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Abstract 
We describe a novel precision medicine workflow, the integrated single nucleotide           

polymorphism network platform (iSNP), designed to identify the exact mechanisms of how SNPs             

affect cellular regulatory networks, and how SNP co-occurrences contribute to disease           

pathogenesis in ulcerative colitis (UC). Using SNP profiles of 377 UC patients, we mapped the               

regulatory effects of the SNPs to a human signalling network containing protein-protein,            

miRNA-mRNA and transcription factor binding interactions. Unsupervised clustering algorithms         

grouped these patient-specific networks into four distinct clusters based on two large disease             

hubs, NFKB1 and PKCB. Pathway analysis identified the epigenetic modification as common            

and the T-cell specific responses as differing signalling pathways in the clusters. By integrating              

individual transcriptomes in active and quiescent disease setting to the patient networks, we             

validated the impact of non-coding SNPs. The iSNP approach identified regulatory effects of             

disease-associated non-coding SNPs, and identified how pathogenesis pathways are activated          

via different genetic modifications.  

 
Keywords: ​single nucleotide polymorphism, ulcerative colitis, network biology, regulatory         
networks.  
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Introduction 
Precision medicine has been achieved in well demarcated monogenic diseases ​1 and in             

diseases where the pathogenic mechanism is well described such as the use of tamoxifen in               

HER2 positive breast cancer ​2​. In diseases such as inflammatory bowel disease however,             

where there are multiple contributing factors to the disease pathogenesis, notwithstanding the            

complex genetics, precision medicine remains an aspiration. Therefore, complex integrative          

techniques are required to identify the individuals’ pathogenic disease pathways, to move            

towards a more precision medicine approach. With inflammatory bowel disease (IBD), the            

interlinked facets to disease are thought to be a dysfunction of the immune system in response                

to, as yet unclear, environmental triggers in a genetically susceptible host ​3​. Focusing solely on               

genetic susceptibility, genome-wide association studies (GWAS) and subsequent fine-mapping         

of identified regions aimed to identify causal disease-associated variants ​4,5​, but the clinical             

impact of these variants has yet to come to fruition. The functional annotation of SNPs in coding                 

regions as an approach to define their biological impact has been utilised in obesity ​6​, IBD ​5​, and                  

lung cancer ​7 allowing for computational workflows to prioritise SNPs for further analysis ​8​.              

Understanding the function of SNPs in non-coding regions of the DNA, however, remains             

challenging and even the most refined fine-mapping identifies disease causing SNPs in areas             

that have yet to be annotated ​5​. In a type of IBD, called ulcerative colitis (UC), coding SNPs                  

(found in exonic regions) that alter amino acid composition and the function of the translated               

proteins comprise less than 10% of the total UC associated SNPs ​9​. These coding SNPs do not                 

cause the expected impaired intestinal barrier function or inflammation as a pathognomic            

features of ulcerative colitis ​10​. Identifying the functional attributes of the remaining 90% SNPs              

located in non-coding regions would expand the utility of complex disease-associated SNPs.            

Analysing these non-coding SNPs allows the identification of novel pathogenic pathways, and            

potentially patient-specific disease susceptibility, and thus enabling precision therapy. 

For functional annotation of SNPs in non-coding regions, a key question is whether the SNPs               

affect gene expression. The ways in which a SNP can regulate gene expression include              

affecting long non-coding RNAs, splicing, or transcription factor binding sites (TFBS) in            

enhancer regions and within introns ​11​. A further way for a SNP to affect gene regulation is by                  

affecting miRNAs which modulate gene expression at the post-transcriptional level by reducing            

mRNA half-life and stability. miRNAs bind to their complementary recognition sequence, a            
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miRNA-TS on the mRNA, thereby targeting the mRNA for destruction. Functional miRNA-TS-s            

have been found in open reading frames including exonic and intronic regions as well as in the                 

5’ untranslated regions ​12–15​. There are a multitude of predictive algorithms for the identification              

of splicing enhancer or silencing sites ​16–18​, or motifs for lncRNA binding ​19–22​, however in this                

study we focused on two regulatory effects as examples; SNPs occurring in transcription factors              

binding sites and in miRNA target sites.  

Individual disease-associated SNPs have been reported to affect TFBS and miRNA-TS in many             

diseases including diabetes, schizophrenia, coronary heart disease, and Crohn’s disease ​23–26​.           

However, the combined regulatory effects of these non-coding SNPs have not yet been             

evaluated at a systems level. This is particularly pertinent in UC, which is a disease that reflects                 

disturbances of complex intracellular and intercellular networks. A systems biology approach           

has been utilised with predictive network models that identified proteins involved in the             

pathogenesis of IBD in general ​27 but this approach was unable to take account of the regulatory                 

effect of non-coding SNPs. To identify the effect of non-coding SNPs, we build on the concepts                

identified by Boyle et al (2017) to track the cumulative effects of multiple regulatory SNPs.  

Using network biology approaches, that we have previously exploited to uncover novel            

important proteins in cancer biology, ​28 we aimed to further understand the pathogenic pathways              

of UC and to identify novel disease associated hidden proteins. These proteins are often hidden               

if one looks only conventional mutation and expression screens as they mostly act as direct               

interactors (first neighbours) of the proteins affected by the mutation. Similar studies have             

utilised the concept of first neighbour disease associated proteins in both diabetes ​29 and              

juvenile idiopathic arthritis ​30​. 

Consequently, we combined and refined systems genomics and network biology approaches           

into a novel workflow, named the integrative SNP Network Platform (iSNP), and demonstrated             

its applicability by analysing a UC-associated signalling network and by identifying patient            

clusters with distinct pathomechanisms contributing to UC. Within these clusters, we highlighted            

cluster-specific key players, some already supported in the literature. The iSNP approach also             

provided patient-specific pathogenic role for proteins whose contribution to UC pathogenesis           

was unknown. We then validated these predicted pathogenic effects using genotyped           

transcriptomics data. We show that integrating systems genomics and network biology data and             
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analysis with machine learning approaches offers unique biological insights, and enables the            

scalable examination of patient-specific datasets for precision medicine. 

 

Results 
 

Constructing the UC-associated signalling network  

To assess the regulatory effect of non-coding SNPs we first needed to reconstruct an interaction               

network around them containing the directly affected genes and those proteins that are             

indirectly affected by the SNP. We developed a novel workflow, the integrative SNP Network              

Platform (iSNP) to reconstruct such a network (Figure 1). To create a specific, UC-associated              

signalling network, we selected UC associated SNPs from publically available datasets; Jostins            

et al ​9 ​and the Broad Institute ​31 with published risk alleles that were finemapped on immunochip                 

or had been finemapped by Fahr et al ​31​. In circumstances where the SNPs were GWAS SNPs                

(not on immunochip), we only utilised them if the R​2 value to a finemapped SNP was >0.8. To                  

identify the effect of these SNPs in a patient-specific manner, using an East Anglian UK cohort                

of 377 patients from the UK IBD genetics consortium, we extracted SNP profile data from each                

individual patient. These patients had a total of 40 individual UC associated SNPs from which               

we identified 12 UC-associated regulatory SNPs localized within TFBS or miRNA-TS. We            

removed four SNPs that did not meet the stringent kinetic cutoffs for miRNA-TS or had a neutral                 

response (the risk allele did not change miRNA-TS binding kinetics). The remaining eight SNPs              

were annotated to occur within 25 individual miRNA-TSs and four TFBSs (Table 1).             

Interestingly, three SNPs affecting PKCB, DMN3TB and HDAC7 are all annotated to the TFBS              

for the transcription factor SMARCA4. In Table 1, we summarised the known UC-associated             

information of the miRNAs and transcription factors that were affected by a SNP, and predicted               

the overall effect of the SNPs for each gene. Given that TFBS could be inhibitory or activatory                 

(while miRNA-TS are generally considered as inhibitory), we manually curated the probable            

transcriptional response based on the literature (Table 1.).  
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Figure 1 The iSNP workflow ​to reconstruct a disease specific network for non-coding SNPs.              

SNPs involved in patients were annotated based on that they occur within TFBS and              

miRNA-TS. Using regulatory interaction data sources we determined the potential affected           

proteins as well as their interaction partners from OmniPath, an integrated signalling network             

database. 
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SNP Protein full name   
(hub proteins) 

SNP-affected 
TF or miRNA   
regulator 

SNP effect on the    
binding or target   
site 

SNP overall predicted effect 

rs1598859 
 

NFKB1  
(Nuclear factor  
NF-kappa-B p105  
subunit)  

miR-29b-3p 
miR-7153-3p 
miR-767-5p 
miR-3189-5p 
miR-4323 

miRNA-TS lost 
miRNA-TS lost 
miRNA-TS lost 
miRNA-TS gained 
miRNA-TS gained 

Overall increased NFKB1   
expression due to increased    
expression of mir-29b-3p 

rs7404095 PKCB (Protein  
kinase C beta type) 

miR-539 
SMARCA4 

miRNA-TS gained 
Modified TFBS  

Increased PKCB expression due to     
the TFBS effect 

rs1801274 FCGRA (High affinity   
immunoglobulin 
gamma Fc receptor I) 

miR-2116 
miR-4713 

miRNA-TS lost 
miRNA-TS lost 

Increased FCGR2A expression and    
missense 

rs907611 
 

LSP1 
(Lymphocyte-specific 
protein 1) 

miR-3941 
miR-1284 

miRNA-TS lost 
miRNA-TS gained 

miRNA-TS both gained and lost,     
therefore could be either increased     
or decreased expression depending    
on the miRNA present in the cell       
type 

rs1182188 
 

GNA12  
(Guanine 
nucleotide-binding 
protein subunit  
alpha-12) 

miR-3190-3p 
miR-4428 
miR-4533 
miR-1249-5p 
miR-4510 
miR-6127 
miR-6129 
miR-6130 
miR-6515-5p 
miR-6760-5p 
miR-6797-5p 
miR-6880-5p 
miR-7847-3p 

miRNA-TS lost 
miRNA-TS lost 
miRNA-TS lost 
miRNA-TS gained 
miRNA-TS gained 
miRNA-TS gained 
miRNA-TS gained 
miRNA-TS gained 
miRNA-TS gained 
miRNA-TS gained 
miRNA-TS gained 
miRNA-TS gained 
miRNA-TS gained 

miRNA-TS both gained and lost,     
therefore could be either increased     
or decreased expression depending    
on the miRNA present in the cell       
type 
 
 

rs1116824
9 

HDAC7  
(Histone deacetylase  
7) 

miR-4717 
SMARCA4 

miRNA-TS lost 
Modified TFBS 

Both miRNA-TS lost and SNP in      
TFBS  

rs6087990 DNMT3B  
(DNA (cytosine-5)  
-methyltransferase 
3B) 

FOXP1 
TFAP2C 
SMARCA4 
RBL2 

Modified TFBS 
Modified TFBS 
Modified TFBS 
Modified TFBS 

Multiple activating TFBS is altered  

rs543104 MAML2 
(Mastermind-like 
protein 2) 

miR-4495 miRNA-TS lost Increased MAML2 expression 

Table 1: ​Ranked list of genes, miRNA-TS and TFBS affected by SNPs in the UC specific                

signalling network 
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The annotated SNP affected genes were translated to proteins, and using OmniPath ​32 (an              

integrated and comprehensive source for manually curated signalling interaction databases), we           

identified first neighbour interactors to the eight SNP affected proteins. Using Cytoscape ​33​, we             

visualised the UC-associated signalling network containing protein-protein, miRNA and         

transcriptional interactions. In total, the UC-associated signalling network consisted of 247           

protein nodes and 1,269 protein-protein interactions, regulated by 4 transcription factors and 25             

miRNAs with altogether 682 regulatory interactions. The protein-protein interaction network was           

modularised for visualising the functions and key proteins of the network (Figure 2).  

 

Figure 2. ​ ​Visualization and modularisation of the UC-associated signalling network.  
The UC-associated signalling network containing proteins affected by UC associated SNPs,           
their interactor partners as well as the TFs and miRNAs whose binding site or target site are                 
affected by a SNP. Circles represent proteins and squares represent regulators (TFs: red and              
miRNAs: green). The bold lines (edges) are the SNP-affected miRNA or TFBS, with the narrow               
lines (edges) representing known regulatory or protein-protein interactions. Nodes are coloured           
according to network modules and the name of SNP-affected proteins are in white. The miRNAs               
with a “+” symbol have putatively gained target site and miRNAs with a “-“ symbol have                
putatively lost their target site in UC patients.  
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In the UC-associated signalling network, the two central hub proteins (the proteins with the              

greatest numbers of connections or interactors) were NFKB1 (Nuclear Factor Kappa B Subunit             

1) and PKCB (Protein Kinase C Beta). NFKB1 is one of the key regulators of the chronic                 

mucosal inflammation driven by activated effector immune cells, which produce          

pro-inflammatory cytokines such as tumour necrosis factor-alpha and interleukin-6 ​34​. Protein          

Kinase C has been implicated in the pathogenesis of inflammatory bowel disease via effects on               

the colonic mucous layer ​35​, colonic microbiota ​36 and cell junctions ​37,38 , therefore both hub                

proteins are known to be involved in UC ​39,40 and were therefore expected to emerge from this                 

analysis validating the iSNP method. The remaining six SNP-affected proteins were termed as             

non-hub SNP-affected proteins due to their lower number of interactions.  

When analysed in more detail, the UC-associated signalling network consisted of six distinct but              

intertwined network modules. Each module is centred around a key signalling protein directly             

affected by a SNP (Figure 2). The three most abundant modules are formed mainly by the                

interactors of 1) PKCB and FCGR2A (Immunoglobulin G Fc Receptor II) (88 proteins), 2)              

NFKB1 (51 proteins), and 3) the binding partners of LSP1 (Lymphocyte Specific Protein 1) and               

GNA12 (Guanine Nucleotide-Binding Protein Subunit Alpha-12) ​that contained interactors of          

both NFKB1 and PKCB (71 proteins). We also identified two epigenetic modules around 4)              

Histone Deacetylase 7 (HDAC7; 25 proteins), and 5) around DNA Methyltransferase 3 Beta             

(DNMT3B; 7 proteins). These two epigenetic regulators are affected by SNPs altering not only              

miRNA-based post-transcriptional regulation (as in the other modules), but also transcriptional           

regulation (Table 1). Lastly, 6) a module containing MAML2 and members of the Notch pathway               

was identified. 

 

Identification of patient-specific clusters based on the networks of affected proteins 

We then investigated how the UC-associated signalling network differed in each of the 377 UC               

patients. Based on the set of SNPs present in each patient, we defined patient-specific              

UC-associated signalling networks, called ‘network footprints’. The network footprint of each           

patient contained the proteins encoded by the SNP-affected genes and the interactors of these              

proteins, ​i.e. their first neighbour proteins ​28​. Unsupervised hierarchical clustering using different            

linkage algorithms and multidimensional scaling of the network footprints of 377 patients            

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 4, 2019. ; https://doi.org/10.1101/692269doi: bioRxiv preprint 

http://f1000.com/work/citation?ids=6799819&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=6799831&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=165668&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=6799838,6799840&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=1687458,3427246&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=3177235&pre=&suf=&sa=0
https://doi.org/10.1101/692269


stratified the patients into the same four distinct clusters (Figures 3a and 3b). For the distribution                

of patients in the four clusters, see Supplementary Table 2.  

 

The first cluster contained the network footprints of patients whose SNPs were related to PKCB               

(denoted PKCB+, NFKB1- ; Figure 3 top left patient examples 1a-f), with the second cluster               

containing network footprints of patients with SNPs related to NFKB1 (PKCB- NFKB1 + ; Figure               

3 bottom left patient examples 2a-f). In the third cluster, the network footprints contained both               

PKCB and NFKB1 SNPs (PKCB+ NFKB1+ ; Figure 3a top right patient examples 3a-f) while the                

network footprints of the fourth cluster had neither PKCB nor NFKB1 affected (PCKB- NFKB1- ;               

Figure 3 bottom right patient examples 4a-f).  

Figure 3 Unsupervised clustering of the patients and gene ontology of the clusters a)              
Examples of patient-specific network footprints. b) Visualising of the clustering ​via           
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multidimensional scaling c) Venn diagram of overrepresented Gene Ontology terms found in            
>50% of patients from each cluster. Complete GO data can be found in Supplementary Table 3.                
The “+” or “-” symbol means that in a given cluster the hub protein is either present or absent                   
from those network footprints. 

 

To further characterise the different pathogenic pathways in the UC-associated signalling           

network (Figure 2), we conducted a patient cluster specific Gene Ontology (GO) enrichment             

analysis (see Supplementary Table 3 for full details). Altogether, we found 645 GO terms that               

were enriched in at least one patient. Next, we analysed which GO terms were enriched in more                 

than 50% of patients in a given cluster. This led to two GO Biological Processes, which were                 

represented in all four clusters: “Regulation of intracellular signal transduction” and “Positive            

regulation of response to stimulus”, confirming that intracellular signalling is a major player in              

UC pathogenesis. This annotation was statistically confirmed by the use of the whole OmniPath              

database as a background for the enrichment analysis indicating that even considering a large              

signalling network, UC affected processes are concentrating around regulatory functions of the            

signalling process ​41​. Immune system pathways, such as the Fc receptor signalling pathway,             

immune response-regulating signalling pathway, were common to clusters with NFKB1 and           

PKCB hubs (Clusters 1-3). Chromatin modulation was a common GO Biological Process in             

Clusters 1, 3 and 4 suggesting the importance of epigenetic functions in these clusters (Figure               

3c).  

Three of the four clusters had cluster specific GO Biological Process terms. Response to insulin               

and peptide signalling was specific to Cluster 1 (PKCB+ NFKB1-). In Cluster 2 (PKCB- NFKB1+)               

the GO Biological Processes T-cell co-stimulation were enriched. Viral transcription and           

non-viral transcriptional Biological Processes were specific to Cluster 3 (PKCB+ NFKB1+).           

Meanwhile, Cluster 4 (PKCB- NFKB1-) did not show enriched GO terms specific to its patients.               

This result suggests a higher heterogeneity in Cluster 4, and necessitated a more detailed              

analysis to identify the key contributors of the UC pathogenesis here as it cannot be explained                

by current known mechanisms contributing to UC. To do this, we focused on the non-hub               

SNP-affected proteins we identified earlier (Figure 2), LSP1, MAML2, DNMT3B and HDAC7; the             

key proteins in Cluster 4.  
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Non-hub SNP-affected proteins impact inflammation regulation 

Given that NFKB1 targets are markers for increased inflammation in UC ​42​, we aimed to analyze                

whether the presence (or absence) of non-hub SNPs were associated with up or             

downregulation of NFKB1 target genes in colonic biopsies. For this, we analysed transcriptomic             

data from paired inflamed and non-inflamed colonic biopsies from 44 UC patients with defined              

genetic backgrounds to capture differences in the expression of inflammatory genes. These            

patients were from the IBD referral centre in Leuven, Belgium, all with severe disease              

necessitating the use of anti-Tumour Necrosis Factor antibodies. Using the same iSNP workflow             

as described above for the UK IBD genetics consortium cohort, we confirmed that the SNP               

profiles from this independent Leuven patient cohort were similar to the UK IBD cohort. The only                

exception was that the Leuven patient cohort had an additional 25 UC associated SNPs              

indicating a higher coverage of known UC associated SNPs (Supplementary table 5). We             

reconstructed the patient network footprints and clustered the Leuven patient cohort. These            

clusters recapitulated the four clusters from the UK IBD cohort confirming that even with higher               

SNP coverage, UC patients can be grouped to these four clusters. We note that we also                

identified an additional hub protein, IL-7R affected by the SNPs rs11567701 and rs11567699             

that were not present in the East Anglian cohort. This hub protein provided a higher granularity                

of the cluster structure, and its presence in the Leuven cohort resulted in an additional cluster.                

For the following validatory analysis, we focused only on the four patient clusters of the Leuven                

cohort that correlated with the four clusters of the UK IBD cohort.  

 

We undertook Gene Set Enrichment Analysis focussing on 312 NFKB1 target genes in the              

transcriptomic data generated from all the patients in the Leuven cohort (Figure 4a). We              

investigated the SNP effect on the identified four non-hub proteins (LSP1, MAML2, DNMT3B             

and HDAC7) in all the four clusters l. (Figure 4b, p values in Supplementary Table 5).  
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Figure 4 - Non-hub SNP affected proteins have an inflammation specific effect on the              
expression of NFKB1 target genes. a) Analysis workflow for the transcriptomics based            
SNP validation; b) Heatmap of the Gene Set Enrichment Analysis (GSEA)​. The colours are              
representing whether the NFKB1 targets are over (brown) or under (blue) expressed regarding             
the presence of the SNP (for p values see Supplementary Table 6). The “+” or “-” symbols for                  
each cluster mean that in a given cluster the hub protein is either present or absent from those                  
network footprints. 
 

We found that the SNPs affecting the NFKB1 hub, or the PKCB hub are not consistently                

determining the changes in the NFKB1 target gene expression either in the inflamed or              

non-inflamed setting. This confirms that SNPs affecting non-hub proteins were playing a role in              

changes in NFKB1 targets gene expression (i.e., they contribute to the regulation of the              

inflammatory response), including in Cluster 4, where the NFKB1 and PKCB SNP risk alleles              

are not present.  

 

Non-hub SNP-affected proteins influence UC pathogenesis 

To understand better how the four non-hub SNP-affected proteins (LSP1, MAML2, DNMT3B            

and HDAC7) can affect UC pathogenesis either in inflamed or non-inflamed settings, we             

evaluated their pathogenic or protective roles in each of the clusters. 

 

LSP1 (Lymphocyte Specific Protein 1) is an actin binding protein involved in neutrophil and              

endothelial cell migration ​43​. The risk allele rs907611 occurs within an LSP1 intron, and we               

annotated it to a loss and/or a gain of a miRNA-TS (Table 1). The presence of the risk allele at                    

rs907611 was associated with decreased NFKB1 target gene expression in the non-inflamed            

cases in all clusters except Cluster 2 (PKCB- NFKB1+), where it was associated with a higher                

NFKB1 target gene expression. This suggested that in the non-inflamed setting rs907611 is             
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protective. Contrary to this, in the inflamed setting the presence of the risk allele at rs907611,                

regardless of cluster, was associated with increased NFKB1 target gene expression, indicating            

that the effect of rs907611 is context specific, and may exacerbate existing inflammation by              

increasing NFKB1 target gene expression.  

 

MAML2 (​Mastermind Like Transcriptional Co-Activator 2) is a Notch pathway cofactor, which            

has a direct effect on NFKB1 translocation to the nucleus, thereby affecting downstream target              

gene expression ​44–46​. The risk allele at rs543104 is annotated to lead to a loss of miR-4495                 

target site for ​MAML2 mRNA that causes an increase in ​MAML2 expression (Table 1).              

Interestingly, in the non-inflamed setting, the presence of the risk allele at rs543104 was              

associated with a decreased NFKB1 target gene expression in all the clusters. In the inflamed               

setting however, a different picture arose: the risk allele at rs543104 afforded protection             

(reduced NFKB1 gene target expression) only in Clusters 2 and 3 (where either NFKB1 or               

PKCB had a risk allele). When both hubs had risk alleles or neither of them (PKCB+ NFKB1+ or                  

PKCB- NFKB1-), then the risk allele at rs543104 afforded no significant change in NFKB1 target               

gene expression. 

 

DNMT3B (DNA Methyltransferase 3B) ​is a cytosine methyltransferase, which is ​involved in ​de             

novo ​DNA methylation and is essential for the establishment of DNA methylation patterns during              

development ​47​. The risk allele rs6087990 occurs in the promoter region of DNMT3B, within a               

region of TFBSs enrichment for activating transcription factors such as FOXP1, TFAP2C and             

SMARCA4. In the non-inflamed setting, the presence of the rs6087990 risk allele was             

associated with reduced NFKB1 target gene expression only in the context of patients without              

the NFKB1 network hub being affected (Clusters 1 and 4). In Cluster 2 (PKCB- NFKB1+)               

patients having the risk allele at rs6087990 were associated with a significantly higher level of               

NFKB1 target gene expression (Supplementary table 5). In the inflamed setting, there was no              

conforming pattern between the presence or absence of the rs6087990 risk allele and the              

presence or absence of the NFKB1 or PKCB hubs with regard to NFKB1 target gene               

expression.  
 
HDAC7 (Histone Deacetylase 7) is an epigenetic regulator, which represses gene expression in              

muscle maturation by repressing transcription of myocyte enhancer factors such as ​MEF2A,            

MEF2B and ​MEF2C through deacetylating their histones ​48​. The risk allele at rs11168249 is              
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annotated to regulate HDAC7 both transcriptionally by affecting the TFBS for SMARC4 and             

post-transcriptionally with a loss of miR-4717 target site on the mRNA of ​HDAC7​. In the               

non-inflamed setting, the presence of the risk allele was associated with significantly higher             

NFKB1 target gene expression in Clusters 2 and 3 (where NFKB1 was affected by a SNP), with                 

the converse being true in Clusters 1 and 4, where NFKB1 was not affected. This suggests an                 

important relationship between HDAC7 and NFKB1. However, in the inflamed setting, the risk             

allele at rs11168249 conferred neither protection against, nor significant escalation of NFKB1            

target gene expression in any of the clusters.  

 

Overall these observations offer understanding of how non-hub SNP affected proteins may            

regulate inflammatory response in UC, dependant on patient-specific network footprints          

represented in the four clusters. Taking into account the SNP profile of patients of these               

non-hub SNP-affected proteins could lead to further insight when considering therapy, for            

example targeting LSP1 in patients with PKCB- NFKB1+ network footprints (Cluster 2 patients),             

but not PKCB- NFKB1- network footprints (Cluster 4 patients), or targeting MAML2 in patients              

with NFKB1- network footprints (Clusters 1 and 3) but not those with NFKB1+ network              

footprints (Clusters 2 and 3).  
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Discussion 
We used UC as a model of a complex genetic disease where there is a need for precision                  

medicine. For this, we designed an integrated systems genomics workflow, termed iSNP, to             

layer patient data from population wide genomics with network biology and transcriptomics. In             

doing so we captured the complex genetic background contributing to disease pathogenesis on             

an individual patient basis.  

  

This study is, to our knowledge, the first documented approach of using functional annotation of               

non-coding SNPs at an individual patient level. As non-coding SNPs contribute to approximately             

90% of disease associated SNPs, analysing them, especially to facilitate precision medicine            

analysis is of high importance. To do this in a reproducible and automated way, we created a                 

novel, integrative approach (Figure 1) to identify potential functional annotations and stringent            

quality controls. Quality controls for such computational pipelines are critical as for example,             

one difficulty with SNP functional analysis is the presence of non-coding SNPs that are tagging               

SNPs (SNPs with high linkage disequilibrium to other causal SNPs), therefore using them could              

add false affected proteins (noise) to subsequent network analysis. Although it has been shown              

that up to 90% of non-coding SNPs are non tagging ​26​, to ensure we used the highest quality                  

data in this study we only utilised SNPs which had been fine-mapped either from immunochip or                

from a publicly available dataset from the Broad Institute ​31​. 

  

In terms of SNPs regulating gene expression, we focused on two potential regulatory effects in               

this study – transcription factor binding sites and miRNA target sites. We acknowledge that              

other regulatory SNP effects such as splicing sites and SNP effects on long non-coding RNAs               

are relevant, however for this first study we focused on two regulatory SNP effects that were                

well grounded in the literature. Using TFBS motif predictions is a common method to annotate               

SNPs to affect the expression of certain genes, however, in may cases these predictions could               

contain false positive data. We therefore confirmed that the identified annotations for SNP             

regulatory effects are consistent with the available literature. In particular, SNP rs608799 is             

located -283bp from the exon 1A transcription start site in the DNMT3B promoter region and is a                 

CPG rich area ​49​, which has been annotated as a transcription factor binding site and prioritised                

for IBD previously ​50​; rs11168249 is an intronic SNP (HDAC7) within a known transcription factor               

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 4, 2019. ; https://doi.org/10.1101/692269doi: bioRxiv preprint 

http://f1000.com/work/citation?ids=49031&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=78538&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=6706767&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=630540&pre=&suf=&sa=0
https://doi.org/10.1101/692269


binding rich loci, therefore the annotation of the SNP affecting a transcription factor binding site               

is highly probable. Rs11041476 (affecting LSP1) and rs7404095 (affecting PKCB) are both            

experimentally validated SNPs affecting miRNA TS ​51​. 

  

As an integrative approach, we built upon previous network level studies, which have analysed              

the cumulative effects of multiple regulatory SNPs​52​. We applied these network approaches for             

analysis in individual patients, instead of general diseased networks, and tracked the effect of              

regulatory SNP co-occurrences for each patient. Consequently, we were able to reflect the             

perturbations of SNPs which otherwise have a low individual effect size ​53 , on complex              

intracellular signaling networks in the individual. To identify the pathogenic effect of these             

regulatory perturbations, we needed to integrate the SNP annotated genes into a            

protein-protein interaction network. Using protein-protein interactions and signalling networks to          

assess pathogenesis is a well-grounded approach. It has been used to identify key disease              

protein modules​54 for example in asthma ​55​. It has also been applied in many studies to                

determine hub proteins as the central nodes and drivers of pathogenesis of a disease. Most               

recently this network approach was used to determine proteins important in asthma disease             

progression ​56​, Parkinson’s disease pathogenesis ​57​and to identify hypertension biomarkers​58​.         

Beside using interaction networks to identify disease-related modules and key proteins, it has             

also been used for finding novel pathogenetic players among the interactor partners of already              

known, key pathogenic genes by “guilt by association”. We previously used this approach to              

identify potential drug repurposing targets in cancer​28​. In the current study we integrated all              

these three network reconstruction and analysis methodologies to understand the pathogenesis           

of complex diseases, such as UC better. A key element in any network biology analysing               

pipeline is the selection of background interactome network source ​59​. To avoid the bias of               

specific databases, and to maximise the coverage of the networks we are analysing, in this               

study we used OmniPath ​32​. OmniPath integrates information from more than 25 manually            

curated signalling network resources in a standardized way. Using OmniPath, we also            

minimised the bias from computational predictions or high-throughput experiments, which may           

cause inherent ‘noise’ within the networks.  

 

Using the iSNP pipeline for analysing an East Anglian cohort of UC patients, first we focused on                 

identifying UC-related network modules by looking at the protein-protein interaction network           

affected by the UC SNPs. We identified seven disease associated modules centred around             

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 4, 2019. ; https://doi.org/10.1101/692269doi: bioRxiv preprint 

http://f1000.com/work/citation?ids=6706771&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=3806214&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=6171272&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=124283&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=917695&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=6707197&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=6706774&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=6706775&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=3177235&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=5163925&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=3050563&pre=&suf=&sa=0
https://doi.org/10.1101/692269


NFKB1, PKCB/FCGR2A, LSP1/GNA12, HDAC7, DNMT3B, and MAML2 (Figure 2). When we           

analysed the data in a patient-specific way (i.e., reconstructing the networks for each patient              

separately, we identified PKCB and NFKB1 as two large disease-associated hubs, both of             

which have been previously associated with UC pathogenesis ​60,61​. To identify patient cohorts             

based on their network footprint, we clustered them by similarity ​(Figure 3b)​. For this, we utilised                

two methods: hierarchical clustering and multidimensional scaling which resulted in the same            

patient clusters, showing that this outcome was stable with respect to the method employed.              

This form of unsupervised clustering has been documented ​62–64​and validated in other patient            

integration network approaches such as NetDx​65​. Despite having good coverage of patient            

metadata from the UK IBD Genetic Consortium and IBD-Leuven cohorts, supervised clustering            

did not identify any association with clinical parameters, probably reflecting the relatively low             

sample sizes in each group. ​The functional analysis of the patient clusters suggests that              

different pathogenic pathways are active dependant on patient SNP profiles (Figure 3c). The             

enriched pathways for the patient clusters also indicate an association between clusters and cell              

specificity. An example of this is the identification of signalling pathways specific to immune cell               

types including T cells (Figure 3c, Supplementary Table 3). We propose T cell specificity in               

Clusters 1 and 3, ​via NFKB1 and indirect involvement through the FC-gamma receptor             

pathways. This is supported by the literature: NFKB1 is involved in T-cell maturation ​66​.             

FC-gamma receptor related processes, which were an enriched Gene Ontology Biological           

Process in Clusters 1-3, are also known to affect activation of NFKB1 through NEMO/IKKy​67,68​.              

Interestingly, we identified a cohort of patients (Cluster 4) whose pathogenesis is driven by              

non-hub SNP-affected proteins: LSP1, MAML2 and epigenetic modifiers HDAC7 and DNMT3B.           

These have not been clearly linked with UC pathogenesis previously. We were able to identify               

potential roles for these proteins in mediating inflammation in patients from genotyped            

transcriptomic data (Figure 4). Review of the literature gave further insight into how UC              

pathogenesis may be affected by these SNPs.  

 

LSP1 is intracellular F-actin binding cytoskeletal protein ​69​. LSP1 bridges the innate and             

adaptive immunity, has a role in wound healing, and ingress and intracellular degradation of              

eukaryotic viruses. We therefore propose that LSP1 acts as a potential interface in UC              

pathogenesis between the genetic predisposition and environmental signals. In terms of cell            

specificity, LSP1 is found in mature CD8+ T cells where it reduces the activity of Bim, reducing                 

apoptosis​70​. It is also functions as a negative regulator of cell motility in neutrophils and dendritic                
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cells​71​, ​72​. Overexpression of LSP1 leads to neutrophil and dendritic cellular rigidity and reduced              

cell motility. Further work is required to explore the role of LSP1 in the pathogenesis of UC and                  

its potential as a drug target.  

 

MAML2 mediates cross-talk between the inflammatory NFKB1 pathway, and the wound healing            

Notch pathway. MAML2 is a cofactor in the Notch pathway, facilitating the binding of the active                

intracellular domain of the NOTCH1 protein to the Notch pathway transcription factor CSL ​73​.             

NOTCH1 itself can also bind to the IKK complex and through it indirectly activating NFKB1 ​44–46​.               

We propose that the pathogenic mechanism of the MAML2 SNP via the loss of the miRNA-TS                

of mir-4495 is to modulate the NOTCH1-NFKB1 cross-talk. This phenomenon was visible in the              

non-inflamed colonic samples from the Leuven cohort of patients, where we detected            

significantly decreased NFKB1 target expression (Figure 4). 

 

We have shown that LSP1 and MAML2 affecting SNPs have an impact on downstream NFKB1               

target gene expression in the inflamed and non- inflamed colon. These are both targets for               

further investigation for potential targeted therapy. The two additional non-hub SNP affected            

proteins HDAC7 and DNMT3B are epigenetic proteins that also showed patient cluster specific             

changes in NFKB1 target gene expression in the inflamed colon (Figure 4). This further              

emphasises the known importance of epigenetic regulation in UC ​74​. Further work into the role of                

SNPs affecting epigenetic regulators of the dynamic regulation of pathogenic pathways in UC is              

required.  

 

The aim of this study was to integrate systems genomics and network biology techniques to               

bridge the gap between GWAS and individual patients to allow for precision medicine. Whilst              

due to the available sample size we were not able to identify a link between the individual                 

network footprints and clinical parameters in UC, we have been able to shed further light on UC                 

pathogenesis, and identified new potential targets for precision therapeutics. Peters et al ​27             

integrated SNP and RNA variations in IBD without annotating them to identify core immune              

activation modules. They used Bayesian networks with large IBD cohorts, and identified            

macrophage cell types as a key player in IBD pathogenesis. We took a different approach in                

annotating the SNP variations from large cohorts, thereby integrating a functional role to the              

SNPs with protein-protein networks and signalling networks. We then were able to identify             

individual patient pathways to disease, which is novel in this field. By broadening the pathogenic               

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 4, 2019. ; https://doi.org/10.1101/692269doi: bioRxiv preprint 

http://f1000.com/work/citation?ids=1803839&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=991038&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=439128&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=3482025,771117,1265810&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
http://f1000.com/work/citation?ids=2660132&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=4214031&pre=&suf=&sa=0
https://doi.org/10.1101/692269


pathways from the known immune pathways, we identified pathways which are patient specific             

and also cell specific, and this is something that will continue to be explored in the future.                 

Integration of multi-omics data and gene networks has been used in schizophrenia, to identify              

risk genes which enrich in brain tissue for potential drug targeting ​75​. Wang et al used stratified                 

linkage disequilibrium to identify risk genes from 100 schizophrenia associated SNPs which they             

then enriched to brain tissue. Within iSNP we utilised SNPs that had already been enriched to                

the colon by Fahr et al. Differing from Wang et al, we utilised all the known available SNPs and                   

used protein-protein networks to identify disease associated hubs of proteins, instead of            

identifying new genes in linkage disequilibrium with SNPs. By doing this, we were able to               

identify potential novel protein drug targets for specific patient cohorts.  

 

The iSNP workflow is not limited to UC. iSNP is not disease specific and is automated,                

therefore, can be utilised for analysis of large SNP data repositories. We believe that future,               

precision medicine works expanding the utility of iSNP into other complex genetic diseases,             

including Crohn’s disease and other complex, inflammatory diseases such as arthritis,           

Alzheimer’s disease, autoimmune liver disease and cardiovascular disease is now possible and            

available for the community.  

 

Conclusion 

We developed the novel integrative SNP Network Platform (iSNP) workflow to identify            

patient-specific network footprints. These network footprints are based on the regulatory           

SNP-affected genes and their first neighbour protein-protein interactors. Using iSNP, we have            

identified how different cellular pathways are associated with UC pathogenesis, and their            

dependence on the network footprint of individual patients. By combining the iSNP analysis and              

gene ontology, we determined patient-specific pathways to disease. We identified novel           

pathways linking the pathogenic effectors of genetic susceptibility, immune modulation, and           

environmental triggers. Further work into elucidating the exact molecular interactions would           

allow for patient-specific targeting of these pathogenic pathways. The iSNP workflow has the             

potential to advance precision medicine by identifying new patient-specific pathogenic pathways           

and novel personalised drug targets in other complex diseases.  
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Methods 

Sources of SNP data 

UC associated index SNPs were identified from the UK IBD genetics consortium Immunochip             

data ​9 and the Broad Institute Repository ​31​. If no fine mapping was available for an index SNP                  

(the immunochip finemapped SNP had an R​2​<0.8) then the highest proxy partners (based on              

tightest linkage disequilibrium and distance) were assessed using a SNP proxy search and were              

included in the analysis. Each SNP was annotated using Ensembl from the rsID using the               

genome map GRCH38.p7. Disease-associated SNPs were retrieved from the original data           

source.  

 

Using this combined SNP dataset, we compiled UC-specific SNP data for 377 UC patients from               

seven centres across East Anglia, UK (Cambridge, Norwich, Ipswich, Welwyn Garden City,            

Luton, Bedford, and West-Suffolk). The examined patients were aged between 25 and 100             

years. The mean age of diagnosis was 37 with standard deviation of 14.9 years. 246 patients                

were on mesalazine treatment and 124 with additional immunomodulatory treatment. For           

additional data see Supplementary Table 2. SNPs were characterised into different types            

depending on their location in the genome: exonic (missense, synonymous),          

intronic/non-translated regions and intergenic. Flanking nucleotide sequences were obtained         

from dbSNP ​76​. For the analysed SNPs see Supplementary Table 1. 

Assessing the effect of SNPs on transcription factor        

binding sites and miRNA-TS 

From the JASPAR database we downloaded 396 human transcription factors’ binding profiles            

represented by Position Specific Scoring Matrices (PSSMs) ​77​. The PSSMs downloaded in            

JASPAR format were converted to the TRANSFAC format to ease handling of results. To              

assess the effect of the SNP on the gain or loss of putative TF binding sites, flanking sequences                  

50 bases upstream and downstream of the SNPs were extracted. The Regulatory Sequence             

Analysis Tool (RSAT) ​matrix-scan ​78 was used to search for potential TFBS in the ancestral and                
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patient-specific mutant alleles. The background model estimation was determined by using           

residue probabilities from the input sequences with a Markov order of 1. The search was subject                

to both strands of the sequences. Hits with a P-value ≤ 1e-05 were considered as binding sites.                 

Other parameters were set at default values. 

To assess the effect of the SNPs in miRNA-TSs, the 22bp sequences of mature miRNAs were                

retrieved from miRBase ​79​. The flanking sequences of SNPs were assessed for the presence of               

miRNA-TSs using miRanda ​80​. Hits occurring in the seed region (2’-8’) of the miRNAs and with                

alignment scores ≥ 90 and energy threshold ≤ -16 kcal/mol were considered as TS. Other               

parameters were set to default settings. A final manual check was performed to ensure that the                

SNPs overlapped with the predicted TFBS or miRNA target sites. 

We also considered gain or loss of the regulatory interactions between TFs and protein-coding              

genes in our analysis, where the protein-coding gene was within 10kb upstream or downstream              

of the SNP-affected TFBS. This information was retrieved using the feature retrieval function of              

the UCSC genome table browser ​81​. We also captured pre-existing regulatory interactions with             

experimentally determined binding regions/sites. In these cases, the protein coding gene(s) at            

the cis level corresponding to the SNP were assigned as targets of the TF which recognises the                 

binding regions/sites. 

All gains or losses of regulatory interactions and protein coding genes via SNP-affected             

miRNA-TSs were included in the network except when the SNPs were annotated as intergenic.              

The effect of SNPs on the uncovered TFBS or miRNA-TSs were classified into either a gain or                 

loss of binding site/target site or a neutral change. Only those sites identified as loss or gain with                  

respect to sites corresponding to the ancestral allele were considered for subsequent analysis.             

We called the genes corresponding to such SNPs ‘SNP-affected genes’ from here onwards. 

Network construction and analysis 

Protein-protein interactions of the proteins encoded by SNP-affected genes were obtained from            

OmniPath in January 2017 ​32​. For each patient, the set of proteins encoded by SNP-affected               

genes and their first interactors (first neighbours) were defined as the UC-associated network             

footprint of a particular patient. The union of all network footprints, the UC-network, was              

analysed and visualized in Cytoscape 3.3.0 ​33 using the inverted self-organizing map layout. We              

retained only those SNP-affected genes which were present in the OmniPath resource and,             
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which formed a giant component with their interactors. Patient-specific networks were           

constructed using the Cytoscape CyRestClient 0.6 in Python ​82​. 

Cluster analysis was carried out by using the Clustermaker Cytoscape app ​83 implementing the              

GLay clustering method ​84​, which is an implementation of the ​Girvan-Newman clustering            

algorithm ​85​. Briefly, the clustering method deletes the highest betweenness edges from the             

network until the network collapsed to non-connected components and these components form            

the clusters. We call the network clusters from here onwards ‘modules’, to be distinguishable              

from patient clusters.  

Hierarchical clustering, multidimensional scaling    

methods and statistical analysis 

The ​Scipy scikit-learn ​package was used for hierarchical clustering ​86 of the patient-specific             

clusters. The constructed distance matrix between patients was based on the Hamming            

distance ​87​. If a protein was directly or indirectly affected by a SNP, then it was assigned a “1” in                    

a patient. If the protein was not affected, then it was scored as “0”. Multidimensional scaling was                 

conducted in the KNIME environment using the MSA KNIME node ​88 ​89​. We retained only the                

first three dimensions. The first two dimensions were plotted in Microsoft Excel.  

 

Gene expression analysis 

We used publicly available microarray datasets (GSE73661 and GSE48959), derived from           

inflamed and non-inflamed colonic biopsies at the IBD centre Leuven, Belgium, in whom             

Immunochip data were available (Supplementary Table 4). Gene expression was measured on            

Affymetrix HGU-133 plus2 and Affymetrix Hugene1.0st platforms. The microarray analysis was           

conducted in R version 3.5.0.. The gene expression data were platform-wise normalised using             

the robust multi-array average ​90 through the oligo package ​91​. Then the probesets were mapped               

to UniProt IDs from ENSEMBL BioMart using the AnnotationDbi and the biomaRt package ​92,93​.              
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The average of gene expression was taken per UniProt ID if multiple probe set was mapped to                 

one specific UniProt ID. 

In the case of the inflamed samples there were not enough replicates per platform. To make the                 

two platforms comparable those genes were considered which had probe sets on both the              

Affymetrix HGU-133 plus2 and on the Hugene1.0st platforms. Subsequently, the mapping to            

UniProt ID were ranked per sample and rank differences were calculated between classes. The              

list of NFKB1 target genes were retrieved from the manually curated TRRUST database ​94              

(Supplementary Table 7). We then performed a Gene Set Enrichment Analysis ​95​. We             

considered the gene set significant if the GSEA’s Kolmogorov-Smirnov test P-value was below             

0.05. All parameters were kept as default. 

Gene Ontology analysis 

The Gene Ontology analysis was performed using ​pypathway ​analysis tool ​96 which            

implemented the ​goatools ​package ​97​. Each individual patients affected genes were used for             

enrichment test against the genes in the OmniPath database. The Sidak false discovery             

calculation was calculated ​98​. We considered a Gene Ontology Biological Process term            

representative for a cluster if it was enriched with corrected q<0.05 significance more than half               

of the cluster’s patients. 
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