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ABSTRACT 
 

Natural scenes often contain multiple objects and surfaces. However, how neurons in the 1 

visual cortex represent multiple visual stimuli is not well understood. Previous studies have shown 2 

that, when multiple stimuli compete in one feature domain, the evoked neuronal response is biased 3 

toward the stimulus that has a stronger signal strength. Here we investigate how neurons in the 4 

middle temporal (MT) cortex of macaques represent multiple stimuli that compete in more than 5 

one feature domain. Visual stimuli were two random-dot patches moving in different directions. 6 

One stimulus had low luminance contrast and moved with high coherence, whereas the other had 7 

high contrast and moved with low coherence. We found that how MT neurons represent multiple 8 

stimuli depended on the spatial arrangement of the stimuli. When two stimuli were overlapping, 9 

MT responses were dominated by the stimulus component that had high contrast. When two 10 

stimuli were spatially separated within the receptive fields, the contrast dominance was abolished. 11 

We found the same results when using contrast to compete with motion speed. Our neural data and 12 

computer simulations using a V1-MT model suggest that the contrast dominance found with 13 

overlapping stimuli is due to normalization occurring at an input stage fed to MT, and MT neurons 14 

cannot overturn this bias based on their own feature selectivity. The interaction between spatially 15 

separated stimuli can largely be explained by normalization within MT. Our results revealed new 16 

rules on stimulus competition and highlighted the impact of hierarchical processing on 17 

representing multiple stimuli in the visual cortex.  18 
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SIGNIFICANCE STATEMENT 19 
 20 
Previous studies have shown that the neural representation of multiple visual stimuli can 21 

be accounted for by a divisive normalization model. By using multiple stimuli that compete in 22 

more than one feature domain, we found that luminance contrast has a dominant effect in 23 

determining competition between multiple stimuli when they were overlapping but not spatially 24 

separated. Our results revealed that neuronal responses to multiple stimuli in a given cortical area 25 

cannot be simply predicted by the population neural responses elicited in that area by the individual 26 

stimulus components. To understand the neural representation of multiple stimuli, rather than 27 

considering response normalization only within the area of interest, one must consider the 28 

computations including normalization occurring along the hierarchical visual pathway. 29 
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Introduction 30 
 31 
In natural scenes, multiple visual stimuli are often present in a local spatial region. While 32 

it is generally well understood how neurons in the visual cortex encode a single stimulus, how 33 

neurons encode multiple visual stimuli within their receptive fields (RFs) remains to be elucidated. 34 

Because visual perception depends critically on the integration and segregation of multiple visual 35 

stimuli (Braddick, 1993), understanding the neural representation of multiple stimuli is of 36 

significant importance.  37 

 38 

The middle temporal (MT) cortex is an extrastriate brain area that is important for visual 39 

motion processing (Britten, 2003; Born and Bradley, 2005; Park and Tadin, 2018). Neurons in area 40 

MT receive feedforward inputs from direction-selective neurons in V1 (Movshon and Newsome, 41 

1996) and have RFs about ten times larger in size than those of V1 neurons at the same 42 

eccentricities (Gattass and Gross, 1981; Albright and Desimone, 1987). Previous studies have 43 

shown that neuronal responses in area MT elicited by multiple moving stimuli follow a sub-linear 44 

summation of the responses elicited by the individual stimulus components (Snowden et al., 1991; 45 

Qian and Andersen, 1994; Recanzone et al., 1997; Ferera and Lisberger, 1997; Britten and Heuer, 46 

1999; Heuer and Britten, 2002; McDonald et al., 2014), consistent with a model of divisive 47 

normalization (Simoncelli and Heeger, 1998; Britten and Heuer, 1999; Carandini and Heeger, 48 

2011).  49 

 50 

Work in our laboratory has shown that the direction tuning curves of MT neurons to 51 

overlapping random-dot stimuli moving transparently in different directions can also be described 52 

as a weighted sum of the responses elicited by the individual stimulus components (Xiao et al., 53 

2014; Xiao and Huang, 2015). When two stimulus components have different signal strengths in 54 

one feature domain, defined either by motion coherence or luminance contrast, MT neurons pool 55 

the stimulus component that has a stronger signal strength with greater weight (Xiao et al., 2014). 56 

The response bias in MT toward the stimulus component that has a stronger signal strength can be 57 

accounted for by a descriptive model of divisive normalization (Xiao et al., 2014), similar to the 58 

contrast normalization model used to describe neuronal responses in V1 (Carandini et al., 1997; 59 

Busse et al. 2009).   60 

 61 
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However, natural scenes contain multiple visual stimuli that often differ in more than one 62 

feature domain. For example, one stimulus may have a stronger signal strength in feature A but a 63 

weaker signal strength in feature B, whereas another stimulus may have a weaker signal strength 64 

in feature A but a stronger signal strength in feature B.  In this case, it is unclear which stimulus 65 

has an overall stronger signal strength and, more generally, how visual stimuli with multiple 66 

competing features interact within neurons’ RFs.  67 

 68 

One possibility is that, to neurons in a given brain area, the overall signal strength of a 69 

visual stimulus is reflected in the evoked responses of a population of neurons in that area. Due to 70 

divisive normalization within that area, a neuron may weigh a visual stimulus more strongly if the 71 

population neural response elicited by that stimulus is greater than the population response elicited 72 

by a competing stimulus. Alternatively, how neurons in a given brain area weigh multiple 73 

competing stimuli may be the result of neural computations occurring in multiple stages along the 74 

hierarchical visual pathway and may not be explained by simply considering the population neural 75 

responses elicited by the individual stimulus components in the area of interest. 76 

 77 

Here, we investigate the rule by with neurons in area MT encode multiple moving stimuli 78 

that compete in more than one feature domain. We found that MT responses to multiple stimuli 79 

changed drastically when the spatial arrangement of the visual stimuli was varied. Our results 80 

revealed how visual stimuli that differ in multiple feature domains interact within neurons’ RFs 81 

and shed light on how the neuronal responses in a given cortical area are shaped by neural 82 

processing along the hierarchical visual pathway.  83 

 84 
 85 
Materials and Methods 86 
 87 

Two male adult rhesus monkeys (Macaca mulatta) were used in the neurophysiological 88 

experiments. Experimental protocols were approved by the Institutional Animal Care and Use 89 

Committee of UW-Madison and conform to U.S. Department of Agriculture regulations and to the 90 

National Institutes of Health guidelines for the care and use of laboratory animals. Procedures for 91 

surgical preparation and electrophysiological recordings were routine and similar to those 92 

described previously (Xiao et al., 2015). A head post and a recording cylinder were implanted 93 
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during sterile surgery with the animal under isoflurane anesthesia. For electrophysiological 94 

recordings from neurons in area MT, we took a vertical approach and used tungsten electrodes (1- 95 

3 MΩ, FHC). We identified area MT by its characteristically large portion of directionally selective 96 

neurons, small RFs relative to those of neighboring medial superior temporal cortex (area MST), 97 

its location at the posterior bank of the superior temporal sulcus, and visual topography of the RFs 98 

(Gattass and Gross, 1981). Electrical signals were amplified and single units were identified with 99 

a real-time template-matching system and an offline spike sorter (Plexon). Eye position was 100 

monitored using a video-based eye tracker (EyeLink, SR Research) with a rate of 1000 Hz. 101 

 102 

Visual stimuli and experimental procedure 103 

 104 

Stimulus presentation and data acquisition were controlled by a real-time data acquisition 105 

program “Maestro” (https://sites.google.com/a/srscicomp.com/maestro/home). Visual stimuli 106 

were presented on a 25-inch CRT monitor at a viewing distance of 63 cm. Monitor resolution was 107 

1024 × 768 pixels, with a refresh rate of 100 Hz. Stimuli were generated by a Linux workstation 108 

using an OpenGL application that communicated with an experimental control computer. The 109 

luminance of the video monitor was measured with a photometer (LS-110, Minolta) and was 110 

gamma-corrected. 111 

 112 

 Visual stimuli were achromatic random-dot patches presented within a circular aperture 113 

with a diameter of 3°. Individual dots were squares of 2 pixels extending 0.08° on each side, and 114 

each random-dot patch had a dot density of 2.7 dots/deg2. The dots had a luminance of either 79 115 

or 22 cd/m2, presented on a uniform background with a luminance of 10 cd/m2, which gives rise 116 

to a Michelson contrast of either 77.5% or 37.5%. Random dots in each patch moved within the 117 

stationary aperture in a specified direction. The motion coherence of each random-dot patch was 118 

set to either 100% or 60%. To generate a random-dot patch moving at N% of motion coherence 119 

(after Newsome and Pare 1988; Britten et al. 1992), N% of the “signal” dots were selected to move 120 

coherently, while the rest of the dots referred to as the “noise” dots were repositioned randomly 121 

within the aperture. Random selections of the “signal” and “noise” dots occurred at each monitor 122 

frame. Therefore, a given dot would switch back and forth between a signal dot and a noise dot. 123 

The lifetime of each dot was as long as the motion duration.   124 
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 125 

In each experimental trial, the monkey maintained fixation within a 1° × 1° electronic 126 

window around a small fixation point. After a neuron was isolated, we first characterized its 127 

direction selectivity by interleaving trials of a 30° × 27° random-dot patch, moving in different 128 

directions at a step of 45° and at a speed of 10°/s. The direction selectivity and preferred direction 129 

(PD) were determined on-line using MATLAB (MathWorks). We then characterized the speed 130 

tuning of the neuron using a random-dot patch moving at different speeds (1, 2, 4, 8, 16, 32, or 131 

64°/s) in the neuron’s PD. Using a cubic spline, the preferred speed (PS) of the neuron was taken 132 

as the speed that evoked the highest firing rate in the fitted speed tuning curve. Next, we used a 133 

series of 5° × 5° random-dot patches moving in the PD and at the PS of the neuron to map the 134 

neuron’s RF. The location of the patch was randomized and the screen was tiled in 5° steps. The 135 

RF map was interpolated at 0.5° intervals, and the location giving rise to the highest firing rate 136 

was taken as the center of the RF.  137 

 138 

In the main experiments, the visual stimuli appeared after the monkey maintained fixation 139 

for 200 ms. To separate the neuronal responses to the stimulus motion from those due to the 140 

stimulus onset, the visual stimuli were first turned on and remained stationary for 200 ms before 141 

they started to move for 500 ms. The visual stimuli were then turned off. The monkeys maintained 142 

fixation for an additional 200 ms after the stimulus offset. In some stimulus trials, two random-dot 143 

patches that moved in different directions, referred to as two stimulus components,  were presented 144 

simultaneously. The direction separation between two stimulus components was fixed at 90°.  We 145 

varied the vector averaged (VA) direction of the bi-directional stimulus around 360° to 146 

characterize the response tuning curve. The two stimulus components were either overlapping in 147 

one of two locations (site a or b) within the RF, or they were spatially separated within the RF, one 148 

centered at site a and the other at site b, with at least 1° gap between the borders of the two random-149 

dot patches (illustrated in Fig. 1). In other trials, only one stimulus component was presented at 150 

either site a or site b and the direction was varied to characterize the tuning curve to the stimulus 151 

component.  For the majority of the experiments, the VA and component directions were varied in 152 

a step of 15°. In a small set of experiments, the directions were varied in a step of 30°. The trials 153 

presenting bi-directional stimuli and individual stimulus components were randomly interleaved. 154 

 155 
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In the first experiment, one random-dot patch, referred to as the “low contrast & high 156 

coherence” component, had a luminance contrast of 37.5% and a motion coherence of 100%. The 157 

other random-dot patch, referred to as the “high contrast & low coherence” component, had a 158 

luminance contrast of 77.5% and a motion coherence of 60%. Both stimulus components moved 159 

at the same speed, which was set at the neuron’s PS if it was below 10°/s, or at 10°/s if the PS was 160 

at or greater than 10°/s. Note that when a random-dot patch moved at 60% coherence in a given 161 

direction, the visual stimulus was different from a situation where 60% of the dots always moved 162 

coherently and the rest of the 40% of dots always moved randomly. Because the random selection 163 

of signal and noise dots occurred at each monitor frame in our stimuli, a noise dot at one frame 164 

may turn into a signal dot in the next frame and move in the coherent direction. Perceptually, it is 165 

difficult to segregate the noise dots from the signal dots of the same stimulus component. The 166 

noise dots of the “high contrast & low coherence component” are not an independent entity and 167 

do not appear to interfere with the coherence of the “low contrast & high coherence” component 168 

perceptually. 169 

 170 

In the second experiment, we set the motion coherence of both random-dot patches to 100% 171 

but used different speeds for the two stimulus components. One random-dot patch, referred to as 172 

the “low contrast & faster speed” component, had a luminance contrast of 37.5% and moved at 173 

10°/s. The other random-dot patch, referred to as the “high contrast & slower speed” component, 174 

had a luminance contrast of 77.5% and moved at 2.5°/s.  175 

 176 

Data analysis  177 

 178 

Response firing rate was calculated during the period of 500-ms stimulus motion and 179 

averaged across repeated trials. We fitted the raw direction tuning curves for the bi-directional 180 

stimuli and the individual stimulus components using splines at a resolution of 1°. We then 181 

rotated the spline-fitted tuning curve to the bi-directional stimuli so that the VA direction of 0° 182 

was aligned with the PD of each neuron. In the first experiment, the responses of each neuron to 183 

the bi-directional stimuli and individual stimulus components were normalized by the maximum 184 

response to the “low contrast & high coherence” component. In the second experiment, the 185 

responses of each neuron were normalized by the maximum response to the faster speed 186 
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component. We averaged the rotated and normalized tuning curves across neurons to obtain 187 

population-averaged tuning curves. 188 

 189 

To quantify the relationship between the responses elicited by the bi-directional stimuli 190 

and those elicited by the individual stimulus components, we fitted the direction tuning curves 191 

using a summation plus nonlinear interaction (SNL) model (Eq. 1), which has been shown to 192 

provide a better fit of MT responses elicited by bi-directional stimuli than a linear weighted 193 

summation model (Xiao et al., 2014).  194 

 195 

𝑅"#$%(𝜃(, 𝜃*) = 𝑤(𝑅((𝜃() +	𝑤*𝑅*(𝜃*) + 𝑏𝑅((𝜃()𝑅*(𝜃*),              (1) 196 

 197 

where Rpred is the response to the bi-directional stimuli predicted by the model; θ1 and θ2 are the 198 

two component directions; R1 and R2 are the measured component responses elicited by the two 199 

stimulus components when presented alone; w1 and w2 are the response weights for R1 and R2, 200 

respectively; and b is the coefficient of multiplicative interaction between the component 201 

responses. To determine whether the response elicited by the bi-directional stimuli showed a 202 

significant bias toward one of the two stimulus components, we compared the response weights 203 

w1 and w2 using either a paired t-test or a Wilcoxon signed-rank test. 204 

 205 

We also fitted the response tuning curves to the bi-directional stimuli using a few variants 206 

of a divisive normalization model (Carandini and Heeger, 2011) (see Results). The model fits were 207 

obtained using the constrained minimization tool ‘fmincon’ (MATLAB) to minimize the sum of 208 

squared error. 209 

 210 

To evaluate the goodness of fit of a model for the response tuning curve to the bi-directional 211 

stimuli, we calculated the percentage of variance (PV) accounted for by the model as: 212 

 213 

𝑃𝑉 = 100	 ×	61 −	889
88:
;		,                                                 (2) 214 

 215 

where SSE is the sum of squared errors between the model fit and the neuronal data, and SST is 216 

the sum of squared differences between the data and the mean of the data (Morgan et al., 2008). 217 
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V1-MT Model  218 

 219 

We adapted a computational model proposed by Simoncelli and Heeger (1998) 220 

(http://www.cns.nyu.edu/~lcv/MTmodel/) to reconstruct our visual stimuli and to simulate the 221 

neuronal response tuning to the bi-directional stimuli that were either overlapping or spatially 222 

separated. The model contained several consecutive stages, which can be interpreted as V1 simple, 223 

V1 complex, and MT (Simoncelli and Heeger, 1996; Rust et al., 2006). Based on the dimensions 224 

of video monitor and viewing distance in our neurophysiological experiments, 1° of visual angle 225 

corresponds to 21 pixels. The random-dot patch in our model simulations had a circular aperture 226 

with a diameter of 63 pixels (i.e. 3°) and the same dot density as used in our experiments. Each 227 

dot had a size of 2 × 2 pixels.  228 

 229 

We set the RFs of model neurons by Gaussian convolutional filters (Table 1). We estimated 230 

the size of the RF for each neuron type by summing the lengths of the incorporated filters. For the 231 

spatially-separated stimuli, we set a blank gap between the two stimulus components as the RF 232 

size of the V1 complex neuron, which is 1.2°, to ensure that no V1 neuron would be driven by 233 

both stimulus components. We generated direction-selective neuron populations that 234 

approximately tiled a sphere in the frequency domain. We tuned	the contrast response functions 235 

by adjusting C50 values for V1 and MT neurons. These C50 values were represented in the model 236 

as σ2 in the normalization equation (Eq. 3), which was applied to both V1 complex cell and MT 237 

stages of the model (adapted from Simoncelli and Heeger 1998 and Rust et al., 2006). 238 

 239 

           𝑅′=(𝑡) 	=
⌊𝑅𝑛(𝑡)⌋

𝐾∑ ⌊𝑤𝑚∙𝑅𝑚(𝑡)⌋	+	𝜎2𝑚
		,                    (3) 240 

 241 

where Rn(t) represents the nth neuron’s linear filter response; R’n(t) represents the normalized 242 

response of either V1 complex cell or MT neuron; ⌊		⌋	denotes half-wave rectification; K represents 243 

the strength of normalization, which was set as 1-σ2; m represents the nth neuron’s normalization 244 

pool; w represents the Gaussian spatial weighting profile of the normalization pool, with a standard 245 

deviation of SDnorm. The model parameters for V1 and MT stages are defined in Table 1. We fitted 246 

the model contrast response functions to neural data from V1 and MT as described in Sclar et al. 247 

(1990). Similarly, we tuned coherence responses by varying the spatial scale of the normalization 248 
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pool (m), the weighting profile within the pool (w), and the size of the V1 linear RF. The MT 249 

coherence response function was fitted to data replotted from Figure 1C in Britten and Newsome 250 

(1998). We are not aware of published neural data on V1 coherence response function. So the 251 

parameters for V1 model neurons were varied to simulate our MT responses to bi-directional 252 

stimuli without a constraint on V1 coherence response function. The same model parameters were 253 

used for the overlapping and spatially separated conditions.  254 

 255 

Table 1. Model parameters for V1 and MT neurons 256 

 257 
Model parameters V1 stage MT stage 

RF size (pixels) 15  (simple cell) 
25 (complex cell) 

211 

Standard Deviation (SD) of Gaussian 
RF profile (pixels) 

0.73/2.19/6.57 (3 scales for simple cells) 
7 (complex cell) 

53 

σ2 (C50) 0.0016 0.000049 
Size of normalization pool m (pixels) 38 153 

SDnorm (pixels) 5 52 
Baseline activity 0 0.1 

 258 
 259 
We explored several variants of the model architecture. The model parameters were fitted 260 

after each architectural manipulation. The following changes enabled the model to better capture 261 

the trends of the stimulus competition found in our neural data. First, we used area-normalized 262 

Gaussian functions to set the weights for the spatial pooling and local population normalization.  263 

Second, multiple frequency scales for V1 simple cells were computed by tripling the standard 264 

deviation of the underlying 3rd order derivative Gaussian, similar to the doubling suggested in 265 

Simoncelli and Heeger (1998) – this change was made after spectral analysis of stimuli showed 266 

that a wider range of scales was necessary to capture motion at lower coherence. Third, V1 afferent 267 

weights were not adjusted to zero mean, allowing MT neurons to have variable proportions of 268 

positive and negative inputs. Finally and importantly, rectification and static nonlinearity were 269 

applied to the MT stage after spatial pooling and before normalization, which is physiologically 270 

plausible and provides a better fit of our neural data. 271 

 272 
 273 
 274 
 275 
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Results 276 
 277 

We asked the question of how neurons in extrastriate area MT represent multiple visual 278 

stimuli that compete in more than one feature domain. To address this question, we conducted 279 

neurophysiological experiments and computer simulations. We recorded from isolated single 280 

neurons in area MT of two macaque monkeys while they performed a fixation task. Visual stimuli 281 

were two random-dot patches moving simultaneously in different directions within the RFs. In the 282 

first experiment, we used luminance contrast and motion coherence as two competing features. 283 

One stimulus had high contrast but moved with low coherence, whereas the other stimulus had 284 

low contrast but moved with high coherence (see Methods). We manipulated the spatial 285 

arrangement of the visual stimuli to investigate the contributions of earlier visual areas and area 286 

MT in mediating the competition between multiple stimuli. In a second experiment, we used 287 

luminance contrast and motion speed as two competing features. We first present the results from 288 

the neurophysiological experiments and then computer simulations. 289 

 290 

Neurophysiological experiments 291 
 292 

We measured the direction tuning curves of MT neurons in response to two stimuli that 293 

had competing visual features and moved simultaneously in different directions. Our dataset 294 

includes recordings from 76 MT neurons, 43 from monkey G and 33 from monkey B. We set the 295 

angular separation between the motion directions of two individual stimuli, referred to as the 296 

stimulus components, at 90° and varied the VA direction of the stimuli. In the first experiment, 297 

one stimulus component had a low contrast of 37.5% and moved at a high motion coherence of 298 

100%. The other component had a high contrast of 77.5% and moved at a low coherence of 60%.  299 

Figure 1 shows the direction tuning curves of two representative neurons. The red curve shows the 300 

neuronal response elicited when both stimulus components were present, as a function of the VA 301 

direction of the two stimulus components. The green and blue curves show the neuronal responses 302 

elicited by the individual stimulus components when presented alone. The tuning curves of the 303 

component responses are arranged such that, at each VA direction, the data points on the green 304 

and blue curves correspond to the responses elicited by the individual stimulus components of that 305 

VA direction (note the color-coded abscissas for the component directions in Fig. 1A2).   306 

 307 
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For the two example neurons, the peak response of the direction tuning curve to the “low 308 

contrast & high coherence” component alone (shown in blue) was greater than that to the “high 309 

contrast & low coherence” component (shown in green) (Fig. 1). This is expected since MT 310 

neurons are sensitive to motion coherence within a large coherence range (Britten et al., 1993), 311 

whereas their contrast response function saturates at a low luminance contrast (Sclar et al., 1990). 312 

Consequently, the average of the response tuning curves to the two stimulus components (shown 313 

in gray) was biased toward the “low contrast & high coherence” component.  Surprisingly, we 314 

found that when the two stimulus components were overlapping, the neuronal responses elicited 315 

by the bi-directional stimuli were strongly biased toward the “high contrast & low coherence” 316 

component (Fig. 1A). This response bias was robust and occurred when we placed the overlapping 317 

stimuli at a different site within the RF (Fig. 1B).  318 

 319 

Two overlapping visual stimuli could stimulate not only the RFs of single MT neurons but 320 

also the RFs of single V1 neurons. The response bias toward the “high contrast & low coherence” 321 

component may be caused by the neural processes within area MT, or alternatively inherited from 322 

earlier visual areas such as V1. To determine the contribution of earlier visual areas to the response 323 

bias, we placed two stimulus components at different locations within the RF of a given MT 324 

neuron. The two stimulus components were separated by a gap of at least 1° (illustrated in Fig. 325 

1C). With this spatial arrangement, the RF of a single V1 neuron could only be stimulated by one 326 

of the two stimulus components, whereas the RF of an MT neuron could still be stimulated by both 327 

components. We found that the response tuning to the bi-directional stimuli changed drastically 328 

when stimulus components were spatially separated. MT responses elicited by the bi-directional 329 

stimuli no longer showed a bias toward the “high contrast & low coherence” component, but 330 

roughly followed a scaled average of the component responses (Fig. 1C).  331 

 332 

Figure 2 shows the tuning curves averaged across 70 MT neurons. The population-333 

averaged response elicited by the “low contrast & high coherence” component moving in the PD 334 

of each neuron, aligned to 0°, was significantly greater than that elicited by the “high contrast & 335 

low coherence” component moving in the PD (one-tailed paired t-test, p = 4.1×10-7). However, 336 

when the two stimuli were overlapping, the population response elicited by the bi-directional 337 

stimuli was almost completely biased toward the weaker “high contrast & low coherence” 338 
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component, regardless of the spatial location within the RF (Fig. 2A and 2B). The bias toward the 339 

“high contrast & low coherence” component at a given VA direction was in a manner of “higher-340 

contrast-take-all”. For example, at a VA direction of 45° where the “low contrast & high 341 

coherence” component moved in the PD (0°) and the “high contrast & low coherence” component 342 

moved in 90° (indicated by a dotted line in Fig. 2A), the bi-directional response closely followed 343 

the much weaker response elicited by the “high contrast & low coherence” component. When the 344 

two stimulus components were spatially separated within the RF, the strong bias toward the “high 345 

contrast & low coherence” component was abolished (Fig. 2C).  The population response to the 346 

bi-directional stimuli now showed roughly equal weighting of the responses elicited by the 347 

individual stimulus components.  348 

 349 

 The SNL model (see Eq. 1 in Methods) provided an excellent fit of the MT responses 350 

elicited by the bi-directional stimuli, illustrated by the black curves in Figure 1. Across our neuron 351 

population the model fit accounted for, on average, 83% of the response variance (see Methods). 352 

Figure 3 compares the response weights for the two stimulus components obtained from the SNL 353 

model fits. In the overlapping condition, the mean response weight w2 for the “high contrast & low 354 

coherence” component was significantly greater than the weight w1 for the “low contrast & high 355 

coherence” component (one-tailed paired t-test, p = 1.9×10-45 for site a, p = 2.5×10-28 for site b) 356 

(Fig. 3A). Nearly all data points, each representing the result from one neuron, were below the 357 

unity line. The mean response weight for the “high contrast & low coherence” component was 358 

0.97 (std = 0.24), whereas the mean weight for the “low contrast & high coherence” component 359 

was 0.23 (std = 0.25), indicating a dominant effect of the “high contrast & low coherence” 360 

component in determining the neuronal response to the bi-directional stimuli.  361 

 362 

When the two stimulus components were spatially separated within the RF, the response 363 

weights changed significantly, becoming symmetrically distributed relative to the unity line (Fig. 364 

3B). The spread of weights in the spatially-separated condition is larger than that in the overlapping 365 

condition. The mean weight for the “high contrast & low coherence” component decreased to 0.66 366 

(std = 0.32), whereas the mean weight for the “low contrast & high coherence” component 367 

increased to 0.68 (std = 0.43). The mean weights for the two components were no longer different 368 
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(paired t-test, p = 0.8) but were significantly greater than 0.5 of response averaging (t-test, p < 369 

0.001). 370 

 371 

To quantify the response bias toward an individual stimulus component, we calculated a 372 

bias index (BI) :   373 

 374 

BI = (w2 - w1)/( w2 + w1)                             (4) 375 

 376 

A positive value of the index indicates a bias toward the “high contrast & low coherence” 377 

component. Figure 3C shows how this bias index changes with the spatial arrangement of the 378 

visual stimuli. In the overlapping condition, the mean BI is 0.73 (std = 0.23), which is significantly 379 

greater than 0 (one-tailed t-test, p = 7.5×10-35). In the spatially-separated condition, the mean BI is 380 

-0.01 (std = 0.95), which is not significantly different from 0 (p = 0.7). The mean BI obtained in 381 

the overlapping condition is significantly greater than that in the spatially-separated condition 382 

(one-tailed paired t-test, p = 4.7×10-9), indicating a change of the response bias when the spatial 383 

arrangement of the visual stimuli is altered.  384 

 385 

We previously found that the tuning curves of some MT neurons to overlapping bi-386 

directional stimuli can show a directional “side-bias” toward one of the two direction components 387 

(Xiao and Huang, 2015). A subgroup of neurons prefers the stimulus component at the clockwise 388 

side of two motion directions, whereas another group prefers the component direction at the 389 

counter-clockwise side. These response biases can occur even when both stimulus components 390 

have the same contrast and coherence. In the experiment shown in Figures 1-3, the “high contrast 391 

& low coherence” component always moved at the counter-clockwise side direction (Fig. 2A, 2B). 392 

Could the strong bias toward the “high contrast & low coherence” component in the overlapping 393 

condition be due to a biased neuron sample that happened to have a strong bias toward the direction 394 

component at the counter-clockwise side? To address this concern, we arranged the direction 395 

components differently.  396 

 397 

Figure 4A and B show the averaged direction tuning curves of 15 MT neurons when the 398 

direction of the “high contrast & low coherence” component was placed at the counter-clockwise 399 
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side under the overlapping and spatially separated conditions, as in Figure 2. When the “high 400 

contrast & low coherence” component was placed at the clockwise side of the two component 401 

directions, the responses of the same 15 neurons to the bi-directional stimuli still showed a strong 402 

bias toward the “high contrast & low coherence” component under the overlapping condition (Fig. 403 

4C), and showed roughly equal weighting of the two components under the spatially-separated 404 

condition (Fig. 4D). Placing the “high contrast & low coherence” component at the clockwise or 405 

counter-clockwise side of the two component directions had no effect on the response bias, as 406 

measured by the bias index under the overlapping and spatially-separated conditions (Wilcoxon 407 

rank-sum test, p = 0.6). 408 

 

To shed light on the neural mechanisms underlying the response bias, we examined the 409 

timecourse of the neuronal responses in the overlapping and spatially separated conditions. Figure 410 

5 shows the PSTHs calculated using a 10-ms time bin when either the “high contrast & low 411 

coherence” component or the “low contrast & high coherence” component moved in the PD.  412 

When stimuli were overlapping, as soon as MT neurons started to respond to the onset of the static 413 

stimuli (see Methods), the response elicited by both stimulus components already closely followed 414 

the “high contrast & low coherence” component, even before the onset of the stimulus motion 415 

(Fig. 5A, B). After the onset of the motion response, the neuronal response to the bi-directional 416 

stimuli continued to follow the response elicited by the “high contrast & low coherence” 417 

component throughout the motion period, regardless of whether the component moved in the PD 418 

and elicited a strong response (Fig. 5A), or 90° away from the PD and elicited a weak response 419 

(Fig. 5B). Since the strong bias towards the “high contrast & low coherence” component in the 420 

overlapping condition occurred at the very beginning of the stimulus onset, it is unlikely that the 421 

bias was due to selective attention (see Discussion).  422 

 423 

When stimuli were spatially separated, MT neurons also followed the “high contrast & low 424 

coherence” component in response to the onset of the static stimuli (Fig. 5C, D).  After the motion 425 

onset, when the “high contrast & low coherence” component moved in the PD, the motion response 426 

elicited by the bi-directional stimuli initially followed the “high contrast & low coherence” 427 

component for ~30 ms, and was then “pulled down” by the non-PD component (see the arrow in 428 

Fig. 5C). When the “high contrast & low coherence” component moved in the non-PD, the motion 429 
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response elicited by the bi-directional stimuli followed the “high contrast & low coherence” 430 

component for ~10 ms after the onset of the motion response to the PD component, and was then 431 

“pulled up” by the PD component (see the arrow in Fig. 5D). These results suggest that response 432 

normalization under the spatially separated condition takes 10~30 ms to occur.   433 

 434 

When two stimulus components overlap, the random dots from each component constitute 435 

only half of the total number of dots of the two moving surfaces. Could the strong response bias 436 

toward the “high contrast & low coherence” component be due to a reduction of the motion 437 

coherence of the “low contrast & high coherence” component when the stimuli overlapped?  We 438 

think this is an unlikely explanation because overlapping reduces the percentage of the signal dots 439 

relative to the total number of dots for both stimulus components. In addition, our stimuli moved 440 

in two directions separated by 90º. Human observers can reliably segregate the two stimulus 441 

components at this angle separation and the “low contrast & high coherence” component still 442 

appears to move coherently. Overlapping does not change the relative coherence levels nor the 443 

perceived coherence of the two stimulus components. When overlapping random-dot stimuli have 444 

the same luminance contrast but move at different motion coherences, macaque MT response to 445 

both stimulus components is biased toward the high coherence component (Xiao et al., 2014), 446 

indicating that stimulus overlapping does not prevent the response bias toward the high coherence 447 

component given equal contrast.  448 

 449 

To determine whether the dominance by the high-contrast component on MT responses 450 

elicited by overlapping stimuli occurs only when luminance contrast and motion coherence 451 

compete with each other, we conducted a second experiment using visual stimuli that differ in 452 

luminance contrast and motion speed. We previously found that when two overlapping random-453 

dot patches moved in the same direction at different speeds, within a range of low to intermediate 454 

speeds, the responses of MT neurons elicited by the bi-speed stimuli was biased toward the faster 455 

speed component (X. Huang et al., unpublished data). Motivated by this finding, we used motion 456 

speed to compete with luminance contrast. As in the main experiment, the visual stimuli contained 457 

two random-dot patches moving in two directions separated by 90° and we varied the VA direction 458 

to measure the direction tuning curves. One stimulus component had a high luminance contrast of 459 

77.5% and moved at a slower speed of 2.5°/s. The other stimulus component had a low luminance 460 
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contrast of 37.5% and moved at a faster speed of 10°/s.  Both stimulus components moved at 100% 461 

coherence and were either overlapping or spatially-separated within the RF of a given MT neuron 462 

as in the first experiment. We also measured the direction tuning curves when the two stimulus 463 

components both had high luminance contrast (77.5%) and moved at 2.5°/s and 10°/s, respectively, 464 

at 100% coherence.  465 

 466 

We recorded from 13 MT neurons using these visual stimuli. Figure 6 shows the 467 

population-averaged tuning curves. When both stimulus components had high contrast, the peak 468 

response elicited by the faster (10°/s) stimulus component moving in the PD (i.e. 0°) was greater 469 

than that elicited by the slower (2.5°/s) component moving in the PD. The component responses 470 

are shown in green and purple in Figure 6A. When the two stimulus components were overlapping, 471 

the tuning curve elicited by both stimulus components (shown in red) is biased toward the faster 472 

stimulus component, more than what is predicted by the average of the component responses 473 

(shown in gray) (Fig. 6A). We fitted the direction tuning curves using the SNL model for each 474 

neuron (Eq. 1). The median response weight obtained by the model fit for the faster stimulus 475 

component (0.88) was significantly greater than the median weight (0.41) for the slower 476 

component (Wilcoxon signed-rank test, p = 7.3 x 10-4). This result extended our previous finding 477 

of the response bias toward the faster stimulus component for stimuli moving in the same direction 478 

(unpublished results) to stimuli moving in different directions.  479 

 480 

When the overlapping stimuli moving at different speeds had different luminance contrasts, 481 

the responses elicited by both stimulus components showed a strong bias toward the “high contrast 482 

& slower speed” component, even though the peak response to this component alone was 483 

significantly weaker than that to the “low contrast & faster speed” component (Fig. 6B). We found 484 

the same result when the two stimulus components overlapped at a different site within the RF 485 

(Fig. 6C). Under the overlapping condition, the median response weight for the “high contrast & 486 

slower speed” component was 0.81, which was significantly greater than the median weight for 487 

the “low contrast & faster speed” component (0.17) (Wilcoxon signed-rank test, p = 2.4 x 10-4).  488 

Separating the two stimulus components spatially within the RF abolished the bias toward the 489 

“high contrast & slower speed” component (Fig. 6D). As the spatial arrangement of the stimulus 490 

components changed from overlapping to spatially separated, the median bias index (Eq. 4) 491 
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decreased significantly from 0.65 to -0.08 (Wilcoxon signed-rank test, p = 0.0012). These results 492 

confirmed that luminance contrast has a dominant effect on MT responses elicited by overlapping 493 

stimuli, which is not unique to the competition between contrast and motion coherence. The spatial 494 

arrangement of visual stimuli can substantially change the competition between multiple stimuli 495 

within the RF. 496 

 497 

Fitting response tuning curve using the normalization model 498 

 499 

Previous studies have shown that neuronal responses elicited by multiple stimuli in many 500 

brain areas can be described by a divisive normalization model (Carandini and Heeger, 2011). We 501 

asked whether our results could also be accounted for by response normalization. We first fitted 502 

the data using the following equation:  503 

 504 

               𝑅"#$%(𝜃(, 𝜃*) 	=
8HI

8HIJ8KIJL
𝑅((𝜃() +

8KI

8HIJ8KIJL
𝑅*(𝜃*) + 𝑐	,                (5)             505 

 506 

where R1 and R2 are the evoked direction tuning curves to the two stimulus components 1 and 2, 507 

respectively. θ1 and θ2 are the component directions. S1 and S2 represent the signal strengths of the 508 

“low contrast & high coherence” component and the “high contrast & low coherence” component, 509 

respectively. Rpred is the model-predicted response elicited by both stimulus components presented 510 

simultaneously.  n, σ, and c are model parameters with the constraints of n ≥ 1 and c > 0. Equations 511 

of the similar form have been used previously to describe normalization involving contrast, in 512 

which case the signal strength is simply the luminance contrast (Carandini et al., 1997; Busse et 513 

al., 2009; Xiao et al., 2014; Bao and Tsao, 2018). Since our visual stimuli competed in more than 514 

one feature domain, it was not obvious which stimulus component had an overall stronger signal 515 

strength. Because the brain has to make an inference of the signal strength based on the elicited 516 

neural responses, we assumed that the signal strength of a stimulus component, in the “eye” of MT 517 

neurons, is reflected in the neural responses elicited by that stimulus component moving in a fixed 518 

direction summed across a population of MT neurons that have different PDs evenly spanning 519 

360º. This summed population response is invariant to the direction of the stimulus component, 520 

which is suitable for representing signal strength. Equivalently, the summed population neural 521 

response in MT can be approximated by summing the responses of each neuron elicited by 522 
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stimulus component i moving in different directions spanning 360º and averaged across neurons 523 

in our data sample, e.g. to sum the population-averaged component responses across directions in 524 

Figure 2. This was how we calculated Si, (i =1, 2).  525 

 526 

This normalization model (Eq. 5) failed to capture the response tuning to overlapping bi-527 

directional stimuli, accounting for only 33% of the response variance (34% for site a, 32% for site 528 

b). The model performed better when stimuli were separated, accounting for 66% of the variance. 529 

We found similar results when using this model to fit the data from our second experiment, in 530 

which luminance contrast competed with motion speed. The model accounted for an average of 531 

44% of the response variance (38% for site a, 50% for site b) when stimuli were overlapping, and 532 

77% of the variance when stimuli were separated (Table 2). 533 

 534 

It has been suggested that response normalization can be tuned, such that individual 535 

stimulus components contribute differently to normalization (Ni et al., 2012; Rust et al., 2006; also 536 

see Carandini et al., 1997). We therefore fitted our data using a tuned normalization equation: 537 

 538 

         𝑅"#$%(𝜃(, 𝜃*) 	=
8HI

8HIJN8KIJL
𝑅((𝜃() +

8KI

8HIJN8KIJL
𝑅*(𝜃*) + 𝑐	,             (6)    539 

 540 

where α is a positive parameter that scales the contribution of S2 with respect to S1 to normalization. 541 

We found that introducing tuned normalization did not improve the model performance at all when 542 

stimuli were overlapping, accounting for an average of 33% of the response variance (34% for site 543 

a, 32% for site b). When stimuli were separated, the tuned normalization model accounted for 68% 544 

of the variance. We found the same results when fitting the data collected when contrast competed 545 

with speed (Table 2).  546 

 547 

The poor fit of the responses under the overlapping condition by the standard normalization 548 

model (Eq. 5) can be understood because MT neurons showed a very strong bias toward the high 549 

contrast component, whereas S1 and S2 were similar. The tuned normalization was not able to 550 

improve the fit because, although it changed the relative contributions of the stimulus components 551 

to the normalization pool in the denominator, it kept the numerators in Equation 6 unchanged.  552 

Hence the relative weights for the two stimulus components did not change. To capture the strong 553 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 11, 2019. ; https://doi.org/10.1101/692541doi: bioRxiv preprint 

https://doi.org/10.1101/692541


21 
 

bias toward the high contrast component in the overlapping condition, a weighting parameter is 554 

needed in the numerator. Accordingly, we fitted our results using the following equation:   555 

 556 

        𝑅"#$%(𝜃(, 𝜃*) 	=
8HI

8HIJO8KIJL
𝑅((𝜃() +

O8KI

8HIJO8KIJL
𝑅*(𝜃*) + 𝑐	,             (7)   557 

 558 

where β is a positive parameter and appears in both the numerator and the denominator. This 559 

parameter allows the relative response weights for the two stimulus components to vary. When β 560 

is greater than one, the response weight for the high contrast component (R2) is greater than that 561 

for the low contrast component (R1). As expected, this equation fitted the data well, accounting for 562 

>80% of the response variance for both the overlapping and spatially separated conditions (Table 563 

2). However, the normalization model itself does not provide an explanation for why the response 564 

weight is greater for the high contrast component in the overlapping condition but not in the 565 

spatially separated condition.  566 

 567 
Table 2. Fitting the direction tuning curves using the normalization model 568 

 569 

 570 
 571 
Computer simulations using a V1-MT model 572 
 573 

Our spatially separated visual stimuli fall inside the RFs of single MT neurons, whereas 574 

only one of the stimulus components would fall inside the RFs of single V1 neurons. Hence, our 575 

Visual Stimuli S1 S2 Percentage of Variance Accounted for 
(mean  ± std) 

Contrast vs. 
Coherence 
(N = 70) 

Low contrast &  
high coherence 

High contrast 
& low 

coherence 

Normalization 
(Eq. 5) 

Tuned 
Normalization 

(Eq. 6) 

Normalization 
with weighted 
Numerators 

(Eq. 7) 
Overlapping (site a) 122.3 126.0 34 ± 18 34 ± 18 86 ± 16 
Overlapping (site b) 128.3 130.9 32 ± 19 32 ± 19 81 ± 19 
Spatially Separated 130.4 130.3 66 ± 24 68 ± 25 83 ± 17 

 
Contrast vs. Speed 

(N = 13) 
 

 
Low contrast & 

faster speed 

 
High contrast 

& slower speed 

 

Overlapping (site a) 128.1 83.6 38 ± 21 39 ± 21 88 ± 14 
Overlapping (site b) 113.3 81.3 49 ± 20 49 ± 20 84 ± 15 
Spatially Separated 128.1 81.3 77 ± 20 77 ± 20 90 ± 5 
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spatially-separated visual stimuli can interact within the RFs of MT neurons but not V1 neurons. 576 

In contrast, the overlapping stimuli can interact within the RFs of both MT and V1 neurons. To 577 

explore the neural mechanisms underlying our physiological findings, we conducted computer 578 

simulations using a hierarchical feedforward model adapted from Simoncelli and Heeger (1998).  579 

This model consists of two processing stages corresponding to areas V1 and MT. Each stage carries 580 

out a series of computations including spatiotemporal filtering, spatial pooling, rectification, and 581 

divisive normalization. At the V1 stage, simple cells receive input directly from the visual stimulus 582 

and complex cells pool inputs from rectified and divisively normalized responses of V1 simple 583 

cells. At the MT stage, MT neurons pool inputs from V1 complex cells, followed by rectification 584 

and divisive normalization (Simoncelli and Heeger, 1998; Rust et al., 2006).   585 

 586 

We generated random-dot visual stimuli that are similar to those used in our physiological 587 

experiments and simulated the neuronal responses in areas MT and V1. The visual stimuli and a 588 

simplified architecture of the model are illustrated in Figure 7. The diameter of each random-dot 589 

patch was 3°, extending 63 pixels. The RF sizes of model V1 and MT neurons, set by the sizes of 590 

the convolution filters, were 1.2° and 10° in diameter, respectively (see Methods). The populations 591 

of model neurons in V1 and MT stages approximately tiled a sphere in the spatiotemporal 592 

frequency domain, as in Simoncelli and Heeger’s model (1998). The RFs of V1 and MT neuron 593 

populations covered a region of the visual field that was 17.3° x 17.3°. In the overlapping 594 

condition, the apertures of two random-dot patches overlapped within the RFs (Fig. 7A). In the 595 

spatially-separated condition, the two random-dot patches were placed side by side, separated by 596 

a blank gap that was 1.2° wide, within the RFs of single MT neurons (Fig. 7B). In the overlapping 597 

condition, the V1 neurons whose RFs covered site a were activated by both stimulus components 598 

(Fig. 7A).  In the spatially-separated condition, V1 neurons were activated by only one stimulus 599 

component, either at site a or site b (Fig. 7B).  600 

 601 

We tuned the model parameters (see Methods) to match the experimentally measured 602 

contrast response functions of V1 and MT neurons (Sclar et al., 1990) and the coherence response 603 

function of MT neurons (Britten and Newsome, 1998). The simulated contrast response functions 604 

of V1 and MT neurons fitted the experimental data almost perfectly, and the simulated coherence 605 

response function of MT neurons also matched the data well (Fig. 8A-C). As far as we know, an 606 
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experimentally measured coherence response function of V1 neurons has not been described 607 

previously. Our simulations show that V1 responses increased monotonically with the coherence 608 

level of moving random-dot stimuli (Fig. 8D). The model V1 neurons had lightly higher firing 609 

rates in response to low coherence stimuli and more trial-to-trial variability in comparison with the 610 

model MT neurons (Fig. 8C and D).  611 

 612 

The MT responses elicited by our visual stimuli that competed between luminance contrast 613 

and motion coherence were well captured by the model. Consistent with our experimental data 614 

(Fig. 2), the tuning curve of model MT neurons to the “low contrast & high coherence” component 615 

had a greater peak response than that of the “high contrast & low coherence” component (Fig. 9A, 616 

B). In the overlapping condition, the simulated MT response elicited by the bi-directional stimuli 617 

was nearly completely biased toward the weaker “high contrast & low coherence” component (Fig. 618 

9A), as found in the neural data. The model also captured the change of MT response tuning when 619 

visual stimuli were rearranged spatially. In the spatially-separated condition, the tuning curve of 620 

model MT neurons elicited by the bi-directional stimuli was no longer dominated by the “high 621 

contrast & low coherence” component (Fig. 9B).  622 

 623 

At the V1 stage of the model, the tuning curves of V1 complex cells showed a slightly 624 

greater mean peak response to the “high contrast & low coherence” component than to the “low 625 

contrast & high coherence” component (Fig. 9C). In the overlapping condition, the simulated V1 626 

response elicited by the bi-directional stimuli was strongly biased toward the “high contrast & low 627 

coherence” component (Fig. 9C), to the extent similar to that found in model MT neuron (Fig. 9A), 628 

as measured by the weights for the component responses using the SNL model fits. The bias index 629 

(Eq. 4) for the V1 model neuron was 0.90 and that for the MT model neuron was 0.93. These 630 

simulation results suggest that the strong bias toward the “high contrast & low coherence” 631 

component found in MT is inherited from V1.   632 

 633 

In the spatially-separated condition, the V1 response elicited by the bi-directional stimuli 634 

was the same as that elicited by the single stimulus component placed within the RFs of V1 neurons 635 

(Fig. 9D, E). Although the V1 peak response elicited by the “high contrast & low coherence” 636 

component at site a was slightly stronger than that elicited by the “low contrast & high coherence” 637 
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component at site b, the MT response elicited by the bi-directional stimuli was skewed toward the 638 

“low contrast & high coherence” component, consistent with the average of the component 639 

responses (Fig. 9B). These simulation results suggest that MT response elicited by the bi-640 

directional stimuli in the spatially-separated condition (Fig. 9B) may be due to feature competition 641 

within MT. 642 

 643 

The response tuning curves of single MT neurons measured by varying the VA direction 644 

of the bi-directional stimuli can be mapped to the responses of a population of MT neurons that 645 

have different PDs, elicited by the bi-directional stimuli moving in a given VA direction. Figure 7 646 

summarizes the changes of the response distributions across neuron populations at V1 and MT 647 

stages, under the overlapping and spatially-separated conditions. These results reveal the 648 

importance of neural processing at different stages of the visual hierarchy on determining how 649 

multiple visual stimuli compete within neurons’ RFs in a given brain area.  650 

 651 
 652 

Discussion 653 
 654 

We have shown that how MT neurons represent multiple stimuli competing in more than 655 

one feature domain depends on the spatial arrangement of the visual stimuli. When two stimuli are 656 

overlapping, MT responses are dominated by the stimulus component that has high contrast. When 657 

two stimuli are spatially separated, the contrast dominance is abolished. Our neural data and model 658 

simulations suggest that the contrast dominance found with overlapping stimuli is due to 659 

normalization occurring at an input stage fed to MT, and MT neurons cannot overturn this contrast 660 

dominance based on their own feature selectivity. The interaction between spatially separated 661 

stimuli can largely be explained by normalization within area MT. By using multiple visual stimuli 662 

competing in more than one features domain, our study revealed how neural processing along the 663 

hierarchical visual pathway shapes neural representation of multiple visual stimuli in extrastriate 664 

cortex.  665 

 666 

Consideration of the effect of attention 667 

Attention can bias neuronal responses elicited by multiple stimuli in the RF in favor of the 668 

attended stimulus (Reynolds et al., 1999; Li and Basso, 2005; Treue and Maunsell, 1996; Ferrera 669 
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and Lisberger, 1997; Treue and Martinez-Trujillo, 1999; Recanzone and Wurtz, 2000; Lee and 670 

Maunsell, 2010). Although in this study the animals performed a fixation task without the need to 671 

engage goal-directed attention, could the high contrast component capture stimulus-driven 672 

attention (Corbetta and Shulman, 2002) and bias the neuronal response elicited by the overlapping 673 

stimuli?  Several considerations argue against this possibility. While an abrupt stimulus onset 674 

captures attention (Yantis and Jonides, 1984), a visual stimulus that is brighter than other 675 

distractors does not automatically capture attention (Jonides and Yantis, 1988). The two stimulus 676 

components of our overlapping stimuli were turned on and started to move at the same time. The 677 

stimulus onset may automatically draw attention toward the spatial location of the overlapping 678 

stimuli, but it is unlikely to draw attention toward only the high contrast component. Furthermore, 679 

stimulus-driven attention occurs with a time delay (Nakayama and Mackeben, 1989) and its effect 680 

on neuronal responses in MT is transient, lasting for about 70 ms (Busse et al., 2008). In contrast, 681 

we found that the response bias toward the high contrast component is present in the very 682 

beginning of the neuronal responses following the onset of the static stimuli, and the bias is 683 

persistent throughout the motion period (Fig. 5). In addition, Wannig and colleagues (2007) have 684 

shown that attention directed to one of two overlapping surfaces can alter the responses of MT 685 

neurons. However, attention led to a response magnitude modulation of about 20% in MT between 686 

conditions when attention was directed to two different surfaces (Wannig et al., 2007). Even if, for 687 

some reason, the animals were consistently attending to the high contrast component throughout 688 

the stimulus presentation period in our study, the effect of attention would be insufficient to 689 

account for the nearly complete dominance by the high contrast component.  690 

 691 

Mechanisms underlying stimulus interactions 692 

The primate visual system is hierarchically organized (Maunsell and van Essen, 1983; 693 

Felleman and Van Essen, 1991). The response properties of neurons in a visual area are shaped by 694 

feedforward input, as well as intra-areal and feedback processes. To understand the mechanisms 695 

underlying neural encoding of multiple stimuli, it is important to determine how these processes 696 

contribute to the RF properties in a given visual area. However, it is often difficult to disentangle 697 

the contribution of feedforward input from other neural processes. We have previously found that, 698 

in response to overlapping stimuli, MT neurons show a bias toward the stimulus component that 699 

has a higher signal strength, defined by either luminance contrast or motion coherence  (Xiao et 700 
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al., 2014). The response bias can be described by a model of divisive normalization. Because 701 

neurons in V1 also show a bias toward the stimulus component that has a higher contrast (Busse 702 

et al., 2009; MacEvoy et al., 2009) and divisive normalization may occur in both V1 and MT 703 

(Simoncelli and Heeger, 1998; Heuer and Britten, 2002), it was unclear how the feedforward input 704 

from V1 contributed to the response bias found in MT.   705 

 706 

In this study, we are able to differentiate the impact of feedforward input from other neural 707 

processes on the response properties of MT neurons. Our results suggest that neurons in V1 may 708 

respond more strongly to the “high contrast & low coherence” component than to the “low contrast 709 

& high coherence” component used in our experiment, due to V1 neurons’ sensitivities to contrast 710 

and coherence. When two stimuli overlap, the responses of V1 neurons elicited by both stimulus 711 

components may already show a strong bias toward the “high contrast & low coherence” 712 

component due to divisive normalization in V1 (Fig. 9C). MT neurons are no longer able to remix 713 

the stimulus components according to their own sensitivities to contrast and coherence. In other 714 

words, MT neurons inherit the response bias toward the high contrast component from their input. 715 

When two visual stimuli are spatially separated, MT neurons receive inputs from two different 716 

pools of V1 neurons and each neuron pool responds to only one stimulus component (Fig. 7B). 717 

The neuronal responses elicited by the two stimulus components remain separated in V1. MT 718 

neurons can mix the responses elicited by the two stimulus components via spatial and directional 719 

pooling and divisive normalization within MT. As a result, the mixing in MT may well reflect the 720 

sensitivities of MT neurons to different stimulus features. Our model simulations make predictions 721 

regarding how V1 neurons respond to multiple competing stimuli (e.g. as shown in Fig. 9C), which 722 

can be tested in future physiological study.  723 

 724 

Implications on normalization and encoding of multiple visual stimuli 725 

Our finding that the response weighting for competing stimuli depends on the spatial 726 

arrangement provides a new perspective on the well-established normalization model (Carandini 727 

and Heeger, 2011). The basic form of normalization equations (Eqs. 5-6) predicts that the response 728 

weight for a stimulus component increases with its signal strength, but does not consider the spatial 729 

arrangement of the visual stimuli. We made a surprising finding that MT response to overlapping 730 

stimuli cannot be predicted by the population neural responses in MT elicited by the individual 731 
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stimulus components. One must consider the neural computations occurring along the hierarchical 732 

visual pathway.  733 

 734 

Majaj, Carandini, and Movshon (2007) showed that pattern-direction selective neurons in 735 

MT characterized by overlapping drifting gratings (i.e. plaid) do not integrate the directions of the 736 

component gratings when they were spatially separated within the RF, suggesting that the 737 

computation underlying pattern-direction selectivity in MT is local. Different from the plaid, the 738 

overlapping random-dot stimuli used in our study elicit the percept of motion transparency. We 739 

showed that changing the spatial arrangement of visual stimuli can have a substantial impact not 740 

only on motion integration but also on the competition between multiple stimuli. Our results 741 

revealed that contrast has a dominant effect in determining stimulus competition within a local 742 

spatial region when multiple stimuli differ in more than one feature domain. When visual stimuli 743 

are spatially separated, the effect of contrast is substantially reduced.  744 

 745 

A seminal model involving MT neurons pooling inputs from V1 and divisive normalization 746 

in both V1 and MT has been successful in explaining a range of experimental results of MT 747 

responses (Simoncelli and Heeger, 1998; Rust et al., 2006). However, the model in its original 748 

form does not specify how features are spatially integrated and it does not differentiate overlapping 749 

and spatially separated stimuli (Majaj et al., 2007). In our study, we adapted this model to simulate 750 

both overlapping and spatially separated conditions and showed that the framework can explain 751 

our main physiological findings. Also using this model, Busse, Wade, and Carandini (2009) 752 

previously demonstrated the impact of response normalization in V1 on neural response in MT. 753 

They showed that, by making the contrasts of two drifting gratings of a plaid to be unequal, the 754 

response of a model MT neuron changed from representing the pattern motion of the plaid to 755 

mostly representing the higher-contrast grating component, likely due to contrast normalization in 756 

V1 (Busse et al., 2009). However, the MT response elicited by the higher-contrast grating alone 757 

could also be greater than that elicited by the lower-contrast grating. The model-predicted response 758 

bias toward the higher-contrast component in MT may also be contributed by response 759 

normalization within MT, akin to our experimental result obtained using random-dot stimuli with 760 

unequal contrasts (Xiao et al., 2014). In comparison, our current study provides unequivocal new 761 

evidence on how responses in MT are shaped by the hierarchical network. By using two stimuli 762 
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competing in more than one feature domain, we demonstrated neurophysiologically and 763 

computationally the substantial impact of stimulus competition in the input stage on the neuronal 764 

responses in MT and how that impact changes with the spatial arrangement of visual stimuli. Our 765 

finding may also apply to other visual areas in the hierarchical network, including those in the 766 

ventral visual stream where response normalization has been well documented.  767 
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Figures and Figure Legends 
 

    
 
Figure 1. The response tuning curves of two example MT neurons to overlapping (A, B) and 859 
spatially-separated stimuli (C). Visual stimuli were achromatic random-dot patches moving in two 860 
directions separated by 90°. The “low contrast & high coherence” component (shown in blue 861 
arrow) moved at the clockwise side of the two component directions, whereas the “high contrast 862 
& low coherence” component (shown in green arrow) moved in the direction at the counter-863 
clockwise side.  The X-axis labeled in black indicates the vector average direction of the bi-864 
directional stimuli. The X-axes labeled in blue and green (A2) indicate the direction of the “low 865 
contrast & high coherence” component (Dir. 1) and the direction of “high contrast & low 866 
coherence” component (Dir. 2), respectively. The three X-axes are aligned such that the 867 
component directions shown in blue and green correspond to the directions of the two stimulus 868 
components at each vector average direction. A1-C1: Response tuning curves from one neuron. 869 
A2-C2: Response tuning curves from another neuron. The responses elicited by the bi-directional 870 
stimuli are shown in red (R12). The SNL model fits of R12 are shown in black.  Error bars represent 871 
standard errors.  872 
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Figure 2. Population-averaged tuning curves to the bi-directional stimuli (red) and the 873 
unidirectional stimulus components (blue and green). The vector average direction of the bi-874 
directional stimuli and the directions of individual stimulus components are labeled in the 875 
corresponding X-axes (A), following the same convention as in Figure 1. The direction of 0° was 876 
aligned with each neuron’s PD before the tuning curves were averaged across neurons.  The 877 
stimulus components were overlapping at site a (A) or site b (B), or spatially separated (C) within 878 
the RFs. The width of each tuning curve represents the standard error. The average of the responses 879 
to the two stimulus components is shown in gray.  880 
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Figure 3. The effect of the spatial arrangement of the 881 
bi-directional stimuli on the response weights for the 882 
stimulus components. Each dot represents the result 883 
from one neuron. Comparing the response weights for 884 
the “low contrast & high coherence” component 885 
(ordinate) with the “high contrast & low coherence” 886 
component (abscissa) under the overlapping (A) and 887 
the spatially separated (B) conditions. C. Comparing 888 
the bias indices between the spatially separated  889 
(ordinate) and overlapping (abscissa) conditions. The 890 
histograms in C show the distributions of the bias index 891 
for the overlapping (top) and spatially separated (right) 892 
conditions.  893 
 
 
 
 
 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 11, 2019. ; https://doi.org/10.1101/692541doi: bioRxiv preprint 

https://doi.org/10.1101/692541


34 
 

 

                     
 
 
Figure 4. Control for the directional arrangement of the two stimulus components. A, B. Response 894 
tuning curves averaged across 15 MT neurons to the bi-directional stimuli and the stimulus 895 
components when the direction of the “high contrast & low coherence” component was placed at 896 
the counter-clockwise side of the two component directions, as in Figures 1 and 2. C, D. Response 897 
tuning curves averaged across the same 15 neurons when the direction of the “high contrast & low 898 
coherence” component was placed at the clockwise side of the two component directions.  A, C. 899 
Overlapping condition.  B, D. Spatially separated condition. Notice the switch of the values in the 900 
X-axes of the component directions, shown in blue and green, between A and C, as well as between 901 
B and D.  902 
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Figure 5. Timecourse of the neuronal responses to the bi-directional stimuli and the stimulus 903 
components. Peristimulus time histograms (PSTHs) were calculated using a 10-ms time bin and 904 
averaged across 70 neurons. A, B. The two stimulus components overlapped (at site a) within the 905 
RF. C, D. The two stimulus components were spatially separated within the RF. The dashed 906 
vertical lines at -200 ms indicate the onset of the static stimuli. The solid vertical lines at time 0 907 
indicate motion onset. The solid horizontal bars shown in A and C indicate the stimulus motion 908 
period. The “high contrast & low coherence” component moved in the PD in A and C, and moved 909 
in a non-PD in B, D.  910 
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Figure 6. Averaged response tuning curves to two stimulus components that moved in different 911 
directions and at different speeds. Both stimulus components moved at 100% coherence. The 912 
response tuning to both stimulus components presented simultaneously is shown in red.  The width 913 
of each tuning curve represents the standard error. The average of the component responses elicited 914 
by the individual stimulus components is shown in gray. A. Both stimulus components had high 915 
luminance contrast and were overlapping. B-D. The two stimulus components competed in 916 
luminance contrast and motion speed. The faster speed component had low luminance contrast, 917 
whereas the slower speed component had high luminance contrast. The stimulus components were 918 
overlapping at site a (B) or site b (C), or were spatially separated (D) within the RFs. The vector 919 
average direction of the bi-directional stimuli and the directions of individual stimulus components 920 
are labeled in the corresponding X-axes (A, B), following the same convention as in Figure 2. 921 
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Figure 7. Illustration of a simplified architecture for the V1-MT model. Each MT neuron receives 922 
feedforward inputs from multiple neurons at the V1 stage. Responses are divisively normalized by 923 
the sum of local population activity at both V1 and MT stages. Each small circle represents a 924 
neuron and the black arrow inside the circle indicates the PD. The color of each circle indicates 925 
the response magnitude of the neuron. Yellow means maximum response and red means minimum 926 
response. Visual stimuli are illustrated below neural circuit as the input to the V1 stage. The green 927 
and blue arrows represent the “high contrast & low coherence” component and the “low contrast 928 
& high coherence” component, respectively. Two pools of neurons at the V1 stage that respond 929 
only to site a or site b respectively are illustrated.  The RFs of the MT neurons are illustrated by 930 
the dotted ellipse and cover both site a and site b. A. Overlapping condition.  B. Spatially separated 931 
condition.  932 
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Figure 8. Contrast and coherence response functions of model V1 (B, D) and MT (A, C) neurons.  933 
A, B. Fitted contrast response functions to sinusoidal gratings for model neurons. Green curves 934 
are experimental data replotted from Sclar et al. (1990). C. Fitted coherence response function to 935 
high contrast random-dots for model MT neurons. Green dots are experimental data replotted from 936 
Britten and Newsome (1998). The green curve is the spline fit of the experimental data points. D: 937 
Coherence response to high contrast random-dots for model V1 complex cells. The widths of the 938 
blue curves in C and D represent the standard deviation. N indicates the number of repeats for 939 
simulations. The stimulus dots were regenerated randomly for each simulation in C and D.  940 
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Figure 9. Computer simulations of direction tuning curves of MT and V1 neurons to the bi-941 
directional stimuli used in the main physiological experiment. The visual stimuli are either 942 
overlapping (A, C) or spatially separated (B, D, E) within the RFs of model MT neurons. The 943 
two stimulus components compete in luminance contrast and motion coherence. The simulated 944 
responses to the “low contrast & high coherence” component and the “high contrast & low 945 
coherence” component are shown in blue and green, respectively. The responses to the bi-946 
directional stimuli are shown in red. The vector average direction and the directions of individual 947 
stimulus components are labeled in the corresponding X-axes (A), following the same 948 
convention as in Figure 2. A, B. Simulated responses of model MT neurons.  C-E. Simulated 949 
responses of model V1 complex cells. Widths of the tuning curves in A and B and the error bars 950 
in C-E represent standard deviations.  951 
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