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Defining the effects that rare variants can have on human phenotypes is essential to advancing 
our understanding of human health and disease. Large-scale human genetic analyses have 
thus far focused on common variants, but the development of large cohorts of deeply 
phenotyped individuals with exome sequence data has now made comprehensive analyses of 
rare variants possible. We analyzed the effects of rare (MAF<0.1%) variants on 3,166 
phenotypes in 40,468 exome-sequenced individuals from the UK Biobank and performed 
replication as well as meta-analyses with 1,067 phenotypes in 13,470 members of the Healthy 
Nevada Project (HNP) cohort who underwent Exome+ sequencing at Helix. Our analyses of 
non-benign coding and loss of function (LoF) variants identified 78 gene-based associations that 
passed our statistical significance threshold (p<5x10-9). These are associations in which 
carrying any rare coding or LoF variant in the gene is associated with an enrichment for a 
specific phenotype, as opposed to GWAS-based associations of strictly single variants. 
Importantly, our results do not suffer from the test statistic inflation that is often seen with rare 
variant analyses of biobank-scale data because of our rare variant-tailored methodology, which 
includes a step that optimizes the carrier frequency threshold for each phenotype based on 
prevalence. Of the 47 discovery associations whose phenotypes were represented in the 
replication cohort, 98% showed effects in the expected direction, and 45% attained formal 
replication significance (p<0.001). Six additional significant associations were identified in our 
meta-analysis of both cohorts. Among the results, we confirm known associations of PCSK9 
and APOB variation with LDL levels; we extend knowledge of variation in the TYRP1 gene, 
previously associated with blonde hair color only in Solomon Islanders to blonde hair color in 
individuals of European ancestry; we show that PAPPA, a gene in which common variants had 
previously associated with height via GWAS, contains rare variants that decrease height; and 
we make the novel discovery that STAB1 variation is associated with blood flow in the brain. 
Our results are available for download and interactive browsing in an app 
(https://ukb.research.helix.com). This comprehensive analysis of the effects of rare variants on 
human phenotypes marks one of the first steps in the next big phase of human genetics, where 
large, deeply phenotyped cohorts with next generation sequence data will elucidate the effects 
of rare variants. 
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Introduction 
 
Over the past decade, we have witnessed the growing depth and breadth of genome-wide 
association studies (GWAS) leveraging genotyped common variants. We have seen that the 
most useful and predictive insights about the genetic effects of common variants only begin to 
appear as sample sizes reach into the hundreds of thousands. Modern resources like the UK 
Biobank (UKB, www.ukbiobank.ac.uk) that make thousands of phenotypes available to match 
these genetic data are proving a boon to our understanding of human genetics. In addition to 
identifying specific variants associated with traits, modern GWAS have shown that polygenic 
scores utilizing thousands of common variants together can explain a sizeable portion of 
phenotypic variation and that genetic risk for one phenotype can help explain variation in 
another1–3. 
 
Until now, the insights stemming from these large sample sizes have only been available for 
common and low frequency variants, with comprehensive studies only available to a minor allele 
frequency (MAF) of about 0.1%. It has been repeatedly shown that as allele frequencies drop, 
the effect sizes of these variants increase beyond the limits imposed by natural selection on 
more common variants4–6. In rare diseases and family-based studies, rare variant studies that 
aggregate phenotypically similar probands have been crucial to our understanding of disease; 
exome and genome-based approaches are now standard of care for evaluating these patients. 
However, the impact of rare variants on common traits and sub-clinical phenotypes has only 
been examined for selected phenotypes as large exome and phenotypic datasets have not 
been available. 
 
The release by the UKB of 49,960 exomes matched to thousands of phenotypes finally changes 
this status quo and marks the beginning of the next era in the study of human genetics7. While 
the sample size remains modest compared to modern chip-based GWAS, this is the first time 
that rare variants and corresponding phenotypes can be analyzed by researchers around the 
world on such a scale. In addition to this incredible public resource, we have sequenced the 
exomes of 18,102 participants in the Healthy Nevada Project (HNP, Renown Health, Reno, 
Nevada) who consented to research involving their electronic medical records. We therefore 
can not only perform analyses of rare variants against thousands of phenotypes in the UKB 
dataset but can also perform independent replication analyses to confirm associations and 
meta-analysis to discover new signals. 
 
Population-based analyses that aim to identify statistically significant associations between traits 
and rare variants require a different methodology from the common variant methods to which 
the field has grown accustomed 8,9. The power to identify rare variants as statistically significant 
associations decreases as the minor allele frequency decreases. This is why the methodology 
for rare disease and private mutations require aggregation of similar probands and aggregation 
of variants at the gene level. For population-based genetic analyses of rare variants, it is 
therefore essential to group the signals of multiple rare variants together, such as by 
co-occurrence in the same gene, to increase statistical power (Figure 1). This method has been 
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used in exome and genome sequencing studies to successfully identify genes associated with 
many traits, including myocardial infarction, amyotrophic lateral sclerosis, and blood 
pressure 10–12. 
 

 
Figure 1.  Gene-based collapsing analysis.  A) First, variants in each gene are identified by 
sequencing in cases and controls. B) Variants that are predicted to be damaging—those that 
are rare and annotated as likely to affect the functionality of the gene, such as coding 
variants—are then selected for analysis, while variants that are common or do not have 
damaging annotations are excluded from further analysis. The exact parameters used to select 
variants can be flexible and tailored to each study. C) Finally, the number of cases with a 
qualifying variant in each gene is compared to the number of controls with a qualifying variant. 
This comparison of cases to controls produces one statistical result per gene instead of one per 
variant. 
 
Here, we apply a gene-based collapsing analysis method to 40,468 participants over 3,166 
phenotypes measured by the UKB. We perform replication and meta-analyses for 1,067 traits in 
an additional 13,470 participants from the Healthy Nevada Project (HNP) cohort. This analysis 
is the first to make novel rare-variant discoveries by combining tens of thousands of exomes 
with thousands of phenotypes across multiple cohorts. 
 
 
Results 
 
Gene-based collapsing discovery analysis 
 
We performed a gene-based collapsing analysis to identify genes in which rare variants were in 
aggregate associated with a phenotype. In brief, we identified qualifying variants that met 
specific annotation criteria (see Methods) and were below a MAF of 0.1%. We explored two 
gene-based collapsing models: 1) coding and 2) loss of function (LoF). The LoF model was 
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used to identify associations where only LoF variants had an effect.   For the coding model, we 
included 747,865 qualifying variants across 15,474 genes (see Methods). In the LoF model, we 
included 115,628 qualifying variants across 8,307 genes. The mean number of qualifying 
variants per gene in the discovery population was 46; the mean percentage of carriers for each 
gene was 0.38%. 
 

 
Figure 2. Histogram of number of qualifying variants per gene.  Eleven genes with >500 
variants excluded from plot. Mean of 45.7 variants per gene (standard deviation 52.2). 
 
We analyzed 3,166 phenotypes in the 40,468 individuals who were classified by the UKB as 
genetically Caucasian (field 22006) (Table 1, see Supplement for list of phenotypes). As 
described previously, the exome-sequenced set of UKB samples is enriched for individuals with 
MRI data, enhanced baseline measurements, hospital episode statistics, and linked primary 
care records (described for Category 170 at 
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=170 ). We included relatives in the analysis, 
accounting for their relatedness with a linear mixed model. To reduce test statistic inflation, 
genes were only included in analyses of quantitative traits if they had at least 10 phenotyped 
people carrying a qualifying variant. For binary traits, the expected number of carriers in the 
case group was required to be at least 10, based on the overall carrier and phenotype 
frequency13. We identified 78 associations that were statistically significant (p<5x10 -9) after 
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applying the Bonferroni multiple testing correction (Tables 2-3). The vast majority of these 
associations were expected given the current knowledge in the field. For example, rare variants 
in PCSK9 and APOB were associated with low density lipoprotein (LDL) levels, and rare loss of 
function variants in TUBB1 were associated with platelet distribution width. 
 
Table 1.  Study and cohort information. Except for total individuals, counts shown are for the 
European ancestry subset. 
 

 UK Biobank (UKB) Healthy Nevada Project 
(HNP) 

N individuals: total / 
European ancestry 

49,960 / 40,468 18,102 / 13,470 

N phenotypes: binary / 
quantitative 

 1,917 / 1,249 916 / 151 

N phenotypes unique to 
cohort: binary / quantitative 

1,189 / 1,198 188 / 100 

Median N cases for binary 
traits (range) 

257 (50-37,983) 181 (24-6,414) 

Median N phenotyped for 
quantitative traits (range) 

9,287 (516 - 40,428) 1,440 (190-10,244) 

 
Table 2.  Statistically significant associations with binary traits in the UKB gene-based collapsing 
analysis. 
 

Gene Model Phenotype 
Case carrier 
n (%) 

Ctrl carrier n 
(%) p-value 

Dire
ction 

Replicatio
n 

SLC45A2 coding Hair colour: Blonde 62 (1.33%) 117 (0.33%) 3.70E-27 + NA 

LDLR coding High cholesterol 75 (1.46%) 170 (0.48%) 7.50E-17 + NA 

COL4A4 coding R31 Unspecified haematuria 40 (2.7%) 328 (0.84%) 5.50E-14 + consistent 

MC1R coding Hair colour: Red 29 (1.63%) 213 (0.55%) 4.40E-11 + NA 

TYRP1 coding Hair colour: Blonde 55 (1.18%) 175 (0.49%) 4.60E-11 + NA 

LDLR coding Cholesterol lowering medication 45 (1.61%) 91 (0.48%) 1.20E-10 + NA 

TTN LoF I48 Atrial fibrillation and flutter 38 (2.2%) 291 (0.75%) 1.20E-10 + consistent 

SLC45A2 coding Hair colour: Dark brown 38 (0.25%) 141 (0.56%) 4.60E-10 - NA 

Direction of effect is + for betas above 0 and - for betas below 0. “Consistent” means that the 
beta was in the same direction for both UKB and HNP but with p>0.001. Consistent betas with 
p<0.001 would be labeled ‘p<0.001’. 
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Table 3.  Statistically significant associations with quantitative traits in the UKB gene-based 
collapsing analysis. 
 

Gene Model Phenotype Carrier n (%) p-value 
Direc
tion Replication 

ALPL coding Alkaline phosphatase 249 (0.66%) 2.30E-187 - p<0.001 

SLC22A12 coding Urate 313 (0.83%) 9.90E-119 - consistent 

GOT1 coding Aspartate aminotransferase 89 (0.24%) 1.50E-68 - p<0.001 

CST3 LoF Cystatin C 23 (0.06%) 7.70E-53 - NA 

CST3 coding Cystatin C 56 (0.15%) 8.00E-53 - NA 

TUBB1 coding Platelet distribution width 229 (0.58%) 7.40E-45 + NA 

ABCA1 coding Apolipoprotein A 429 (1.21%) 6.80E-41 - NA 

GPLD1 coding Alkaline phosphatase 317 (0.84%) 4.10E-36 - p<0.001 

ABCA1 coding HDL cholesterol 430 (1.2%) 4.40E-36 - p<0.001 

SHBG coding SHBG 148 (0.42%) 5.70E-33 - NA 

SHBG LoF SHBG 82 (0.23%) 7.50E-32 - NA 

APOB LoF LDL direct 90 (0.24%) 2.10E-31 - p<0.001 

GPT coding Alanine aminotransferase 124 (0.33%) 2.00E-28 - consistent 

PCSK9 coding LDL direct 205 (0.54%) 2.00E-27 - p<0.001 

PCSK9 coding Apolipoprotein B 206 (0.55%) 1.70E-25 - NA 

APOB LoF Cholesterol 90 (0.24%) 3.40E-25 - p<0.001 

TUBB1 LoF Platelet distribution width 24 (0.06%) 3.90E-24 + NA 

SLC2A9 coding Urate 139 (0.37%) 8.00E-23 - consistent 

PCSK9 coding Cholesterol 207 (0.55%) 1.60E-22 - consistent 

APOB LoF Apolipoprotein B 71 (0.19%) 2.70E-21 - NA 

JAK2 coding Platelet count 271 (0.69%) 2.40E-20 + consistent 

PCSK9 LoF LDL direct 81 (0.21%) 7.70E-20 - consistent 

PCSK9 LoF Apolipoprotein B 81 (0.21%) 1.30E-19 - NA 

ALB LoF Albumin 11 (0.03%) 1.80E-19 - consistent 

JAK2 coding Platelet crit 271 (0.69%) 1.90E-19 + NA 

ASGR1 coding Alkaline phosphatase 123 (0.32%) 5.60E-19 + consistent 

ALPL LoF Alkaline phosphatase 68 (0.18%) 7.70E-17 - consistent 

TUBB1 coding Platelet count 229 (0.58%) 2.30E-16 - p<0.001 

ABCA1 LoF Apolipoprotein A 72 (0.2%) 5.30E-16 - NA 
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PCSK9 LoF Cholesterol 81 (0.21%) 8.10E-16 - consistent 

ALPL coding Phosphate 236 (0.66%) 1.10E-15 + NA 

LCAT coding HDL cholesterol 88 (0.25%) 1.80E-15 - p<0.001 

KLF1 LoF 
Red blood cell (erythrocyte) distribution 
width 27 (0.07%) 1.10E-14 + NA 

KLF1 LoF Mean corpuscular haemoglobin 27 (0.07%) 1.30E-14 - p<0.001 

STAB1 LoF Median T2star in putamen (right) 35 (0.37%) 4.00E-14 + NA 

ABCB11 coding Alkaline phosphatase 175 (0.46%) 5.40E-14 + consistent 

APOB LoF Triglycerides 89 (0.23%) 6.60E-14 - p<0.001 

GP9 coding Mean platelet volume 84 (0.21%) 9.00E-14 + p<0.001 

ABCA1 LoF HDL cholesterol 72 (0.2%) 1.30E-13 - p<0.001 

IQGAP2 LoF Mean platelet volume 160 (0.41%) 1.30E-13 + No effect 

STAB1 coding Median T2star in putamen (right) 223 (2.33%) 1.40E-13 + NA 

KLF1 LoF Mean corpuscular volume 27 (0.07%) 1.50E-13 - p<0.001 

MPL coding Platelet count 242 (0.62%) 2.80E-13 + consistent 

GCK coding Glycated haemoglobin 54 (0.14%) 4.60E-13 + consistent 

ANGPTL3 coding Apolipoprotein A 158 (0.45%) 6.10E-13 - NA 

GPLD1 LoF Alkaline phosphatase 75 (0.2%) 3.80E-12 - p<0.001 

STAB1 coding Median T2star in putamen (left) 223 (2.33%) 5.00E-12 + NA 

LCAT coding Apolipoprotein A 88 (0.25%) 6.70E-12 - NA 

APOA5 LoF Triglycerides 42 (0.11%) 1.00E-11 + consistent 

STAB1 LoF Median T2star in putamen (left) 35 (0.37%) 1.30E-11 + NA 

CETP LoF HDL cholesterol 36 (0.1%) 1.50E-11 + p<0.001 

GOT1 LoF Aspartate aminotransferase 10 (0.03%) 1.50E-11 - NA 

GP9 coding Platelet count 84 (0.21%) 2.60E-11 - consistent 

GP1BB coding Mean platelet volume 31 (0.08%) 2.70E-11 + NA 

GCK coding Glucose 48 (0.13%) 4.40E-11 + consistent 

ITGA2B coding Platelet count 321 (0.82%) 4.60E-11 - consistent 

ASGR1 LoF Alkaline phosphatase 26 (0.07%) 6.60E-11 + consistent 

ANGPTL3 coding Triglycerides 168 (0.44%) 8.40E-11 - consistent 

CRP coding C-reactive protein 65 (0.17%) 9.90E-11 - consistent 

TUBB1 coding Mean platelet volume 229 (0.58%) 1.30E-10 + consistent 

IQGAP2 coding Mean platelet volume 586 (1.49%) 2.10E-10 + consistent 

LIPC coding Apolipoprotein A 248 (0.7%) 3.40E-10 + NA 
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MPL coding Platelet crit 242 (0.62%) 4.20E-10 + NA 

SCARB1 coding HDL cholesterol 146 (0.41%) 1.60E-09 + p<0.001 

PAPPA LoF Standing height 11 (0.03%) 1.90E-09 - consistent 

CETP coding HDL cholesterol 169 (0.47%) 2.00E-09 + p<0.001 

TUBB1 LoF Platelet count 24 (0.06%) 3.00E-09 - p<0.001 

GFI1B coding Mean platelet volume 109 (0.28%) 3.00E-09 + p<0.001 

GP1BA LoF Mean platelet volume 85 (0.22%) 3.50E-09 + p<0.001 

TUBB1 coding Platelet crit 229 (0.58%) 3.90E-09 - NA 

Direction of effect is + for betas above 0 and - for betas below 0. “Consistent” means that the 
beta was in the same direction for both UKB and HNP but with p>0.001. Consistent betas with 
p<0.001 are labeled ‘p<0.001’. 
 
 
We observed a number of expected associations that could reasonably be expected given the 
knowledge in the field but had not been previously identified using these analysis techniques. 
For example, we found that rare coding variants in GP1BB were associated with higher mean 
platelet volumes in the general population, consistent with their previous association with some 
bleeding and platelet disorders14. As another example, we identified associations between rare 
coding variants in TYRP1 and blonde hair. A variant in this gene had previously been shown to 
cause blonde hair in dark-skinned individuals of Melanesian ancestry from the Solomon Islands, 
but until now there has not been evidence of a role for this gene in those of European 
ancestry15,16. 
 
Additional discoveries were novel. For example, we found that rare coding variants in STAB1 
were associated with median T2star MRI measures in several brain structures, with the 
strongest association in the putamen. As STAB1 is a transmembrane receptor that is thought to 
play a role in angiogenesis, this finding provides novel hypotheses for further study. As another 
example, LoF variants in the gene PAPPA were associated with decreased height. While this 
gene was implicated in a previous GWAS of height, this is the first time that rare variants in this 
gene have been found to be significantly associated with height in a human population 17. 
 
Of the 3,166 phenotypes chosen for analysis, 298 were unable to be analyzed in the same way 
because their trait heritability, based on the common variants used in the linear mixed model, 
fell below the required threshold for the algorithm (see Methods). These phenotypes were 
analyzed using logistic regression in the subset of unrelated European ancestry individuals and 
produced no statistically significant associations. 
 
Replication study and meta analysis 
 
We analyzed 1,067 phenotypes in 13,470 individuals from the HNP cohort who had been 
sequenced at Helix and volunteered their medical records and blood biomarkers for analysis. 
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For our replication study, 47 of the phenotype/gene combinations of the 78 that were statistically 
significant were able to be assessed in the HNP cohort. Of these 47, 98% showed directions of 
effect that were consistent with the discovery signal, and 45% of the 47 achieved statistically 
significant replication (p<0.001). The only hit that did not replicate was the association between 
LoF variants in IQGAP2 and mean platelet volume (though the coding model that included the 
LoF variants showed a consistent though weak effect in HNP). 
 
We next performed a meta-analysis to identify associations that only achieved statistical 
significance when combining the signals from the two separately analyzed cohorts. We 
identified six new associations (p<5x10 -9), each of which also achieved nominally significant 
associations (p<0.01) in the analysis of individual cohorts (Table 4).  
 
Table 4. Statistically significant associations from the meta analysis of UKB and HNP. 
 

GENE Model Phenotype 
UKB carrier n 
(%) 

IHI carrier n 
(%) p-value 

Directi
on of 
effect 

ANGPTL3 coding Cholesterol 168 (0.44%) 56 (0.66%) 4.90E-13 - 

HBB coding Mean corpuscular haemoglobin 29 (0.07%) 10 (0.12%) 8.07E-12 - 

KLF1 coding Mean corpuscular haemoglobin 145 (0.37%) 17 (0.2%) 2.63E-10 - 

TMPRSS6 coding Mean corpuscular haemoglobin 296 (0.75%) 50 (0.58%) 2.66E-10 - 

HBB coding Mean corpuscular volume 29 (0.07%) 10 (0.12%) 5.71E-10 - 

GP1BA coding Mean platelet (thrombocyte) volume 174 (0.44%) 45 (0.54%) 8.05E-10 + 

Direction of effect is + for betas above 0 and - for betas below 0. 
 
 
Individual variant analysis 
 
We additionally analyzed the individual variants that went into the collapsing analysis, with the 
intent to identify which genetic variants were driving the signals. Of the 84 significant 
gene-based associations, only 5% could be explained by a single variant in the gene. Of the 27 
associations that formally replicated in the HNP cohort or were significant from the meta 
analysis of both cohorts together, only one was explained by a single variant. The remaining 
associations had contributions toward significance from multiple variants, highlighting the utility 
of grouping together rare variants to improve power for discovery. In fact, the signal for these 
associations was sufficiently dispersed over multiple variants per gene such that had the 
analysis been done by traditional GWAS of analyzing one variant at a time, 78% of the 
gene-based associations found here would not have had a single variant whose individual 
p-value was sufficient to pass the threshold for correction for multiple tests. 
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Mapping the precise effects of each contributing variant can elucidate the underlying biology of 
an association. For example, variants in SLC2A9 are associated with low urate levels (Figure 
3A, B). The protein encoded by this gene reabsorbs urate in the proximal tubules of the kidneys, 
and variants that disrupt the transmembrane regions or lower gene expression are known to be 
associated with hypouricemia 18. We find that the association signal in this gene is most heavily 
concentrated in missense variants in the transmembrane regions of the protein, especially in the 
first half of the protein (Figure 3A,B). Of the >30 variants associated with increased urate levels, 
89% are in or directly adjacent to a predicted transmembrane region. 
 
Likewise, variants in different portions of GFI1B have distinct effects on mean platelet volume 
(Figure 3C). Consistent with the literature, variants at the beginning of the zinc finger domain of 
this gene are associated with increased platelet volumes, but we make the novel observation 
that variants closer to the C-terminus may be having an effect in the opposite direction 19,20. 
 
As another example, a significant association is observed between variants in ASGR1 and 
alkaline phosphatase levels, with the greatest incidence of mutations that increase alkaline 
phosphatase levels occurring in the C-type lectin domain, involved in carbohydrate binding. 
Previously, two loss of function variants in this gene were found to be associated with alkaline 
phosphatase levels, coronary artery disease, and non-HDL cholesterol 21. In our analysis, the 
association is most strongly influenced by LoF variants, but many missense variants in the 
C-type lectin domain contribute to the signal as well (Figure 3D). 
 
In this way, mapping individual missense variants to their sequence context after a gene-based 
discovery can refine the classification of missense variants as truly loss of function. 
Corresponding images detailing the locations for all of the rare variants in each significant 
gene-phenotype association can be found in the supplement. 
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Figure 3. Distribution of effects of rare variants on phenotypes in select genes. A) Plot of 
the SLC2A9 protein showing the effect sizes of rare damaging variants on urate levels. The 
legend shows the gene, its associated phenotype, and the Effect Size (β). The effect size is 
from the gene-based collapsing model, where individuals were coded as either having or not 
having a qualifying variant. A positive value indicates that variant carriers have, on average, 
higher values for the phenotype, while a negative value indicates that variant carriers have 
lower values. The amino acid positions are shown on the x-axis, with the PFAM domain 
highlighted. The y-axis displays the beta of each individual variant, with negative values shown 
below and positive values above. Variants are indicated according to their consequence as 
shown and labeled according to their amino acid change or splice site variation. The number 
inside the circle is the number of people carrying that variant. Darker lines connecting the 
variants to the gene and darker-filled shapes indicate more significant p-values for the 
association. B) Membrane topology plot of SLC2A9 showing variants with positive effect size 
(green) on urate levels and variants with negative effect size (pink). SLC2A9 (Glut9) reabsorbs 
urate in the proximal tubules of the kidneys. Variants that disrupt the transmembrane regions or 
lower gene expression are known to be associated with hypouricemia 18. Here, 89% of the 
variants with negative betas, associated with lowered urate levels, are in or directly adjacent to 
a predicted transmembrane region, as opposed to only 50% of the variants with positive effect 
size. C) Plot of the GFI1B protein with the effect sizes of rare damaging variants on mean 
platelet volume shown. Consistent with the literature, variants at the beginning of the zinc finger 
domain are associated with increased platelet volumes, but we make the novel observation that 
variants closer to the C terminus may be having an effect in the opposite direction 19,20. D) Plot of 
the ASGR1 protein with the effect sizes of rare damaging variants on alkaline phosphatase 
levels shown. In addition to the known effects of LoF variants, we show that the missense 
variants that influence alkaline phosphatase levels are more heavily concentrated in the C-type 
lectin domain (p<0.05 from a Fisher’s exact test comparing the proportion of 
positively-associated missense variants in this domain to outside of this domain)21. 
 
Web resource 
 
We have made the results of our study downloadable via cloud storage 
(https://s3.amazonaws.com/helix-research-public/ukbb_exome_analysis_results/README.txt) 
and also browseable with an interactive web tool at https://ukb.research.helix.com. 
 
 
Discussion 
 
Here we present the first analysis to catalog the effects of rare and unique coding variants on 
thousands of phenotypes across two large cohorts. Until now, rare variant analyses using next 
generation sequence data have been performed on a small number of phenotypes at a time. 
For example, studies with thousands of sequenced cases have now been undertaken for 
conditions like schizophrenia, developmental delay, and diabetes 22–24. Each of these studies 
were designed around specific phenotypes and collected  targeted, disease-specific samples. 
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Simultaneously analyzing thousands of traits in a biobank population presents additional 
challenges as well as those inherent to examining rare variants. Due to the rarity of the variants, 
association tests are prone to false positives. Best practices to produce reliable results include 
restricting to high quality regions of the genome, setting a very low MAF cutoff, and requiring 
that at least a minimum threshold of individuals carry qualifying variants in the gene to be 
analyzed. Now that rare variant information is available to researchers for large numbers of 
phenotypes and samples, we can expect that new studies will be increasingly successful at 
utilizing gene-based analyses and other new techniques to characterize the impacts of specific 
rare variants on different human traits. 
 
Our analysis found that the vast majority of statistically significant gene-based associations 
were not driven by single explanatory variants. Not only were 95% of the gene-based 
associations not explained by a single variant, but 78% of the associated genes had no variants 
with p-values that would pass the multiple testing threshold if analyzed individually.  
 
In genes where multiple rare variants contribute to the signal, we find that mapping the precise 
contributions of each variant in the context of the secondary and tertiary structures can reveal 
the most functional parts of the gene for the given phenotype and provide additional support for 
a statistical association. Formal statistical tests of domain enrichment and discovery analyses 
that focus on different gene regions will doubtless uncover novel associations but will also often 
have less power due to the small number of people who will be carrying rare variants in each 
domain. 
 
Importantly, the associations identified in this analysis can only be obtained using sequencing 
techniques, as opposed to chip-based methods. All of the variants used in our analysis have a 
MAF below 0.1%, which is below the range of frequencies that can currently be comfortably 
imputed. Furthermore, 35% of the 747,865 variants included in our analysis were 
singletons--only observed once in our dataset and never reported in gnomAD25. Such unique 
variants will never be accessible by chip and were vital to our study’s success. In fact, 87% of 
our statistically significant associations received worse p-values--on average by threeorders of 
magnitude--when the singletons were removed from the analysis. 
 
Our analysis differs from the one presented by Van Hout et al., who performed a gene-based 
analysis on this same UKB dataset and with some of the same phenotypes7. Some of our 
analysis differences included our use of a replication dataset, our more stringent MAF cutoff 
(1% vs. 0.1%), and collapsing model differences (LoF vs. both LoF and coding models). Our 
analysis led to the discovery of 84 statistically significant associations, among which we 
identified 6 of the 17 gene-based associations reported by Van Hout et al. (between TUBB1, 
GP1BA, ASXL1, IQGAP2, HBB and  KLF1 and  blood cell phenotypes)7. The associations that 
we did not confirm were largely driven by variants that did not pass the stringent parameters 
used in our analysis, especially the requirement for MAF<0.1% and at least 10 variant carriers 
per gene. 
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Our analysis has a number of limitations. The analysis was restricted to European ancestry 
individuals. The analysis included rigid criteria for variant qualification and grouped variants at 
the most basic level, the gene. Future studies can utilize more complex weighting algorithms as 
opposed to rigid cutoffs and can explore different ways of grouping rare variants, such as by 
gene family or by exon 26. Our study used a simple dominant model of inheritance, while 
recessive models and models that include gene-gene or gene-variant interactions will doubtless 
provide novel insights as well. Finally, our requirement for at least 10 phenotyped carriers of a 
qualifying variant in a gene to be included in the analysis, while removing problems with test 
statistic inflation, also reduced the number of genes that we could investigate. Of the 3,166 
phenotypes analyzed, 407 phenotypes resulted in no genes passing this filter. 
 
This analysis presents one of the first forays into a new standard for human genetics research. 
As the sample sizes of cohorts with extensive phenotypic data and next generation sequencing 
grows, both through publicly available cohorts such as the UKB or population-based screening 
efforts such as the Healthy Nevada Project, we are now able to investigate the biological impact 
of rare variants with the same fine-tuned precision with which we currently assess the effects of 
common variants. A wealth of discoveries await us as we embark on this next phase of 
incorporating rare genome sequencing information into truly personalized medicine. We provide 
an interactive browser of our results as a resource to the human genetics community 
(https://ukb.research.helix.com/) to facilitate these discoveries. 
 
Methods 
 
Samples, phenotypes and variant annotation 
 
We utilized the FE version 27 of the UKB plink-formatted exome files (field 23160) as well as the 
imputed genotypes from GWAS genotyping (field 22801-22823). The HNP study was reviewed 
and approved by the University of Nevada, Reno Institutional Review Board (IRB, project 
956068-12). The HNP samples were sequenced at Helix using the Exome+ assay, a proprietary 
exome that combines a highly performant medical exome with a microarray-equivalent SNP 
backbone into a single sequencing assay (www.helix.com)28. Data were processed using a 
custom version of Sentieon and aligned to GRCh38, with variant calling and phasing algorithms 
following GATK best practices29. Imputation of common variants in the HNP data was performed 
by pre-phasing samples and then imputing. Pre-phasing was performed using reference 
databases, which include the 1000 Genomes Phase 3 data. This was followed by genotype 
imputation for all 1000 Genomes Phase 3 sites that have genotype quality (GQ) values less 
than 20. Imputation results were then filtered for quality so that only high precision imputed 
variant calls were reported. 
 
Variant annotation was performed with VEP30. Coding regions were defined according to 
Gencode version GENCODE 26, and the Ensembl canonical transcript was used to determine 
variant consequence 31,32. Genotype processing was performed in Hail 33. 
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For the collapsing analysis, samples were coded as a 1 for each gene if they had a qualifying 
variant and a 0 otherwise. We defined “qualifying” as coding (stop_lost, missense_variant, 
start_lost, splice_donor_variant, inframe_deletion, frameshift_variant, splice_acceptor_variant, 
stop_gained, or inframe_insertion) and not Polyphen or SIFT benign (Polyphen benign is <0.15, 
SIFT benign is >0.05)34,35. We also ran a loss of function (LoF) model that only included LoF 
variants (stop_lost, start_lost, splice_donor_variant, frameshift_variant, splice_acceptor_variant, 
or stop_gained).  We used a MAF cutoff of 0.1%. To pass the MAF filter, the variant must be 
below that frequency cutoff in all gnomAD populations25 as well as the European ancestry UKB 
exomes (defined by UKB as Genetic Ethnicity = Caucasian in field 22006). This was the sample 
set to which we restricted in our analysis. Only PASS calls were used in the analysis, with an 
average depth of 62.9x. Qualifying variants were also restricted to the high-confidence regions 
of the genome as defined by the Genome in a Bottle resource for NA12878 36. 
 
Most UKB phenotypes were processed using the Neale lab modified version of PHESANT, 
which  transforms quantitative traits to normally distributed data and breaks up categorical traits 
into binary sets37,38. ICD-10 diagnosis code phenotypes were coded with 1 if participants had the 
ICD-10 code recorded at least once in their series of Electronic Health Records (EHR), and 
otherwise a 0, with controls restricted to one sex when appropriate. HNP phenotypes were 
processed in the same fashion, with the additional step that the pre-transformed median of 
quantitative traits was taken when multiple measurements were available. 
 
Analysis 
 
We used BOLT-LMM for statistical analysis39. Briefly, this method builds a linear mixed model 
using common variants to account for the effects of relatedness and population stratification. 
The covariates included were age and sex. In the HNP analysis, the Helix bioinformatics 
pipeline version was also included as a covariate in the model to account for batch effects. 
 
A representative set of LD-pruned, high-quality common variants were identified for both the 
creation of principal components and for the random effects and trait heritability in the 
BOLT-LMM mixed model. Inclusion in this set required MAF>1%, imputation with reasonable 
accuracy in UKB (INFO>0.7) and high coverage or imputation in Helix samples (>99% of 
samples with a sequence-based call or an imputed call with GP>0.95), LD-pruned (r2<0.6) to a 
set of 184,445 variants. This set of variants was genome-wide, including both coding and 
noncoding regions. The set of unrelated European ancestry individuals from UKB was used for 
LD pruning and MAF cutoffs. In the interest of saving time and compute power, the random 
effects in the BOLT-LMM mixed model for individual variants, as opposed to the faster 
gene-based analyses, were further restricted to a set of 13,036 LD-pruned variants (r2<0.01). 
 
Our gene-based analyses required at least 10 carriers of qualifying variants in analyzed genes 
for quantitative traits and at least 10 carriers of qualifying variants to be expected in the smaller 
sample group for analyzed genes for each binary trait, similar to previously suggested 
guidelines13. 
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Meta-analysis was performed on the summary stats from each separate analysis using PLINK, 
and we required statistically significant hits to have at least one variant carrier from both the 
UKB and the HNP groups in addition to 10 variant carriers overall 40,41. 
 
BOLT-LMM determined that 298 phenotypes had 0 heritability based on the 184,445 common 
variants. These phenotypes were analyzed by logistic regression of unrelated individuals using 
PLINK 2.0 with age, sex, and the first 10 European-specific principal components (calculated on 
these 184,445 variants) included as covariates40,42. 
 
Gene plots were made using trackViewer and Protter and annotated with Pfam domains v. 
32.0 43–45. 
 
Acknowledgements 
This research has been conducted using the UK Biobank Resource under Application Number 
40436. We acknowledge A. Buckley and J. Ou for assistance with figures, O. Mendelevitch, G. 
Sayfan, and T. Michaud for assistance with creating the web resource, and to W. Lee and the 
entire Helix Bioinformatics team for their contributions to the production exome sequencing 
pipeline. We thank M. Henderson, T. Curreri and all the ambassadors of the Healthy Nevada 
Project (HNP).  We thank Renown Health and DRI marketing for helping to launch the HNP 
project. 
 
References 

1. Richardson, T. G., Harrison, S., Hemani, G. & Davey Smith, G. An atlas of polygenic risk 

score associations to highlight putative causal relationships across the human phenome. 

Elife 8 , (2019). 

2. Khera, A. V. et al.  Genome-wide polygenic scores for common diseases identify individuals 

with risk equivalent to monogenic mutations. Nat. Genet. 50, 1219–1224 (2018). 

3. Krapohl, E. et al. Phenome-wide analysis of genome-wide polygenic scores. Mol. 

Psychiatry 21, 1188–1193 (2016). 

4. Long, T. et al.  Whole-genome sequencing identifies common-to-rare variants associated 

with human blood metabolites. Nat. Genet. 49, 568–578 (2017). 

5. Zhu, Q. et al.  A genome-wide comparison of the functional properties of rare and common 

genetic variants in humans. Am. J. Hum. Genet. 88, 458–468 (2011). 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 4, 2019. ; https://doi.org/10.1101/692368doi: bioRxiv preprint 

https://paperpile.com/c/Eo8mNT/wDEcM+byl0u
https://paperpile.com/c/Eo8mNT/czkZg+wDEcM
https://paperpile.com/c/Eo8mNT/lEyLp+CszGJ+cdvgg
http://paperpile.com/b/Eo8mNT/BO2Zl
http://paperpile.com/b/Eo8mNT/BO2Zl
http://paperpile.com/b/Eo8mNT/BO2Zl
http://paperpile.com/b/Eo8mNT/BO2Zl
http://paperpile.com/b/Eo8mNT/BO2Zl
http://paperpile.com/b/Eo8mNT/BO2Zl
http://paperpile.com/b/Eo8mNT/M3wHu
http://paperpile.com/b/Eo8mNT/M3wHu
http://paperpile.com/b/Eo8mNT/M3wHu
http://paperpile.com/b/Eo8mNT/M3wHu
http://paperpile.com/b/Eo8mNT/M3wHu
http://paperpile.com/b/Eo8mNT/M3wHu
http://paperpile.com/b/Eo8mNT/M3wHu
http://paperpile.com/b/Eo8mNT/M3wHu
http://paperpile.com/b/Eo8mNT/tKfWH
http://paperpile.com/b/Eo8mNT/tKfWH
http://paperpile.com/b/Eo8mNT/tKfWH
http://paperpile.com/b/Eo8mNT/tKfWH
http://paperpile.com/b/Eo8mNT/tKfWH
http://paperpile.com/b/Eo8mNT/tKfWH
http://paperpile.com/b/Eo8mNT/tKfWH
http://paperpile.com/b/Eo8mNT/tKfWH
http://paperpile.com/b/Eo8mNT/9FqXy
http://paperpile.com/b/Eo8mNT/9FqXy
http://paperpile.com/b/Eo8mNT/9FqXy
http://paperpile.com/b/Eo8mNT/9FqXy
http://paperpile.com/b/Eo8mNT/9FqXy
http://paperpile.com/b/Eo8mNT/9FqXy
http://paperpile.com/b/Eo8mNT/9FqXy
http://paperpile.com/b/Eo8mNT/9FqXy
http://paperpile.com/b/Eo8mNT/7gJ05
http://paperpile.com/b/Eo8mNT/7gJ05
http://paperpile.com/b/Eo8mNT/7gJ05
http://paperpile.com/b/Eo8mNT/7gJ05
http://paperpile.com/b/Eo8mNT/7gJ05
http://paperpile.com/b/Eo8mNT/7gJ05
http://paperpile.com/b/Eo8mNT/7gJ05
http://paperpile.com/b/Eo8mNT/7gJ05
https://doi.org/10.1101/692368
http://creativecommons.org/licenses/by-nd/4.0/


6. Nejentsev, S., Walker, N., Riches, D., Egholm, M. & Todd, J. A. Rare variants of IFIH1, a 

gene implicated in antiviral responses, protect against type 1 diabetes. Science 324, 

387–389 (2009). 

7. Van Hout, C. V. et al.  Whole exome sequencing and characterization of coding variation in 

49,960 individuals in the UK Biobank. bioRxiv 572347 (2019). doi:10.1101/572347 

8. Li, B. & Leal, S. M. Methods for detecting associations with rare variants for common 

diseases: application to analysis of sequence data. Am. J. Hum. Genet. 83, 311–321 

(2008). 

9. Lee, S., Abecasis, G. R., Boehnke, M. & Lin, X. Rare-Variant Association Analysis: Study 

Designs and Statistical Tests. The American Journal of Human Genetics 95, 5–23 (2014). 

10. Do, R. et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for 

myocardial infarction. Nature 518, 102–106 (2015). 

11. Cirulli, E. T. et al. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes 

and pathways. Science 347, 1436–1441 (2015). 

12. Liu, C. et al. Meta-analysis identifies common and rare variants influencing blood pressure 

and overlapping with metabolic trait loci. Nat. Genet. 48, 1162–1170 (2016). 

13. Churchhouse, C. Details and considerations of the UK Biobank GWAS. Neale lab (2017). 

Available at: 

http://www.nealelab.is/blog/2017/9/11/details-and-considerations-of-the-uk-biobank-gwas. 

(Accessed: 19th April 2019) 

14. Wylie, L. A., Mouillesseaux, K. P., Chong, D. C. & Bautch, V. L. Developmental SMAD6 

loss leads to blood vessel hemorrhage and disrupted endothelial cell junctions. Dev. Biol. 

442, 199–209 (2018). 

15. Kenny, E. E. et al.  Melanesian blond hair is caused by an amino acid change in TYRP1. 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 4, 2019. ; https://doi.org/10.1101/692368doi: bioRxiv preprint 

http://paperpile.com/b/Eo8mNT/WwVPd
http://paperpile.com/b/Eo8mNT/WwVPd
http://paperpile.com/b/Eo8mNT/WwVPd
http://paperpile.com/b/Eo8mNT/WwVPd
http://paperpile.com/b/Eo8mNT/WwVPd
http://paperpile.com/b/Eo8mNT/WwVPd
http://paperpile.com/b/Eo8mNT/WwVPd
http://paperpile.com/b/Eo8mNT/TQrME
http://paperpile.com/b/Eo8mNT/TQrME
http://paperpile.com/b/Eo8mNT/TQrME
http://paperpile.com/b/Eo8mNT/TQrME
http://paperpile.com/b/Eo8mNT/TQrME
http://paperpile.com/b/Eo8mNT/TQrME
http://dx.doi.org/10.1101/572347
http://paperpile.com/b/Eo8mNT/HtZCG
http://paperpile.com/b/Eo8mNT/HtZCG
http://paperpile.com/b/Eo8mNT/HtZCG
http://paperpile.com/b/Eo8mNT/HtZCG
http://paperpile.com/b/Eo8mNT/HtZCG
http://paperpile.com/b/Eo8mNT/HtZCG
http://paperpile.com/b/Eo8mNT/HtZCG
http://paperpile.com/b/Eo8mNT/HAgh1
http://paperpile.com/b/Eo8mNT/HAgh1
http://paperpile.com/b/Eo8mNT/HAgh1
http://paperpile.com/b/Eo8mNT/HAgh1
http://paperpile.com/b/Eo8mNT/HAgh1
http://paperpile.com/b/Eo8mNT/HAgh1
http://paperpile.com/b/Eo8mNT/9ETXo
http://paperpile.com/b/Eo8mNT/9ETXo
http://paperpile.com/b/Eo8mNT/9ETXo
http://paperpile.com/b/Eo8mNT/9ETXo
http://paperpile.com/b/Eo8mNT/9ETXo
http://paperpile.com/b/Eo8mNT/9ETXo
http://paperpile.com/b/Eo8mNT/9ETXo
http://paperpile.com/b/Eo8mNT/9ETXo
http://paperpile.com/b/Eo8mNT/DGt6f
http://paperpile.com/b/Eo8mNT/DGt6f
http://paperpile.com/b/Eo8mNT/DGt6f
http://paperpile.com/b/Eo8mNT/DGt6f
http://paperpile.com/b/Eo8mNT/DGt6f
http://paperpile.com/b/Eo8mNT/DGt6f
http://paperpile.com/b/Eo8mNT/DGt6f
http://paperpile.com/b/Eo8mNT/DGt6f
http://paperpile.com/b/Eo8mNT/x4G7O
http://paperpile.com/b/Eo8mNT/x4G7O
http://paperpile.com/b/Eo8mNT/x4G7O
http://paperpile.com/b/Eo8mNT/x4G7O
http://paperpile.com/b/Eo8mNT/x4G7O
http://paperpile.com/b/Eo8mNT/x4G7O
http://paperpile.com/b/Eo8mNT/x4G7O
http://paperpile.com/b/Eo8mNT/x4G7O
http://paperpile.com/b/Eo8mNT/u1qKG
http://paperpile.com/b/Eo8mNT/u1qKG
http://paperpile.com/b/Eo8mNT/u1qKG
http://paperpile.com/b/Eo8mNT/u1qKG
http://www.nealelab.is/blog/2017/9/11/details-and-considerations-of-the-uk-biobank-gwas.
http://paperpile.com/b/Eo8mNT/u1qKG
http://paperpile.com/b/Eo8mNT/u1qKG
http://paperpile.com/b/Eo8mNT/Nb5Ng
http://paperpile.com/b/Eo8mNT/Nb5Ng
http://paperpile.com/b/Eo8mNT/Nb5Ng
http://paperpile.com/b/Eo8mNT/Nb5Ng
http://paperpile.com/b/Eo8mNT/Nb5Ng
http://paperpile.com/b/Eo8mNT/Nb5Ng
http://paperpile.com/b/Eo8mNT/Sm7i7
http://paperpile.com/b/Eo8mNT/Sm7i7
http://paperpile.com/b/Eo8mNT/Sm7i7
https://doi.org/10.1101/692368
http://creativecommons.org/licenses/by-nd/4.0/


Science 336, 554 (2012). 

16. Corbyn, Z. Blonde hair evolved more than once. Nature (2012). 

doi:10.1038/nature.2012.10587 

17. Marouli, E. et al. Rare and low-frequency coding variants alter human adult height. Nature 

542, 186–190 (2017). 

18. Ruiz, A., Gautschi, I., Schild, L. & Bonny, O. Human Mutations in SLC2A9 (Glut9) Affect 

Transport Capacity for Urate. Front. Physiol. 9 , 476 (2018). 

19. Möröy, T., Vassen, L., Wilkes, B. & Khandanpour, C. From cytopenia to leukemia: the role 

of Gfi1 and Gfi1b in blood formation. Blood 126, 2561–2569 (2015). 

20. Polfus, L. M. et al.  Whole-Exome Sequencing Identifies Loci Associated with Blood Cell 

Traits and Reveals a Role for Alternative GFI1B Splice Variants in Human Hematopoiesis. 

Am. J. Hum. Genet.  99, 785 (2016). 

21. Nioi, P. et al. Variant ASGR1 Associated with a Reduced Risk of Coronary Artery Disease. 

N. Engl. J. Med. 374, 2131–2141 (2016). 

22. Genovese, G. et al.  Increased burden of ultra-rare protein-altering variants among 4,877 

individuals with schizophrenia. Nat. Neurosci. 19, 1433–1441 (2016). 

23. Deciphering Developmental Disorders Study. Large-scale discovery of novel genetic 

causes of developmental disorders. Nature 519, 223–228 (2015). 

24. Fuchsberger, C. et al. The genetic architecture of type 2 diabetes. Nature 536, 41–47 

(2016). 

25. Lek, M. et al.  Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 

285–291 (2016). 

26. Wu, M. C. et al.  Rare-variant association testing for sequencing data with the sequence 

kernel association test. Am. J. Hum. Genet. 89, 82–93 (2011). 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 4, 2019. ; https://doi.org/10.1101/692368doi: bioRxiv preprint 

http://paperpile.com/b/Eo8mNT/Sm7i7
http://paperpile.com/b/Eo8mNT/Sm7i7
http://paperpile.com/b/Eo8mNT/Sm7i7
http://paperpile.com/b/Eo8mNT/Sm7i7
http://paperpile.com/b/Eo8mNT/ZqdCr
http://paperpile.com/b/Eo8mNT/ZqdCr
http://paperpile.com/b/Eo8mNT/ZqdCr
http://paperpile.com/b/Eo8mNT/ZqdCr
http://dx.doi.org/10.1038/nature.2012.10587
http://paperpile.com/b/Eo8mNT/pRRLH
http://paperpile.com/b/Eo8mNT/pRRLH
http://paperpile.com/b/Eo8mNT/pRRLH
http://paperpile.com/b/Eo8mNT/pRRLH
http://paperpile.com/b/Eo8mNT/pRRLH
http://paperpile.com/b/Eo8mNT/pRRLH
http://paperpile.com/b/Eo8mNT/pRRLH
http://paperpile.com/b/Eo8mNT/8CHRu
http://paperpile.com/b/Eo8mNT/8CHRu
http://paperpile.com/b/Eo8mNT/8CHRu
http://paperpile.com/b/Eo8mNT/8CHRu
http://paperpile.com/b/Eo8mNT/8CHRu
http://paperpile.com/b/Eo8mNT/8CHRu
http://paperpile.com/b/Eo8mNT/UCTEd
http://paperpile.com/b/Eo8mNT/UCTEd
http://paperpile.com/b/Eo8mNT/UCTEd
http://paperpile.com/b/Eo8mNT/UCTEd
http://paperpile.com/b/Eo8mNT/UCTEd
http://paperpile.com/b/Eo8mNT/UCTEd
http://paperpile.com/b/Eo8mNT/Qlg99
http://paperpile.com/b/Eo8mNT/Qlg99
http://paperpile.com/b/Eo8mNT/Qlg99
http://paperpile.com/b/Eo8mNT/Qlg99
http://paperpile.com/b/Eo8mNT/Qlg99
http://paperpile.com/b/Eo8mNT/Qlg99
http://paperpile.com/b/Eo8mNT/Qlg99
http://paperpile.com/b/Eo8mNT/Qlg99
http://paperpile.com/b/Eo8mNT/oehAF
http://paperpile.com/b/Eo8mNT/oehAF
http://paperpile.com/b/Eo8mNT/oehAF
http://paperpile.com/b/Eo8mNT/oehAF
http://paperpile.com/b/Eo8mNT/oehAF
http://paperpile.com/b/Eo8mNT/oehAF
http://paperpile.com/b/Eo8mNT/oehAF
http://paperpile.com/b/Eo8mNT/Iztrr
http://paperpile.com/b/Eo8mNT/Iztrr
http://paperpile.com/b/Eo8mNT/Iztrr
http://paperpile.com/b/Eo8mNT/Iztrr
http://paperpile.com/b/Eo8mNT/Iztrr
http://paperpile.com/b/Eo8mNT/Iztrr
http://paperpile.com/b/Eo8mNT/Iztrr
http://paperpile.com/b/Eo8mNT/Iztrr
http://paperpile.com/b/Eo8mNT/N4SB5
http://paperpile.com/b/Eo8mNT/N4SB5
http://paperpile.com/b/Eo8mNT/N4SB5
http://paperpile.com/b/Eo8mNT/N4SB5
http://paperpile.com/b/Eo8mNT/N4SB5
http://paperpile.com/b/Eo8mNT/N4SB5
http://paperpile.com/b/Eo8mNT/44IX7
http://paperpile.com/b/Eo8mNT/44IX7
http://paperpile.com/b/Eo8mNT/44IX7
http://paperpile.com/b/Eo8mNT/44IX7
http://paperpile.com/b/Eo8mNT/44IX7
http://paperpile.com/b/Eo8mNT/44IX7
http://paperpile.com/b/Eo8mNT/44IX7
http://paperpile.com/b/Eo8mNT/44IX7
http://paperpile.com/b/Eo8mNT/0ScMB
http://paperpile.com/b/Eo8mNT/0ScMB
http://paperpile.com/b/Eo8mNT/0ScMB
http://paperpile.com/b/Eo8mNT/0ScMB
http://paperpile.com/b/Eo8mNT/0ScMB
http://paperpile.com/b/Eo8mNT/0ScMB
http://paperpile.com/b/Eo8mNT/0ScMB
http://paperpile.com/b/Eo8mNT/0ScMB
http://paperpile.com/b/Eo8mNT/h1ivP
http://paperpile.com/b/Eo8mNT/h1ivP
http://paperpile.com/b/Eo8mNT/h1ivP
http://paperpile.com/b/Eo8mNT/h1ivP
http://paperpile.com/b/Eo8mNT/h1ivP
http://paperpile.com/b/Eo8mNT/h1ivP
http://paperpile.com/b/Eo8mNT/h1ivP
http://paperpile.com/b/Eo8mNT/h1ivP
https://doi.org/10.1101/692368
http://creativecommons.org/licenses/by-nd/4.0/


27. Regier, A. A. et al.  Functional equivalence of genome sequencing analysis pipelines 

enables harmonized variant calling across human genetics projects. Nat. Commun. 9 , 4038 

(2018). 

28. Helix’s Exome+ Performance White Paper. Available at: 

https://cdn.helix.com/wp-content/uploads/2017/07/Helix-PersonalGenomics-Platform-White-

Paper.pdf. 

29. Kendig, K. I. et al.  Computational performance and accuracy of Sentieon DNASeq variant 

calling workflow. bioRxiv 396325 (2018). doi:10.1101/396325 

30. McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016). 

31. Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. 

Nucleic Acids Res. 47, D766–D773 (2019). 

32. Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2018). 

33. hail-is. hail-is/hail. GitHub Available at: https://github.com/hail-is/hail. (Accessed: 19th April 

2019) 

34. Adzhubei, I. A. et al.  A method and server for predicting damaging missense mutations. 

Nat. Methods 7 , 248–249 (2010). 

35. Sim, N.-L. et al.  SIFT web server: predicting effects of amino acid substitutions on proteins. 

Nucleic Acids Res. 40, W452–7 (2012). 

36. Genome in a Bottle. Available at: 

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.3.2/GRCh38/. 

37. astheeggeggs. astheeggeggs/PHESANT. GitHub Available at: 

https://github.com/astheeggeggs/PHESANT. (Accessed: 19th April 2019) 

38. Millard, L., Davies, N. M., Gaunt, T., Smith, G. D. & Tilling, K. PHESANT: a tool for 

performing automated phenome scans in UK Biobank. doi:10.1101/111500 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 4, 2019. ; https://doi.org/10.1101/692368doi: bioRxiv preprint 

http://paperpile.com/b/Eo8mNT/CL8kx
http://paperpile.com/b/Eo8mNT/CL8kx
http://paperpile.com/b/Eo8mNT/CL8kx
http://paperpile.com/b/Eo8mNT/CL8kx
http://paperpile.com/b/Eo8mNT/CL8kx
http://paperpile.com/b/Eo8mNT/CL8kx
http://paperpile.com/b/Eo8mNT/CL8kx
http://paperpile.com/b/Eo8mNT/CL8kx
http://paperpile.com/b/Eo8mNT/CL8kx
http://paperpile.com/b/Eo8mNT/W1hew
https://cdn.helix.com/wp-content/uploads/2017/07/Helix-PersonalGenomics-Platform-White-Paper.pdf.
https://cdn.helix.com/wp-content/uploads/2017/07/Helix-PersonalGenomics-Platform-White-Paper.pdf.
http://paperpile.com/b/Eo8mNT/4ngf0
http://paperpile.com/b/Eo8mNT/4ngf0
http://paperpile.com/b/Eo8mNT/4ngf0
http://paperpile.com/b/Eo8mNT/4ngf0
http://paperpile.com/b/Eo8mNT/4ngf0
http://paperpile.com/b/Eo8mNT/4ngf0
http://dx.doi.org/10.1101/396325
http://paperpile.com/b/Eo8mNT/vHBdy
http://paperpile.com/b/Eo8mNT/vHBdy
http://paperpile.com/b/Eo8mNT/vHBdy
http://paperpile.com/b/Eo8mNT/vHBdy
http://paperpile.com/b/Eo8mNT/vHBdy
http://paperpile.com/b/Eo8mNT/vHBdy
http://paperpile.com/b/Eo8mNT/vHBdy
http://paperpile.com/b/Eo8mNT/s7hGL
http://paperpile.com/b/Eo8mNT/s7hGL
http://paperpile.com/b/Eo8mNT/s7hGL
http://paperpile.com/b/Eo8mNT/s7hGL
http://paperpile.com/b/Eo8mNT/s7hGL
http://paperpile.com/b/Eo8mNT/s7hGL
http://paperpile.com/b/Eo8mNT/s7hGL
http://paperpile.com/b/Eo8mNT/uE7c2
http://paperpile.com/b/Eo8mNT/uE7c2
http://paperpile.com/b/Eo8mNT/uE7c2
http://paperpile.com/b/Eo8mNT/uE7c2
http://paperpile.com/b/Eo8mNT/uE7c2
http://paperpile.com/b/Eo8mNT/uE7c2
http://paperpile.com/b/Eo8mNT/uE7c2
http://paperpile.com/b/Eo8mNT/yrkpI
http://paperpile.com/b/Eo8mNT/yrkpI
http://paperpile.com/b/Eo8mNT/yrkpI
https://github.com/hail-is/hail.
http://paperpile.com/b/Eo8mNT/yrkpI
http://paperpile.com/b/Eo8mNT/yrkpI
http://paperpile.com/b/Eo8mNT/HIWLI
http://paperpile.com/b/Eo8mNT/HIWLI
http://paperpile.com/b/Eo8mNT/HIWLI
http://paperpile.com/b/Eo8mNT/HIWLI
http://paperpile.com/b/Eo8mNT/HIWLI
http://paperpile.com/b/Eo8mNT/HIWLI
http://paperpile.com/b/Eo8mNT/HIWLI
http://paperpile.com/b/Eo8mNT/Pg0rD
http://paperpile.com/b/Eo8mNT/Pg0rD
http://paperpile.com/b/Eo8mNT/Pg0rD
http://paperpile.com/b/Eo8mNT/Pg0rD
http://paperpile.com/b/Eo8mNT/Pg0rD
http://paperpile.com/b/Eo8mNT/Pg0rD
http://paperpile.com/b/Eo8mNT/Pg0rD
http://paperpile.com/b/Eo8mNT/kpVZ8
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.3.2/GRCh38/
http://paperpile.com/b/Eo8mNT/HajPy
http://paperpile.com/b/Eo8mNT/HajPy
http://paperpile.com/b/Eo8mNT/HajPy
https://github.com/astheeggeggs/PHESANT.
http://paperpile.com/b/Eo8mNT/HajPy
http://paperpile.com/b/Eo8mNT/I3qGd
http://paperpile.com/b/Eo8mNT/I3qGd
http://dx.doi.org/10.1101/111500
https://doi.org/10.1101/692368
http://creativecommons.org/licenses/by-nd/4.0/


39. Loh, P.-R., Kichaev, G., Gazal, S., Schoech, A. P. & Price, A. L. Mixed model association 

for biobank-scale data sets. doi:10.1101/194944 

40. Purcell, S. et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based 

Linkage Analyses. The American Journal of Human Genetics 81, 559–575 (2007). 

41. Purcell, S. plinkv1.07. Available at: http://zzz.bwh.harvard.edu/plink/. 

42. Yang, J., Zaitlen, N. A., Goddard, M. E., Visscher, P. M. & Price, A. L. Advantages and 

pitfalls in the application of mixed-model association methods. Nat. Genet. 46, 100–106 

(2014). 

43. Omasits, U., Ahrens, C. H., Müller, S. & Wollscheid, B. Protter: interactive protein feature 

visualization and integration with experimental proteomic data. Bioinformatics 30, 884–886 

(2014). 

44. Ou, J. & Zhu, L. J. trackViewer: a Bioconductor package for interactive and integrative 

visualization of multi-omics data. Nat. Methods 16, 453–454 (2019). 

45. El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, 

D427–D432 (2019). 

 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 4, 2019. ; https://doi.org/10.1101/692368doi: bioRxiv preprint 

http://paperpile.com/b/Eo8mNT/e5rDL
http://paperpile.com/b/Eo8mNT/e5rDL
http://dx.doi.org/10.1101/194944
http://paperpile.com/b/Eo8mNT/wDEcM
http://paperpile.com/b/Eo8mNT/wDEcM
http://paperpile.com/b/Eo8mNT/wDEcM
http://paperpile.com/b/Eo8mNT/wDEcM
http://paperpile.com/b/Eo8mNT/wDEcM
http://paperpile.com/b/Eo8mNT/wDEcM
http://paperpile.com/b/Eo8mNT/wDEcM
http://paperpile.com/b/Eo8mNT/wDEcM
http://paperpile.com/b/Eo8mNT/byl0u
http://zzz.bwh.harvard.edu/plink/
http://paperpile.com/b/Eo8mNT/czkZg
http://paperpile.com/b/Eo8mNT/czkZg
http://paperpile.com/b/Eo8mNT/czkZg
http://paperpile.com/b/Eo8mNT/czkZg
http://paperpile.com/b/Eo8mNT/czkZg
http://paperpile.com/b/Eo8mNT/czkZg
http://paperpile.com/b/Eo8mNT/czkZg
http://paperpile.com/b/Eo8mNT/lEyLp
http://paperpile.com/b/Eo8mNT/lEyLp
http://paperpile.com/b/Eo8mNT/lEyLp
http://paperpile.com/b/Eo8mNT/lEyLp
http://paperpile.com/b/Eo8mNT/lEyLp
http://paperpile.com/b/Eo8mNT/lEyLp
http://paperpile.com/b/Eo8mNT/lEyLp
http://paperpile.com/b/Eo8mNT/CszGJ
http://paperpile.com/b/Eo8mNT/CszGJ
http://paperpile.com/b/Eo8mNT/CszGJ
http://paperpile.com/b/Eo8mNT/CszGJ
http://paperpile.com/b/Eo8mNT/CszGJ
http://paperpile.com/b/Eo8mNT/CszGJ
http://paperpile.com/b/Eo8mNT/cdvgg
http://paperpile.com/b/Eo8mNT/cdvgg
http://paperpile.com/b/Eo8mNT/cdvgg
http://paperpile.com/b/Eo8mNT/cdvgg
http://paperpile.com/b/Eo8mNT/cdvgg
http://paperpile.com/b/Eo8mNT/cdvgg
http://paperpile.com/b/Eo8mNT/cdvgg
http://paperpile.com/b/Eo8mNT/cdvgg
https://doi.org/10.1101/692368
http://creativecommons.org/licenses/by-nd/4.0/

