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ABSTRACT 

During vertebrate embryonic development, the formation of axial structures is 

driven by a population of stem-like cells that reside in a region of the tailbud 

called the chordoneural hinge (CNH). We have compared the CNH 

transcriptome with those of surrounding tissues and shown that the CNH and 

tailbud mesoderm are transcriptionally similar, and distinct from the presomitic 

mesoderm. Amongst CNH-enriched genes are several that are required for 

axial elongation, including Wnt3a, Cdx2, Brachyury/T and Fgf8, and 

androgen/estrogen receptor nuclear signalling components such as Greb1. 

We show that the pattern and duration of tailbud Greb1 expression is 

conserved in mouse, zebrafish, and chicken embryos, and that Greb1 is 

required for axial elongation and somitogenesis in zebrafish embryos. The 

axial truncation phenotype of Greb1 morphant embryos is explained by much 

reduced expression of No tail (Ntl/Brachyury) which is required for axial 

progenitor maintenance. Posterior segmentation defects in the morphants 

(including misexpression of genes such as mespb, myoD and papC) appear 

to result, in part, from lost expression of the segmentation clock gene, her7. 
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INTRODUCTION 

Vertebrate embryos develop in a highly organized fashion, progressively 

laying down axial tissues as they elongate along the anteroposterior 

embryonic axis (Brown and Storey, 2000; Catala et al., 1996; Wilson and 

Beddington, 1996; Wilson et al., 2009). Serial transplantation and other 

lineage tracing studies in mouse and chick have shown that a self-maintaining 

region in the tailbud called the chordoneural hinge (CNH) includes multipotent 

stem-cell-like progenitors for axial structures (Brown and Storey, 2000; Catala 

et al., 1996; Wilson and Beddington, 1996; Wilson et al., 2009). These include 

bipotent neuromesodermal progenitors (NMPs) that can generate both neural 

and mesodermal cells (Cambray and Wilson, 2002; Cambray and Wilson, 

2007; McGrew et al., 2008; Selleck and Stern, 1991; Tam and Tan, 1992; 

Tzouanacou et al., 2009). 

Adjacent to the CNH is the tailbud mesoderm (TBM) which contains the 

precursors of the axial mesoderm in an unsegmented tissue, the presomitic 

mesoderm (PSM; Fig. 1A). During elongation, the PSM is displaced 

posteriorly while its anterior buds off a series of somites, epithelial balls that 

develop into segmental mesodermal structures such as the axial skeleton and 

musculature (reviewed in Pourquie, 2011) 

Several studies have illuminated how axial progenitors are maintained during 

anteroposterior elongation. Briefly, a positive feedback loop between 

Brachyury/T and Wnt3a maintains axial progenitors in the tail bud (Martin and 

Kimelman, 2010; Wilson et al., 2009). In parallel, Fgf signalling protects axial 

progenitors from differentiation induced by Retinoic acid (RA) that is secreted 

by differentiating and young somites and diffuses into the PSM (Diez del 

Corral et al., 2003; Olivera-Martinez et al., 2012; Ribes et al., 2009). 

However, Fgf8, Wnt3, and T are all expressed in much larger domains than 

the CNH and so do not specifically distinguish axial progenitors from more 

specialised cells such as the TBM. Transcriptome analysis of dissected axial 

progenitor tissue during the period of axial elongation and of in vitro-derived 
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NMPs has identified genes that are differentially expressed between 

progenitors and presomitic mesoderm cells (Gouti et al., 2017; Olivera-

Martinez et al., 2014; Wymeersch et al., 2019). However, the functional 

significance of many of these genes has yet to be defined. 

In this paper, we explore the transcriptional profiles of the CNH, TBM and PSM 

of E10.5 mouse embryos. We find that the CNH transcriptome is very similar 

to that of the TBM, and significantly different from that of the PSM. Several 

genes are expressed in both the CNH and TBM but not in the PSM, although 

none exclusively mark the CNH. Amongst the CNH-enriched transcripts is 

Greb1 which encodes a transcriptional co-activator for androgen/estrogen 

hormone signalling. We show that Greb1 is expressed in the tailbud in mouse, 

chick and zebrafish embryos, and is required for axial progenitor maintenance 

and somite compartmentalisation in zebrafish. Our results indicate that Greb1 

plays an evolutionarily-conserved role during vertebrate axial extension and 

segmentation. 
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RESULTS AND DISCUSSION 

CNH transcriptome is distinct from PSM but TBM 

To identify potential markers for the CNH, we used microarray analysis on 

dissected tissue regions to identify genes whose expression in the E10.5 

mouse CNH is elevated relative to that in the PSM and TBM (Fig. 1A). 150 

genes were upregulated and 98 downregulated comparing the CNH to the 

PSM (Table S1). Only 12 up- and 2 down-regulated transcripts distinguished 

the CNH and TBM, consistent with the latter population being directly derived 

from the former (Table S1). 

To confirm that many genes identified by microarray analysis are selectively 

expressed in progenitor regions of the extending embryo, we searched the 

Mouse Genome Informatics (MGI) database (Finger et al., 2017) for the 

expression patterns of 53 genes whose expression were upregulated ≥2-fold 

in the CNH (Fig. 1B). A majority of these genes (29/53) are annotated as being 

expressed in tissues related to axial elongation, i.e., in one or more of the 

primitive streak, node, tailbud, and future spinal cord (Table S2). By contrast, 

most downregulated genes (23/27 reduced ≥2-fold) are expressed in more 

specialised progeny cells, i.e., somites, unsegmented mesoderm or neural 

tube (Table S2). 

Greb1 expression coincides with axial elongation in vertebrate 

embryos 

We also compared our list of CNH-enriched genes with those previously 

identified in previous studies of the CNH or NMPs (Table S3; Gouti et al., 

2017; Olivera-Martinez et al., 2014; Wymeersch et al., 2019). Expression of 

seven of the ten most-enriched genes (Fgf8, Cdx2, T, Wnt3a, Sp5, Evx1, and 

Fgf17) was previously reported in the CNH and TBM, and to be functionally 

important for axial development (Cambray and Wilson, 2007; Dunty et al., 

2014; Maruoka et al., 1998; Takada et al., 1994). 

The expression and roles during axial elongation and segmentation of the 

remaining three most CNH-enriched genes from our study [Defcr-rs7, Defcr-
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rs6 (which encode small immune-defect peptides) and Greb1] have not been 

previously studied. We focused on Greb1, which encodes a co-activator of the 

Estrogen and Androgen receptors that is active in human estrogen-receptor-

positive primary breast and prostate cancer cells (Lee et al., 2019; 

Mohammed et al., 2013). Androgen receptor nuclear signalling is the most 

CNH-enriched pathway revealed by pathway enrichment analysis of our 

differentially expressed genes (Fig. 1C; Table S4; Supplementary 

Information), and enriched Greb1 expression has been found in previous 

studies of axial and neuromesodermal progenitors (Table S3; Gouti et al., 

2017; Olivera-Martinez et al., 2014; Wymeersch et al., 2019). 

First, we visualised Greb1 transcription in elongating mouse embryos using in 

situ hybridisation (E10.5-E13.5; Materials and Methods). Greb1 expression is 

restricted to the CNH and dorsal TBM by E10.5, (Fig. 2A,A’). Such expression 

is maintained during axial elongation, weakens by E12.5, and is lost at E13.5 

when axial elongation ceases (Fig. 2B,B',C,C’). 

The above results show that, although not restricted to the CNH, axial Greb1 

transcription in early mouse embryos coincides in time and place with the 

processes of axial extension and segmentation. To test if this correlation is 

evolutionarily conserved, we examined Greb1 expression in chick and 

zebrafish embryos. In both animals, Greb1 expression in the tailbud starts 

during elongation, and terminates when elongation and segmentation is 

complete. Greb1 is expressed in the HH13 chick caudal neural plate, whose 

cells contribute to the neural tube, somites, and notochord, node and primitive 

streak (Fig. 2D,D’). Its axial transcription then becomes confined to the region 

of the tailbud which includes the chick CNH and TBM (HH17; Fig. 2E,E'; 

McGrew et al., 2008), and has almost completely decayed when elongation is 

complete (HH26; Fig. 2F). 

In zebrafish embryos, Greb1 transcription becomes confined to the region of 

the tailbud that contains axial progenitors (Fig. 2G-K). It persists during 

segmentation (11-16 hpf; Fig. 2H-J), and disappears when axial elongation 
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comes to an end (24 hpf; Fig. 2K). This conserved spatial and temporal 

timecourse in early vertebrate embryos strengthens the link between Greb1 

expression and axial extension. 

Knock-down of GREB1 disrupts axial elongation 

To test if Greb1 is functionally required during elongation and segmentation, 

we knocked down its expression by injecting antisense morpholinos into 1-2 

cell zebrafish embryos (Materials and Methods). We used two Greb1 splicing-

blocking morpholinos (M1 and M2) that target the exon2-intron2 and exon16-

intron16 boundaries, respectively (Fig. S1). These oligos should interfere with 

mRNA splicing to cause skipping of the adjacent exon and a shifted 

translational reading frame. The ensuing premature translational termination 

would completely truncate Greb1 protein (M1) or encode one that is only 40% 

full-length (M2). As a control, we also injected a mismatched morpholino (MM) 

based on M2 but with 5 bases mutated to prevent binding to the primary Greb1 

transcript. 

We verified the splice-blocking activities of both morpholinos via RT-PCR on 

RNA from injected embryos. Greb1 splice variants corresponding to 

misprocessed transcripts were detected in M1- and M2-injected morphants 

but not MM morphant embryos (Fig. S1). DNA sequencing of these variant 

products confirmed that they result from skipping of the appropriate exons: 

exon 2 for oligo M1, and exon16 for M2 (Fig. S1). 

We assayed the effects of Greb1 knockdown 24 h after injection into embryos, 

when extension and segmentation is complete. M1 and M2 morphant embryos 

suffer three major axial defects: a curved trunk; a reduction in total body length 

(head-to-tail); misshaped somites and indistinct somite boundaries 

predominantly in more posterior axial regions (Fig. 3A-C). Injection of 4 ng/µl 

blocking oligonucleotide generates a high frequency of embryos showing all 

three defects (50/107 injected embryos for M1; 61/110 embryos for M2). No 

such abnormalities are seen in embryos injected with the control MM 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 6, 2019. ; https://doi.org/10.1101/692095doi: bioRxiv preprint 

https://doi.org/10.1101/692095
http://creativecommons.org/licenses/by-nd/4.0/


   

 

8  

morpholino (0/15). Injecting 2 ng/µl of morpholino causes similar defects, 

albeit at lower frequencies (M1: 11/46; M2: 15/36; MM: 0/8). 

These phenotypes are not due to unspecific toxicity from the injection. We co-

injected each morpholino with one that knocks down p53 expression, thereby 

preventing previously reported oligo-induced p53-dependent cell death 

(Supplementary Methods; Robu et al., 2007). Each blocking morpholino still 

efficiently caused axial extension and segmentation phenotypes (M1: 20/30; 

M2: 25/37; control MM: 0/10). Together, our data suggest that normal axial 

elongation and segmentation is dependent on Greb1 activity. 

Greb1 is needed to maintain Ntl expression in the tailbud 

The axial truncations of Greb1 morphants resembles the phenotype of 

embryos mutant for No tail (Ntl), the zebrafish homologue of Brachyury/T, 

which is expressed in the tailbud, posterior PSM and notochord of wildtype 

embryos (Halpern et al., 1993; Schulte-Merker et al., 1994). Ntl in the tailbud 

helps maintain axial progenitors by protecting them from premature 

differentiation induced by retinoic acid secreted by the anterior PSM and 

somites (Diez del Corral et al., 2003; Martin and Kimelman, 2010; Olivera-

Martinez et al., 2012; Ribes et al., 2009). 

Tailbud Ntl expression in Greb1 morphants is indeed much lower than in 

wildtype or control embryos (M2: 20/34; MM: 0/11; Fig. 3Q',R,R'). Thus, Greb1 

is required for efficient Ntl expression, and reduced Ntl levels can explain the 

morphant embryos' truncated axis. 

Greb1 depletion affects somite polarity via the segmentation clock 

During axial segmentation in zebrafish embryos, a linear array of chevron-

shaped somites is progressively generated from the PSM between 10-24 hpf 

(Fig. 3A,A'). As mentioned above, Greb1 morphants lack morphologically 

discrete somites (Fig. 3A-C). 

To assess if this morphological phenotype is accompanied by altered gene 

expression at somite boundaries, we examined xirp2a/cb1045, which is 
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expressed in the myoseptum between myotomes (Deniziak et al., 2007; 

Schroter and Oates, 2010). Strong distinct posterior stripes of Xirp2a mRNA 

expression are frequently lost in Greb1 morphant embryos (M1: 20/25; M2: 

14/18; MM: 0/15; Fig. 3A-C), corresponding to the regions with abnormal 

somite appearance. 

In wildtype embryos, boundaries arise between posterior and anterior 

compartments of adjacent somites, raising the possibility that Greb1 is needed 

for somite compartmentalisation. To test this idea, we studied myoD 

transcripts, which are normally expressed in the posterior half of each somite 

(Weinberg et al., 1996). By contrast, expression of myoD extends into the 

anterior compartment in Greb1 morphants (M1: 7/15; M2: 13/18; MM: 0/18; 

Fig. 3D-F), suggesting that anterior morphant cells have adopted a posterior 

character. M1 and M2 morphants show similar effects on axial morphology 

and Xirp2a and myoD expression, we only analysed M2 morphants in 

subsequent experiments. 

Analysing papC, which is expressed in the anterior compartments of newly 

formed somites (Rhee et al., 2003) provides additional support for the idea 

that Greb1 contributes to the establishment of anterior compartmentalisation. 

In morphant embryos, papC levels are reduced and lack clear borders 

(M2:14/22; MM:0/22 Fig. 3G,L). 

Expression of myoD is normally suppressed in anterior somite compartments 

by mespb which together with mespa, is expressed there in newly-formed 

somites (Sawada et al., 2000). We examined expression of both mesp genes 

in the morphant embryos and found that, although mespa expression is not 

altered (M2: 0/24; MM:0/21 Fig. 3H,M), mespb expression is greatly lowered 

(M2: 6/10; MM: 0/21; Fig. 3 I,N). This reduction explains why myoD is 

derepressed in Greb1 morphants, and reinforces our view that Greb1 is 

needed for somite compartmentalisation. 

What might cause mis-specification of somite compartments? During 

vertebrate axial extension, the regular production of equal-sized segments 
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results from the action of a molecular oscillator ("segmentation clock"), which 

drives cyclic transcription of many PSM genes with a period corresponding to 

that of somite formation (Dequeant et al., 2006; Niwa et al., 2007; Palmeirim 

et al., 1997; Pourquie, 2011). Together, axial extension and cyclic gene 

expression establish reiterated expression of genes that define somite 

compartmentalisation and, hence, somite boundaries. 

We examined two such cycling genes, her1 and her7, which encode 

transcriptional repressors whose periodic expression in the zebrafish PSM 

form and pattern the somites (Oates and Ho, 2002; Pourquie, 2011; Takke 

and Campos-Ortega, 1999). In particular, her7 is a regulator of mespb 

expression in forming somites (Choorapoikayil et al., 2012; Oates and Ho, 

2002). Expression of her1 is normal in the PSMs of Greb1 morphant embryos 

(0/16; Fig. 3 J,O), but that of her7 is lost, in both the tailbud and PSM (5/5, Fig. 

3 K,P). The latter's loss explains the reduced mespb expression and abnormal 

somite compartmentalisation in Greb1 morphant embryos. 

Together, our experiments support the following model for the Greb1 

morphant phenotypes (Fig. 3S). Axial extension is truncated due to reduced 

expression of Ntl and, thereby, loss of axial progenitors (Fig. 3Q,Q',R; Martin 

and Kimelman, 2010), and the segmentation phenotype is caused by loss of 

her7. This model is consistent with the misregulation of mespb and loss of 

more posterior somite boundaries in both her7 mutants and Greb1 morphants 

(Figs. 3A-F; A'-F'; Oates and Ho, 2002). 

As Greb1, Ntl and Her7 are all transcription factors, many of the effects on 

gene transcription that we observe may be direct. Greb1 doesn't not act on 

the segmentation clock itself because her1 expression still cycles (Fig. 3J,O), 

and low level xirp2 expression remains (Fig. 3B,C). However, Greb1 is 

required for clock output via her7, and may also act directly on mespb. The 

latter idea would explain why mespb expression is abolished in the Greb1 

morphants (FIg. 3I,N). Although further experiments will be required to dissect 

how Greb1 regulates gene expression in detail, the evolutionarily conserved 
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pattern and time-course of Greb1 expression that we have shown in mouse, 

chick and zebrafish (Fig. 2) suggest that Greb1 is an important component in 

vertebrate axial patterning. 
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MATERIAL AND METHODS  

Briefly, CNH, PSM, and TBM were dissected as previously described (Fig. 1A; 

Cambray and Wilson, 2002), and transcription profiling carried out at the 

Genome Centre (Barts and the London Medical School, Blizzard Institute) 

using Illumina “Ref6v2” beads arrays. Microarray data were analysed within 

Bioconductor using the ‘lumi’ and ‘limma’ packages (Du et al., 2008; Ritchie 

et al., 2015). Function enrichment analysis was conducted using MetaCore 

(Clarivate Analytics). 

We visualised spatiotemporal transcript expression in mouse, chick and 

zebrafish embryos by in-situ hybridisation using digoxigenin-labelled 

antisense RNA probes (Hanisch et al., 2013; Rallis et al., 2010; Stauber et al., 

2009). To knockdown Greb1 in zebrafish embryos, we analysed embryos 

which had been injected at the 1-2 cell stage with a splice-blocking or 

mismatch control morpholino (Fig. S1; Gene Tools, Philomath, Oregon, USA). 

Efficacy and specificity were tested by sizing and sequencing RT-PCR 

products of total RNA from morpholino-injected embryos. Further details are 

presented in the online Supplementary Information. 
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FIGURE LEGENDS 

Fig. 1 CNH transcriptome is distinct from PSM. (A) Dissection of PSM, CNH, 

and TBM of mouse at E10.5; (a) dorsal view of E10.5 tail, black dotted 

rectangle represents dissected PSM and, (b) lateral view of (a) after removing 

PSM from last somite till end of tail; (c) schematic of tail regions with anterior 

to the left. Text colours correspond to those of different posterior axial regions 

colours (NT: neural tube; NC: notochord; PSM: presomitic mesoderm; TBM: 

tail bud mesoderm). (B) Heatmap showing differentially expressed genes 

(Fold change >2 and <-2, and p-value <0.05) in the CNH, TBM, and PSM. (C) 

Pathway enrichment analysis (see Supplementary Information). y-axis shows 

-log10(p-value) with enriched GO terms along the x-axis. 

Fig. 2. The timing of axial Greb1 expression is coincident with axial elongation 

in vertebrate embryos: (A–C) Mouse embryos and their tail regions at different 

embryonic stages; (A,A') Lateral view of E10.5 embryo, showing the Greb1-

expressing tail region (boxed).  (B) Lateral view of E12.5 and (B’) its tail region, 

showing reduced Greb1 expression. (C) Lateral view of E13.5 and (C’) its tail 

region, showing that expression is lost. (D–H) Greb1 expression in chick 

embryos at different stages: (D) dorsal views of HH13 stage and (D’) its tail 

region; (E) is lateral view at HH17 stage and (E’) its ventral view of tail region; 

F is a lateral view of HH26 stage. Greb1 expression in the tailbud (arrowed) is 

almost gone. G-K are lateral view of zebrafish embryos of the indicated ages 

(tailbud region arrowed). 

Fig. 3 Greb1 is required for axial elongation: (A-C, A’-C’): lateral views of 

zebrafish embryos at 24 hpf, showing: (A) wildtype chevrons of xirp2a 

expression and the tail region (bracketed); (B, C) posterior loss in M1 and M2 

morphants. The tail regions that are truncated and contain disrupted somites 

are bracketed. (D-F, D’-F’): expression of myoD in control (MM), M1 and M2 

morphants. (G, L) papc; (H, M) mespa; (I, N) mespb; (J&O) her1; (K, P) her7; 

(Q, R) and (Q’, R’) Ntl expression in the tail region of 15 hpf control and 

morphant embryos. (S) shows a tentative model for gene interactions between 

Greb1 and patterning genes. Anterior expression of Her7 restricts mespb 
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expression to the posterior somite compartment which, in turn, restricts myoD 

and papC expression to the anterior compartment. Continuous arrows show 

interactions that are likely to be direct. Dashed arrows could be direct or 

indirect. 
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