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Abstract 
 
Background: The use of deep learning in analyses of DNA methylation data is beginning to 
emerge and distill non-linear relationships among high-dimensional data features. However, a 
generalized and user-friendly approach for execution, training, and interpreting deep learning 
models for methylation data is lacking.  
 
Results: We introduce and demonstrate the robust performance of MethylNet on downstream 
tasks of DNA methylation analysis, including cell-type deconvolution, pan-cancer classification, 
and subject age prediction.  We interrogate the learned features from a pan-cancer 
classification to show high fidelity clustering of cancer subtypes, and compare the importance 
assigned to CpGs for the age and cell-type analyses to demonstrate concordance with 
expected biology. 
 
Conclusions: Our findings demonstrate high accuracy of end-to-end deep learning methods 
on methylation prediction tasks. Together, our results highlight the promise of future steps to 
use transfer learning, hyperparameter optimization and feature interpretations on DNA 
methylation data.  
 
 
Introduction 
 
Deep learning has emerged as a widely applicable modeling technique for a broad range of 
applications through the use of artificial neural networks (ANN) 1. Recently, the accessibility of 
large datasets, graphics processing units (GPUs) and unsupervised generative techniques have 
made these approaches more accurate, tractable, and relevant for the analysis of molecular 
data 2–7. 
 
DNA methylation (DNAm) is the addition of a methyl group to cytosine that does not alter the 
DNA sequence and occurs in the context of cytosine-guanine dinucleotides (CpG). Methylated 
regions of DNA (hypermethylated), are associated with condensed chromatin, and when 
present near gene promoters, repression of transcription. Unmethylated regions of DNA 
(hypomethylated), are associated with open chromatin states and permissive to gene 
transcription. DNAm patterns are associated with cell-type-specific gene expression programs, 
and alterations to DNAm have been associated with aging and environmental exposures 8. 
Further, it is well-established that DNAm alterations contribute to development and 
progression of cancer. The hypermethylation of tumor suppressing genes and the 
hypomethylation of oncogenes can lead to pathogenesis and poor prognosis. Affordable array-
based genome-scale approaches to measure DNAm have potentiated Epigenome Wide 
Association Studies (EWAS) for testing associations of DNAm with phenotypes, exposures, 
and states of human health and disease. Because DNAm patterns are cell-type specific, EWAS 
often account for potential confounding from variation in biospecimen cell composition using 
reference-based, or reference-free approaches to infer cell type proportions 9–12. 
 
Measuring genome-wide DNAm in large numbers of specimens typically uses microarray-
based technologies such as the Illumina HumanMethylation450 (450K) and 
HumanMethylationEPIC (850K) 13 arrays, which yield an approximation to the proportion of 
DNA copies that are methylated at each specific cytosine locus, and are reported as beta 
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values. Preprocessing pipelines such as PyMethylProcess have simplified derivation and 
storage of methylation beta values in accessible data formats 14. The scope of features from 
DNAm arrays is 20-50-fold higher than that of RNA-sequencing data sets that return 
normalized read counts for each gene. Though DNAm data can have a similar scope of 
features as genotyping array data sets, DNAm data are continuous, not categorical. Together, 
these facets of DNAm data sets pose challenges to analyses such as handling multi-collinearity 
and correcting for multiple hypothesis testing. To address these challenges, many downstream 
EWAS analyses have focused on reducing the dimensions into a rich feature set to associate 
with outcomes. By limiting the number of features through dimensionality reduction and feature 
selection, analyses become more computationally tractable and the burden of correcting for 
multiple comparisons is reduced. 
 
An important advancement to methylation-based deep learning analyses was the application of 
Variational Auto-encoders (VAE). Initial deep learning approaches for DNAm data focused on 
estimating methylation status and imputation, performing classification and regression tasks, 
and performing embeddings of CpG methylation states to extract biologically meaningful 
lower-dimensional features 15–20,20–22. VAEs embed the methylation profiles in a way that 
represents the original data with high fidelity while revealing nuances 4,5,23. Thereafter, 
researchers attempted to develop similar frameworks for extracting features for a downstream 
prediction tasks and identify meaningful relationships revealed by VAE latent representations 24. 
However, VAE models are sensitive to the selection of hyperparameters 25 and have not been 
optimized for synthetic data generation, latent space exploration, and prediction tasks. Many 
auto-encoder approaches represent the data using an encoder, and then utilize a non-neural 
network model (e.g. support vector machine) to finalize the predictions. Presently, to the best 
of our knowledge there is no end-to-end training approach that both extracts biologically 
meaningful features through latent encoding and performs predictions using the derived 
features. Further, existing frameworks do not output predictions for multi-target regression 
tasks, such as cell-type deconvolution and subject age prediction.  
 
Here, we leverage deep learning latent space regression and classification tasks through the 
development of a modular framework that is highly accessible to epigenetic researchers. 
MethylNet is a modular user-friendly deep learning framework for EWAS tasks with automation 
that leverages preprocessing pipelines. To discover important CpGs for each prediction we use 
the SHAP (SHapley Additive ExPlanation) approach 26. We highlight MethylNet as an easy-to-
use command line interface that utilizes automation to scale, optimize, and simplify deep 
learning methylation tasks. MethylNet’s capabilities are showcased here with cell-type 
deconvolution, pan-cancer subtype classification, and age regression. These analyses will 
pave the path for more robust deep learning prediction models for methylation data. Coupled 
with PyMethylProcess 14, we expect the MethylNet framework to enable rapid production-scale 
research and development in the deep learning epigenetic space. 
 
 
Results 
 
Our approach can be summarized as follows, all of which can executed for any prediction task 
using a few simple commands:  
1. Pre-train deep learning prediction models using variational auto-encoders. The layers of the 

encoder are used to extract biologically meaningful features. These neural network layers are 
used to embed the data and extract features. 
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2. Include prediction layers downstream of the encoder. Fine-tune the model’s prediction and 
feature extraction layers end-to-end for the tasks of multi-output regression and 
classification tasks. Training these layers to optimize the neural network for prediction tasks. 

3. Perform autonomous hyperparameter scans to optimize the model parameters for the above 
two tasks while generating rich visualizations of the data.  

4. Determine the contribution of the CpGs to each prediction on varying degrees of granularity 
through Shapley Feature Attribution methods.  

 

 
Figure 1: Step-by-Step Description of the Modular Framework: a) Train Feature Extraction 
Network Using Variational Auto-Encoders; b) Fine-Tune Encoder for Prediction Tasks; c) 
Perform Hyperparameter Scans for (a) and (b); d) Identify Contributing CpGs; e) Interpret the 
CpGs. 
 
MethylNet is implemented as a command-line tool that allows for deep learning predictions on 
methylation data for embedding, classification and regression tasks. With the specification of 
one command line option, MethylNet can be toggled between regression and classification 
tasks. This makes the pipeline versatile in handling a wide breadth of problems. Its modular 
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accessible framework makes it easy to train and produce high-quality results across multiple 
domains.  
 
Age Results 

 
Figure 2: Age Results on Test Set (n=144): a) Age predictions derived using the Horvath, 
Hannum, and MethylNet estimators are compared to the true age of the individual, the 
predicted ages are plotted on the x-axis, the actual ages on the y-axis, and a line was fit to the 
data for each estimator; b) Comparison of MethylNet Age Estimates on Test Set (n=144) to 
Horvath and Hannum Age Estimators; c) Bar chart depicting the overlap of CpGs important to 
MethylNet and Hannum age estimators where one thousand CpGs with the highest SHAP 
scores per 10-year age group are divided by the total number of Hannum CpGs that passed 
QC; d) Hierarchical clustering using the correlation distance between SHAP CpG scores for 
age groups across all CpGs. The linkage is found between similar age groups.  
 
MethylNet-predicted age showed excellent concordance with the actual subject age (R2=0.96, 
Figure 2a) in the hold-out test set (n=144), and only had 3.0 years mean absolute error (Figure 

a) b)

c) d)

MethylNet 
Hannum 
Horvath

34-44 24-34 14-24 44-54 84-94 54-64 64-74 74-84

34-44
24-34

14-24
44-54

84-94
54-64

64-74
74-84

Correlation  
Distance

Age Group

Correlation of SHAP Contributions  
Across Age Groups

R2
Mean 

Absolute 
Residual

Explained 
Variance 

Proportion
(mean±SE) (mean±SE) (mean±SE)

MethylNet 0.96±0.0062 3.0±0.23 0.96±0.0062

Hannum Clock 0.90±0.013 5.6±0.30 0.95±0.0065

Horvath Clock 0.94±0.0088 3.9±0.27 0.95±0.0078

Comparison of MethylNet Age Estimates on Test 
Set to Horvath and Hannum Age Estimators 
(n=144).

Analysis
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2b). These results are more accurate than those estimated by the present state of art, Hannum 
and Horvath clock. The contribution of each CpG to age groups binned by 10-year increments 
from ages 14 to 94 were measured by Shapley values. The CpGs with the one thousand 
largest Shapley values for each age group were overlapped with the CpGs of the Hannum 
clock (Figure 2c). These CpG contributions were compared between age groups using 
correlation distance, as illustrated in Figure 2d. The connectivity between different age groups’ 
CpG attributions in Figure 2d using hierarchical clustering demonstrates the sharing of 
important CpGs by similarly aged groups. 
 
We aimed to compare the CpGs highly contributing to age predictions using MethylNet and to 
those calibrated in the Hannum epigenetic clock 27. The Horvath 28 and Hannum methods used 
multivariate linear models with elastic net penalization to find a limited set of CpGs strongly 
associated with age whose degree of methylation that are presumably non-tissue-specific. The 
CpGs used by the Hannum model were most likely associated with those aged 60-80, the 
most prevalent ages in the cohort. Since the number of Hannum CpGs rediscovered by 
MethylNet appears to peak around this range, this supports evidence that MethylNet is able to 
recover the defining CpGs of the Hannum cohort. 
 
Cell Type Deconvolution Results 

 
 

R2 Mean Absolute 
Residual

Explained 
Variance 

(mean±SE) (mean±SE) (mean±SE)

MethylNet CD8T 0.78±0.04 0.016±0.0012 0.78±0.038
CD4T 0.86±0.018 0.014±9.0e-04 0.88±0.016
NK 0.87±0.017 0.012±8.5e-04 0.87±0.017
B Cell 0.79±0.026 0.009±6.3e-04 0.79±0.025
Monocytes 0.37±0.067 0.012±7.9e-04 0.38±0.062
Neutrophil 0.97±0.0043 0.011±7.1e-04 0.97±0.0042

EpiDISH+RPC CD8T 0.72±0.061 0.019±0.0013 0.76±0.052
CD4T 0.34±0.091 0.036±0.0014 0.89±0.018
NK 0.024±0.11 0.033±0.0024 0.48±0.049
B Cell 0.77±0.035 0.01±5.3e-04 0.93±0.012
Monocytes 0.17±0.13 0.015±8.2e-04 0.64±0.053
Neutrophil 0.84±0.025 0.029±0.0013 0.96±0.0073

EpiDISH+Cibersort CD8T 0.63±0.077 0.023±0.0014 0.75±0.055
CD4T 0.6±0.058 0.026±0.0014 0.86±0.02
NK -0.058±0.12 0.035±0.0025 0.46±0.055
B Cell 0.76±0.046 0.01±6.0e-04 0.88±0.024
Monocytes 0.45±0.089 0.012±7.2e-04 0.54±0.072
Neutrophil 0.91±0.015 0.02±0.0011 0.96±0.008

n=144, RPC: Robust Partial Correlations

Cell Type

Table 1. Comparison of MethylNet Cell Type Deconvolution  
Results to EpiDISH Methods.
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Figure 3: Results on test set (n=144) for cell-type deconvolution: a) For each cell type, the 
predicted cellular proportion using MethylNet (x-axis) was plotted against the predicted cellular 
proportion using estimateCellCounts2, which has been found to be a highly accurate measure 
of cellular proportions and thus serving as the ground truth for comparison, a regression line 
was fit to the data for each cell type: B-cell, CD4T, CD8T, Monocytes (Mono), NK cells, and 
Neutrophils (Neu); b) Grouped box plot demonstrating the concordance between the 
distributions of the MethylNet-estimated proportions of each cell-type and the distributions 
derived using estimateCellCounts2; c) Hierarchical clustering using the correlation distance 
between two cell types’ SHAP CpG scores across all CpGs. The linkage is found between cell 
types of similar lineage. 
 
Next, MethylNet was tasked with estimating the cell-type proportions for six immune cell-types 
using the same dataset as supplied for the age analysis. The framework demonstrates 
exemplary performance on this task, as demonstrated in Table 1. MethylNet outperforms all 
EpiDISH methods in R2 and mean absolute error across all cell-types save for monocytes 
(Figure 3a-b, Table 1). Using Shapley attribution, contributions for each of the CpGs for driving 
the predictions of the cell-types was derived. Figure 3c shows the connectivity of their 
hierarchical clustering of these CpG attributions.  
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The hierarchical clustering between the SHAP scores of each of the cell-types is consistent 
with the known cell lineage, reinforcing that cell lines that have co-evolved similarly share 
similar driving CpGs that are indicative of their cell-type. Some of the cell-types obtained 
improved concordance metrics (i.e., R2) compared to other cell types but had similar absolute 
errors. This is likely due to the fact that the total range of proportions of monocytes, for 
instance, from the collected data was small such that these errors could make it difficult to 
correlate the predicted and true cell type proportions. Alternatively, issues with the purity of the 
reference monocytes could cause difficulties in calibrating the reference library. A similar 
overlap test was conducted between the MethylNet SHAP CpGs and IDOL-derived DMR CpGs 
(Supplementals Figure 2). Little overlap was found between the two sets, as only the B-cells 
were able to capture more than 10% of the IDOL CpGs. This does not indicate that MethylNet 
could not pick up CpGs that are cell-type specific. Rather, it is further indication that models 
with different objectives differently attribute CpG contributions. 
 
To this point, we still do not know at what point do CpGs, across individuals or larger 
groupings become statistically significant and thus warrant additional inspection. Some 
preliminary analysis can be found in the Supplementals Figures 4 and 5. For the Hannum and 
IDOL analysis, we set this at an arbitrary cutoff value of the top 1000 CpGs per age/cell-type 
group, but the distribution of these Shapley scores and their fidelity to model predictions is an 
active area of research 29. 
 
Pan-cancer Prediction Results 

  
Figure 4: Results on test set for pan-cancer sub-type predictions: a) Comparison of MethylNet 
derived pan-cancer classification of test set (n=1676) to UMAP+SVM method; b) Hierarchical 
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UMAP+SVM 0.84±0.0091 0.84±0.0091 0.814±0.0103 0.82±0.0098 

Comparison of MethylNet Derived Pan-Cancer Classification of Test Set to 
UMAP+SVM Method (n=1676).
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clustering of average embedding cosine distance between all pairs of cancer subtypes. Cancer 
subtypes from both axes are colored by cancer superclasses, derived using the hierarchical 
clustering method. The clustering of similar MethylNet embeddings is concordant with known 
biology. 
 
The predictions of 32 cancer subtypes (n=1676) (one removed due to low sample size) across 
the pan-cancers TCGA cohort yielded 0.97 accuracy, 0.97 precision, 0.97 recall and 0.97 F1-
score, averaged across the different subtypes (Figure 4a). These results outperform a support 
vector machine (SVM)-based classification approach, in which MethylNet demonstrated 0.15 
increase in F1-score. A breakdown of classification accuracies for each subtype is in the 
supplemental results (Supplemental Table 2). 
 
The latent profiles derived for pan-cancer subtypes showed clustering with high concordance 
to biology. Thresholding a hierarchical clustering of the average cosine distance between 
cancer subtypes from the MethylNet derived embeddings (Figure 4b) indicates clustering of the 
test methylation profiles by eight unsupervised biologically corresponding superclasses. The 
subtypes that define these larger groupings are concordant with expectations from cancer 
biology.  
 
Of note are:   
• Skin and connective tissue cancers, and bile and liver cancers in Cluster 1. 
• All kidney cancers in Cluster 2. 
• Bladder, uterine and cervix cancers in Cluster 3. 
• Pairing of colon and rectal cancers, both adrenal cancers in Cluster 4. 
• A tie between lung adenocarcinoma and mesothelioma in Cluster 5, both of which may 

develop in similar locations. 
• Pairings between stomach and esophagus cancer, and pancreas and prostate cancers in 

Cluster 6. 
• Brain cancers in Cluster 7. 
• Thymoma, Diffuse Large B-Cell lymphomas in Cluster 8. 
• While the lung cancers were not paired together, they experienced a high degree of 

embedded similarity. The connectivity between the lung squamous cell cancer and its 
neighboring types prevented the two cancers from being grouped together. 

 
Taken together, MethylNet not only makes highly accurate and robust classification 
predictions, but also extracts latent features with high fidelity to the actual biology present.  
 
The similarity between some of the subtypes may explain why and how some of the subtypes 
did not perform as well as others (Supplemental Tables 1 and 3). For instance, we see that 4 
KIRC and KIRP cases were conflated with each other. Two cervix cases were predicted to be 
uterine. There were elevated rates of misclassification between the colon and rectal cancer 
pairings and Esophageal, head and neck, and stomach cancer pairings. Finally, seven 
predicted glioblastoma cases were actually low-grade glioma (Supplemental Table 1). Thus, 
subtypes tended to be misclassified only within each superclass. The exception to this trend 
was the misclassification of Lung Squamous cell cancers, four of which were predicted to be 
its adenocarcinoma counterpart, which is consistent with the shared embedding profile. This 
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more likely reflects similar biology, while misclassifications outside of superclasses may reflect 
pathological misdiagnoses and technical artifacts. Since MethylNet captures and confounds 
the biology between similar conditions, this presents a unique opportunity to explore similar 
therapeutic targets and treatments across disease types of similar tissue, within and outside 
cancer studies. Given the ability of MethylNet to capture the differences in the profiles between 
the cancer subtypes, there is great opportunity for unsupervised clustering and classification of 
further disease heterogeneity within a particular condition.  
 
For the cancer subtype analysis, we sought to identify concordance between the latent profiles 
of methylation across cancer types. Because each tumor type has a different baseline DNAm 
profile for its normal tissues-of-origin and these differences are expected to contribute to the 
prediction we did not attempt to derive the salient CpGs for each subtype’s prediction. 
 
Discussion 
 
Here, we introduce MethylNet, a modular deep learning framework that is easy to train, apply, 
and share. MethylNet employs an object-oriented application programming interface (API) and 
has built-in functionality to easily switch between analyses with respect to embedding, 
classification, and regression tasks. It has demonstrated the ability to make accurate 
predictions that conform with expected biology. MethylNet extends previous approaches by 
fine-tuning the feature extractor and adding additional layers for prediction tasks. It also 
employs a robust hyperparameter search method that optimizes the parameters of the model 
for generalization to unseen data. The pipeline is flexible to the demands of the user. For 
instance, if a user only wanted to train a custom machine learning model on the latent features, 
the data can be extracted before the end-to-end training step. By demonstrating three tasks, 
age prediction, cell-type deconvolution, and pan-cancer subtype prediction, we present further 
support of the applicability of VAEs for feature extraction, and more evidence that deep 
learning presents an opportunity for learning meaningful biology and making accurate 
predictions from feature-rich molecular data.  
 
Strengths, Limitations, and Future Directions 
 
Interpretation of our high dimensional models still has challenges, partially due to the 
drawbacks of assigning feature attributions to high dimensional multi-collinear data. While 
traditional linear models can still be highly predictive, multi-colinearity has the effect of 
adjusting the coefficients of the predictors such that the results are not as interpretable. 
Shapley feature attributions are a promising method used to explain predictions estimating 
complex models with simpler linear ones.  
 
Our age and cell-type analyses were conducted to demonstrate the capabilities of the deep 
learning tool and models were trained on a relatively small study of blood samples, only a 
subset of those included in the Horvath framework. Our analyses also only presented 
predictions across one type of tissue without yet accounting for differences in methylation 
between cell types. Part of the bottleneck for developing robust cell-type proportion estimation 
methods is the lack of the availability of ground-truth proportions from flow cytometry or other 
measures. The MethylNet model will also benefit from being able to train off of real cell-type 
proportions rather than that acquired from the highly accurate estimateCellCounts2. More 
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robust and consistent estimators that address these limitations are the focus of future 
applications of the MethylNet method.  
 
Our analyses refrain from uncovering relationship between the discovered CpGs and functional 
effects because of the difficulties associated with localizing the effect of a small set of CpGs of 
interest. Once the salient attributions are found, CpG analyses experience common pitfalls 
when trying to match CpGs to their nearest gene via the found promoter region. Such analyses 
may ascribe the CpG’s effect in the context of what gene they appear to be regulating. 
However, genes are regulated at a distance in proximity to their enhancers in the 3D 
topological space 30,31. This means that interpretation methods such as gometh may not be 
suitable for interpreting CpGs identified by MethylNet. Ideally, downstream approaches to add 
biological interpretation would take into account chromosome/genome interaction (e.g. 
through use of Hi-C data) and genome topological structure/organization. For instance, 
chromatin state and histone modification analyses as used by ChromHMM and LOLA 32,33 
might be more warranted. Some model result interpretation issues may be circumvented by 
building a deep learning mechanism to better predict gene expression from methylation 34. 
 
An important take-away is that as interpretation methods for these high dimensional data are 
pioneered, VAE-based deep learning models will likely find CpGs that interact in ways we 
would not traditionally think about. While the other models were trained on a much smaller set 
of CpGs, MethylNet is able to make its predictions on 200-300K CpGs, capturing complex 
interactions between a much larger set of CpGs. Crucial next steps should address these 
interpretability and confounding concerns through feature selection, covariate adjustment and 
more biologically interpretable informatics methods for CpG interpretation. 
 
Finally, to scale up MethylNet’s deep learning workflows to production grade as well as 
incorporate information from Whole Genome and Reduced Representation Bisulfite 
Sequencing, future renditions may utilize common workflow language (CWL) 35. In addition, 
new Bayesian search methods may be employed to better automate the selection of model 
hyperparameters and automate the construction of the ideal neural network architecture 36,37.  
 
Conclusion 
 
We demonstrate a modular, reproducible, and easy-to-use object-oriented deep learning 
framework for methylation data: MethylNet. We illustrate that MethylNet achieves high 
predictive accuracy across age estimation, cell-type deconvolution, cancer subtype prediction 
tasks. MethylNet’s accuracy at these tasks was superior, or at least equivalent to, other 
methods. We hope that MethylNet will be used by the greater biomedical community to rapidly 
generate and evaluate testable biological hypotheses involving methylation data through a 
scalable, automated, intuitive, and user-friendly deep learning framework. 
 
Methods 
 
Description of Framework 
 
Here, we present a description of a modular and highly accessible framework for deep learning 
tasks pertaining to unsupervised embedding, supervised classification and multi-output 
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regression of DNA methylation (DNAm) data. The MethylNet pipeline comprises modules and 
commands specifically pertaining to embedding, prediction, and interpretation.  
 
First, after preprocessing using PyMethylProcess. The dataset is split into training, validation, 
and testing sets using train_test_val_split of the preprocessing pipeline utilities. 
 
Training the Feature Extractor to Embed Data 
 
The embedding module is used to pretrain the final prediction model by using Variational 
Autoencoders to find unsupervised latent representations of the data. Pre-training is an 
important part of transfer-learning applications. The knowledge extracted from learning 
unsupervised representation of the data is used towards learning predictive tasks with a lower 
data requirement. Data fed into these VAEs pass through an encoder network that serves to 
compress the data and then this compressed representation is fed into a decoder network that 
attempts to reconstruct the original dataset while attempting to generate synthetic samples. 
The model attempts to balance the ability to generate synthetic samples with the ability of the 
data to be accurately reconstructed. The weight given to generation versus reconstruction can 
be set as a hyperparameter 38. Generating synthetic training examples are important for adding 
noise while training a network for prediction tasks, a component which serves as a form of 
regularization to make the algorithm more generalizable to real-world data. Synthetic data was 
not generated using MethylNet, but during training, the algorithm samples from the latent 
distribution of the embedded data to regularize. Nevertheless, the ability to reconstruct the 
original dataset is important because it governs how latent representations of the data are 
capturing features that properly describe the underlying signal. 
 
In order to run the embedding module on the input MethylationArray training and validation 
objects, perform_embedding is executed via the command line interface. Hyperparameters of 
the autoencoder model can be scanned via the launch_hyperparameter_scan command. This 
randomly searches a grid of hyper-parameters and randomly generates neural network 
topologies (number of layers, number of nodes per layer). The complexity (network width and 
depth), of which can be weighted by the user. The framework stores the results of each training 
run into logs to find the model with the lowest validation loss (Binary Cross Entropy 
reconstruction loss plus KL-Loss of the validation set). Alternatively, results from the 
embedding module can be input into any machine learning algorithm of choice. Embedding 
results are visualized through interactive 3-D plots by running transform_plot from 
PyMethylProcess. 
 
Training for Prediction via Transfer Learning 
 
MethylNet can be used to perform classification, regression, and multi-output regression tasks 
via the prediction module. The prediction module uses MLPFinetuneVAE to fine-tune encoding 
layers of VAE model while simultaneously training a few appended hidden layers for prediction. 
The make_prediction command is run for these prediction tasks, and hyper parameters such 
as model complexity and learning rate and schedulers are scanned via the 
launch_hyperparameter_scan module. The final model is chosen if it has the lowest validation 
loss (Mean Squared Error for Regression, Cross-Entropy for Prediction), and the output model 
is a snapshot at the epoch that demonstrated the lowest validation loss. The test set is also 
evaluated immediately after the model is trained using the training set. The results from 
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MethylNet can be immediately benchmarked and compared for performance to other machine 
learning algorithms, which can be evaluated using the general_machine_learning module from 
PyMethylProcess. Furthermore, ROC Curves and classification resorts can be output using 
plot_roc_curve and classification_report and regression reports are generated via 
regression_report. A confusion matrix of misclassifications can be generated from 
PyMethylProcess’s plot_heatmap. Finally, the training curves for both the embedding and 
prediction modules can be visualized using the plot_training_curve command. 
 
Interpretation of Results 
 
Predictions from MethylNet can be interrogated in two ways. The first approach uses SHAPley 
feature attribution to assign a contribution score to each CpG based on how much it 
contributed to the prediction. The second approach compares learned clusters of embeddings 
of methylation samples (and corresponding subtypes), for biological plausibility.  
 
The SHAPley value interpretations, available using methylnet-interpret approximate the more 
complex neural network model using a linear model for each individual prediction, the 
coefficients of which are Shapley values. Shapley values represent the contributions of each 
CpG to the individual predictions. They are produced after the prediction model and test 
MethylationArray are input to the produce_shapley_data command, which dumps a 
ShapleyData object into memory. The Shapley coefficients can be averaged by condition to 
yield summary measures of the importance of each CpG to the coarser category, and the 
coefficients can be clustered to demonstrate the similarity between methylation subtypes and 
coarser conditions, which can be compared to known biology. 
 
MethylNet was built using Python 3.6 and utilizes the PyTorch framework to run its deep 
learning models on GPUs using CUDA, although CPUs are also suppored. The workflow is 
available as an easily installable command line tool and API via PyPI as methylnet and on 
Docker 39 as joshualevy44/methylnet. The Docker image contains a test pipeline that requires 
one line to run through the hyperparameter training and evaluation of all framework 
components and can run on your local personal computer in addition to high performance 
computing. Help documentation, example scripts, and the analysis pipeline are available in the 
MethylNet GitHub repository (https://github.com/Christensen-Lab-Dartmouth/MethylNet). 
 
Description of Experiment 
 
We evaluated our MethylNet framework (hyperparameter scan, embedding, fine-tuning 
predictions, interpretation) using 33 datasets from n=9,312 samples for three different 
prediction tasks: classification (TCGA pan-cancer subtype prediction), regression (age 
prediction), and multi-output regression (cell-type deconvolution).  
 
PyMethylProcess was used to preprocess the data, and yielded MethylationArray objects that 
contain a matrix of beta values for each individual and the corresponding phenotype 
information 14. The MethylationArray data for each of these three experiments were split into 
70% training, 20% testing, and 10% validation sets. The training set was used to update the 
parameters of the model. The validation set was used to terminate training early and choose 
hyperparameters that would be most generalizable to a test set. The test set was used for final 
model evaluation and interpretation. More information on model training can be found in the 
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supplementals. For each score, 95% confidence intervals were computed using a 1000 sample 
non-parametric bootstrap. 
 
The data for the regression tasks were procured from GSE87571 40, representing a healthy age 
group of blood samples from individuals aged 15-95, and preprocessed using 
PymethylProcess to yield 300k CpG features. 
 
First, MethylNet was configured for regression tasks and applied to derive sample age 
estimates. These results were compared to those derived from the Hannum and Horvath 
clocks using cgageR27,28,41. The Shapley framework was employed to quantify the importance 
of the CpGs in making predictions for age across 8 different age groups split by 10-year 
increments. The CpG importance was compared between the groups through hierarchical 
clustering to find similarities between the age groups. The one thousand most important CpGs 
from each group were extracted and overlapped with CpGs defined by the Hannum model to 
depict the concordance of important CpGs between MethylNet and the Hannum model.  
 
For a second task, MethylNet was configured for multi-target regression to estimate cell-type 
proportions. First, estimateCellCounts2, using the 450K legacy IDOL optimized library 11, was 
used to deconvolve the cell-type proportions from each sample to develop ground truth 
outcomes for training the model. The MethylNet model was trained on the estimateCellCounts2 
estimates of cell-type proportions for six different immune cell-types. MethylNet was then 
compared to results derived from the EpiDISH framework 42 using 350 IDOL derived CpGs 
legacy library from FlowSorted.Blood.EPIC11. The importance of each CpG to each cell-type 
was then quantified through SHAP. These Shapley coefficients were compared using 
hierarchical clustering. A similar clustering profile would indicate these cell-types share similar 
driving CpGs, and recovery of the cell-lineage dendrogram would demonstrate concordance 
with known biology. The one thousand most important CpGs from each cell-type were 
extracted and overlapped with the IDOL CpGs to inspect if the two models picked up similar 
cell-type-specific CpGs. 
 
The comparison library based cell type proportions were estimated through the use of 
FlowSorted.Blood.EPIC and EpiDISH 42,43 R packages. The library used was the IDOL 
optimized CpGs 450k legacy library which contains 350 CpGs. Two methods; Robust Partial 
Correlations and Cibersort were implemented through EpiDISH all using the same library.  
 
In the final task, MethylNet was used to classify samples to cancer types. The data for the 
classification task are from 8891 TCGA-acquired samples, representing 32 different cancer 
types, and preprocessed using PyMethylProcess to yield a 200k CpG beta matrix. The features 
with the highest mean absolute deviation across samples were selected to both limit the 
computational complexity, memory of model training and capture the highest variation in the 
data. The highly variable sites are assumed to be more biologically meaningful than the lower 
variable sites. The MethylNet analysis pipeline was conducted on the pan-cancer dataset. The 
results from MethylNet were compared to a popular omics classification approach, a uniform 
manifold approximation and projection (UMAP) embedding of the samples, followed by 
support vector machine (SVM) classification. UMAP is an effective way to reduce the 
dimensionality of the data as well as preserve meaningful local and global structure in the data 
44,45. Both were performed using PyMethylProcess’s general_machine_learning module, which 
executed a hyperparameter grid search of the SVM model. Finally, the embeddings of the 
different cancer subtypes were compared by calculating of the average cosine distance 
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between clusters in the test samples. These distances were clustered using hierarchical 
clustering to form larger superclasses of cancer that demonstrate a shared embedding profile.  
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SVM – Support Vector Machine 
UMAP - Uniform Manifold Approximation and Projection 
VAE – Variational Auto-encoders 
 
Contributions 
The conception and design of the study were contributed by JJL and BCC. Implementation, 
programming, data acquisition, and analyses were by JJL. JJL and BCC wrote the manuscript 
and all authors contributed to writing and editing of the manuscript. CLP performed the 
EpiDISH comparisons. AJT, YC, CLP contributed towards refining the analytic plan and 
direction. AJT, YC, CLP, and JJL tested the pipeline. LAS provided technical support to 
streamline and debug important aspects of the pipeline. 
 
Funding: 
 
This work was supported by NIH grants R01CA216265, R01DE022772, and P20GM104416 to 
BCC, a Dartmouth College Neukom Institute for Computational Science CompX award to BCC, 
and training fellowship support for AJT from T32LM012204. CLP is supported through the 
Burroughs Wellcome Fund Big Data in the Life Sciences at Dartmouth. 
 
 
Declarations/Competing Interests 
The views expressed in this article are solely those of the authors and do not necessarily 
represent the views of the DoD or its components. 
 
References 
 
1. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015). 

2. Tian, T., Wan, J., Song, Q. & Wei, Z. Clustering single-cell RNA-seq data with a model-

based deep learning approach. Nat. Mach. Intell. 1, 191 (2019). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 4, 2019. ; https://doi.org/10.1101/692665doi: bioRxiv preprint 

https://doi.org/10.1101/692665


 

 

3. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling for 

single-cell transcriptomics. Nat. Methods 15, 1053–1058 (2018). 

4. Way, G. P. & Greene, C. S. Extracting a biologically relevant latent space from cancer 

transcriptomes with variational autoencoders. Pac. Symp. Biocomput. Pac. Symp. 

Biocomput. 23, 80–91 (2018). 

5. Titus, A. J., Wilkins, O. M., Bobak, C. A. & Christensen, B. C. Unsupervised deep learning 

with variational autoencoders applied to breast tumor genome-wide DNA methylation data 

with biologic feature extraction. bioRxiv 433763 (2018). doi:10.1101/433763 

6. Ching Travers et al. Opportunities and obstacles for deep learning in biology and medicine. 

J. R. Soc. Interface 15, 20170387 (2018). 

7. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet Classification with Deep Convolutional 

Neural Networks. in Advances in Neural Information Processing Systems 25 (eds. Pereira, 

F., Burges, C. J. C., Bottou, L. & Weinberger, K. Q.) 1097–1105 (Curran Associates, Inc., 

2012). 

8. Christensen, B. C. et al. Aging and environmental exposures alter tissue-specific DNA 

methylation dependent upon CpG island context. PLoS Genet. 5, e1000602 (2009). 

9. Titus, A. J., Gallimore, R. M., Salas, L. A. & Christensen, B. C. Cell-type deconvolution from 

DNA methylation: a review of recent applications. Hum. Mol. Genet. 26, R216–R224 (2017). 

10. Houseman, E. A. et al. DNA methylation arrays as surrogate measures of cell mixture 

distribution. BMC Bioinformatics 13, 86 (2012). 

11. Salas, L. A. et al. An optimized library for reference-based deconvolution of whole-blood 

biospecimens assayed using the Illumina HumanMethylationEPIC BeadArray. Genome 

Biol. 19, (2018). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 4, 2019. ; https://doi.org/10.1101/692665doi: bioRxiv preprint 

https://doi.org/10.1101/692665


 

 

12. Houseman, E. A. et al. Reference-free deconvolution of DNA methylation data and 

mediation by cell composition effects. BMC Bioinformatics 17, 259–259 (2016). 

13. Moran, S., Arribas, C. & Esteller, M. Validation of a DNA methylation microarray for 850,000 

CpG sites of the human genome enriched in enhancer sequences. Epigenomics 8, 389–

399 (2016). 

14. Levy, J. J., Titus, A. J., Salas, L. A. & Christensen, B. C. PyMethylProcess - highly 

parallelized preprocessing for DNA methylation array data. bioRxiv 604496 (2019). 

doi:10.1101/604496 

15. Angermueller, C., Lee, H. J., Reik, W. & Stegle, O. DeepCpG: accurate prediction of single-

cell DNA methylation states using deep learning. Genome Biol. 18, 67 (2017). 

16. Ni, P. et al. DeepSignal: detecting DNA methylation state from Nanopore sequencing reads 

using deep-learning. Bioinformatics doi:10.1093/bioinformatics/btz276 

17. Qiu, Y. L., Zheng, H. & Gevaert, O. A deep learning framework for imputing missing values 

in genomic data. bioRxiv 406066 (2018). doi:10.1101/406066 

18. Wang, Y. et al. Predicting DNA Methylation State of CpG Dinucleotide Using Genome 

Topological Features and Deep Networks. Sci. Rep. 6, 19598 (2016). 

19. Zeng, H. & Gifford, D. K. Predicting the impact of non-coding variants on DNA methylation. 

Nucleic Acids Res. 45, e99 (2017). 

20. Korfiatis, P. et al. Residual Deep Convolutional Neural Network Predicts MGMT Methylation 

Status. J. Digit. Imaging 30, 622–628 (2017). 

21. Yu, H. & Ma, Z. Deep Neural Network for Analysis of DNA Methylation Data. 

ArXiv180801359 Q-Bio Stat (2018). 

22. Islam, Md. M., Tian, Y., Cheng, Y., Wang, Y. & Hu, P. A deep neural network based 

regression model for triglyceride concentrations prediction using epigenome-wide DNA 

methylation profiles. BMC Proc. 12, (2018). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 4, 2019. ; https://doi.org/10.1101/692665doi: bioRxiv preprint 

https://doi.org/10.1101/692665


 

 

23. Titus, A. J., Bobak, C. A. & Christensen, B. C. A New Dimension of Breast Cancer 

Epigenetics - Applications of Variational Autoencoders with DNA Methylation. in 140–145 

(2018). 

24. Wang, Z. & Wang, Y. Exploring DNA Methylation Data of Lung Cancer Samples with 

Variational Autoencoders. in 2018 IEEE International Conference on Bioinformatics and 

Biomedicine (BIBM) 1286–1289 (2018). doi:10.1109/BIBM.2018.8621365 

25. Hu, Q. & Greene, C. S. Parameter tuning is a key part of dimensionality reduction via deep 

variational autoencoders for single cell RNA transcriptomics. in Biocomputing 2019 362–

373 (WORLD SCIENTIFIC, 2018). doi:10.1142/9789813279827_0033 

26. Lundberg, S. M. & Lee, S.-I. A Unified Approach to Interpreting Model Predictions. in 

Advances in Neural Information Processing Systems 30 (eds. Guyon, I. et al.) 4765–4774 

(Curran Associates, Inc., 2017). 

27. Hannum, G. et al. Genome-wide Methylation Profiles Reveal Quantitative Views of Human 

Aging Rates. Mol. Cell 49, 359–367 (2013). 

28. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 

(2013). 

29. Joseph, A. Shapley regressions: A framework for statistical inference on machine learning 

models. ArXiv190304209 Cs Econ Stat (2019). 

30. Nothjunge, S. et al. DNA methylation signatures follow preformed chromatin compartments 

in cardiac myocytes. Nat. Commun. 8, 1667 (2017). 

31. Geeleher, P. et al. Gene-set analysis is severely biased when applied to genome-wide 

methylation data. Bioinformatics 29, 1851–1857 (2013). 

32. Sheffield, N. C. & Bock, C. LOLA: enrichment analysis for genomic region sets and 

regulatory elements in R and Bioconductor. Bioinformatics 32, 587–589 (2016). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 4, 2019. ; https://doi.org/10.1101/692665doi: bioRxiv preprint 

https://doi.org/10.1101/692665


 

 

33. Ernst, J. & Kellis, M. Chromatin-state discovery and genome annotation with ChromHMM. 

Nat. Protoc. 12, 2478–2492 (2017). 

34. Wang, Y., Franks, J. M., Whitfield, M. L. & Cheng, C. BioMethyl: an R package for 

biological interpretation of DNA methylation data. Bioinformatics 

doi:10.1093/bioinformatics/btz137 

35. Amstutz, P. et al. Common Workflow Language, v1.0. (2016). 

doi:10.6084/m9.figshare.3115156.v2 

36. Tim Head et al. scikit-optimize/scikit-optimize: v0.5.2. (Zenodo, 2018). 

doi:10.5281/zenodo.1207017 

37. Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B. & Xing, E. P. Neural 

Architecture Search with Bayesian Optimisation and Optimal Transport. in Advances in 

Neural Information Processing Systems 31 (eds. Bengio, S. et al.) 2016–2025 (Curran 

Associates, Inc., 2018). 

38. Higgins, I. et al. beta-VAE: Learning Basic Visual Concepts with a Constrained Variational 

Framework. (2016). 

39. Boettiger, C. An Introduction to Docker for Reproducible Research. SIGOPS Oper Syst Rev 

49, 71–79 (2015). 

40. Johansson, Å., Enroth, S. & Gyllensten, U. Continuous Aging of the Human DNA 

Methylome Throughout the Human Lifespan. PLOS ONE 8, e67378 (2013). 

41. metamaden/cgageR: version 0.1.0 from GitHub. Available at: 

https://rdrr.io/github/metamaden/cgageR/. (Accessed: 10th June 2019) 

42. Teschendorff, A. E., Breeze, C. E., Zheng, S. C. & Beck, S. A comparison of reference-

based algorithms for correcting cell-type heterogeneity in Epigenome-Wide Association 

Studies. BMC Bioinformatics 18, (2017). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 4, 2019. ; https://doi.org/10.1101/692665doi: bioRxiv preprint 

https://doi.org/10.1101/692665


 

 

43. FlowSorted.Blood.EPIC. Bioconductor Available at: 

http://bioconductor.org/packages/FlowSorted.Blood.EPIC/. (Accessed: 20th June 2019) 

44. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. 

Biotechnol. 37, 38–44 (2019). 

45. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and Projection 

for Dimension Reduction. ArXiv180203426 Cs Stat (2018). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 4, 2019. ; https://doi.org/10.1101/692665doi: bioRxiv preprint 

https://doi.org/10.1101/692665


 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 4, 2019. ; https://doi.org/10.1101/692665doi: bioRxiv preprint 

https://doi.org/10.1101/692665

