevated rate 
of somatic mutations per cell division are expected to harbor a significantly higher 
proportion of MMR deficiency-induced mutations compared to age-related mutations that 
have occurred prior to tumor initiation, thus enhancing the “visibility” of negative selection 
events; third, counterselection against FSP neoantigens may be particularly pronounced, as 
MMR deficiency-induced mutations often lead to generation of long neoantigens with 
potentially multiple epitopes, against which no central immune tolerance exists (59).  
The observation of immunoediting during the development of MMR-deficient cancers also 
implies that a person’s HLA genotype should have a significant influence on the immune 
environment during MSI tumor evolution. Given the existence of immune-relevant FSP 
neoantigens that may be bound only by a certain type of HLA molecules, it is reasonable to 
assume that HLA genotype may be a modifier of cancer risk. This may also explain possible 
variations of Lynch syndrome penetrance or different rates of MMR deficiency previously 
suspected between distinct populations (60). Future studies on the natural course of Lynch 
syndrome should account for this factor.  
The shared neoantigen landscape encourages cancer-preventive vaccines against MSI 
cancers, particularly in the setting of Lynch syndrome. If we are able to enhance the 
abundance of T cells recognizing FSP neoantigens by an FSP neoantigen vaccine, we may shift 
the balance towards elimination of emerging cancer cells, thereby reducing the likelihood of 
escape variants leading to outgrowth of clinically manifest tumors. The safety and 
immunological efficacy of such an FSP neoantigen-based vaccine has already been 
demonstrated in a first clinical phase I/IIa trial 
(https://clinicaltrials.gov/show/NCT01461148). If the immune system can be specifically 
sensitized towards FSP neoantigens resulting from driver mutations which inactivate tumor 
suppressor genes, such as the ones we evaluated in this study, tumor evolution should be 
influenced in a way that outgrowth of ‘dangerous’ MSI cancer cell clones should become 
significantly less likely. 
In conclusion, mutational landscapes in MSI cancers suggest negative selection of mutations 
that give rise to highly immunogenic FSP neoantigens. This supports the validity of the 
immunoediting concept in non-viral human tumors. Neoantigen-based vaccination 
approaches for the prevention of MMR-deficient cancers should account for the natural 
immune surveillance during their development and focus on strengthening the host’s 
immune response against neoantigens that are related to essential driver mutation events.  
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Materials and Methods 

 
Tumor specimens 
Formalin-fixed, paraffin-embedded (FFPE) archival tissue blocks were collected from 139 MSI 
colorectal carcinomas and 14 MSI endometrial carcinomas. Pseudonymized clinical data of 
each tumor patient is summarized in Table S1. Tumors were obtained from the Department 
of Applied Tumor Biology, University Hospital Heidelberg in frame of the German HNPCC 
Consortium, the Finnish Lynch syndrome registry, and Leiden University Medical Center. The 
study was approved by the Institutional Ethics Committee, University Hospital Heidelberg. 
Informed consent was obtained from all patients.  
 
Tissue workup and DNA isolation 
FFPE tumor sections (5 µm) were deparaffinized and stained with hematoxylin and eosin 
according to standard protocols. DNA was isolated from tissue sections after separate 
microdissection of normal and tumor tissue. Only samples with a tumor cell content of more 
than 80% were used for the analysis. Genomic DNA was isolated using the Qiagen DNeasy 
Tissue Kit (Cat.No. 69506, Qiagen, Hilden, Germany) according to the manufacturer’s 
instructions. 
 
MSI analysis 
The tumors were characterized for their MSI status using the NCI/ICG-HNPCC five 
microsatellite marker panel supplemented with additional mononucleotide markers BAT40 
and CAT25 (61). Tumors displaying instability in more than 30% of the analyzed markers 
were classified as MSI. 
 
Analysis of frameshift mutations in coding microsatellites (cMS) 

In order to amplify the coding microsatellite loci, primers were either obtained from the 
Seltarbase (http://www.seltarbase.org) (27) or designed using primer3 software 
(Primer3web version 4.0.0, http://primer3.ut.ee/), with one primer of the primer set 
carrying a 5’ fluorescent (FITC) label. Primer were designed to generate amplicons in range 
between 100 and 150 nucleotides for robust PCR amplification (Table S7). PCR was 
performed in a total volume of 5 µl containing 0.5 µl 10x reaction buffer (Invitrogen, 
Karlsruhe, Germany), 1.5 mM MgCl2, 200 mM dNTP mix, 0.3 mM of each primer, 0.1 U Taq 
DNA polymerase (Invitrogen), and 10 ng of genomic DNA, using the following protocol: initial 
denaturation at 94°C for 5min; 36 cycles of denaturation at 94°C for 30s, annealing at 58°C 
for 45s and primer extension at 72°C for 1min; final extension step at 72°C for 7min. PCR 
fragments were separated on an ABI3130xl genetic analyzer (Applied Biosystems, 
Darmstadt, Germany). Generated raw data were analyzed using GeneMapper™ Software 
version 4.0 (ThermoFisher, Waltham, USA). Peak height profiles were extracted and 
processed using ReFrame based on R version 3.4.3. The R script is available as 
Supplementary Material 1.  
 
Microsatellite allele distributions analyzed using Regression-based Frameshift quantification 
(ReFrame) 

In general, PCR amplification of microsatellite loci generates fragments that can vary in 
length, either due to indel mutations in MMR-deficient cells or due to polymerase slippage 
during amplification (stutter band artifacts). These two phenomena cause overlays of peak 
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patterns and hamper data interpretation. We developed a ReFrame, a REgression-based 
FRAMEshift quantification algorithm, to allow quantitative analysis of microsatellite 
mutations by removing stutter band artifacts. 
We obtained main-peak fractions as a function of microsatellite length, to which a logistic 
function, in the following referred to as 𝑝(𝐿) was then fitted. For each microsatellite in 
question, an effective length was computed using that fit. We then determined stutter 
fractions for each gene, by calculating the ratios of additional fragments occurring at each 
microsatellite locus in MMR-proficient control samples (n = 20) to establish baseline 
reference values 𝑝𝑟𝑒𝑓. For each cMS, we computed the expected relative contributions of 

each insertion/deletion in the range of 𝛥 = −4 deletion to 𝛥 = +4 insertion to each band in 
the data as: 
 

𝐶ΔΔ′
𝐿 ≔ 𝕀<5(Δ′ − Δ) ⋅ 𝑝𝑟𝑒𝑓(Δ′ − Δ) ⋅

1 − 𝑝𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒(𝐿, Δ)

1 − 𝑝𝑟𝑒𝑓(0)
, 

where we defined 
𝑝𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒(𝐿, Δ) ≔ 𝑝(𝑝−1(𝐿) + Δ) 

𝕀<𝑥(𝑦) ≔ {
1, |𝑦| < 𝑥
0, |𝑦| ≥ 𝑥

 

 
We used these relative contributions to set up a linear system for the true peak size without 
stutter contributions (Fig. S6) by requiring 
 

𝑪𝐿𝒑𝑡𝑟𝑢𝑒 = 𝒑𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 
min(𝒑𝑡𝑟𝑢𝑒) ≥ 0; max(𝒑𝑡𝑟𝑢𝑒) ≤ 1 

 
where 𝒑𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 and 𝒑𝑡𝑟𝑢𝑒 are the observed and true peak sizes respectively. Resulting allele 
profiles were imported into a database for further analysis. 
 
Validation of ReFrame was performed in three steps: First, DNA of colonic normal tissue was 
used to determine baseline deviations of the method in negative controls (Fig. S6c). 
Additionally, microsatellite-stable cell line DNA (HT29) was used as a control. Finally, two cell 
line DNAs with differing mutation states (HT29 displaying wild type peak pattern, LS180, 
displaying a mutant peak pattern) were mixed in 10%-steps and expected allele distributions 
were compared to the ReFrame results (Fig. S6d).  
 
Code availability 
The source code of all used algorithms can be accessed on  
https://github.com/atb-data/neoantigen-landscape-msi 
 
Selection of coding microsatellites and frameshift peptide sequences 
For HLA class I binding prediction, 524 FSP neoantigen sequences from 262 mononucleotide 
changes were retrieved from the Selective Targets in Human MSI-H Tumorigenesis Database 
(Seltarbase, http://www.seltarbase.org) (27). All cMS with a length of at least eight bases 
were included. In particular cases other cMS representing putative driver genes, as well as 
genes which give rise to FSPs with predicted high-affinity binding epitopes according to the 
literature were also added to the study. In order to also assess potential epitopes located at 
the junction between N-terminal wild type and C-terminal mutant peptide sequences, the 
tested peptide sequences all comprised 8 wild type amino acids directly located upstream of 
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the FSP neoantigen sequence to encompass possible fusion epitopes. The whole list of used 
FSP neoantigens is depicted in Table S5. 
 
HLA binding predictions 
For HLA binding prediction, the neoantigen sequences derived from each the M1 and M2 
mutated alleles were analyzed for the presence of binders using the publicly available 
prediction tool NetMHCpan 4.0 (www.cbs.dtu.dk/services/NetMHCpan/) (9), whose 
performance has been evaluated to be one of the best of the available tools (51). As m1-
induced and p2-induced M1 neoantigens (akin to m2-induced and p1-induced M2 
neoantigens) are identical, except for one additional amino acid at the transition between 
wild type and neo-sequence, we only used M1/m1 and M2/m2 neoantigens for HLA binding 
prediction.   
Predicted epitopes were subdivided into three classes based on commonly used thresholds. 
While the first class included epitopes with a predicted affinity of IC50 below 50 nM, referred 
to as high-affinity binders, the second class included all predicted binders below 500 nM 
(low-affinity binders). The last class was containing all putative epitopes with lower than 
5000 nM affinity (very low-affinity binders). All potential HLA binders with an affinity higher 
than 5000 nM were discarded. The peptide length of interest was set to 8mer to 14mer 
peptides. A preselection of HLA supertype representatives including HLA-A*01:01, HLA-
A*02:01, HLA-A*03:01, HLA-A*24:02, HLA-A*26:01, HLA-B*07:02, HLA-B*08:01, HLA-
B*27:05, HLA-B*39:01, HLA-B*40:01, HLA-B*58:01 and HLA-B*15:01 was chosen based on 
previous recommendations (31, 32). A list of all chosen cMS and FSP sequences were 
submitted to a Python driver script operating NetMHCpan 4.0 (9) to predict putative HLA 
binding peptides. The prediction results were processed using a Python script applying the 
above-mentioned IC50 thresholds to all predicted peptides, yielding three datasets of 
peptides with potential very low, low and high HLA binding affinity. The resulting datasets 
were then used to generate figures visualizing the predicted epitopes using matplotlib (62). 
To that end, predicted epitopes were counted and mapped for each HLA type, neoantigen 
candidate and the respective epitope class (high-, low- or very low-affinity binder). The 
results of that analysis were used to generate heatmaps per candidate and HLA type using 
another Python script (see Suppl. Material 1 for all scripts). 
 
Selection of HLA allele frequency data 
HLA allele frequency data sets were selected from the Allele Frequency Net Database (34) by 
taking the largest datasets of each ethnicity with at least 10000 data points and sufficient 
resolution in HLA alleles. These were further processed together with epitope and mutation 
data to compute the immunological scores. 
 
Computation of immunological scores 
For all candidate FSP neoantigen, measures of probable immunological relevance were 
computed based on the above described predicted IC50 values and mutation frequencies. A 
hierarchy of probabilities for the given candidates to produce immune reactions were 
computed, those being an epitope likelihood score (ELS) per HLA type, a generalized epitope 
likelihood score (GELS) comprising all HLAs under consideration, as well as an immunological 
relevance score (IRS). The ELS was defined to describe the probability of a given neoantigen 
to be effective across a population, relative to a single HLA: 
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𝐸𝐿𝑆𝐻(𝑛) ≔ (1 − (1 − 𝑓𝐻)2) ⋅ (1 − (1 − 𝑝𝑏𝑖𝑛𝑑𝑖𝑛𝑔)
|𝐸𝐻(𝑛)|

) 

 
where 𝐻 ∈ 𝐻𝐿𝐴 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑠 is a given HLA, 𝑛 ∈ 𝑐𝑀𝑆 is a given FSP neoantigen, 𝑓𝐻 the allele 
frequency of a given HLA allele, 𝑝𝑏𝑖𝑛𝑑𝑖𝑛𝑔 the probability, that a given predicted epitope is 

actually bound, that is the true positive rate of the prediction algorithm, and 𝐸𝐻(𝑛) the set 
of all epitopes predicted for a given HLA and neoantigen. Taken together, 𝐸𝐿𝑆𝐻 constitutes 
the probability of a given candidate 𝑛 having at least one true binding epitope for an HLA 𝐻 
and a random person from a given population having at least one allele of 𝐻. 
Consequently, the GELS gives the probability of a candidate 𝑛 having at least one binding 
epitope among all HLAs, for which the given HLA is also present in a randomly selected 
individual: 
 

𝐺𝐸𝐿𝑆𝑋(𝑛) ≔ 1 − ∏ (1 − 𝐸𝐿𝑆𝐻(𝑛))

𝐻∈𝐻𝐿𝐴𝑋

; 𝑋 ∈ {𝐴, 𝐵} 

𝐺𝐸𝐿𝑆(𝑛) ≔ 𝐺𝐸𝐿𝑆𝐴(𝑛) + 𝐺𝐸𝐿𝑆𝐵(𝑛) − 𝐺𝐸𝐿𝑆𝐴(𝑛) ⋅ 𝐺𝐸𝐿𝑆𝐵(𝑛), 
 
where 𝐻𝐿𝐴𝑋 is the set of HLA types considered for locus 𝑋. 
 
Finally, the IRS gives the joint probability of a given FSP and its underlying cMS mutation 
being present in an individual and at least one predicted binder existing for an HLA present 
in that individual, assuming independence between the presence of HLA alleles and present 
FSPs: 
 

𝐼𝑅𝑆(𝑛) ≔ 𝑝𝑚𝑢𝑡(𝑛) ⋅ 𝐺𝐸𝐿𝑆(𝑛) 
 
ELS and GELS were computed for all candidate FSPs and HLAs considered using Python on 
the three output classes of epitope prediction, where binding probabilities 𝑝𝑏𝑖𝑛𝑑𝑖𝑛𝑔 were 

incremented from 0% to 90% in steps of 10%. HLA allele frequencies were obtained from the 
Allele Frequency Net Database (34). Immunological relevance scores were computed for all 
candidates with available mutation frequency data.  
 
Cluster analysis of mutation patterns 
Frameshift mutation abundances (m4 to p4) for each gene and tumor sample were filtered 
for missing data. For all subsequent clustering experiments, missing values were replaced by 
the dataset mean. Abundances of frameshift mutations were summarized by their respective 
reading frame (M2, M1, wt), providing the features used for all subsequent analyses. 
Resulting features were grouped by tumor sample and candidate cMS respectively.  
Hierarchical clustering using Ward’s minimum variance linkage (63) was performed for both 
feature-sets grouped by cMS and tumors for all tumor samples considered, as well as for 
cMS features considering only B2M wildtype and mutated tumors respectively. Three 
clusters of candidate cMS were extracted from hierarchical clustering both for features 
considering all tumor samples and features considering B2M wildtype tumors only.  
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Fig. 1. Mutation frequencies of coding microsatellites (cMS) in MSI colorectal (CRC) and 
endometrium cancer (EC). (A) The relative frequency of mutant alleles is shown for 41 cMS 
(rows) in CRC and EC tumor samples (columns) derived using ReFrame. cMS were sorted top-
down according to their mutation frequency indicated by blue boxes of different intensity. 
Dark blue represents high mutation frequency, whereas pale blue represents low mutation 
frequency. Black boxes indicate missing data points. The respective tumor samples are 
shown below each column. cMS were analyzed for both CRC and EC and are depicted 
separately for each tumor type (left panel: CRC, right panel: EC). The complete dataset can 
be found in the Supplementary Material. (B) Dendrogram of CRC and EC samples with 
respect to their mutation patterns, where the color bar below indicates the tumor type. (C) 
Principal component analysis of EC (red) and CRC (blue) samples with respect to their 
mutation patterns. EC samples are distinguishable from CRC samples by mutation patterns 
alone. 
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 Fig. 2. Mutational pattern distribution in cMS based on ReFrame analysis. (A) Scheme of 
frameshift mutations (m3 – p2) on the left and their corresponding frames (M0, M1, M2) on 
the right. The numbers 1-3 indicate base triplets in the corresponding frame. Arrows mark 
the shift between the wt frame and the alternate frame. (B) Distribution of all cMS 
frameshift mutations (m3 – p2) and their corresponding frames (M0, M1, M2) in MSI CRC 
quantified using ReFrame. Mutations in all MSI CRC samples were classified in corresponding 
reading frames (M0, black; M1, magenta; M2, green) and their overall allele ratios 
quantified. (C) The detailed mutational patterns of 10 representative cMS are depicted with 
their respective frequency of mutation for all possible resulting frameshift mutations (m4 – 
p4) in MSI CRC and EC (see Fig. S3 for complete dataset). Each row constitutes one analyzed 
tumor sample with its related allele ratios. For each cMS, tumors were sorted by the 
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proportion of wild type alleles top to bottom. The number of samples analyzed for a certain 
candidate is indicated below each candidate’s figure. Color indicates the resulting reading 
frames: magenta indicates the M1 frame, corresponding to m1, m4 and p2 mutations; green 
indicates the M2 frame, corresponding to m2, p1, p4 mutations. Because wt, m3 and p3 
mutations do not result in translational frameshifts, they are shown in black (M0) (see also 
magnification, right panel). Intensities represent ReFrame-calculated ratios from white (0%) 
to full intensity magenta/green/black (100%) according to the resulting reading frame of the 
column. The annotated solid lines (first horizontal line top down) show the end of the non-
mutated tumor samples while the dotted lines (second horizontal line top down) mark the 
beginning of tumors being more than 50% mutated, associated with biallelic hits within the 
respective sample. (D) Calculated mutation frequencies and mean allele ratios of most 
common mutation types (m3 – p1) resulting from ReFrame analysis in 10 representative cMS 
(see Tab. S2 for complete dataset). The table is showing an overview of cMS with mutation 
frequencies above 50% in MSI CRC or MSI EC, depicting the mutation frequencies (%mut), 
the ratio of samples with biallelic hits, indicated by a proportion of wt alleles lower than 50% 
of all the detected signals (%wt<0.5), as well as the mean mutational pattern for the cMS 
candidates sorted by their length. The allele ratios are depicted for wild-type (wt), minus one 
up to three base pair deletions (m1 – m3) and one base pair insertions as m4 or p2 – p4 
mutations only rarely occurred or were completely absent. The same color code as depicted 
in (C) was used. 
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Fig. 3. HLA binding predictions for a dataset of 82 analyzed frameshift neoantigen 
peptides. The figures display the predicted epitopes for the M1 and M2 FSP neoantigens 
derived from all 41 cMS candidates over the length of the respective peptide. All epitopes 
predicted for three binding affinity thresholds (IC50 < 50 nM, IC50 < 500 nM and IC50 < 5000 
nM) are shown for the M1 FSPs (left, magenta) and the M2 FSPs (right, green). All candidates 
are sorted in alphabetical order with their respective frequency of mutation according to the 
ReFrame results. The grey field is highlighting the ends of the respective FSPs.  
 
  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 16, 2019. ; https://doi.org/10.1101/691469doi: bioRxiv preprint 

https://doi.org/10.1101/691469


21 
 

 
 
Fig. 4. Evidence of immune selection from cMS mutation patterns and general epitope 
likelihood score (GELS). (A) Hierarchical clustering of cMS candidates on all tumor samples 
using frameshift abundance features. The full clustering hierarchy is displayed as a 
dendrogram, showing three clusters (blue, yellow, green) of genes. The same clusters are   
visualized using RBF kernel PCA with two principal components, and colored by their GELS. 
The three clusters display a trend in their mean GELS, with increasing values from green to 
blue. (B) Hierarchical clustering of cMS candidates on features split by tumor B2M status, 
with wildtype features at the top and mutated features at the bottom. The full hierarchy is 
displayed as a dendrogram for both feature sets, with the threshold dissimilarity for 
clustering indicated by a red line. Here, B2M-mutated features show no clustering at the 
given dissimilarity threshold. The same data is again shown using RBF kernel PCA with two 
principal components. While the wildtype data shows the same clusters as all tumors 
combined, the clustering is lost in the case of mutated B2M. (C) The mutational frequency of 
FSPs resulting from one base pair deletions (m1) is shown on the y axis against the GELS of 
the resulting M1 FSP neoantigens (x axis). For the calculation of the GELS, all predicted 
epitopes (IC50 < 500 nM) were taken into account, with an assumed probability for a binder 
to be a true positive of pbinding=50%. Every bubble depicted represents one candidate. The 
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gradient intensity of the bubbles shows the IRS, with white color representing a low IRS, 
while dark red displays a high IRS. All candidates with an IRS of 10% or higher are annotated. 
(D) Correlation between the number of predicted epitopes in cMS mutation-induced FSP 
neoantigens and the frequency of the respective cMS mutations in MSI colorectal cancer 
separated by B2M mutation status. The Pearson´s r from the correlation test is shown on the 
y-axis, while the different groups of tumors are shown on the x-axis. Whiskers indicate 95% 
confidence intervals. A significant inverse correlation was observed showing r=-0.42, 
p=0.0149 at n=41 candidates for 99 MSI colorectal cancers with wild type B2M, with a 
conservative estimate of predicted epitope fidelity of pbinding=50%, indicating that high 
epitope likelihood was related to lower mutation frequency. 
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Fig. 5. Implications of immune selection during tumor evolution in MSI cancers. (MULTI 
CELL) Inactivation of the MMR system results in the accumulation of a high number of 
somatic cMS mutations during cell division. These cMS mutation events depend on the 
likelihood of polymerase slippage at the microsatellite loci, i.e. on microsatellite length, but 
are random with regard to the functional consequences of the mutations, which results in a 
random distribution of cMS mutations in the initiated cell population. During progression, 
driver mutations promoting cell survival and proliferation are favorable, while highly 
immunogenic mutations are disavowable due to immune supervision. As such, the 
distribution of cMS mutations across a cell population is shaped by both driver effects and 
immune supervision. Abrogation of cellular antigen presentation, i.e. due to B2M mutation-
induced loss of HLA class I stability, the immunogenicity of neoantigens resulting from cMS 
mutations is expected to become irrelevant for the selection of cell clones. Therefore, the 
distribution of cMS mutations is no longer shaped by the immune system and depends only 
on driver effects. (SINGLE CELL) Insertions and deletions due to polymerase slippage in cMS 
result in two equivalence classes of frameshift neopeptides with M1 or M2 frameshifts. 
Survival of a given cell with cMS mutations then depends on the binding behavior of these 
neopeptides to the cell’s HLA class I complexes. If neoantigens contain HLA binding peptides, 
they can be recognized as foreign by T cells, resulting in the possibility of T cell-mediated 
induction of cell death. In contrast, neoantigens not containing HLA binding peptides are 
neutral and do not impair cell survival. Destabilization of HLA class I by B2M mutation leads 
to a general lack of peptide-containing HLA class I complexes on the cell surface, 
theoretically corresponding to a complete lack of HLA class I binders. (WORKFLOW) 
Distribution of cMS mutations across tumor samples was quantified using ReFrame, which 
performs deconvolution on observed frameshift sequence abundances including stutter 
contributions to recover the true abundance of each frameshift sequence. NetMHCPan 4.0 
predicts the IC50 of putative epitopes for all cMS-derived FSPs, identifying potential highly 
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immunogenic FSPs by their number of predicted low-IC50 epitopes. This information is 
composed into a hierarchy of immunogenicity scores (ELS, GELS, IRS) combining multiple 
probabilities of HLA class I binding, presence of correct HLA types and presence of cMS 
mutations. The top 10 IRS FSPs are picked as possible candidates for vaccination. 
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