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Abstract 
The central paradigm of molecular population genetics is selective sweeps, where targets of 

selection have independent effects on the phenotype and quickly rise to fixation. In 

quantitative genetics, many loci contribute epistatically to adaptation and subtle frequency 

changes occur at many loci. Since both paradigms could result in a sweep-like genomic 

signature, additional criteria are needed to distinguish them. Using the framework of 

experimental evolution, we performed computer simulations to study the pattern of selected 

alleles under both paradigms. We identify several distinct patterns of selective sweeps and 

polygenic adaptation in populations of different sizes. These features could provide the 

foundation for development of quantitative approaches to differentiate the two paradigms. 

 

Author’s summary 
The selective sweep model assumes an independent frequency increase of favorable alleles 

and has been the basis of many tests for selection. While, polygenic adaptation is typically 

modelled by small frequency shifts in many loci. Recently, some theoretical and empirical 

work demonstrated that polygenic adaptation, similar to sweep, could also results in 

pronounced allele frequency changes. These results suggest that other distinct features need 

to be identified. Using computer simulations, we identified distinctive features for each 

paradigm that can be used to differentiate the sweep model from polygenic adaptation. 

Features such as allele frequency trajectories, time-series fitness, distribution of selected 

alleles on haplotypes, and parallelism among replicates can be used for development of 

suitable tests to distinguish between different adaptive architectures. These features provide 

the basis for theoretical modeling, design of selection experiments and data analysis.  
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Introduction 
 
Characterizing adaptive traits and, more recently, identification of their genetic basis has 

been one of the long-standing research fields in evolutionary biology. Molecular population 

genetic theory assumes that beneficial mutations are rare, but once occurred they rise in 

frequency until fixation (Smith and Haigh 1974), i.e. hard sweeps. More recently, the concept 

of classic hard sweeps have been extended - the beneficial allele either starts from standing 

genetic variation or multiple beneficial alleles are generated by mutation at the same gene 

(Hermisson & Pennings 2005). For decades the selective sweep paradigm has dominated 

molecular population genetics and the distortion of the allele frequency spectrum of sites 

flanking beneficial mutations has been exploited by a wealth of statistical tests to distinguish 

selection from neutrality (Messer and Petrov 2013; Pavlidis and Alachiotis 2017).  

Quantitative genetics, on the other hand, traditionally has a strong focus on the 

evolution of phenotype, which is assumed to be determined by many contributing alleles, 

each with subtle effect, i.e. polygenic adaptation. Although adaptive traits are frequently 

assumed to be polygenic (Chevin and Hospital 2008; Pritchard and Di Rienzo 2010; Pritchard 

et al. 2010), the genomic signature of polygenic adaptation is being studied only recently. For 

polygenic adaptation small effect sizes are widely assumed to result in subtle allele frequency 

changes when a population is exposed to a new environment with a different trait optimum, 

i.e. trait optimum paradigm. Only recently, theoretical (Chevin and Hospital 2008; Höllinger 

et al. 2019; Jain and Stephan 2017) and empirical studies  (Barghi et al. 2019) demonstrated 

that polygenic adaptation can also generate sweep-like selection signatures.  

Sweep-like selection signatures arising from selective sweeps and polygenic 

adaptation suggests that the standard approach of studying genomic signatures in 
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extant/evolved populations is not conclusive about the underlying paradigm. Because 

knowledge of the underlying paradigm of adaptation is crucial for the proper theoretical 

modelling and neutrality tests, alternative approaches are needed to distinguish between 

them and determine their importance for adaptation processes. Time series data provide 

information about the trajectories of beneficial alleles in evolving populations, which can be 

used to distinguish between the two paradigms. Time series data are, however, quite rare. In 

addition to fossil data, experimental evolution provides a powerful approach to study the 

adaptive architecture of traits (Kawecki et al. 2012; Schlotterer et al. 2015). The cost-

effectiveness of sequencing pools of individuals (Schlöttereret al. 2014) provides the 

opportunity to generate time-series of genome-wide polymorphism data in multiple 

replicates.  

Recently, the extent of genomic similarity among replicates was used as a summary 

statistic to determine the underlying evolutionary paradigm in 10 experimental replicates of 

Drosophila simulans (Barghi et al. 2019). With a single discriminating summary statistic not 

being powerful enough, in this study we aim to identify additional patterns in the evolving 

populations which are informative for recognizing the underlying evolutionary paradigm.  

Reasoning that genetic drift provides a major perturbation of the directed forces of 

selection, we explored the potential of different experimental population sizes to distinguish 

between the paradigms. Using computer simulations, we identify several parameters such as 

allele frequency trajectories, time-series fitness, distribution of selected alleles on 

haplotypes, and parallelism among replicates, that distinguish sweep and trait optimum 

paradigms.  
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Results and Discussion 
With recent theoretical (Chevin and Hospital 2008; Höllinger et al. 2019; Jain and Stephan 

2017) and empirical studies (Barghi et al. 2019) demonstrating that polygenic adaptation can 

also result in sweep-like selection signatures, is has become clear that the distinction of the 

underlying selection paradigm requires new approaches building on multiple diagnostic 

features. For example, we recently showed that evolutionary paradigms can be distinguished 

by the extent to which targets of selection are shared among replicates (Barghi et al. 2019). 

However, a reliable distinction between paradigms requires identification of additional 

features that distinguish both paradigms. We performed computer simulation under sweep 

and trait optimum paradigms with small and large populations sizes to identify distinct 

patterns for each paradigm. Our computer simulations are not designed to exhaustively cover 

all possible parameter combinations, but we rather identify distinct features of each 

paradigm. 

 
Distinct characteristics of sweep and trait optimum paradigms  
We explored potential differences between selective sweep and trait optimum paradigms 

using a standard set of simulation parameters. In a population of 450 diploid individuals, 100 

linked loci, matching typical E&R experiments in Drosophila (Barghi et al. 2019), with equal 

starting frequency of 0.05 and equal effects (selection coefficient of 0.08 for selective sweep 

and effect size of 0.04 for trait optimum paradigm) were simulated with the D. simulans 

recombination landscape in 500 iterations (scenario A in Table 1a, for sweep, and 1b, for trait 

optimum paradigm).  

Typical E&R studies have relatively small population sizes, which requires accounting 

for the expected allele frequency change (AFC) due to genetic drift to distinguish selection 

from neutrality. Regardless of the selection paradigm, genetic drift is quite strong in small 
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populations (Fig. S1). We accounted for this by computing a frequency cut-off based on the 

95% quantile of AFC under neutral simulations and only alleles with more extreme AFCs were 

considered to be selected (Fig. S1).  

Allele frequency trajectories One important difference between the two paradigms 

is the pattern of allele frequency changes. Under the selective sweep paradigm, selected 

alleles continuously increase in frequency until they reach fixation (Fig. 1) whereas distinct 

phases of allele frequency changes were discerned for the trait optimum paradigm (Franssen 

et al. 2017). In the initial phase of adaptation, when the population is far from the trait 

optimum, most alleles increase in frequency (Fig. 1). After the phenotypic optimum is reached 

(generation 40, Fig. 2), the second phase starts where the allele frequencies plateau. 

However, drift affects this phase and in small populations this phase is either very short or 

not present at all. In small population, drift decreases the frequency of some alleles below 

the threshold for identification of selected alleles, and with loss of these alleles, the median 

frequency of the remaining alleles continues to rise (Fig. 1). The third phase of allele frequency 

changes includes fixation and loss of selected alleles. The first 2 phases are shown in Fig. 1; 

the third phase becomes noticeable after more generations e.g. 2500 (Fig. S2). We illustrate 

the first two phases of the trait optimum paradigm by showing the trajectories of alleles in a 

single replicate in Fig.  S3.   

Sweep-like signatures Many alleles reach frequency of ≥0.9, that is they exhibit 

sweep-like signatures, in the sweep paradigm (generation 90 onwards) while such signatures 

are not observed in the trait optimum paradigm (Fig. 1).  

Fitness As the frequency of selected alleles rises under the selective sweep paradigm 

(Fig. 1), population fitness also increases until all selected alleles are fixed (Fig. 2). Unlike the 

sweep paradigm, the population fitness under the trait optimum paradigm increases only 
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until the phenotypic optimum is reached (Fig. 2). One distinct feature of the two paradigms 

is that for sweep paradigm the phenotypic value increases as long as the frequency of selected 

alleles do so. For the trait optimum paradigm, allele frequency changes are decoupled from 

the phenotype as soon as the trait optimum has been reached (Fig. 1 and 2).  

Parallelism across replicates Because the loss of alleles is more common in small 

populations due to drift, the different selected alleles may be detected among replicates 

resulting in lower parallelism among replicates (Fig. 3). This feature is shared between the 

two paradigms. For the sweep paradigm, parallelism continues to increases as more alleles 

reach frequencies above neutrality. In trait optimum paradigm, the contributing loci have 

epistasis for fitness and thus genetic redundancy is an intrinsic feature of the paradigm. 

Genetic redundancy describes the phenomenon that more alleles are segregating in a 

population than needed to reach the trait optimum (Barghi et al. 2019; Goldstein and 

Holsinger 1992; Nowak et al. 1997; Yeaman 2015). In this case, if some alleles contributing to 

the phenotype are lost, the trait optimum can still be reached by frequency increase of the 

remaining alleles. In the trait optimum paradigm, parallelism increases until populations 

reach the phenotypic optimum but it decreases afterwards (Fig. 3). This pattern can be 

explained by some alleles decreasing their frequency below the detection cutoff (Fig. 1). Since 

the stochasticity of the small populations in the first phase results in different loci contributing 

to the reach of trait optimum, the loss of alleles due to stochasticity in the second phase 

reduces the parallelism even more (Fig. 3). 

Distribution of selected alleles on haplotypes In our simulations, the beneficial alleles 

were randomly distributed across the chromosomes in the founder populations so that each 

haplotype carries on average 5-6 beneficial alleles (Fig. 4). Due to recombination, the number 

of beneficial alleles per haplotype increases in both paradigms. While under the sweep 
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paradigm, the number of beneficial loci per haplotype continues to increase (Fig. 4), for the 

trait optimum paradigm, this number increases only until the fitness optimum is reached (at 

F40) but does not change afterwards. Thus, another distinctive pattern between the two 

paradigms is the plateau in the number of beneficial alleles per haplotype in the trait optimum 

paradigm while this number continuously increases under the sweep paradigm until all alleles 

are fixed.  

 

Effect of population size  
Large populations experience less genetic drift than small ones, which increases the efficacy 

of selection and the power to detect selected alleles. To assess the impact of population size 

on the ability to discriminate between sweep and trait optimum paradigms, we also 

performed simulations with a larger population size, i.e. 9000 diploid individuals (scenario A 

in Table 1a, for sweep, and 1b, for trait optimum paradigm). Comparison of the sweep and 

trait optimum paradigms in small and large populations revealed additional distinctive 

features to differ between the paradigms possible only by the combined analysis of different 

population sizes. 

Allele frequency changes The neutral AFC in the large population is only 0.034 until 

generation 140, much less than in small populations (0.18, Fig. S1). Therefore, a plateau of 

the median allele frequencies after reaching the optimal trait under the trait optimum 

paradigm is observed in large populations (Fig. 1) which provides an unambiguous signature 

differentiating the two paradigms.  

The difference in median allele frequencies between small and large populations 

increases with time for the trait optimum paradigm (Fig. 1). This pattern is the consequence 

of more loci decreasing below the detection limit in the small populations than for large ones 
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after the trait optimum has been reached. For the sweep paradigm, the allele frequencies 

continuously increase with time so the difference in the median allele frequencies between 

small and large populations decreases continuously. Hence, large and small populations have 

characteristic signatures that distinguish trait optimum paradigm from sweep paradigm. 

Combining the information from large and small populations provides an even stronger 

distinction between the two paradigms. 

Fitness The evolution of fitness has the same trend in small and large populations 

regardless of the evolutionary paradigm. The increase in fitness is higher in large populations 

than in the small ones in the sweep paradigm (Fig. 2) because fewer alleles are lost by drift 

(Fig. 1). Furthermore, the population fitness increases faster in the large population under the 

trait optimum paradigm but only until the phenotypic optimum is reached (Fig. 2). Despite 

faster increase of fitness in large populations under trait optimum paradigm, small and large 

populations reach the fitness optimum almost at the same time (Fig. 2) and the differences 

in fitness between small and large populations before reaching the fitness optimum are very 

subtle. However, in the sweep paradigm, the difference in fitness gain between small and 

large populations increases with time. Thus, the differential fitness in populations of different 

sizes can serve as discriminator between the two paradigms. 

Parallelism across replicates Regardless of the evolutionary paradigm, the signature 

of selection is more repeatable in large populations than in small ones because fewer alleles 

are lost due to drift (Fig. 3).   

Distribution of selected alleles on haplotypes Under the sweep paradigm, more 

selected alleles are recombined onto the same haplotype in large populations than in small 

ones (Fig. 4) and the number of selected alleles increases with time for both population sizes. 
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For the trait optimum paradigm, population size has no influence on the number of selected 

alleles on haplotypes after trait optimum is reached. 

While for some discriminatory features, such as distribution of selected alleles on 

haplotypes, no major difference can be noted between large and small populations, 

contrasting the patterns of fitness evolution, allele frequency changes and parallelism among 

replicates in small and large populations clearly provides some additional information not 

available from analysis of a single population size alone.  

 
Effect of the number of selection targets  
 
We determined the influence of the number of selected alleles by simulating 10, 20, 50 and 

100 linked loci (scenario B in Table 1a, for sweep, and 1b, for trait optimum paradigm) with 

starting frequency of 0.05 and equal effects (0.08 for selective sweep and 0.04 for trait 

optimum paradigm) in small (450) and large (9000) populations in 500 iterations.  

In the sweep paradigm, fitness of populations with more selected alleles is greater 

than that of populations with fewer alleles (Fig. 5) due to the frequency increase of more 

selected alleles throughout the time (Fig. 6). For the trait optimum we noticed a marked 

difference for founder populations with few alleles (e.g. 10 and 20), as in these simulations 

the trait optimum could not be reached (Fig. 7), hence no genetic redundancy was observed. 

In populations without redundancy (e.g. with 10 and 20 loci) the trajectories of allele 

frequencies (Fig. 8) resemble the sweep paradigm in that the median allele frequency 

continues to increase and the two paradigms cannot be distinguished. 

Nevertheless, we noticed an interesting pattern: under the sweep paradigm in small 

populations the fraction of alleles with frequency change more than expected under 

neutrality decreases with the increase in the number of selection targets (Fig. 6). As shown 
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previously (Barton 1995), this pattern is the outcome of selection at other loci causing 

variation in fitness. Recombination generates haplotypes with a larger variance in the number 

of selected alleles on a single haplotype. This in turn increases the variance in fitness for those 

populations, ultimately leading to the loss of some selected alleles by genetic drift.  As a 

consequence, the similarity among replicates in populations with fewer selected alleles is 

greater than those with more alleles (Fig. 9).  

 
Importance of allelic effect size   

We evaluated the influence of allelic effect size/selection coefficient by simulating 100 

linked loci with starting frequency of 0.05 and varying effect sizes (scenario C in Table 1a, for 

sweep, and 1b, for trait optimum paradigm) in small and large populations. Effect 

size/selection coefficient have pronounced influence on the evolutionary trajectories. Fitness 

increases faster with higher selection coefficients (Fig. 10) and sweep signatures (Fig. 11) 

become more frequent.  The trait optimum is also reached faster with alleles of larger effect 

sizes (Fig. 12) because subtle shifts in frequency cause the required phenotypic shift (Fig. 13). 

Thus, the signatures of reaching trait optimum - drift reduces parallelism among replicates 

(Fig. 14) and the number beneficial alleles per haplotypes remains stable – are seen earlier 

(Fig. 15). Except for minor differences, the main distinctions between sweep and trait 

optimum paradigms do not change with different selection coefficients/effect sizes. For 

example, with small s (0.02) the median frequency of the selected alleles continues to 

increase faster in small populations than the subtle changes in the large ones (Fig. 11), similar 

to the trait optimum paradigm (Fig. 13). Nevertheless, for the sweep paradigm, the number 

of identified selection targets, even for small s, increases as populations evolve (Fig. 11), while 

it decreases for the trait optimum paradigm (Fig. 13). These distinctive patterns can be used 

for differentiating the paradigms. 
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Conclusions 
Our computer simulations identified several features that can be used to distinguish between 

the selective sweep and trait optimum paradigms. While one distinguishing feature requires 

phenotypic data, majority of features can be inferred from genomic data alone provided that 

reaching the trait optimum is assured.  

1) The fitness of large populations is greater than that of small ones under the sweep 

paradigm and continues to increase until the fixation of all selected alleles (Fig. 2). For the 

trait optimum paradigm, however, the fitness between small and large populations differs 

only until the trait optimum is reached and is not affected by further allele frequency changes 

(Fig. 2).  No genetic data are required for this distinguishing feature.  

2) The selected alleles increase in frequency until fixation under the sweep paradigm 

while the frequency of selected alleles increases until the phenotypic optimum is reached in 

the trait optimum paradigm (Fig. 1). After reaching the trait optimum, the median allele 

frequencies plateaus in large populations but not in small populations. Strong drift and 

frequency decrease of selected alleles below detection limit are responsible for continued 

increase of the median allele frequencies. Nevertheless, the number of identified selected 

alleles is strongly reduced in later generations in small populations. Therefore, there is a clear 

difference between the two paradigms in either small or large populations provided that the 

experiment is conducted for a sufficient number of generations. 

3) The number of selected alleles shared among replicates (parallelism) is another 

distinguishing feature between the paradigms. The parallelism among replicates continues to 

increase in the sweep paradigm while after reaching the trait optimum repeatability of 
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adaptation decreases under the trait optimum paradigm (Fig. 3). Therefore, replication 

provides a powerful means for distinguishing evolutionary paradigms.  

4) The number of beneficial alleles per haplotype continues to increase in the sweep 

paradigm while it plateaus under the trait optimum paradigm (Fig. 4). This feature requires 

availability of phased haplotypes but provides another confirmatory test for distinguishing 

the two evolutionary paradigms. 

As a consequence of consistent frequency increase in the sweep paradigm, many 

alleles reach near-fixation frequencies, i.e. sweep-like signatures (Fig. 1). But in our 

simulations sweep-like signatures were extremely rare for the trait optimum paradigm. 

Nevertheless, we caution that this is not a very reliable discriminating feature, as unequal 

effect sizes and few selected loci (Fig. 8) could cause sweep-like signatures in trait optimum 

paradigm. 

We also showed that the combination of large and small replicate populations 

uncovers some distinctive patterns that can be further used for developing test statistics to 

discriminate between the two paradigms. We propose that machine learning could be a 

powerful approach to exploit the described features for a quantitative approach to distinguish 

between the two paradigms. We consider combining the analysis of small and large 

populations as a suitable means for the analysis of the adaptive architectures. Large 

populations clearly offer the advantage to identify a larger number of selected alleles which 

increase in frequency in multiple replicates. Small populations are easier and cheaper to 

maintain while still offering discriminative features. However, mapping the causative variant 

will be more challenging in small populations because of stronger linkage disequilibrium and 

more confounding signal from neutral alleles. 
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Materials and Methods 
We simulated a quantitative trait with linked loci under sweep and trait optimum paradigms 

for two population sizes, i.e. 450 and 9000 diploid individuals, assuming random mating 

among individuals (scenario A in Table 1a and 1b). We define the trait optimum paradigm as 

polygenic adaptation of a quantitative trait after a shift in phenotypic optimum. The positions 

of the selection targets were randomly distributed along the entire chromosomes 2 and 3 of 

D. simulans, but kept the same for sweep and trait optimum paradigms. For a realistic linkage 

structure and to mimic the number of haplotypes typically used in E&R studies, we used 189 

haplotypes from a D. simulans population collected in Florida (Howie et al. 2019) to construct 

populations of 450 and 9000 individuals for the simulations, i.e. each haplotype is present in 

multiple copies in the founder population. We used the recombination landscape of D. 

simulans in our simulations (Howie et al. 2019). Population fitness (sweep paradigm) or 

phenotype (trait optimum paradigm) and allele frequencies were recorded every 10th 

generation until generation 140. Each simulation scenario was performed in 500 iterations. 

For characterization of the qualitative differences between sweep and trait optimum 

paradigm we performed computer simulations using functions w (sweep) and qff (trait 

optimum) of MimicrEE2 (version mim2-v193) (Vlachos and Kofler 2018).  

Simulations of selective sweep paradigm 
We performed forward Wright-Fisher simulations using 100 linked loci (linkage structure of 

the phased haplotypes (Howie et al. 2019)) with equal starting frequencies of 0.05 and equal 

selection coefficients of 0.08 constant across time in populations of 450 and 9000 diploid 

individuals for 140 generations (scenario A in Table 1a). In addition to this default scenario, 

we also performed simulations with different numbers of contributing loci, e.g. 10, 20, 50 and 

100 (scenario B in Table 1a) and different values for the selection coefficient, e.g. 0.02, 0.05, 

0.08, 0.1 (scenario C in Table 1a) in populations of 450 and 9000 diploid individuals.  
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Simulations of trait optimum paradigm 
In trait optimum simulations, we simulated adaptation of a quantitative trait to a new trait 

optimum. Trait z is affected by L diallelic loci. The effect size of the “+” allele is +a with 

frequency pi and the effect size of the “–“ allele is –a with frequency qi = 1-pi. Trait z is 

computed as:  

(1)							% = 	' ()(*) − ,)) + 2*),)/)
0

)12
 

We assume co-dominance (h=0.5), d = 0, and epistasis is neglected, thus trait z was 

determined additively. The trait value is mapped to fitness (w) using a Gaussian fitness 

function where PDF is the probability distribution function and maxfit and minfit are the 

maximum and minimum fitness values: 

(2)						345 = 	
1

627(8/)9
× ;

<
(=<>)2

9(?@)2 	 

 

(3)						BCDE;88	(F) = 	345	
G(HBCD − GCEBCD
max	(345)

+GCEBCD 

We simulated 100 linked loci starting at frequency of 0.05 with equal effects i.e. 0.04 

in populations of 450 and 9000 diploid individuals (scenario A in Table 1b). The trait optimum 

(phenotype) was set at -2.5 (µ) with standard deviation (sd) of 0.3 and fitness ranged between 

0.5 and 4.5 (scenario A in Table 1b). In addition, further simulations with different number of 

loci (scenario B in Table 1b) and different values for effect sizes (scenario C in Table 1b) were 

performed; for each simulation run the same effect sizes were used for all loci. The 

phenotypic value of the populations at the beginning of the simulations varies depending on 

the effect size and the number of loci. To enable comparison of simulations with different 

number of contributing loci and/or different effect sizes, independent of the phenotypic 
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variance in the founder population, we adjusted the phenotypic optimum for each simulation 

scenario such that all populations move the same distance in the phenotypic space to reach 

the phenotypic optimum (Fig. S4).  

 

Neutral simulations 
To account for the effect of drift in allele frequency changes, we performed simulations for 

populations with 450 and 9000 individuals with no selection; all parameters of simulations 

matched scenario A in Table 1a but without selection. We determined the allele frequency 

changes (AFC), and set the threshold for identification of alleles with AFC more than expected 

under drift based on the upper 5% tail of neutral AFC distribution between the founder and 

evolving populations at each timepoint across 500 replicates (Fig. S1).  

 

Repeatability of adaptation (similarity among replicates) 
The average pairwise Jaccard indices (Jaccard 1901) among the replicates were calculated for 

50 sets of 10-replicate populations of the sweep and trait optimum simulations using the 

number of alleles with allele frequency changes more than expected under drift (neutral 

simulations above). 
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Tables and Figures 
 
Table 1 Simulation parameters for sweep and trait optimum paradigms 
 

a. Sweep    
paradigm A B C 
 default different no. of loci different s 
Parameters    
N 450, 9000 450, 9000 450, 9000 
No. of loci 100 10, 20, 50, 100 100 
Selection 0.08 0.08 0.02, 0.05, 0.08, 0.1 
Starting frequency 0.05 0.05 0.05 
Recombination map D. simulans  D. simulans  D. simulans  
 
    
b. Trait optimum    
paradigm A B C 
 default different no. of loci different effect size 
Parameters    
N 450, 9000 450, 9000 450, 9000 
No. of loci 100 10, 20, 50, 100 100 
Effect size 0.04 0.04 0.04, 0.08, 0.2, 0.4 
Fitness function Guassian fitness 

function with standard 
deviation of 0.3, fitness 
ranges between 0.5 and 

4.5. Optimum 
phenotype is  

-2.5  

Guassian fitness 
function with standard 
deviation of 0.3, fitness 
ranges between 0.5 and 

4.5. Optimum 
phenotype varies 

depending on the no. of 
loci1  

Guassian fitness 
function with standard 
deviation of 0.3, fitness 
ranges between 0.5 and 

4.5. Optimum 
phenotype varies 

depending on the effect 
size of loci2  

Starting frequency 0.05 0.05 0.05 
Heritability 0.5 0.5 0.5 
Recombination map D. simulans  D. simulans  D. simulans  

1 Fitness-phenotype functions are shown in Fig. S4a  
2 Fitness-phenotype functions are shown in Fig. S4b 
 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 3, 2019. ; https://doi.org/10.1101/691840doi: bioRxiv preprint 

https://doi.org/10.1101/691840
http://creativecommons.org/licenses/by-nd/4.0/


 20 

 

Figure 1 Frequency changes of alleles in populations of 450 and 9,000 individuals under sweep 

(left panel) and trait optimum (right panel) paradigms for scenario A (Table 1a and 1b). 

Asterisks depict the median frequency of alleles with frequency increase more than expected 
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under drift. The number of alleles with frequency increase is shown with colors that 

correspond to the labels. The number of alleles with sweep-like signature (frequency ≥ 0.9), 

if present, is shown after ‘/’. The curves are fitted to histograms with bins of 0.05 and are 

normalized by bin count/total count. Total count is 50,000 (100 loci * 500 replicates).  
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Figure 2 Population fitness and phenotype under sweep (left panel) and trait optimum paradigms (right panel) in populations of 450 and 9,000 

individuals for scenario A (Table 1a and 1b). Black lines depict the median fitness or phenotype. Fitness is log10 transformed. The optimum 

phenotype in trait optimum paradigm is 1.1. The phenotype is normalized by subtracting the phenotype of each individual at F0 from the 

phenotype at each subsequent time point.  
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Figure 3 Median Jaccard similarity index in populations of 450 and 9,000 individuals under sweep and trait optimum paradigms for scenario A 

(Table 1a and 1b). Jaccard index for 10 replicate populations quantifies the extent to which alleles are shared among replicates (0 = no overlap, 

1 = complete sharing). The average Jaccard index among replicates for 50 sets of 10-replicate evolution experiments were computed. For the 

trait optimum paradigm, the optimum phenotype is reached at generation 40 and 30 in small and large populations, respectively. 
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Figure 4 Number of beneficial loci in each haplotype under sweep (top panels) and trait optimum (bottom panels) paradigms for scenario A 

(Table 1a and 1b). The area under normalized histogram equals 1. Total number of replicates in simulations are 50. 
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Figure 5 Population fitness with different number of beneficial loci, e.g. 10, 20, 50, and 100, under sweep paradigm (Table 1a, scenario B). Black 

lines depict the median fitness. Fitness is log10 transformed. 
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Figure 6 Frequency of alleles in populations of 450 and 9,000 individuals under sweep 

paradigm (Table 1a, scenario B) with different number of beneficial loci: 10 (dotted line), 20 
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(dash dotted line), 50 (dashed line), and 100 (solid line). Asterisks depict the median 

frequency of alleles with frequency increase more than expected under drift. The number of 

alleles with frequency increase is shown with colors that correspond to the labels. The 

number of alleles with sweep-like signature (frequency ≥ 0.9), if present, is shown after ‘/’. 

The curves are fitted to histograms with bins of 0.05 and are normalized by bin count/total 

count. Total count is number of loci * 500 replicates. 
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Figure 7 Phenotype in populations with 450 and 9,000 individuals with different number of beneficial loci under trait optimum paradigm (Table 

1b, scenario B). Black lines depict the median phenotype. Yellow line shows the optimum phenotype. Note that the distance between the 
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population phenotype at generation 0 and the optimum phenotype is equal across all simulations. The optimum phenotype is 1.1 (shown by 

yellow line). To normalize the phenotypes among different simulations, the phenotype of each individual at F0 is subtracted from the phenotype 

at each subsequent time point.  
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Figure 8 Frequency of alleles in populations of 450 and 9,000 individuals under trait optimum 

paradigm with different number of beneficial loci (scenario B in Table 1b): 10 (dotted line), 20 

(dash dotted line), 50 (dashed line), and 100 (solid line). Asterisks depict the median 
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frequency of alleles with frequency increase more than expected under drift. The number of 

alleles with frequency increase is shown with colors that correspond to the labels. The 

number of alleles with sweep-like signature (frequency ≥ 0.9), if present, is shown after ‘/’. 

The curves are fitted to histograms with bins of 0.05 and are normalized by bin count/total 

count. Total count is number of loci * 500 replicates.  
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Figure 9 Median Jaccard similarity index in populations of 450 and 9,000 individuals with different number of beneficial loci under sweep and 

trait optimum paradigms simulations (scenario B in Table 1a and 1b). The average Jaccard index among replicates for 50 sets of 10-replicate 

evolution experiments were computed. For the trait optimum paradigm, the generation the optimum phenotype is reached is shown in Figure 

7. 
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Figure 10 Fitness in populations of 450 and 9,000 individuals with 100 beneficial alleles and different selection coefficients (0.02, 0.05, 0.08 and 

0.1) under sweep paradigm (Scenario C in Table 1a). Black lines depict median fitness. Fitness is log10 transformed
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Figure 11 Frequency of alleles in populations of 450 and 9,000 individuals under sweep 

paradigm with 100 beneficial loci and different selection coefficients (scenario C in Table 1a): 
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0.02 (dotted line), 0.05 (dash dotted line), 0.08 (solid line), and 0.1 (dashed line). Asterisks 

depict the median frequency of alleles with frequency increase more than expected under 

drift. The number of alleles with frequency increase is shown with colors that correspond to 

the labels. The number of alleles with sweep-like signature (frequency ≥ 0.9), if present, is 

shown after ‘/’. The curves are fitted to histograms with bins of 0.05 and are normalized by 

bin count/total count. Total count is 100 loci * 500 replicates.  
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Figure 12 Phenotype in populations of 450 and 9,000 individuals with 100 beneficial loci and different effect sizes (0.04, 0.08, 0.2, 0.4) under 

trait optimum paradigm (scenario C in Table 1b). Black lines depict the median phenotype. Yellow line shows the optimum phenotype (1.1). Note 

that the distance between the population phenotype at generation 0 and the optimum phenotype is equal across all simulations. To normalize 
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the phenotypes among different simulations, the phenotype of each individual at F0 is subtracted from the phenotype of at each subsequent 

time point.  
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Figure 13 Frequency of alleles in populations of 450 and 9,000 individuals under trait optimum 

paradigm with 100 beneficial loci and different effect sizes (scenario C in Table 1b): 0.04 (solid 

line), 0.08 (dotted line), 0.2 (dashed dotted line), and 0.4 (dashed line). Asterisks depict the 
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median frequency of alleles with frequency increase more than expected under drift. The 

number of alleles with frequency increase is shown with colors that correspond to the labels. 

The number of alleles with sweep-like signature (frequency ≥ 0.9), if present, is shown after 

‘/’. The curves are fitted to histograms with bins of 0.05 and are normalized by bin count/total 

count. Total count is 100 loci * 500 replicates.  
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Figure 14 Median Jaccard similarity index in populations of 450 and 9,000 individuals with 100 loci and different effect sizes under sweep and 

trait optimum paradigms (scenario C in Table 1a and 1b). The average Jaccard index among replicates for 50 sets of 10-replicate evolution 

experiments were computed. For the trait optimum paradigm, the generation the optimum phenotype is reached is shown in Figure 12.
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Figure 15 Number of beneficial loci in each haplotype in populations of 450 and 9,000 individuals under 

sweep and trait optimum paradigms with 100 loci and different effect sizes (scenario C in Table 1a and 1b). 

The area under normalized histogram equals 1. Total number of replicates in simulations are 50.  
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