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 15 

Abstract 16 

Context 17 

The spatial distributions of species and populations are both influenced by local variables and 18 

by characteristics of surrounding landscapes. Understanding how landscape features spatially 19 

structure the frequency of a trait in a population, the abundance of a species or the species’ richness 20 

remains difficult specially because the spatial scale effects of the landscape variables are often 21 

unknown.  22 

Objectives  23 

Here, we present “siland”, an R package for analyzing the effect of landscape features on 24 

georeferenced point observations (described in a Geographic Information System shapefile format). 25 

Methods & Results  26 

“siland” simultaneously estimates the spatial scales and intensities of landscape variable 27 

effects. It does not require any information about the scale of effect. Two methods are available: 28 

one is based on focal sample site (Bsiland method, b for buffer) and one is distance weighted using 29 

Spatial Influence Function (Fsiland method, f for function). ‘siland’ allows for effects tests, effects 30 

maps and models comparison. 31 

Conclusions 32 

Adaptable and user-friendly, the “siland” package is a very practical tool to perform 33 

landscape analysis. 34 

  35 

 36 

Keywords: landscape size, spatial scale, Kernel smoothing, buffer, scale of effect, spatial extent, 37 

scale of response, multiscales, multiyear, multisites 38 

 39 

Introduction 40 
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Numerous studies demonstrate that the distribution of species richness and abundance depend on 41 

both local and landscape variables ( García et al., 2011; Rusch et al., 2016; Remm et al., 2017). 42 

However, studying the relationships between landscape and species distributions remains 43 

challenging because the shape and the scale of landscape effects are unknown (Miguet et al., 2016)  44 

and can be missed if assessed at an incorrect scale (Smith et al., 2011). The studied data usually 45 

contains georeferenced observations at point sites, named response variables hereafter, and the 46 

description of several landscape spatial variables, named landscape variables hereafter. Their 47 

studies are often referred to as focal patch studies (Thornton et al., 2011). To identify the scale of 48 

landscape variable effects, the common approach consists of the following: (i) a priori defining a 49 

set of scales; (ii) creating summary variables by computing measures of the landscape variables 50 

within discs or rings of radii equal to each scale  centered on the observation sites (named buffers 51 

hereafter); and (iii) applying a regression model to the response variable with the summary 52 

variables as the explanatory variables, for example, a linear model or a random forest algorithm 53 

(Bradter et al., 2012). For each landscape variable, the scale of effect is then considered to be the 54 

size of the buffer best explaining the response variable. 55 

The main disadvantage of this method is that the number of explanatory variables artificially 56 

increases with the number of spatial scales considered. One then faces a complex statistical 57 

dilemma, which is dealing with numerous explanatory variables that by their construction are highly 58 

correlated. Consequently, the potential scales chosen are often too few and their ranges are too 59 

limited (Jackson & Fahrig, 2015). Finally, the effect of a landscape variable is modelled as uniform 60 

within the buffer and as null outside it (Chandler & Hepinstall-Cymerman, 2016), which is 61 

unrealistic and biologically unjustified as a continuously decreasing effect is expected (Moilanen & 62 

Hanski, 2001). Several new methods based on distance-weighted effects have been proposed to 63 

model a distance-decreasing effect (Aue et al., 2011; Henry et al., 2012; Serckx et al., 2016), but 64 

they explore a limited predefined set of spatial scales for predictors. Other methods quantified the 65 

scale of landscape effects without an a priori choice of spatial scales (Walsh & Webb, 2014; 66 
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Chandler & Hepinstall-Cymerman, 2016). However, none of these methods are yet implemented in 67 

a ready-to-use software. Huais (2018) proposed a very convenient R function “multifit” to select 68 

scales but with some limitation (it is not distance weighted, requires the choice of a set of scales), 69 

while calling for further developments of such a method to generalise this type of automated 70 

analysis. 71 

Here, we present “siland”, a package for the R statistical computing environment dedicated to 72 

landscape effect analysis. Two methods are available. Both estimate the scales of effect of each 73 

landscape variable using maximum likelihood estimation. In the first method, Bsiland method 74 

hereafter (B for buffer), the effect of a landscape variable is modeled as in classic methods based on 75 

focal sample site, i.e. considered as constant over a disc centered on the observation point. But 76 

contrarily to the previous method, it does not require a first definition of tested radii since the 77 

optimal buffer radii are estimated. In the second method the effect of landscape is based on a 78 

weighted distance, as in the framework proposed by Chandler & Hepinstall-Cymerman (2016). The 79 

decrease in weight with distance is modeled by a Spatial Influence Function (SIF). The parameter of 80 

the SIF defined the scale of effect of a landscape variable. In this second method, named Fsiland (F 81 

for function),  the parameters of the SIFs are estimated for  each landscape variable. The main 82 

functions of siland allow the user (i) to estimate the intensity of local and landscape effects and the 83 

scale parameter of each landscape variable, (ii) to test these effects and (iii) to plot landscape effects 84 

on maps. We exemplified the package use by analysing the landscape effects of conventional and 85 

organic orchards on the density of codling moth larvae per apple tree.   86 

 87 

 88 

Models and methods 89 

We consider a response variable measured at n different sites denoted Yi (i stands for a site),  L local 90 

variables which can be continuous or discrete and are denoted as xi
l (l stands for a local variable and 91 

i for a site) and K landscape variables denoted as zr
k (k stands for a landscape variable and r for a 92 
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polygon in the landscape). In the Bsiland method, the effect of landscape variables is modelled 93 

using buffers with  ,  the percentage of the landscape variable k in a buffer of radius δk and 94 

centered on site i. Since the Bsiland model is based on the generalized linear model framework of 95 

generalized linear models, the expected value of the response variable Yi is modelled as follows : 96 

 97 

where µ  is the intercept, αl and βk are the effects of local and landscape variables, respectively. All 98 

parameters, µ, {α1,.., αK}, {β1,.., βK}  but also {δ1,..,δK} radii of the buffers of the landscape variables  99 

are simultaneously estimated by likelihood maximization. 100 

The Fsiland method is based on Spatial Influence Functions (SIFs) in a similar framework  to 101 

Chandler & Hepinstall-Cymerman’s (2016). The entire study area is rasterized, i.e. pixelated on a 102 

regular grid, named R. The value of each landscape variable k at a pixel r is described in zr
k. For 103 

instance, if the landscape variable k is a presence/absence variable, zr
k  is equal to one or zero. The 104 

expected value of the response variable Yi is then modelled as follows : 105 

where fδk(.)  is the SIF associated with the landscape variable k and di,r  is the distance between the 106 

center of pixel r and the observation at site i. The SIF is a density function decreasing with the 107 

distance. The scale of effect of a landscape variable k is calibrated through the parameter δk, the 108 

mean distance of fδ. Two families of SIF are currently implemented in the siland package, 109 

exponential and Gaussian families defined as fδ(d)=2/(πδ2)exp(-2d/δ) and fδ(d)=1/(2δ√π)exp(-110 

dπ/2δ)2, respectively (Austerlitz et al., 2004). The effect of a landscape variable k is modelled by 111 

two parameters : an intensity parameter, βk
 describing its strength and its direction and a scale 112 

parameter, δk, describing how this effect declines with distance. Each pixel potentially has an effect 113 

on the response variable at any observation site. No set of scales of effects is initially determined. 114 

 115 

Package description  116 
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The siland package is written entirely in the scientific computing language R  (R Core Team, 2019). 117 

It is available on CRAN (https://cran.r-project.org/web/packages/SILand/index.html) and new 118 

developments are available on https://github.com/silandpackage/siland. The analyses presented here 119 

were performed using the package siland 2.0. 120 

 121 

Case study 122 

We illustrated the abilities of siland on an example previously described and analyzed in Ricci et al. 123 

(2009) : the study of codling moth densities, an insect pest specialized on apple orchards in the 124 

Basse Durance Valley in southeastern France (see figure 1). The datasets can be extracted from the 125 

package using the commands data(dataCmoth)and data(landCmoth). The complete analysis 126 

script and outputs are available in Supplementary Information (SI 1 and SI 2, respectively). 127 

dataCmoth is a data frame with two columns named X and Y containing the observation locations, a 128 

column Cmoth, containing the response variable of the study (the mean number of codling moths in 129 

the orchards), and a column trait, describing a local variable (the number of insecticide treatments 130 

applied in the orchard). landCmoth is a sf object (from package sf (Pebesma,2018)) describing the 131 

landscape variables : conventional tree orchards (conv), organic tree orchards (org) where conv is 132 

equal to 1 if the land use is associated to orchard with conventional practice and 0 otherwise, and so 133 

is it for org. 134 

 135 

Main functions 136 

The main functions are described in Table 1, while a full description of package functions  is 137 

available at https://cran.r-project.org/web/packages/siland/siland.pdf. The package siland requires 138 

two objects containing data. The first object is a data frame composed by two columns named X 139 

and Y containing the observation locations, a third column representing the response variable and 140 

eventually other columns representing local variables. The second object is a sf object describing 141 

landscape variables. It can be obtained directly from shape files of landscape map by using the 142 
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function st_read() of the package sf  (see vignette(siland) for more details).  143 

Model estimation is performed using the function Bsiland()for Bsiland method and  the function 144 

Fsiland() for Fsiland method. The arguments of the both functions are similar : formula of the 145 

model, land the sf object describing landscape variables and data, the observation data frame. 146 

The syntax of the formula “y ~ model” is similar to  lm() function of the stat package. In the model 147 

term of the formula, the explanatory variables are added using the symbol “+”. The explanatory 148 

variables described in the data frame data are considered as local in the model, those described in 149 

the sf object land are considered as landscape variables. Local effects can be modelled as fixed or 150 

random (using the syntax (1|x), see vignette(siland) for more details). Interaction terms can 151 

be considered using the usual symbols “*” or “:”. Notice that only interactions between local x 152 

local and local x landscape variables are considered. Various types of response variables can be 153 

considered using the argument family which describes the assumed distribution of the response 154 

variable and can take the values "gaussian", "poisson" and “binomial” for data of 155 

continuous, counting or presence-absence types, respectively (and their associated link functions 156 

identity, log and logit respectively).  157 

Using the argument border, the spatial effect of landscape variable can be considered 158 

from the observation locations (border=F) or from the border of the polygon where observations 159 

are located (border=T) (see Figure 2). For Fsiland(), the additional argument sif indicates the 160 

family of SIF chosen ”exponential” (by default) or “gaussian”.  161 

The object returned by the functions Bsiland() and Fsiland()displays the parameters 162 

estimation and a test of the global landscape effect. The function summary() applied on the result 163 

object provides significance tests of the intensity of the effect of explanatory variables (local or 164 

landscape).  165 

 The two methods are based on likelihood maximization. The functions Bsiland.lik() and 166 

Fsiland.lik() aim to point out some optimization problems. They provide representations of the 167 

minus loglikelihood in function of buffer radius or mean distance of the SIF, respectively (see SI 1). 168 
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Values of minus loglikelihood lower than the estimated one indicate that the estimation procedure 169 

did not perform correctly. In such cases, the estimation needs to be reiterated using different initial 170 

values of effects scales (with argument init of functions Fsiland() and Bsiland()).  171 

 172 

Graphics outputs 173 

 The package siland proposes various functions for graphic representation of estimated 174 

landscape effects. The function “plotFsiland.land” displays landscape effect map for the 175 

estimations of the Fsiland method (Figure 3). The influence of each landscape variable is plotted 176 

over all the study area. The global influence of the landscape, i.e. the sum of the effects of all 177 

landscape variables can also be plotted. The function plotBsiland.land()displays landscape 178 

effect map for the estimation of the Bsiland method (Figure 2). For each landscape variable, the 179 

estimated area of effect (buffer of estimated radius) is plotted around each observation locations. 180 

The color of the area represents the intensity of the effect.  181 

 182 

Interpreting spatial influence functions (SIF) 183 

The SIF function describes how the influence of a pixel/cell of a landscape variable is spatially 184 

distributed. We assume that the influence is maximal at the pixel location and decreases with the 185 

distance. The greater the estimated mean distance of the SIF, the greater the scale of effect of the 186 

landscape variable. The estimated SIF can be displayed using the function plotFsiland.sif() 187 

(see Figure 1). The function quantile.sif() allows to quantify the area of medium influence 188 

and significant influence of a landscape variable, that we defined as the disc containing 50% and 189 

95% of the influence of the SIF (neglecting 50% and 5% of its broader effect) respectively.  They 190 

can be compared to the landscape variables distribution in the study area using function 191 

plotFsiland() (see Figure 1).  192 

 193 

Conclusion 194 

Estimating scales of effect of landscape variables currently remains a great challenge, and 195 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 14, 2020. ; https://doi.org/10.1101/692566doi: bioRxiv preprint 

https://doi.org/10.1101/692566
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

consequently so does the estimation of landscape effect. So far no common methodology has 196 

emerged. With the siland package, we propose a tool that we believe is useful for all landscape 197 

ecologists who wish to investigate this type of question. Here, we have illustrated how with only 198 

few siland functions and limited knowledge of R, it is possible to conduct a reproducible and 199 

detailed study of multi-scale landscape effect including estimations but also tests and graphs 200 

illustrating the results obtained. The “siland” package is very adaptable, it integrates two methods 201 

and can handle various types of data. Applications of siland in a multiyear or multisite framework is 202 

presented for the buffers method in the vignette(siland).  However future developments are 203 

still needed to handle the increasing complexity of questions and data (numerous sites, years and 204 

dynamic data).  205 

 206 
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 276 

Table 1 Main functions of siland package. Detailed information about these functions are 277 

given in https://cran.r-project.org/web/packages/siland/siland.pdf.  278 

Functions for buffer 
approach 

Functions for approach 
with FIS  

Description 

Bsiland Fsiland Estimation of model parameters for local and 
landscape variables and for scale of landscape 
effects 

Bsiland.lik Fsiland.lik Graphical representation of  profiled likelihood 
function of scales of effect of landscape variables 

plotBsiland.land plotFsiland.land Graphical representation of landscape effects 

 plotFsiland.sif Graphical representation of the spatial influence 
functions 

summary As for functions lm() and glm(), summary gives 
estimates and values for tests. 

AIC AIC value of the estimated model 
BIC BIC value of the estimated model 

residuals Vector of residual values for the estimated model 
fitted fitted values of the estimated model 

  

 279 
 280 
 281 

  282 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 14, 2020. ; https://doi.org/10.1101/692566doi: bioRxiv preprint 

https://doi.org/10.1101/692566
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

FIGURES 283 

 284 

 285 

Fig. 1: Map of the observations in the study site and the estimated spatial influence functions 286 

(SIFs)  287 

The figure A is obtained with plotFsiland(resF,landCmoth,data=dataCmoth). Black points 288 

represent locations of response variable observations. Yellow and blue squares are the pixels where 289 

conventional and organic orchards respectively are present. At the right margin, the light and dark 290 

discs represent area of medium influence and significant influence, respectively. Blue and yellow 291 

discs represent conventional and the organic orchards, respectively. The figure B is obtained with 292 

plotFsiland.sif(resF). The blue and orange lines represent the estimated SIF  for the organic 293 

and conventional orchards, respectively. The vertical lines represent the SIF median. 294 

 295 

Fig. 2: Maps of the predicted effect estimated by the Bsiland method obtained with the 296 

function plotBsiland.land(). 297 

The buffer model was estimated using the command :  298 

resB2=Bsiland(Cmoth~trait+conv+org,land=landCmoth,data=dataCmoth,border=bord299 

er). The colored area represents the buffer around each observation location estimated for the 300 

organic orchards effect. At the bottom margin, the bar color gives the effect intensity. Buffers are 301 

modeled in graphic A, from the observation locations (border=FALSE) and in graphic B from the 302 

border of the orchard of each observation(border=TRUE). 303 

 304 

Fig. 3: Maps of the predicted effect estimated by the Fsiland method obtained with the 305 

function plotFsiland.land() 306 

The SIF model was estimated using the command : resF = Fsiland( Cmoth ~ 307 

trait+conv+org, land=landCmoth,data=dataCmoth). The three maps A, B and C were 308 
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obtained with the command plotFsiland.land( resF, land=landCmoth, 309 

data=dataCmoth, var=var), var equal to 1,2 and 0 respectively. The black points 310 

represent locations of response variable observations. In graphics A and B, the gray points are the 311 

pixels where conventional and organic orchards are present, respectively. The response surface 312 

represents the cumulative effect of the conventional orchards in graphic A, the organic orchards in 313 

graphic B and the global landscape in graphic C. At the bottom margin, the bar color gives the 314 

effect intensity. In the figure A, conventional orchards had negative effects at large scale. In figure 315 

B, organic orchards had  positive effects  positive effects at small scale. In figure C, global 316 

landscape had an overall negative effect except on spotty areas. 317 

 318 
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