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Abstract23

Motion selectivity in primary visual cortex (V1) is approximately separable in orientation, spatial24

frequency, and temporal frequency (“frequency-separable”). Models for area MT neurons posit25

that their selectivity arises by combining direction-selective V1 afferents whose tuning is orga-26

nized around a tilted plane in the frequency domain, specifying a particular direction and speed27

(“velocity-separable”). This construction explains “pattern direction selective” MT neurons, which28

are velocity-selective but relatively invariant to spatial structure, including spatial frequency, tex-29

ture and shape. Surprisingly, when tested with single drifting gratings, most MT neurons’ responses30

are fit equally well by models with either form of separability. However, responses to plaids (sums31

of two moving gratings) tend to be better described as velocity-separable, especially for pattern32

neurons. We conclude that direction selectivity in MT is primarily computed by summing V133

afferents, but pattern-invariant velocity tuning for complex stimuli may arise from local, recurrent34

interactions.35

Significance Statement36

How do sensory systems build representations of complex features from simpler ones? Visual37

motion representation in cortex is a well-studied example: the direction and speed of moving38

objects, regardless of shape or texture, is computed from the local motion of oriented edges. Here39

we quantify tuning properties based on single-unit recordings in primate area MT, then fit a novel,40

generalized model of motion computation. The model reveals two core properties of MT neurons —41

speed tuning and invariance to local edge orientation — result from a single organizing principle:42

each MT neuron combines afferents that represent edge motions consistent with a common velocity,43

much as V1 simple cells combine thalamic inputs consistent with a common orientation.44
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Introduction45

Most neurons in extrastriate area MT (V5) are tuned for the speed and direction of visual motion46

(Dubner and Zeki, 1971; Van Essen et al., 1981; Maunsell and Van Essen, 1983), and many of47

them are selective for the coherent motion of complex patterns (Movshon et al., 1985). Such48

tuning is absent from the earliest stages of visual processing in primates, the retina and lateral49

geniculate nucleus. There, incoming visual signals are filtered without regard to direction, and50

are approximately separable in space and time (Enroth-Cugell et al., 1983; Derrington and Lennie,51

1984). Motion-selective simple cells in primary visual cortex (V1) are tuned for motion in a manner52

that treats spatial and temporal frequency roughly separably (Tolhurst and Movshon, 1975), while a53

quarter of V1 complex cells treat them jointly (Priebe et al., 2006), consistent with speed tuning. V154

neurons provide input to MT, where neurons also tend to be speed tuned (Perrone and Thiele, 2001;55

Priebe et al., 2003).56

Motion-selective V1 neurons are also orientation-selective, and their responses confound the57

direction of motion and the orientation of moving stimuli. In particular, they respond independently58

to each oriented component rather than to the pattern as a whole (Movshon et al., 1985). Under59

many conditions, humans perceive such complex patterns as moving coherently in a single direction60

(Wallach, 1935; Adelson and Movshon, 1982). Similarly, MT neurons signal coherent pattern61

motion, with some neurons being completely invariant to component orientation (Movshon et al.,62

1985). The degree to which MT neurons respond to the motion of individual components or the63

whole pattern lies on a continuum, quantified by a “pattern index” (see figure 1(a-c), Methods, and64

Movshon et al. (1985)).65

Speed tuning and pattern motion selectivity in MT were typically studied separately. Further-66

more, previous studies in MT were performed in at most two of three dimensions: spatial and67
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temporal frequency (Perrone and Thiele, 2001; Priebe et al., 2003; Priebe et al., 2006), or direction68

and speed (Rodman and Albright, 1987). Recently, Nishimoto and Gallant (2011) and Inagaki et69

al. (2016) quantified MT selectivity in all three dimensions simultaneously, but did not relate their70

findings to pattern motion selectivity.71

The Simoncelli and Heeger (1998) model of MT motion computation proposes that speed tuning72

and pattern motion selectivity both emerge from selective weighting of V1 afferents, parameterized73

in all three frequency dimensions. The model posits that MT neurons sum responses of V1 neurons74

whose preferred stimuli are consistent with a common velocity. MT neurons could, however, sum75

V1 afferents whose preferences share a common temporal frequency.76

Here, we unify previous theory and experimental data in a coherent framework, by modifying77

the Simoncelli and Heeger (1998) model to allow direct fitting to electrophysiological recordings.78

Specifically, we compared the two hypotheses of MT computation above in their ability to explain79

the responses of neurons in areas V1 and MT of anesthetized and awake macaques to a large80

collection of sinusoidal gratings and plaids (superimposed gratings with different orientations and81

temporal frequencies). We fit these responses with a linear-nonlinear model of MT computation, in82

which the MT receptive field was constructed by summing velocity-specific or temporal frequency-83

specific combinations of V1 afferents. We refer to the former model variant, in which selectivity to84

spatial and temporal frequency varies jointly, as the velocity-separable model, and the latter model85

as the frequency-separable model. Nearly all V1 neurons were better described by the frequency-86

separable model. When probed with drifting sinusoidal gratings, MT responses were equally well-87

described by both models. However, when probed with plaid stimuli, the velocity-separable model88

systematically outperformed the frequency-separable model for pattern-selective neurons. This is89

the first direct evidence establishing speed tuning and pattern motion selectivity in area MT as90
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consequences of a single organizing principle: selectivity organized along a preferred velocity plane.91

Materials and Methods92

Anesthetized recording procedures93

We recorded from 7 anesthetized, paralyzed, adult male macaque monkeys (M. fascicularis) and94

one adult female macaque (M. mulatta) using standard procedures for surgical preparation and95

single-unit recording, as described previously (Cavanaugh et al., 2002). We maintained anesthesia96

and paralysis by intravenously infusing sufentanil citrate (6-30 µg kg−1 h−1), and vecuronium97

bromide (Norcuron, 0.1 mg kg−1 h−1), respectively, in isotonic dextrose-Normosol solution (4-10 mL98

kg−1 h−1). Vital signs (heart rate, lung pressure, electroencephalogram (EEG), electrocardiogram99

(ECG), body temperature, urine flow and osmolarity, and end-tidal CO2 partial pressure (pCO2))100

were continuously monitored and maintained within appropriate physiological ranges. Atropine101

was applied topically to dilate the pupils. Gas-permeable contact lenses protected the eyes, which102

were refracted with supplementary lenses chosen by direct ophthalmoscopy. Experiments typically103

lasted 5-7 days at the end of which the monkey was killed with an overdose of sodium pentobarbital.104

We conducted all experiments in compliance with the US National Institutes of Health Guide for105

the Care and Use of Laboratory Animals and with the approval of the New York University Animal106

Welfare Committee.107

The monkey was positioned so his eyes were 57-114 cm from the display. Grating and plaid108

stimuli each lasted for 1,000 ms and were presented in randomly interleaved blocks. We used109

quartz-platinum-tungsten microelectrodes (Thomas Recording) to make extracellular recordings in110

the brain through a craniotomy and small durotomy. For each isolated unit, we determined eye111

dominance and occluded the non-preferred eye. While isolating neurons in V1 for recording, we112
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selected those with strong direction tuning.113

Awake recording procedures114

We also recorded from 2 awake, actively fixating, adult male macaques (one M. mulatta and one115

M. nemestrina). A headpost was surgically implanted for head stabilization using the design and116

methods described in (Adams et al., 2007). In a second surgical procedure, a chamber was implanted117

for chronic electrode recording over the superior temporal sulcus (STS) of the left hemisphere, using118

the techniques and a variant of the design described in (Adams et al., 2011). Prior to surgery, we119

used structural MRI and Brainsight software (Rogue Research, Canada) to design a chamber with120

legs matched to the curvature of the monkey’s skull (Johnston et al., 2016) above the STS.121

We acclimated each monkey to his recording chair and experimental surroundings. After this122

initial period, he was head-restrained and rewarded for looking at the fixation target with dilute123

juice or water. Meanwhile, we used an infrared eye tracker (EyeLink 1000; SR Research, Canada)124

to monitor eye position at 1000Hz via reflections of infrared light on the cornea and pupil. The125

monkey sat 57 cm from the display.126

The monkey initiated a trial by fixating on a small white spot (diameter 0.1◦), after which he127

was required to maintain fixation for a random time interval between 2,350 and 4,350 ms. A grating128

or plaid stimulus would appear 100 ms after fixation began and last for 250 ms. Stimulus conditions129

were presented in randomly interleaved blocks. The monkey was rewarded if he maintained fixation130

within 1-1.75◦ from the fixation point for the entire duration of the stimulus. No stimuli were131

presented during the 300 to 600 ms in which the reward was being delivered. If the monkey broke132

fixation prematurely, the trial was aborted, a timeout of 2,000 ms occurred, and no reward was133

given.134

We used tungsten microelectrodes (FHC, Bowdoin, ME) to make extracellular recordings. We135
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identified area MT from gray matter-white matter transitions and isolated neurons’ brisk, direction-136

selective responses.137

Visual stimulation138

We presented visual stimuli on a gamma-corrected CRT monitor (an Eizo T966 during anesthetized139

experiments, and an HP P1230 during awake experiments; mean luminance, 33 cd/m2) at a reso-140

lution of 1,280 × 960 with a refresh rate of 120 Hz. Stimuli were generated and presented on an141

Apple Mac Pro using Expo software (http://corevision.cns.nyu.edu).142

For each isolated unit, we presented windowed sinusoidal grating stimuli to determine, by hand,143

initial estimates of each cell’s receptive field and preferred size. We used a standard sequence of144

tuning experiments to make precise estimates of the cell’s tuning preferences. Each tuning curve145

measured in this sequence featured 100% contrast single gratings varying along a single stimulus146

dimension, beginning with size tuning and followed by direction, spatial frequency, and temporal147

frequency tuning. After each of these individual tuning experiments finished, we determined the148

preferred stimulus value of the dimension tested and used it in subsequent experiments. Next, we149

measured pattern direction selectivity, at optimal spatial and temporal frequencies, with interleaved150

drifting gratings and plaids. In the rare cases in which this experiment yielded a different grating151

direction preference from the previously determined value, we repeated the full sequence of tuning152

curve measurements, to make sure optimal values would be used for the single component and153

planar plaid experiments which followed. The receptive fields of all recorded neurons were centered154

between 2◦ and 30◦ from the fovea.155

Next, we ran the planar plaid study, which required no further stimulus optimization. In the156

planar plaid study, stimuli were chosen to span four different direction tuning curves at the optimal157

spatial frequency (see figure 7(a,b)). The first two were based on single gratings at 50% contrast, one158
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with temporal frequency held constant at the optimal value (“constant frequency”), presented in all159

directions in 30◦ intervals, and the other with constant, optimal velocity (“constant velocity”) from160

-90◦ to 90◦ relative to the preferred direction, in 15◦ intervals. Since a given velocity corresponds161

to spectral content lying on a tilted plane in frequency space, constant velocity gratings had a162

temporal frequency that varied with the cosine of their direction.163

The last two tuning curves consisted of 120◦ “plaids” (sums of two gratings with orientations164

120◦ apart). The component gratings had the same temporal frequency, and were presented at 50%165

contrast each. The “pattern direction” of motion (direction consistent with rigid translation, equal166

to the average direction of the two gratings) was sampled the same set of directions used for single167

grating tuning curves.168

Following the planar plaid study, we ran the single component study. It included presentation169

of 225 drifting grating stimuli, each at 100% contrast. Stimuli were arranged to widely sample170

the three dimensions of spatiotemporal frequencies near a given neuron’s tuning preferences, using171

multiple tuning curves, each varying along a single dimension: direction, spatial frequency, and172

temporal frequency. These tuning curves were measured at optimal and suboptimal values, the173

latter of which were determined by reading out (or if necessary, linearly interpolating) the stimulus174

values which elicited a response at half the neuron’s maximum spike rate in the preceding standard175

tuning curve experiments (see extended data table 4-1 for details). By sampling spatiotemporal176

frequencies in this way, we could efficiently concentrate stimuli to reveal subtle changes of each177

neuron’s selectivity in a manner that does not assume a particular shape of selectivity or manner178

of tuning specific to either V1 or MT.179

Note that the first two direction tuning curves of the single component study differ from the two180

grating tuning curves in the planar plaid study in that in the latter study: (1) gratings were at 50%181
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contrast instead of 100%, and (2) constant frequency gratings spanned the whole range of directions182

rather than just the semicircle of directions centered at the preferred one. Even though gratings183

were only presented at 50% contrast in the planar plaid study, its implications for 3D frequency184

selectivity shape should generalize to the 100% contrast case, since differences in response strength185

for these contrast levels are negligible (Carandini et al., 1997; Sclar et al., 1990).186

Frequency- and velocity-separable models187

The MT linear weighting functions for both the frequency- and velocity- based models are defined as188

a separable product of tuning functions over direction wd(d), spatial frequency ws(s), and temporal189

frequency wt(t).190

Specifically, the frequency-separable linear weighting for a grating is defined as follows:191

F (d, s, t) = wd (d) · ws (s) · wt (t) . (1)

Direction tuning above is represented by a von Mises function:192

wd (d) =
eσdcos(d−µd)

2πI0(σd)
, (2)

where µd and σd represent the direction preference and bandwidth, respectively, and I0() is the193

modified Bessel function of order 0 (which normalizes the integral of the numerator). Spatial194

frequency is represented by a logNormal function, parameterized by spatial frequency preference195

µs and bandwidth σs:196

ws (s) =
1

σs
√

2π
e−(log2(s)−log2(µs))

2/2σ2
s . (3)

Finally, temporal frequency is represented by a Gaussian in coordinates which are linear at low197

frequencies and logarithmic at higher ones:198

wt (t) =
1

σt
√

2π
e−(g(t)−g(µt))

2/2σ2
t , (4)
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where g(t) is199

g (t) = sgn(t) log2

(
|t|
τ

+ 1

)
. (5)

Using this functional form for temporal frequency tuning allows wt (t) to be logarithmic at high200

temporal frequencies, but also be zero-valued and continuous at zero temporal frequency. The201

parameter τ determines the temporal frequency at which the function transitions from linear to202

logarithmic, and µt and σt are the temporal frequency preference and bandwidth, respectively.203

The velocity-separable linear weighting function is defined as follows:204

V (d, s, t) = wd (d) · ws (s) · vt (t; d, s) , (6)

where the velocity-separable temporal frequency function, vt, is defined as a Gaussian, again linear205

at low frequencies and logarithmic at higher ones:206

vt (t; d, s) =
1

σt
√

2π
e−(g(t)−g(P (d,s)))2/2σ2

t (7)

The only difference between wt(t) (equation (4)) and vt(t; d, s) (equation (7)) is that in the latter,207

temporal frequency tuning is centered on the preferred speed plane P (d, s):208

P (d, s) = s
µt
µs
cos (d− µd) . (8)

Note that a consequence of equations (6)-(8)is that the velocity-separable model “shears” vertically209

in the direction of the temporal frequency axis, rather than in the direction orthogonal to the210

preferred velocity plane (see figure 1). This was done deliberately, to account for the broad temporal211

frequency tuning MT neurons exhibit near the preferred direction and spatial frequency (see figures212

4 and 8).213

Previous models included a V1 normalization stage, either explicitly or implicitly simulated, at214

this part of the computation (Simoncelli and Heeger, 1998; Rust et al., 2006; Nishimoto and Gallant,215
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2011). Normalization at the V1 stage has been previously shown to be an important contributor216

to MT tuning properties. While we could have made it an explicit piece of the model here, Rust217

et al. (2006) showed that, in some cases, it can be combined with the MT normalization stage to218

yield a single normalization computation. Moreover, V1 contrast normalization is engaged only219

when contrast varies widely, and cross-orientation suppression is strongest for components close220

in orientation. Since the grating components in the plaid stimuli in our experiments are always221

50% contrast and 120◦ apart, we assume such cross-orientation and contrast normalization effects222

in V1 are negligible. Thus, we assume the next model stage consists of MT neurons summing the223

responses to each plaid component.224

Finally, the full MT model response is computed by raising the linear responses to a power β,225

and then normalizing them:226

Rf (d, s, t, tmax) = α0 +
α1n

(1−2β)/3 (
∑n

i Fi (d, s, t))β

α2 +
∑n

i Ni (t, tmax)

Rv (d, s, t, tmax) = α0 +
α1n

(1−2β)/3 (
∑n

i Vi (d, s, t))β

α2 +
∑n

i Ni (t, tmax)

(9)

where the sums are over the components of the stimulus (n = 2 for plaids, n = 1 for gratings),227

and the α0 and α1 parameters represent the spontaneous and maximum discharge rates of the cell.228

The relative gains of responses to grating and plaid are controlled by the n(1−2β)/3 term in the229

numerator in equation (9).230

The normalization signal, Ni(t, tmax), is meant to approximate the effects of tuned normaliza-231

tion. In the original Simoncelli and Heeger cascade model, MT normalization signals were computed232

by summing over a simulated population of MT neurons, but this construction would be computa-233

tionally prohibitive in the context of fitting the model to spiking data. We parameterize the tuning234
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as follows:235

Ni (ti, tmax) = (1− γ0)
(

1− ti
tmax

)γ1
+ γ0. (10)

This function is maximally active at zero temporal frequency (with a value of 1) and minimally236

active with a value of γ0 at tmax. tmax is the highest temporal frequency simulated and experimen-237

tally presented. We used this form of normalization for fitting tractability and because it has useful238

properties, namely, it: (1) ensures there is no suppression at the preferred temporal frequency, (2)239

can be completely disabled by setting γ0 = 1, and (3) can be sub-linear, linear, or super-linear.240

The rationale for this particular approximation of MT tuned normalization is based on the fol-241

lowing thought experiment. We start with the assumption that neurons in the MT normalization242

pool fall into component-, intermediate-, and pattern-selective subpopulations (see figure 1(c)).243

Next, we assume all neurons’ selectivities in each of these subpopulations evenly tile the space244

of spatiotemporal frequencies. Now we will consider the consequences of summing together the245

spatiotemporal frequency selectivities of all the neurons in each subpopulation. Specifically, the246

manner in which these selectivities sum together and overlap each other in frequency space de-247

termine whether and how normalization is tuned. Any systematic biases in tuning overlap, as a248

function of spatiotemporal frequency, yield tuned normalization.249

Component neurons from both model variants have narrow tuning, overlapping only between250

neurons with adjacent spatiotemporal tuning preferences. As a consequence, the summed responses251

of the population of component neurons evenly tile frequency space, producing an untuned nor-252

malization signal.253

Frequency-separable pattern-selective neurons have broad direction tuning, so their overlap will254

occur most strongly in direction. The overlap, however, will be separable in spatial and temporal255
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frequency, so for any subpopulation with the same spatial and temporal frequency tuning at all256

directions, the overlap will be confined to a donut-shaped region centered on those spatial and257

temporal frequencies. Since we assume the population of frequency-separable pattern selective258

neurons are evenly distributed across all preferred spatial and temporal frequencies, the tuning259

overlap will also be evenly distributed, yielding an untuned normalization signal.260

Finally, velocity-separable pattern-selective neurons, which are organized along tilted planes261

which pass through the origin, will have strong overlap at zero and low temporal frequencies re-262

gardless of their preferred direction. As such, a pool of velocity-separable pattern neurons tiling263

frequency space generate a tuned normalization signal which strongly emphasizes low/zero temporal264

frequency. The same conclusions can be drawn for intermediate neurons in each separable model,265

although their selectivities will overlap less, yielding a similar, but weaker, tuned normalization266

signal.267

Estimating model parameters for individual cells268

In total, the model has 9 free parameters for the single-grating study and 10 for the planar plaid269

study. For the former, they are: the direction preference and bandwidth (µd and σd), spatial270

frequency preference and bandwidth (µs and σs), temporal frequency preference, bandwidth, and271

log-linear transition (µt, σt, and τ), and the spontaneous and maximum firing rates (α0 and α1).272

For the latter experiment, µs, σs, and µt are unconstrained by the data and are therefore held273

fixed at experimentally determined values, but the exponent (β), semi-saturation constant (α2),274

and normalization parameters (γ0 and γ1) are free. To avoid model fits producing spuriously wide275

temporal frequency tuning, we included temporal frequency tuning data collected immediately prior276

in the fitting of the planar plaid dataset. That temporal frequency tuning data, along with the277

planar plaid stimuli which sample different directions, constrain µd, σd, and σt. In each study,278
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the frequency- and velocity-separable models have the same parameters, and only differ in the279

parameterization of their temporal frequency linear weighting functions, wt and vt (see equations280

(4) and (7)).281

For each cell, we optimized the model parameters by minimizing the negative log-likelihood282

(NLL) over the observed data, assuming spike counts arise from a modulated Poisson model. An283

additional parameter, σG, describes across-trial fluctuations in neural response gain (Goris et al.,284

2014) and was optimized to the data independently from the frequency- and velocity-separable285

models and held constant during model fitting. We performed the optimization in successive steps,286

using optimal values from one step as initialization values for the next. First, we fit τ , then added287

the rest of the MT linear weighting parameters, and then in the case of the planar plaid experiment,288

the MT parameters controlling the MT nonlinearity.289

Experimental design and statistical analysis290

In the single component study, we recorded single-unit responses of 13 V1 neurons and 39 MT291

neurons from seven anesthetized, paralyzed, adult male macaque monkeys (M. fascicularis) and292

one adult female macaque (M. mulatta). From those same eight monkeys, we recorded 21 V1293

neurons and 54 MT neurons for the planar plaid study. We additionally recorded 58 MT neurons294

from two awake, actively fixating, adult male macaques for the planar plaid study (31 from M.295

mulatta “monkey A” and 28 from M. nemestrina “monkey LW”). For 29 of the 53 MT neurons296

recorded under anesthesia in the planar plaid study, the single component study was also run. All297

of the 13 V1 neurons from the single component study are in the set of 21 V1 neurons in the planar298

plaid study. In all studies, neurons were only excluded from analysis if spike isolation degraded299

during the experiment, or if spike rates were too low (e.g., always below 10 spikes/sec) or variable300

to reliably predict direction tuning. No additional neurons were rejected from any subsequent301
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analyses.302

Following stimulus onset, we counted spikes within a 1,000 ms window (anesthetized experi-303

ments) or a 250 ms window (awake experiments). For each cell, latency of these windows (relative304

to stimulus onset) were chosen by by maximizing the sum of response variances computed for each305

stimulus condition (Smith et al., 2005). Error bars on tuning curve responses indicate ±1 standard306

deviation.307

We used standard methods to compute each cell’s “pattern index” (Movshon et al., 1985;308

Smith et al., 2005). First, we computed partial correlations between the actual (constant temporal309

frequency) plaid responses and idealized predictions of pattern and component direction selectivity310

(rp and rc, respectively). We then converted these values to Z-scores to stabilize the variances of the311

correlations (Zp and Zc). Finally, the pattern index is the difference of these two quantities: Zp−Zc.312

Cells were classified as pattern selective if Zp−Zc > 1.28, or component-selective if Zc−Zp > 1.28.313

Both thresholds correspond to a significance of P = 0.90. Confidence intervals on pattern index314

were computed from the 95th percentile of 100 bootstrapped estimates (Efron and Tibshirani, 1993;315

Rust et al., 2006).316

For optimal and non-optimal spatial and temporal frequency tuning curves in the single com-317

ponent study in figure 2(b-d), we fit a difference of log2-Gaussians (Hawken et al., 1996). For each318

neuron, the stimulus value corresponding to the peak of this fitted difference of log2-Gaussians319

function was used as the fitted preferred stimulus in the figure. To test the robustness of these320

tuning curve fits, we ran a bootstrap analysis in which trials from each tuning curve were pseudo-321

randomly resampled 1000 times, with replacement, with the restriction that no stimulus condition322

had zero trials sampled. The error bars in figure 2(b-d) represent the 95% confidence intervals of323

these bootstrapped fitted peak stimulus values. Some tuning curves had flat tops, yielding unreli-324
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able tuning preference estimates. We therefore excluded neurons (7 MT, 0 V1) from all analyses325

in figure 2(b-d) which had a confidence interval exceeding 1.5 decades in any of the three. The326

conclusions are the same with or without these neurons.327

For the constrained parameter search during model fitting, we used a simplex algorithm (the328

Matlab function ‘fmincon’). To avoid overfitting and obtain estimates of parameter stability (i.e.,329

the error bars in figures 9(a,b) and 10), we fit the model on 100 bootstrap resamplings of the data.330

Bootstrapping was done on a per stimulus-condition basis—that is, trials within each stimulus331

condition were sampled with replacement, ensuring that there were no stimulus conditions without332

data. Error bars on model fits indicate ±1 standard error.333

To compare model fits to a given neuron, we computed “velocity superiority”, the difference of334

the normalized NLLs of the velocity- and frequency-separable models. The NLLs were normalized335

by their corresponding “null” and “oracle” models, which serve as lower and upper bounds, at 0336

and 1, respectively. The null model assumes the cell has two possible response rates: one when a337

stimulus is present and another when there is no stimulus. These are fixed to the measured mean338

spontaneous and maximal stimulus-driven response rates, respectively. The oracle model serves as339

an upper bound for the models’ performance, computed by using the measured mean responses340

to each stimulus condition to predict the neuron’s response to any individual presentation of that341

stimulus. We used the Wilcoxon signed rank test to test velocity superiority significance and342

Pearson’s r to assess correlation between velocity superiority and other quantities, such as pattern343

index.344
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Results345

Joint and independent representations of motion in the frequency domain346

Any image sequence can be decomposed (using a three-dimensional Fourier transform) into a sum347

of sinusoidal gratings of differing orientation, and spatial and temporal frequency. A single point348

in this 3D frequency domain corresponds to a drifting sinusoidal grating with a unique orientation,349

spatial frequency, and temporal frequency (figure 1(d)). More complex spatial patterns contain350

mixtures of gratings of different orientations and spatial frequencies. If these patterns are rigidly351

translating over time, their frequency domain constituents lie on a tilted plane through the origin,352

the slope of which is equal to the object’s speed (figure 1(e); Watson and Ahumada (1983); Watson353

and Ahumada (1985)).354

How do V1 and MT neurons represent visual motion? Most V1 neurons are selective for a355

relatively narrow range of orientations, and spatial and temporal frequencies, corresponding to a356

ball in the frequency domain (Goris et al., 2015). If MT neurons are specialized for analyzing rigid357

motion, their receptive fields should be organized along just such a plane with slope equal to a358

preferred speed (figure 1(f), “velocity-separable”) (Simoncelli and Heeger, 1998). While there is359

some direct physiological evidence for velocity-separable organization (Rodman and Albright, 1987;360

Perrone and Thiele, 2001; Priebe et al., 2003; Nishimoto and Gallant, 2011), as well as perceptual361

evidence (Adelson and Movshon, 1982; Schrater et al., 2000), this is not the only kind of receptive362

field organization consistent with known MT properties.363

However, almost all experimental measurements of grating direction selectivity use stimuli that364

lie along a horizontal plane of constant temporal frequency. By treating spatial and temporal365

frequency independently, they implicitly assume that MT direction selectivity is organized along366

these planes (“frequency-separable,” figure 1(g)). Evidence exists for this alternative possibility367
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(Perrone and Thiele, 2001; Priebe et al., 2003)—an MT neuron with this type of organization368

would still be direction-selective, but in a manner that is more strongly influenced by variations in369

spatial pattern.370

These two model structures make different, testable predictions about how MT tuning should371

change in response to preferred and non-preferred stimuli. Experimenters typically assess a neuron’s372

spatiotemporal frequency tuning preferences by presenting gratings varying along one of the three373

dimensions of the frequency domain, while keeping the values in the other two dimensions fixed374

at the best estimate of the neuron’s preferences (black lines in figure 1(h-i) for spatial frequency,375

temporal frequency, and direction, respectively). For a simulated neuron, the tuning curves (red376

and blue dashed lines in figure 1(j-k)) generated from these optimized stimuli have their peaks at377

the neuron’s preferred spatiotemporal frequency (represented as the black points in figure 1(h-i)).378

The two predictions differ most for tuning curves measured at non-preferred frequencies (fig-379

ure 1(h-i), dark gray lines and points), most notably in the tuning curves’ peak locations. The380

frequency-separable hypothesis predicts tuning in response to stimuli of non-preferred spatial and381

temporal frequency that is lower in amplitude but with a peak at the same frequency (blue lines,382

figure 1(j-k)). However, the velocity-separable hypothesis predicts that the tuning curve will shift383

(red lines, figure 1(j-k)), such that if the non-preferred tuning experiment is run at a frequency384

below preferred, the peak will also be at a lower frequency, and vice-versa.385

To test these hypotheses in V1 and MT, we measured tuning curves at optimal and suboptimal386

spatial and temporal frequencies and asked whether or not there was a shift in their peak location.387

For “suboptimal” frequencies, we used the stimulus values corresponding to the half-maximum388

responses when measured at optimal frequencies (see Methods for details). Many cells (e.g.,389

figure 2(a)), exhibited a peak spatial frequency tuning that increased with increases in grating390
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temporal frequency, consistent with the velocity-separable hypothesis. To quantify this shift, and391

compare across neurons, we computed the peak spatial frequency and plotted it as a function of392

the relative temporal frequency at which it was measured (figure 2(b)). The degree to which the393

neuron is velocity tuned can be captured by the slope of the line through the data (0 for no speed394

tuning, 1 for ideal speed tuning, 0.37 for the neuron in (a)). V1 neurons show, on average, no slope395

(0.08 ± 0.22 s.e.m., n = 13, blue in figure 2(b)), while MT neurons have a significantly positive396

slope (0.50 ± 0.07 s.e.m., n = 39, red in figure 2(b)). Performing the same analysis for changes397

in temporal frequency preferences as a function of stimulus spatial frequency (figure 2(c)) yields398

similar slopes in MT (0.36± 0.03 s.e.m.) and V1 (0.05± 0.04 s.e.m.).399

These measurements, all performed at the neuron’s preferred direction, support previous find-400

ings that V1 tends to be frequency-separable and MT velocity-separable (Simoncelli and Heeger,401

1998; Perrone and Thiele, 2001; Priebe et al., 2003; Priebe et al., 2006; Nishimoto and Gallant,402

2011). Since our goal was to characterize tuning in all three dimensions, we also assessed peak tem-403

poral frequency changes when measured at different directions (figure 2(d)), which should either404

remain constant or decrease (for the frequency- and velocity-separable hypotheses, respectively).405

When averaged across the populations, slopes were flat (figure 2(d), V1 (blue triangles) mean406

−0.001±0.004 s.e.m.; MT (red triangles) mean −0.0004±0.0007 s.e.m.), however, on a neuron-by-407

neuron basis, tuning at non-preferred directions was inconsistent. To probe the three-dimensional408

selectivity more finely, we presented stimuli at many more spatiotemporal frequencies, and fit409

velocity- and frequency-separable models directly to the responses.410

The velocity- and frequency-separable models411

To examine MT receptive field organization in the frequency domain, we fit two modified versions412

of the Simoncelli and Heeger (1998) model of MT direction selectivity to the responses of individual413
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neurons. Both models have the same structure: two stages, each with a linear weighting followed by414

a point nonlinearity and normalization (figure 3). The first (V1) stage consists of narrowly-tuned415

direction-selective complex cells, simulated with a linear weighting of a narrow band of frequencies,416

followed by squaring. The second (MT) stage computes a weighted linear combination of its V1417

inputs, followed by another point nonlinearity and normalization.418

Linear weighting in the MT stage is the primary determinant of the MT neuron’s tuning proper-419

ties, including pattern motion selectivity. We constrain it to be a separable product of three tuning420

curves. The first two (direction and spatial frequency tuning) are common to both models. In the421

frequency-separable model, the third separable function is temporal frequency tuning, independent422

of the other two dimensions. In the velocity-separable model, temporal frequency tuning co-varies423

with direction tuning such that the peak lies on a tilted plane whose slope is the preferred velocity424

of the neuron. This temporal frequency tuning parameterization is the only difference between the425

two models.426

The MT stage nonlinearity controls interactions between multiple spatiotemporal frequencies427

simultaneously present in the stimulus, and thus plays an important role in establishing pattern428

motion responses. In the full models, the MT nonlinearity is composed of a point-wise power429

function, followed by divisive normalization. The divisive normalization operates on a uniform430

population of pattern and component cells which, taken in aggregate, are assumed to uniformly431

cover direction and spatial frequency, while exhibiting tuning for temporal frequency (see Methods432

for details). Single grating stimuli do not constrain this model component, and thus for the single433

grating study presented below, the exponent is fixed to a value of two.434
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Single grating responses do not differentiate the models435

How can we distinguish the two models? We designed a study in which we measured seventeen436

tuning curves, chosen on a neuron-by-neuron basis, to sample the frequency domain where the437

predictions of the models should deviate the most. The stimuli were full contrast sinusoidal gratings;438

five tuning experiments included a grating at the optimal spatiotemporal frequency, while twelve439

suboptimal tuning experiments did not (see methods and extended data figure 4-1 and table 4-1 for440

details). By comparing how responses fall off as stimuli deviate from the preferred spatiotemporal441

frequency, a picture of three-dimensional tuning should emerge in support of one model or the442

other.443

For each cell, we fit the frequency and velocity models to data from all 17 tuning experiments444

simultaneously. Figure 4(a-d) shows four of the seventeen tuning curves of the optimized model,445

fit to data from two example MT component neurons (figure 4(a,b)) and two MT pattern neu-446

rons (figure 4(c,d)). As expected, the models make substantially different predictions for spatial447

and temporal frequency tuning (first three columns in figure 4), but not direction tuning (fourth448

column). In the first two columns, for example, the velocity model predicts tuning peak shifts,449

whereas the frequency model does not.450

Most tuning curves from each neuron are well fit by one of the two models (frequency model451

for figure 4(a,c) and velocity model for figure 4(b,d)), including changes in relative gain across452

tuning experiments. Relative model performance for each stimulus condition from all seventeen453

tuning experiments (points in the scatter plots in figure 4, rightmost column) show that while some454

spatiotemporal frequencies strongly distinguish the two models, most do not. This reflects the455

fact that some tuning curves are well-described by both models (e.g., the constant-velocity grating456
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direction tuning, fourth column of figure 4).457

This range of behavior was observed across the population. We assessed overall fit quality458

on a cell-by-cell basis by normalizing the log likelihoods of the models to null and oracle models.459

The null model assumes the cell has two possible response rates: one when a stimulus is present460

and another when there is no stimulus. These are fixed to the measured mean spontaneous and461

maximal stimulus-driven response rates, respectively. The oracle model serves as an upper bound462

for the models’ performance, computed by using the measured mean responses to each stimulus463

condition to predict the neuron’s response to any individual presentation of that stimulus. “Velocity464

superiority” is the difference of the normalized log likelihoods of the velocity-separable model and465

the frequency-separable model (figure 5).466

In general, V1 cells were better fit by the frequency model (average velocity superiority of −0.03,467

P = 0.0046 Wilcoxon signed rank test, open circles in figure 5). Most MT neurons were clearly468

better fit by one model or the other, but overall, neither model was significantly better (−0.005469

mean difference, P = 0.12 Wilcoxon signed rank test, filled circles in figure 5), regardless of pattern470

index.471

Model fits to single grating responses provided further evidence that V1 neurons are frequency-472

separable, but were inconclusive for MT neurons. MT neurons tend to be velocity-separable for473

stimuli at the preferred direction (figure 2(b,c)) but have inconsistent tuning at off-directions (figure474

2(d)). In theory, comparing direction tuning curves measured at either a given neuron’s optimal475

velocity or optimal temporal frequency should distinguish the models: they predict direction tuning476

bandwidth to be wider when the stimulus and model type match (e.g., velocity-separable model477

direction tuning for constant-velocity gratings should have a wider bandwidth than tuning for478

constant frequency gratings). In fact, measured tuning to these two stimuli are nearly identical for479
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component neurons, and slightly broader, on average, for constant velocity gratings for intermediate480

and pattern neurons (figure 6). These data provide more evidence that MT neurons are likely481

velocity-separable, using different tuning measurements at non-preferred directions.482

Taking these observations into account, we concluded that single grating stimuli are not rich483

enough to fully distinguish the models. In particular, since only one spatiotemporal frequency is484

presented at a time, single gratings do not constrain the MT nonlinearity which underlies pattern485

computation. We therefore sought to use more complex stimuli and focused on sampling the486

frequency domain at non-preferred directions—those spatiotemporal frequencies which were the487

most informative in distinguishing the two models (both in theory and in practice).488

Compound stimuli reveal velocity-separable organization in MT489

Selectivity for pattern motion is a defining property of MT neurons. Since single gratings alone490

are not rich enough to characterize MT, we ran a second study in which direction tuning curves491

were measured for gratings and 120◦ plaids, presented either at a given neuron’s optimal velocity or492

optimal temporal frequency (figure 7(a,b)). All stimuli were fixed at the neuron’s optimal spatial493

frequency. These stimuli can be equivalently described as gratings and plaids drifting either in the494

preferred direction of the cell or along the direction normal to the mean orientation (“constant495

velocity” or “constant frequency” in figures 7(a) and (b), respectively).496

The two models make dramatically different predictions (figure 7(c)) for pattern-selective neu-497

rons: the frequency model predicts tuning for constant-velocity plaids to have a trough at the498

preferred pattern motion direction, and peak 90◦ from preferred. The velocity model predicts a499

near-constant, elevated response to all constant-velocity plaids.500

Responses to this new stimulus family were complex enough to fully constrain the models’ MT501

nonlinearity (a power function and divisive normalization—see methods for details). There were502
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three free parameters in the nonlinearity that were fixed in the previous study. Since the spatial503

frequency preference and bandwidth and temporal frequency preference parameters were uncon-504

strained by this dataset, they were fixed to values determined in preceding tuning measurements.505

In total, there was one additional free parameter fit compared to the single-grating study.506

Qualitatively, the models predict that direction tuning should be flatter when the coordinate507

system of the model matches that of the stimuli. Two features of the measured responses stand out.508

First, constant frequency and constant velocity direction tuning curves to gratings are again clearly509

indistinguishable for all cells (two leftmost columns of figure 8). Second, the pattern selective MT510

neuron (figure 8(d)) exhibits much wider direction tuning bandwidth for constant velocity plaids as511

opposed to constant frequency plaids (fourth and third columns from the left in figure 8), while the512

other cells show more similar tuning bandwidth for the two plaid types. For all cells, both models513

capture grating responses well. However, the frequency model cannot account for the pattern514

selective neuron’s responses to both types of plaids simultaneously (figure 8(d), blue). The best it515

can do is pick a compromise direction tuning bandwidth that is too wide for constant frequency516

plaids and too narrow for constant velocity plaids. The velocity model, on the other hand, is517

able to account for all the data simultaneously, including the different plaid tuning bandwidths.518

This pattern cell is the only one of the four example cells that has substantial differences in the519

frequency- and velocity-separable model predictions. The increasingly divergent model predictions520

as pattern index increases is further illustrated by the increasingly different MT linear weighting521

functions (rendered in the last column of figure 8). The models make nearly identical predictions522

for narrowly tuned neurons, yielding velocity superiority indices at or near 0 (scatter plots on right523

of figure 8).524

The relationship between velocity superiority and pattern index holds across cell populations.525

23

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 4, 2019. ; https://doi.org/10.1101/692533doi: bioRxiv preprint 

https://doi.org/10.1101/692533


For the single grating data set, there is overall no significant correlation (figure 9(a), for all cells526

(Pearson’s r = 0.05, P = 0.70) or MT alone (r = −0.01, P = 0.95). There was, however,527

a significant negative correlation for V1 (r = −0.70, P = 0.007). Furthermore, there was no528

significant relationship between pattern index and the number of tuning curves per cell better fit529

by one model or the other (Pearson’s r = −0.22, P = 0.13). In contrast, responses to plaid stimuli530

indicate a significant correlation between velocity superiority and pattern index, and (figure 9(b),531

Pearson’s r = 0.34, P = 5.6e − 5). 86% of all pattern cells were better fit by the velocity model532

(P = 1.4e− 4, Wilcoxon signed rank test).533

As a more direct test, we compared pattern selectivity of model predictions against the mea-534

sured pattern selectivity of the cells. The velocity model accounts for the full range of pattern535

selectivity across the population (figure 9(c), Pearson’s r = 0.60). The frequency model, however,536

fails to produce any cells with pattern tuning (figure 9(d), Pearson’s r = 0.50), due to the com-537

promises it must make when fitting both constant frequency and constant velocity plaid responses538

simultaneously.539

Model validation540

Which characteristics are needed to describe the motion selectivity of a given neuron in MT?541

They are, in order of increasing complexity: (1) its preferred direction and speed, (2) the degree542

to which responses fall off as stimuli deviate from the preferred stimulus, and (3) the extent to543

which multiple overlapping motion components are treated independently or as a single, coherently544

moving pattern.545

Experimentally, these attributes are established by identifying the stimulus that evokes the neu-546

ron’s maximum response, the shape of tuning curves for direction, spatial frequency, and temporal547

frequency, and calculating the pattern index based on correlating (constant frequency) grating548
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and plaid direction tuning. The recorded direction curves we report (figure 8), with identical549

bandwidths for constant frequency and velocity gratings (all cells) and wider bandwidth tuning to550

constant velocity plaids (pattern cells), provide a novel fourth criterion for describing MT motion551

selectivity.552

The velocity model accurately captures the first, second, and fourth attributes by accurately553

reproducing tuning curves (figures 4 and 8). We verified that the velocity model also accounts554

for the third attribute, and accounts for the full range of pattern selectivity across the population555

(figure 9(c)). The frequency model, in addition to failing on the second and fourth criteria (figure556

8), also fails on the third by failing to predict any pattern cells (figure 9(d)).557

How does the velocity model provide a full account of motion selectivity? Capturing selectivity558

in all three frequency dimensions accounts for the first two attributes. Pattern selectivity, the third559

attribute, is controlled by increasing direction tuning bandwidth (Pearson’s r = 0.73, figure 10(a))560

and the exponent in the nonlinearity (Pearson’s r = 0.60, figure 10(b)). Divisive normalization,561

which allows the model to adjust the fourth attribute, does so by producing grating direction tuning562

curves with more similar bandwidths than would be predicted in its absence. The semi-saturation,563

or “uniform” divisive normalization parameter, is very weakly correlated with pattern index (on a564

log2 scale, Pearson’s r = −0.16, P = 0.07, figure 10(c), see methods for details). This means that565

for neurons with higher pattern index, the temporal-frequency dependent suppression is stronger.566

Motion computation in the velocity-separable model567

The separable models we developed and tested are generalizations of previous models (Simoncelli568

and Heeger, 1998; Rust et al., 2006). The Simoncelli and Heeger (1998) model was constructed569

using populations of V1 and MT neurons, each having their own rectifying nonlinearities and570

divisive normalization. The second (MT) stage of the model linearly weighted the afferent signals571
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from V1 along a tilted, constant velocity plane in the frequency domain. But this model was572

not explicitly fit to single cell data, and comparisons of predicted to measured tuning curves were573

qualitative. The Rust et al. (2006) paper used a simplified model variant that predicted (and was574

fit to) responses to gratings and plaids at a single temporal frequency. The paper showed that575

pattern selectivity could be explained by incorporating opponent suppression and direction-tuned576

normalization. By fitting to a more diverse set of stimuli, and a model that includes a full range577

of temporal frequencies, we find that selectivity for both speed and direction of moving patterns578

can be captured in a single model. Note that we have incorporated temporal frequency dependent579

normalization in the MT stage (as opposed to the direction-tuned normalization of the Rust et580

al. (2006) model). For parameter values optimized to neurons in the compound stimulus dataset,581

this tends to sharpen direction tuning for constant velocity gratings.582

In order to characterize MT receptive field structure in all three dimensions of the frequency583

domain, it was not feasible to simulate entire populations of V1 and MT neurons. By restricting584

our stimuli to gratings and plaids which would not be affected by normalization in V1, we could585

avoid explicitly simulating the V1 stage. Rather, the model evaluated tuning directly based on the586

separable product of tuning curves along three dimensions in the frequency domain. Since all three587

tuning curves are exponential functions, the separable tuning volume and exponent approximately588

accounts for both the linear weighting stages and power function nonlinearities of V1 and MT.589

As a result, three computational elements, all implemented in the MT stage, determine how a590

given MT neuron responds to moving stimuli: linear weights, a point-wise power nonlinearity, and591

normalization.592

The linear weights capture the first-order aspects of a given MT neuron’s tuning: its tuning593

preferences and a coarse estimate of tuning breadth. In fact, both frequency- and velocity-separable594
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(“linear”) models can capture single grating tuning curve shape well. This is why the two separable595

models are indistinguishable, on average, when fit to the single grating dataset (figure 5). The596

model captures the continuum of selectivity for pattern motion in MT (characterized by a unimodal597

constant frequency plaid direction tuning curve, see figures 8(d) and 11(b)) by simply increasing the598

direction tuning bandwidth in the linear weights (Simoncelli and Heeger, 1998). Direction tuning599

bandwidth (calculated from measured tuning curves) is correlated with pattern index, as observed600

in our data (Pearson’s r = 0.27, P = 0.0027, n=112) and previous studies (Pearson’s r = 0.35,601

P < 0.0002, n=788, Wang and Movshon (2016)). Linear weighting alone in the velocity-separable602

model is sufficient to capture the unimodality of constant frequency plaid (pattern) direction tuning,603

but not in the frequency-separable model (lightest red and blue traces, respectively, in figure 11(a)).604

Further, the frequency-separable model severely underestimates constant velocity plaid responses605

(figure 11(b)). It is important to note that in order for the two separable models to make realistic606

and distinguishable predictions, temporal frequency tuning data were also included during fitting;607

all models capture this tuning well (figure 8). Ultimately, the “linear” model fails by overestimating608

the tuning bandwidth to frequency plaids (figure 11(a)).609

The original Simoncelli and Heeger (1998) model solved this problem by applying an expansive,610

point-wise nonlinearity in the MT stage. The nonlinearity, when fit to data, only changes tuning611

to compound stimuli. By adding a point-wise power function, both separable “linear-nonlinear”612

(LN) model achieve better, sharper constant frequency plaid tuning (medium blue and red traces613

in figure 11(a)). Frequency-separable predictions to constant velocity plaids (medium blue in figure614

11(b)) however, worsen, since tuning for all mixture stimuli are sharpened by the power function.615

This model parameter is strongly correlated with measured pattern index (figure 10), indicating its616

role in pattern motion computation.617
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If the goal was simply to correctly reproduce direction tuning for constant frequency gratings and618

plaids, a separable model including linear weighting and a power function nonlinearity alone would619

be sufficient. However, the unexpected, nonlinear property of MT selectivity that we discovered is620

that direction tuning bandwidth is wider for constant velocity gratings than for constant frequency621

gratings (figure 6), but by much less than expected, and by much less than is the case for measured622

constant velocity plaid tuning (figure 8(d)). In order to account for this small change in grating623

tuning and large change in plaid tuning, the separable models require normalization at the MT624

stage.625

We used a closed-form approximation of MT normalization, rather than simulating an entire626

population of MT neurons (as was done in the original Simoncelli and Heeger (1998) model, see627

methods for a details), to make model fitting tractable. Despite being an approximation, it is a628

functionally interpretable one. Its primary effect is to suppress responses at low temporal frequen-629

cies; its tuning relative to the linear weights is plotted in figure 11(c). Suppression for low temporal630

frequencies has been observed experimentally (Maunsell and Van Essen, 1983). Incorporating nor-631

malization improves contrast gain control (darkest blue and red tuning curves are better scaled to632

the data in figure 11(a,b)). This normalization also sharpens tuning to both single gratings and633

conjunctions of gratings by concentrating suppression at low temporal frequencies. In the case of634

pattern neuron responses, these conjunctions are components consistent with a preferred veloc-635

ity, so velocity-separable model predictions for constant velocity plaids are appropriately widely636

tuned (figure 11(b)) and frequency-separable model predictions for constant frequency plaids are637

too widely tuned (figure 11(a)).638

For each nested version of the models, namely, the “linear,” “linear-nonlinear,” and the full639

model, the velocity-separable version performs better on pattern neurons as a group (figure 11(d)).640
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For component and intermediate neurons, the two types of model are indistinguishable regardless641

of model version.642

Taken together, the two datasets and associated model fits reveal important aspects of MT643

computation. First, sinusoidal grating stimuli drifting in a neuron’s preferred direction can reveal a644

frequency-separable receptive field organization in V1, and a velocity-separable one in MT. These645

stimuli, however, are not sufficient to reveal the nonlinear behaviors that distinguish direction646

selectivity observed in MT from that observed in V1. Second, compound stimuli, which constrain647

nonlinear receptive field behavior in MT, reveal receptive fields that are organized along a neuron’s648

preferred velocity plane.649

Discussion650

To date, attempts to characterize MT motion selectivity have generally followed two distinct strate-651

gies. They focused either on how multiple superimposed spatiotemporal frequencies are integrated652

into a single, coherent drifting pattern, or on how tuning varies across multiple dimensions of the653

spatiotemporal frequency domain. Here, we present a model that unifies these two approaches in654

a common framework, and for the first time, generalizes previous findings to all three dimensions655

of the spatiotemporal frequency domain.656

We recorded responses of a large population of neurons in both MT and V1 to simple stimuli657

specifically designed to extensively quantify tuning in the spatiotemporal frequency domain as well658

as tuning for pattern motion. We fit two compact two-stage models to each individual neuron659

in the population. We found temporal frequency tuning in MT to be much broader than that660

instantiated in the Simoncelli and Heeger (1998) model. Furthermore, by comparing two models’661

performance, we provide model-based evidence that MT neurons’ selectivity is best described by662
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a tilted, constant velocity plane in the spatiotemporal domain. Finally, compound stimuli were663

necessary to reveal this organization—single sinusoidal gratings were not sufficient.664

Relationship to previous work665

Perrone and Thiele (2002) observed broader temporal frequency tuning than predicted by the666

Simoncelli and Heeger (1998) model. Their Weighted Intersection Mechanism (WIM) model was667

able to capture joint spatial and temporal frequency tuning in MT. It employed a weighting function668

on V1 inputs organized along a common speed, and only responded when two types of V1 inputs,669

“sustained” and “transient,” had equal response levels. With particular choices of parameters, the670

WIM model can also simulate pattern direction selectivity (Perrone, 2004). The authors stated671

that a model with velocity-based tuning at the MT stage, such as in Simoncelli and Heeger (1998),672

would not be capable of producing realistic spatiotemporal tuning. Here we fit just such a velocity-673

based separable model directly to pattern motion data and to data simultaneously spanning all674

three dimensions of frequency space. It achieved similar realism in reproducing tuning in both675

temporal frequency and pattern motion direction, each recorded from a heterogeneous populations676

of neurons, without the need for the two specific V1 neuron types.677

Priebe et al. (2003) investigated joint tuning for spatial and temporal frequency and pat-678

tern motion selectivity in MT. Consistent with our findings, they reported stronger evidence679

for speed tuning with compound stimuli such as plaids or square-wave gratings, as compared680

to single sinusoidal gratings. Additionally, speed tuning for single sinusoidal gratings and de-681

gree of pattern selectivity were independent. They concluded that speed tuning arises in MT682

only when multiple spatial frequencies are present. Our findings are consistent with these con-683

clusions, and arise in our velocity-separable model simulations as a result of the MT normal-684

ization. Our model additionally predicts that pattern tuning will be correlated with speed tun-685

30

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 4, 2019. ; https://doi.org/10.1101/692533doi: bioRxiv preprint 

https://doi.org/10.1101/692533


ing for square wave gratings and random dots (Kumano and Uka, 2013; McDonald et al., 2014;686

Xiao and Huang, 2015).687

More recent studies (Nishimoto and Gallant, 2011; Inagaki et al., 2016) have explored MT688

selectivity in all three dimensions of the frequency domain. Nishimoto and Gallant (2011) used689

“motion-enhanced” natural movies to visualize 3D spectral receptive fields of individual MT neu-690

rons for the first time. These weights followed a simulated V1 population, which performed linear691

filtering, a compressive nonlinearity, and divisive normalization. They reported weights with exci-692

tation organized along a partial ring on the plane, with a gap in the ring occurring at low temporal693

frequencies. Suppression also appeared as partial rings off the preferred velocity plane, much like694

the opponent suppression reported in Rust et al. (2006). Inagaki et al. (2016) performed linear695

regression directly on the frequencies of their stimulus, which was comprised of multiple gratings696

superimposed spatially and partially overlapping in time. They observed broadly tuned receptive697

fields at mid- and high temporal frequencies in two pattern cells and observed diffuse suppression698

off the preferred velocity plane. The absence of excitation at low temporal frequencies observed in699

both studies provides indirect support for our use of suppression there.700

Neither Nishimoto and Gallant (2011) nor Inagaki et al. (2016) directly confirmed that their701

models could produce pattern tuning, making the connection between the receptive field structure702

they observed and pattern selectivity harder to interpret. The velocity separable model is able703

to reproduce pattern tuning in both frequency- and velocity-separable coordinates, while making704

slightly different predictions of receptive field structure. Pattern cells have excitation on a full ring705

on the preferred velocity plane, with partially overlapping suppression at low temporal frequencies706

(figure 11(f)). Including normalization at the V1 stage (Rust et al., 2006; Nishimoto and Gallant,707

2011) or using a purely subtractive form of suppression in MT (as in all three aforementioned708
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studies) in the separable models was not sufficient to simultaneously account for the broad tuning709

observed for constant velocity plaids.710

Conclusions drawn from the separable model711

Selectivity to moving patterns is a hallmark of MT response. How does this selectivity arise?712

Orientation selectivity in V1 provides a useful analogy. There, first-order properties of selectivity713

to simple stimuli, such as simple/complex classification, can be attributed to linearly weighting of714

LGN afferents (Reid and Alonso, 1995; Goris et al., 2015). Responses to compound stimuli, however,715

are likely a result of additional (possibly recurrent) computation within V1. Likewise, basic MT716

direction selectivity along the component/pattern continuum is can be constructed by appropriate717

summing of V1 inputs (on a constant velocity plane) and shaped on a per-neuron basis by their718

own point-wise nonlinearities. Further nonlinear tuning behaviors, such as the different tuning719

bandwidths for constant velocity gratings and plaids, is likely shaped by recurrent computation720

within MT.721

There is some evidence of recurrent computation shaping pattern motion signals in MT. Using722

drifting fields of bars, Pack and Born (2001) showed that pattern motion tuning emerges later in723

a pattern neuron’s response—approximately 70ms after its earliest response to stimulus onset—724

a result later replicated with sinusoidal gratings and plaids (Smith et al., 2005; Solomon et al.,725

2011). Further experiments could be done to verify this recurrent computation prediction. If726

feasible, imaging a population of MT neurons and fitting a population-level model could reveal727

these recurrent computations, as has been done in V1 (Cossell et al., 2015; Antoĺık et al., 2016;728

Klindt et al., 2017). Examining dynamics of tuning to compound stimuli, possibly with whole-cell729

recording techniques, could also provide empirical evidence regarding the nature of suppression in730

MT.731
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While the velocity separable model unifies data and theory regarding tuning for pattern direction732

and velocity, there is much work to be done to further incorporate other aspects of MT selectivity733

into the model. The velocity separable model includes rudimentary gain control, and we used734

stimuli which only had two different contrast values. However, accounting for gain control in MT,735

and its interactions with pattern motion selectivity, motion opponency, and stimulus size (Britten736

and Heuer, 1999; Heuer and Britten, 2002), will likely require more experiments, and perhaps737

inclusion of a full normalization pool at the MT stage.738

A strict interpretation of the Simoncelli and Heeger (1998) model predicts broad direction739

tuning to both constant velocity gratings and plaids, yet we only observed broad tuning to the740

latter (figures 6 and 8(d)). This is consistent with later findings (Priebe et al., 2003; Priebe et al.,741

2006) suggesting that some speed tuning in MT is inherited from V1, but that full form-independent742

speed computation occurs within MT, and is evident only when multiple spatial frequencies are743

present. Our results further suggest that individual MT pattern neurons always signal motion744

direction, but only signal speed when it is uniquely specified (i.e., when multiple orientations or745

spatial frequencies are present).746

Finally, our findings change our understanding of the role of MT in motion perception. Consider747

a single drifting contour or grating, viewed through an aperture. The true direction of motion is748

inherently ambiguous: any drift direction ± 90 degrees from normal is a valid interpretation.749

Perceptually, however, this so-called “aperture problem” is unambiguously solved: the grating750

is perceived to be drifting in the direction normal to its orientation (Stumpf, 1911; Todorović,751

1996; Wohlgemuth, 1911; Wallach, 1935; Marr and Ullman, 1981; Adelson and Movshon, 1982).752

Previously, it was thought that pattern selective neurons in MT, as a population, would signal a753

single grating’s drift direction ambiguously (Movshon et al., 1985; Simoncelli and Heeger, 1998).754
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Our findings show MT pattern neurons can unambiguously signal such motion, and that such a755

population can represent the translational motion of a stimulus regardless of whether it contains756

a mixture of orientations or a single one. The representation of motion in MT may thus be even757

closer to perception than previously thought.758
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Figure Captions868

Figure 1. Pattern index, frequency-separable and velocity-separable hypotheses, and869

their predicted tuning. (a) Tuning curve of an idealized direction-selective neuron, responding870

to drifting gratings. (b) An ideal pattern-selective neuron exhibits a unimodal tuning curve for871

drifting plaids (red), while an ideal component neuron shows a bimodal tuning curve (blue). The872

peaks of the component neuron tuning curve correspond to the directions of the two gratings that873

comprise the plaid. (c) The “pattern index” captures the degree to which a given neuron is pattern874

or component selective. Each point represents the correlation of a given neuron’s measured tuning875

curve with the ideal component and pattern tuning (abscissa and ordinate, respectively; see meth-876

ods for details), as predicted from its actual grating responses. Open and filled points correspond877

to neurons featured in this paper in V1 (n = 21) and MT (n = 112), respectively.878

(d) Three-dimensional frequency domain representation of moving images, with two spatial fre-879

quency axes and one temporal frequency axis. These coordinates can alternatively be expressed880

as orientation, spatial frequency, and temporal frequency. A single point in the frequency domain881

represents a single drifting sinusoidal grating. (e) The motion of a rigidly translating pattern (e.g.,882

a field of dots moving with the same velocity) contains frequency components that lie on a plane883

through the origin. (f-g) Two possible hypotheses for MT selectivity in the frequency domain. In a884

velocity-separable receptive field (f), spatial and temporal frequency tuning are concentrated along885

a tilted, preferred velocity plane. In the frequency-separable prediction (g), spatial and temporal886

frequency tuning are independent. Note the velocity-separable hypothesis depicted “shears” along887

the vertical (temporal frequency) direction, rather than the direction orthogonal to the preferred888

velocity plane. See Methods for details.889
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(h-i) Contour plots of slices through the two selectivity volumes from (f) and (g) at the optimal890

direction, superimposed with stimuli for two “classical” tuning experiments (black lines) containing891

the optimal stimulus (black ball) and suboptimal stimuli (dark gray): (h) spatial frequency tuning892

at optimal and low temporal frequencies, and (i) temporal frequency tuning at optimal and low893

spatial frequencies. (j-k) Temporal and spatial frequency tuning for the two models is the same for894

“classical” stimuli (red-blue dashed lines), but different for non-optimal stimuli (red and blue solid895

lines). The velocity-separable (light red) spatial and temporal frequency tuning curves are shifted896

away from the tuning curves observed for optimal stimuli.897

Figure 2. At the preferred direction, V1 is frequency-separable and MT is velocity-898

separable. (a) Spatial frequency tuning curve data from an example MT cell, measured at three899

temporal frequencies (error bars denote ±1 s.d.). The light gray shaded area denotes the sponta-900

neous firing rate, ±1 s.d. The fitted SF tuning preferences for the three curves are shown above as901

triangles. (b) The fitted SF preferences from each cell are plotted against the TFs at which they902

were presented. Both axes are on a normalized scale, representing the ratio of the non-optimal903

frequencies, relative to the optimal frequency. Each line is the best fit line to the data for one904

cell. The data along the ordinate axis are aligned to the offset of each best fit line. Lines and905

points are shaded by the pattern index corresponding to each individual cell. Red corresponds to906

MT neurons, with darker shades corresponding to higher pattern index, and blue corresponds to907

V1 neurons, with darker shades corresponding to lower pattern index. The blue and red triangles908

indicate the mean slopes for all V1 and MT neurons, respectively. Error bars indicate the 95%909

confidence intervals of 1000 bootstrapped fitted peak stimulus values (see Methods for details). (c)910

Same as (b), but based on TF tuning curves measured at optimal and suboptimal SFs. (d) Same911

as (c), but based on TF tuning curves at optimal and suboptimal directions. Here the points are912
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aligned to the origin, which represents the preferred TF at the preferred direction. Mean slopes in913

(d) are computed separately for the different suboptimal directions.914

Figure 3. The separable models. A stimulus is passed through a narrowly tuned V1 linear915

weighting, then squared and normalized. V1 output is then passed to the MT neuron, which916

applies either a frequency- or velocity-separable linear weighting, then raises the output to a super-917

linear power, and undergoes another stage of normalization. Finally, a modulated Poisson process918

determines spike variability.919

Figure 4. Comparison of actual and model-predicted responses to single gratings for920

four example MT neurons. (a,b) Two example component neurons, one better fit by the921

frequency-separable model (a) and one better fit by the velocity-separable model (b). (c,d) Two922

example pattern neurons, one better fit by the frequency model (c) and one better fit by the velocity923

model (d). Measured spike rate mean and standard deviation are shown in black. Velocity model924

predicted spike rates are shown in red, frequency model predictions in blue. All subsequent figures925

follow this color convention. Means are indicated by the dark lines, ±1 standard deviation by the926

lighter shaded areas. In the scatter plots on the right, each point represents how well the frequency927

and velocity models predict the mean firing rate for one spatiotemporal frequency among the 225928

presented across all experiments. Goodness of fit is expressed in terms of log likelihood under the929

modulated Poisson process, where values closer to zero indicate a better fit. The log likelihoods are930

normalized to a scale between 0 and 1, which represent the null and oracle model prediction log931

likelihoods, respectively (see Methods for details). Each point is colored on a Fisher transformed932

scale (i.e., in units of standard deviation). The difference between the velocity and model predictions933

for each neuron are summarized as a single value (∆NLL = NLLV −NLLF ). Renderings of the934
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frequency and velocity model linear weightings for each example neuron (rightmost column). All935

four neurons were recorded under anesthesia.936

937

Figure 5. Single grating stimuli do not distinguish the two models. Fit quality, expressed938

as the normalized log likelihood of the velocity and frequency models, is plotted for each neuron939

on Fisher transformed axes. V1 neurons (n = 13) are shown with open circles, MT (n = 39)940

with closed circles. Blue, black, and red colors indicate whether a neuron is classed as component,941

intermediate, or pattern selective, respectively. Error bars denote standard error of the mean. On942

average, the two models are equally good at explaining the single grating MT data for any class of943

cells. The frequency model explains the V1 single grating data better.944

Figure 6. Velocity grating direction tuning tends to be slightly wider. (a) Direction945

bandwidth (in degrees) for each neuron was calculated separately for constant- frequency and946

velocity grating tuning curves. is plotted for each neuron. Blue indicates a component neuron, black947

intermediate, and red a pattern neuron. V1 neurons (n = 21) are shown with open circles, MT (n =948

112) with closed circles. This figure includes isomorphic data recorded from the next experiment,949

described in the next section. (b) Differences of velocity and frequency grating bandwidth, by950

pattern classification. Proportions are expressed within each classification type, but including both951

V1 and MT neurons (open and filled stacked bars, respectively). Pattern and intermediate neurons952

have wider velocity grating direction bandwidth, significant below p < 0.0005 (Wilcoxon signed953

rank test).954

Figure 7. Two-component “planar plaid” experiment design and predictions. Constant-955
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velocity and constant-frequency direction tuning experiments were done with gratings and plaids.956

Constant-velocity plaids (a) were constructed by superimposing two gratings 120◦ apart and drifting957

at a temporal frequency determined by the optimal velocity plane. Constant-frequency plaids (b)958

were two gratings 120◦ apart superimposed and drifting at the optimal temporal frequency. The959

example plaids shown contain the same orientations, but have different component drift rates, and960

thus different perceived drift directions. (c) For the two models matched in constant-frequency961

plaid direction tuning (red and blue dashed line), the velocity model (red) predicts a high response962

rate to all constant-velocity plaids. The frequency model (blue) is more narrowly tuned.963

Figure 8. Comparison of actual and model-predicted responses to gratings and plaids964

for four example neurons. First five columns show data (points) and tuning curves predicted by965

the frequency- (blue) and velocity-separable (red) models. The first four columns are responses to966

gratings and plaids with constant frequency and velocity. The fifth column is temporal frequency967

data collected in a separate session, but included in the model fits. (a) a V1 component-selective968

neuron, (b) an MT component neuron, (c) an MT intermediate neuron, and (d) an MT pattern-969

selective neuron. The fifth column shows goodness-of-fit across all stimulus conditions, next to970

renderings of the fitted models. See figure 4 caption for details. Differences between the two971

model predictions become more apparent with increasing pattern selectivity. Neurons (a-c) are972

from recordings done under anesthesia, (d) is from an awake recording.973

Figure 9. Compound stimuli reveal velocity-separable organization for pattern cells.974

(a,b) Velocity superiority, or the difference of normalized log likelihoods between the velocity and975

frequency models, per cell as a function of pattern index. V1 cells appear as open circles, MT976

closed. Example cells featured in figures 4 and 8 are highlighted in gray. Light and dark lines977
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indicate the running mean, with a window of ±1/3 of cells in each population. Error bars indicate978

±1 standard deviation, calculated from model fits to bootstrapped data (note most are smaller than979

the plotted points). (a) On average, for the single grating dataset, neither model better explains980

the single grating MT data (a) for any class of cells (n = 39). The frequency model explains the V1981

single grating data better (n = 13). (b) Pattern cell responses to the compound stimulus dataset982

(V1: n = 21, MT: n = 112) are clearly better explained by the velocity model. Error bars indicate983

±1 standard error. (c,d) Observed and predicted pattern indices for each cell, derived from the984

compound stimulus dataset, for the velocity model (c) and frequency model (d). The velocity model985

can account for pattern index across all cell types, whereas the frequency model fails to predict the986

pattern selectivity of neurons classified as pattern-selective based on measured responses. Error987

bars indicate 95th percentiles, generated from pattern indices calculated by bootstrapping measured988

and predicted spike trains.989

Figure 10. Relationship between velocity-separable model parameters and pattern in-990

dex. Pattern index is strongly correlated with direction tuning bandwidth (a) and the log of the991

MT nonlinearity’s exponent (b). (c) Pattern index is negatively correlated with the log-2 of the992

semi-saturation, or “uniform” divisive normalization parameter. This means that for neurons with993

higher pattern index, the temporal-frequency dependent suppression is stronger.994

Figure 11. Effects of removing model elements for one example neuron and the popu-995

lation. (a-c) Plots and renderings are from fits to the same neuron shown in figure 8(d). In (a,996

b, and d), three nested model fits are shown. Lighter shades denote fits with nonlinear elements997

removed from the full model. LN-N is the full model, which includes linear weighting (L), a point-998

wise power function nonlinearity (N), and “temporal frequency dependent” normalization (-N). LN999
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has no normalization at all, and L has no nonlinearity at the MT stage. Direction tuning data1000

are shown as black points and lines for constant-frequency plaids (a) and constant-velocity plaids1001

(b). The red and blue shaded curves show the different model fits to those data, with red and1002

blue corresponding to the velocity and frequency models. The darkest traces are for the full model,1003

the lighter ones for the model with normalization removed, and the lightest for the model with no1004

MT nonlinearity. Each (nested) model was optimized separately. (c) The leftmost plots show the1005

strength of normalization as a function of temporal frequency, for the velocity (red, top row) and1006

frequency (blue, second row from top) models. The middle two renderings show the linear weights1007

(at one level set) as a function of spatial and temporal frequency, at two different viewing angles.1008

The temporal frequency scale in these renderings match that of the normalization plots on the left.1009

The renderings on the right are a “birds-eye” view, showing the same weights as function of the1010

two spatial frequency dimensions. (d) Fit quality, expressed as the normalized log likelihood of the1011

velocity and frequency models, is plotted for all component, intermediate, and pattern neurons (in1012

blue, black, and red, respectively), for the three nested models (lighter shades indicate nonlinear1013

model elements removed, see above).1014
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Extended data figure 4-1.

Single grating stimulus set, organized by tuning curves measured relative to preferred values.

Extended data figure 4-2.

All data and model predictions from the single grating study for the neuron in figure 4(d).

Extended data table 4-1.

Single grating stimulus set.
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Extended data figure 4-1. Single grating stimulus set, organized by tuning curves1019

measured relative to preferred values.1020

Top left tuning curves are constant-velocity direction tuning (arc), and constant-velocity spatiotem-1021

poral frequency tuning (line). All other tuning curves follow the convention that the type of tuning1022

curve comes from the label on the left, and they are presented at one optimal and two suboptimal1023

values in the dimension derived from the top label. For example, the bottom left tuning curves1024

are temporal frequency tuning curves measured a one optimal direction and two suboptimal ones.1025

Note that optimal tuning curves appear more than once in this figure, but were presented with1026

equal probability during the experiment.1027
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Extended data figure 4-2. All data and model predictions from the single grating1029

study for the neuron in figure 4(d).1030

(a) All 17 tuning curves in the single grating tuning dataset (see extended data table 4-1 and figure1031

4-1). Tuning curves marked 1-4 are replicas of the bottom row of tuning curves in figure 4—see1032

its caption for more details. Direction preferences (first column) do not change at different spatial1033

and temporal frequencies, but gain does. Spatial frequency preferences shift at different temporal1034

frequencies (second column, top three rows), but not different directions (second column, bottom1035

57

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 4, 2019. ; https://doi.org/10.1101/692533doi: bioRxiv preprint 

https://doi.org/10.1101/692533


three rows). The same is true for temporal frequency preferences (third column). (b) Observed1036

and predicted spikes in response to each of the 225 unique data points in the single grating dataset,1037

for the velocity- and frequency-separable models (red and blue, respectively).1038

number
of
stimuli

Directions
(deg from
preferred)

SFs (c/deg) TFs (Hz) Tuning type

1 13 -90 to 90 Preferred Preferred frequency-separable direction
2 13 -90 to 90 Preferred 0 to Preferred velocity-separable direction
3 13 Preferred 0.1 to 10 Preferred SF
4 13 Preferred 0.1 to 10 1 to 60 Speed
5 13 Preferred Preferred 1 to 60 TF
6 11 -90 to 90 Low Preferred Low SF direction
7 11 -90 to 90 High Preferred High SF direction
8 11 -90 to 90 Preferred Low Low TF direction
9 11 -90 to 90 Preferred High High TF direction
10 11 Low 0.1 to 10 Preferred Low direction SF
11 11 High 0.1 to 10 Preferred High direction SF
12 11 Preferred 0.1 to 10 Low Low TF SF
13 11 Preferred 0.1 to 10 High High TF SF
14 11 Low Preferred 1 to 60 Low direction TF
15 11 High Preferred 1 to 60 High direction TF
16 11 Preferred Low 1 to 60 Low SF TF
17 11 Preferred High 1 to 60 High SF TF

1039

Extended data table 4-1. Single grating stimulus set.1040

For the single component study, 17 unique tuning curves were measured, for a total of 225 unique1041

stimulus conditions (figure 4-1 extended data). All featured single gratings presented at 100%1042

contrast. Two direction tuning curves from -90◦ to 90◦ relative to the preferred direction, in 15◦1043

intervals, were collected along the optimal frequency-separable path (keeping the optimal spatial1044

and temporal frequencies constant) and along the optimal velocity-separable path (keeping the op-1045

timal velocity constant). Four direction tuning curves were collected at 18◦ intervals from -90◦ to1046

90◦ relative to the preferred direction: one at a higher and one at a lower than optimal temporal1047

frequency while fixing the optimal spatial frequency, and two more at a high and a low spatial1048

frequency while fixing the optimal temporal frequency.1049

Two spatial frequency tuning curves, at 13 log-spaced values from 0.1 cycles/degree to 10 cy-1050
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cles/degree, were collected along the optimal frequency- and velocity-separable paths. Four spatial1051

frequency tuning curves, at 11 log-spaced values from 0.1 cycles/degree to 10 cycles/degree, were1052

collected at a high and low temporal frequency while maintaining the optimal direction. Two more1053

were collected at suboptimal directions, while maintaining the optimal temporal frequency.1054

One temporal frequency tuning curve, at 13 log-spaced values from 0.1 cycles/second to 60 cy-1055

cles/second, was collected at the optimal direction and spatial frequency. Four temporal frequency1056

tuning curves, at 11 log-spaced values from 0.5 cycles/second to 60 cycles/second, were collected1057

at a high and low spatial frequency while maintaining the optimal direction. Two more were col-1058

lected at suboptimal directions, while maintaining the optimal spatial frequency. The “high” and1059

“low” non-preferred spatiotemporal frequencies used in suboptimal tuning curves were chosen to1060

maximally distinguish the frequency- and velocity-separable models.1061

59

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 4, 2019. ; https://doi.org/10.1101/692533doi: bioRxiv preprint 

https://doi.org/10.1101/692533

	Abstract
	Significance Statement
	Introduction
	Materials and Methods
	Anesthetized recording procedures
	Awake recording procedures
	Visual stimulation
	Frequency- and velocity-separable models
	Estimating model parameters for individual cells
	Experimental design and statistical analysis

	Results
	Joint and independent representations of motion in the frequency domain
	The velocity- and frequency-separable models
	Single grating responses do not differentiate the models
	Compound stimuli reveal velocity-separable organization in MT
	Model validation
	Motion computation in the velocity-separable model

	Discussion
	Relationship to previous work
	Conclusions drawn from the separable model

	Figure Captions

