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Abstract 
 
DNA methylation (DNAm) is an epigenetic regulator of gene expression programs that can be 

altered by environmental exposures, aging, and in pathogenesis. Traditional analyses that 

associate DNAm alterations with phenotypes suffer from multiple hypothesis testing and multi-

collinearity due to the high-dimensional, continuous, interacting and non-linear nature of the 

data. Deep learning analyses have shown much promise to study disease heterogeneity. 

DNAm deep learning approaches have not yet been formalized into user-friendly frameworks 

for execution, training, and interpreting models. Here, we have developed MethylNet to make 

predictions, generate new data, and uncover unknown heterogeneity with minimal user 

supervision. The results of our experiments indicate that MethylNet can study cellular 

differences, grasp higher order information of cancer sub-types, estimate age and capture 

factors associated with smoking in concordance with known differences. The ability of 

MethylNet to capture nonlinear interactions presents an opportunity for further study of 

unknown disease, cellular heterogeneity and aging processes.  

 
Introduction 
 
Deep learning has emerged as a widely applicable modeling technique for a broad range of 

applications through the use of artificial neural networks (ANN) 1. Recently, the accessibility of 

large datasets, graphics processing units (GPUs) and unsupervised generative techniques have 

made these approaches more accurate, tractable, and relevant for the analysis of molecular 

data 2–7. 

 

DNA methylation (DNAm) is the addition of a methyl group to a nucleotide, typically cytosine, 

that does not alter the DNA sequence and occurs most frequently to cytosine-guanine 

dinucleotides (CpG). Methylated regions of DNA (hypermethylated), are associated with 
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condensed chromatin, and when present near gene promoters, repression of transcription. 

Unmethylated regions of DNA (hypomethylated), are associated with open chromatin states 

and permissive to gene transcription. DNAm patterns are associated with cell-type-specific 

gene expression programs, and alterations to DNAm have been associated with aging and 

environmental exposures 8. Further, it is well-established that DNAm alterations contribute to 

development and progression of cancer. The hypermethylation of tumor suppressing genes 

and the hypomethylation of oncogenes can lead to pathogenesis and poor prognosis. 

Affordable array-based genome-scale approaches to measure DNAm have potentiated 

Epigenome Wide Association Studies (EWAS) for testing associations of DNAm with 

phenotypes, exposures, and states of human health and disease. Because DNAm patterns are 

cell-type specific, EWAS often account for potential confounding from variation in biospecimen 

cell composition using reference-based, or reference-free approaches to infer cell type 

proportions 9–12. 

 

Measuring genome-wide DNAm in large numbers of specimens typically uses microarray-

based technologies such as the Illumina HumanMethylation450 (450K) and 

HumanMethylationEPIC (850K) 13 arrays, which yield an approximation to the proportion of 

DNA copies that are methylated at each specific cytosine locus, and are reported as beta 

values. Preprocessing pipelines such as PyMethylProcess have simplified derivation and 

storage of methylation beta values in accessible data formats 14. The scope of features from 

DNAm arrays is 20-50-fold higher than that of RNA-sequencing data sets that return 

normalized read counts for each gene. Though DNAm data can have a similar scope of 

features as genotyping array data sets, DNAm beta values are continuous (0-1), not 

categorical. Together, these facets of DNAm data sets pose challenges to analyses such as 

handling multi-collinearity and correcting for multiple hypothesis testing. To address these 
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challenges, many downstream EWAS analyses have focused on reducing the dimensions into 

a rich feature set to associate with outcomes. By limiting the number of features through 

dimensionality reduction and feature selection, analyses become more computationally 

tractable and the burden of correcting for multiple comparisons is reduced. 

 

An important advancement to methylation-based deep learning analyses was the application of 

Variational Auto-encoders (VAE). Initial deep learning approaches for DNAm data focused on 

estimating methylation status and imputation, performing classification and regression tasks, 

and performing embeddings of CpG methylation states to extract biologically meaningful 

lower-dimensional features 15–22. VAEs embed the methylation profiles in a way that represents 

the original data with high fidelity while revealing nuances 4,5,23. Thereafter, researchers 

attempted to develop similar frameworks for extracting features for downstream prediction 

tasks and identify meaningful relationships revealed by VAE latent representations 24. However, 

VAE models are sensitive to the selection of hyperparameters 25 and have not been optimized 

for synthetic data generation, latent space exploration, and prediction tasks. Many auto-

encoder approaches represent the data using an encoder, and then utilize a non-neural 

network model (e.g. support vector machine) to finalize the predictions. Presently, to the best 

of our knowledge there is no end-to-end training approach that both extracts biologically 

meaningful features through latent encoding and performs predictions using the derived 

features. Further, existing frameworks do not output predictions for multi-target regression 

tasks, such as cell-type deconvolution and subject age prediction.  

 

Here, we leverage deep learning latent space regression and classification tasks through the 

development of a modular framework that is highly accessible to epigenetic researchers. 

MethylNet is a modular user-friendly deep learning framework for EWAS tasks with automation 
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that leverages preprocessing pipelines. To discover important CpGs for each prediction we use 

the SHAP (SHapley Additive ExPlanation) approach 26. We highlight MethylNet as an easy-to-

use command line interface that utilizes automation to scale, optimize, and simplify deep 

learning methylation tasks. MethylNet’s capabilities are showcased here with unsupervised 

generative and clustering tasks, cell-type deconvolution, pan-cancer subtype classification, 

age regression, and smoking status classification. These analyses will pave the path for more 

robust deep learning prediction models for methylation data. Coupled with PyMethylProcess 14, 

we expect the MethylNet framework to enable rapid production-scale research and 

development in the deep learning epigenetic space. 

 
Results 
 
Our approach uses a few simple commands, all of which can be executed for any prediction 

task. First, deep learning prediction models are pre-trained using variational auto-encoders, 

and the layers of the encoder are used to extract biologically meaningful features. These neural 

network layers are used to embed the data and extract features for clustering in the 

unsupervised setting, generating new data with high fidelity to the original source, and for 

prediction model pretraining. Second, prediction layers are included downstream of the 

encoder which fine-tune the model’s prediction and feature extraction layers end-to-end for 

the tasks of multi-output regression and classification. Training prediction layers optimize the 

neural network for prediction tasks. Third, autonomous hyperparameter scans are performed to 

optimize the model parameters for the first and second tasks while generating rich 

visualizations of the data. Lastly, the contribution of the CpGs to each prediction on varying 

degrees of granularity are determined through Shapley Feature Attribution methods.  
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Figure 1: Step-by-step description of the modular framework: a) Train feature extraction 
network using variational auto-encoders; b) Fine-tune encoder for prediction tasks; c) Perform 
hyperparameter scans for (a) and (b); d) Identify contributing CpGs; e) Interpret the CpGs. 
 
MethylNet is implemented as a UNIX/Linux command-line tool that allows users to make deep-

learning predictions on methylation data with use cases such as embedding, generation, 

classification and regression. With the specification of a single command-line option, 

MethylNet can be toggled between regression and classification tasks to address a wide 

breadth of problems. The modular, accessible characteristic of the MethylNet framework 

enables a simple procedure to train and produce results across multiple domains. In addition 

to predictive tasks, MethylNet can encode data into lower-dimension space from which to 
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perform unsupervised clustering when researchers do not have labeled DNAm data. Further, 

MethylNet can generate realistic synthetic data with high fidelity relative to the original 

samples. 

 

We show that MethylNet serves as an effective encoder for DNAm data by capturing latent 

features that have high fidelity to the original dataset. This method can utilize encodings to 

make accurate predictions in common DNAm analysis tasks, and the CpGs important for 

making predictions are concordant with prior observations. Finally, we demonstrate that 

MethylNet can also identify CpGs consistent with a large EWAS meta-analysis. 

 

Datasets Acquired  

We selected three public DNAm data sets and use cases to illustrate a range of tasks and 

demonstrate ability to capture features that meaningfully encode aging, cell lineage, disease 

states, and exposures. The first dataset (Johansson data) was used to study both age and cell 

type classification and is one of the largest readily available DNAm datasets from healthy 

subjects with a wide age range (blood DNAm from individuals aged 15 to 95,  GSE87571 27; 

Supplementary Figure 1 and Supplementary Table 1). The second dataset (The Cancer 

Genome Atlas, TCGA) was used to study cancer subtypes and includes 8,376 samples 

representing 32 different cancer subtypes (Supplementary Tables 1,2). The final dataset (Liu 

dataset) was used to compare blood DNAm in current smokers to never smokers among the 

controls from a rheumatoid arthritis study (GSE42861, subset n=188 28). All datasets were 

preprocessed using PyMethylProcess to yield 300k, 200k, and 300k CpG features respectively 

and then split into 70% training, 20% testing, and 10% validation. 

 

Evaluation of Unsupervised Encoder Performance 
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To establish MethylNet as a method for DNAm encoding, we first show that it can accurately 

capture features that dictate DNAm by using the features to recapitulate the supplied DNAm 

signal. If MethylNet can reconstruct the entire methylation profile from its latent-derived 

features, then those features should have high fidelity to the original dataset.  

 

To support this, we first split up all of the CpGs into groups of features, with an average group 

size of 14,264 CpGs, that had shared methylation profiles across the training healthy blood 

samples of the Johansson data (n=503). Then, we fit an autoencoder produced by MethylNet 

to each of the resulting DNAm arrays and proceeded to test the ability to generate synthetic 

methylation samples on held out test data (Supplementary Figure 2). MethylNet was able to 

recapitulate the beta values with a weighted R2-value of 92.6% and weighted mean absolute 

error of 1.9% methylation between the original and generated held out test set (Supplementary 

Figures 2,3), demonstrating MethylNet’s ability to recapitulate the signal, and encode features 

with high fidelity to the original dataset.  

 

To further establish encoding performance and provide confidence that future studies could 

utilize MethylNet to assess unknown heterogeneity in methylation profiles associated with 

disease, we tested whether features processed using the encoder can meaningfully cluster the 

methylation samples with concordance to known disease subtypes. TCGA DNAm data were 

encoded using MethylNet’s VAE and hierarchical clustering was performed on the embeddings 

and then compared with clustering results from Recursively Partitioned Mixture Modeling 

(RPMM)29 that used 20k CpGs with the highest variance across samples. Cluster labels 

assigned to the embedded samples demonstrated agreement with the original cancer labels 

with a score of 0.76, compared to a score of 0.47 using RPMM (Supplementary Figure 4), 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 29, 2019. ; https://doi.org/10.1101/692665doi: bioRxiv preprint 

https://doi.org/10.1101/692665


 IX 

indicating the potential for VAEs to utilize encoded features discover disease heterogeneity 

when labels are not supplied. 

 

Given MethylNet’s performance in the unsupervised domain and its ability to meaningfully 

encode DNAm features, we next used this framework to validate performance in typical DNAm 

prediction tasks of age estimation, cellular proportion estimation, and disease classification.   

 
 
Age Results 
 

 
Figure 2: Age Results on Test Set (n=144): a) Age predictions derived using the Horvath, 
Hannum, and MethylNet estimators are compared to the true age of the individual, the 
predicted ages are plotted on the x-axis, the actual ages on the y-axis, and a line was fit to the 
data for each estimator; b) Comparison of MethylNet Age estimates on Test Set (n=144) to 
Horvath and Hannum Age Estimators. 95% confidence intervals for each score were calculated 

a) b)

c) d)

MethylNet 
Hannum 
Horvath

34-44 24-34 14-24 44-54 84-94 54-64 64-74 74-84

34-44
24-34
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Correlation  
Distance

Age Group

Correlation of SHAP Contributions  
Across Age Groups

R2
Mean 

Absolute 
Residual

Explained 
Variance 

Proportion
(mean±SE) (mean±SE) (mean±SE)

MethylNet 0.96±0.0062 3.0±0.23 0.96±0.0062

Hannum Clock 0.90±0.013 5.6±0.30 0.95±0.0065

Horvath Clock 0.94±0.0088 3.9±0.27 0.95±0.0078

Comparison of MethylNet Age Estimates on Test 
Set to Horvath and Hannum Age Estimators 
(n=144).

Analysis
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using a one thousand sample non-parametric bootstrap; c) Bar chart depicting the overlap of 
CpGs important to MethylNet and Hannum age estimators where one thousand CpGs with the 
highest SHAP scores per 10-year age group are divided by the total number of Hannum CpGs 
that passed QC; d) Hierarchical clustering using the correlation distance between SHAP CpG 
scores for age groups across all CpGs. The linkage is found between similar age groups.  
 
DNAm-based age estimators such as the Horvath and Hannum clocks used elastic net 

penalized regression to identify sets of CpGs (353 and 71 respectively) strongly associated 

with age30,31. Hannum et al. leveraged DNA methylation data from whole blood measured with 

the 450K Illumina platform in 656 subjects aged 19-101. Horvath leveraged genome-scale 

methylation data from 51 tissue and cell types in 82 independent data sets and over 8000 

samples. The resulting models provide for very accurate age estimation but the number of and 

manner with which features can be associated with age are limited. Moreover, recently there is 

interest in understanding what drives observed remaining residual between chronological age 

and methylation age. The difference between age and methylation age has been termed 

biological age or age acceleration and has itself been associated with disease risk and all-

causes mortality32–34. Demonstrating consistent performance between MethylNet and 

established approaches motivates future use of our method to study complex states and 

interactions underlying aging processes. 

 

Again, utilizing the Johansson data, we trained MethylNet on the chronological age of the 

individuals to predict chronological age. MethylNet-predicted age showed excellent 

concordance with the actual subject age (R2=0.96, Figure 2a) in the hold-out test set (n=144), 

and only had 3.0 years mean absolute error (Figure 2b) (training and validation performance in 

Supplementary Table 3). These results are comparably accurate to those estimated by the 

Hannum and Horvath clocks. The contribution of each CpG to age groups binned by 10-year 

increments from ages 14 to 94 were measured by Shapley values. The CpGs with the one 

thousand largest Shapley values for each age group were overlapped with the CpGs of the 
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Hannum clock (Figure 2c). These CpG contributions were compared between age groups 

using correlation distance, as illustrated in Figure 2d. The connectivity between different age 

groups’ CpG attributions in Figure 2d using hierarchical clustering demonstrates the sharing of 

important CpGs by similarly aged groups. Further description of the derivation of the Shapley 

score estimates can be found in the supplementary materials. 

 

We aimed to compare the highly contributing CpGs to age predictions using MethylNet and to 

those calibrated in the Hannum epigenetic clock 30. The CpGs used by the Hannum model 

were most likely associated with those aged 60-80, the most prevalent ages in the cohort. 

Since the number of Hannum CpGs rediscovered by MethylNet appears to peak around this 

range, this supports evidence that MethylNet is able to recover the defining CpGs of the 

Hannum cohort. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 29, 2019. ; https://doi.org/10.1101/692665doi: bioRxiv preprint 

https://doi.org/10.1101/692665


 XII 

Cell Type Deconvolution Results 
 

 

R2
Mean 

Absolute 
Residual

Explained 
Variance 

Proportion
(mean±SE) (mean±SE) (mean±SE)

300k+MethylNet CD8T 0.78±0.04 0.016±0.0012 0.78±0.038
CD4T 0.86±0.018 0.014±9.0e-04 0.88±0.016
NK 0.87±0.017 0.012±8.5e-04 0.87±0.017
B Cell 0.79±0.026 0.009±6.3e-04 0.79±0.025
Monocytes 0.37±0.067 0.012±7.9e-04 0.38±0.062
Neutrophil 0.97±0.0043 0.011±7.1e-04 0.97±0.0042

IDOL+RPC CD8T 0.72±0.061 0.019±0.0013 0.76±0.052
CD4T 0.34±0.091 0.036±0.0014 0.89±0.018
NK 0.024±0.11 0.033±0.0024 0.48±0.049
B Cell 0.77±0.035 0.01±5.3e-04 0.93±0.012
Monocytes 0.17±0.13 0.015±8.2e-04 0.64±0.053
Neutrophil 0.84±0.025 0.029±0.0013 0.96±0.0073

IDOL+Cibersort CD8T 0.63±0.077 0.023±0.0014 0.75±0.055
CD4T 0.6±0.058 0.026±0.0014 0.86±0.02
NK -0.058±0.12 0.035±0.0025 0.46±0.055
B Cell 0.76±0.046 0.01±6.0e-04 0.88±0.024
Monocytes 0.45±0.089 0.012±7.2e-04 0.54±0.072
Neutrophil 0.91±0.015 0.02±0.0011 0.96±0.008

n=144, RPC: Robust Partial Correlations

Library+Method Cell Type

Table 1. Comparison of MethylNet Cell Type Deconvolution  
Results to IDOL Library EpiDISH Methods. 95% confidence 
intervals calculated using 1k-sample non-parametric bootstrap
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Figure 3: Results on test set (n=144) for cell-type deconvolution: a) For each cell type, the 
predicted cellular proportion using MethylNet (x-axis) was plotted against the predicted cellular 
proportion using estimateCellCounts2, which has been found to be a highly accurate measure 
of cellular proportions and thus serving as the ground truth for comparison, a regression line 
was fit to the data for each cell type: B-cell, CD4T, CD8T, Monocytes (Mono), NK cells, and 
Neutrophils (Neu); b) Grouped box plot demonstrating the concordance between the 
distributions of the MethylNet-estimated proportions of each cell-type and the distributions 
derived using estimateCellCounts2; c) Hierarchical clustering using the correlation distance 
between two cell types’ SHAP CpG scores across all CpGs. The linkage is found between cell 
types of similar lineage. 
 
Reference-based cell type estimation approaches with DNAm data use a library of cell-specific 

leukocyte differentially methylated regions (L-DMR), to infer cellular proportions. These cell 

type libraries, similar to age estimation, contain a few hundred CpG features for prediction (e.g. 

the 350 CpG IDOL library11), and current deconvolution is very accurate and fast. Although 

current methods like estimateCellCounts2 accurately capture cellular proportions in blood, the 

future of cell type deconvolution includes efforts to estimate remaining sources of cell type 
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heterogeneity, including cellular states that currently lack L-DMR. We sought to investigate the 

ability of MethylNet to capture current capabilities of cellular deconvolution so that it may be 

applied to future unsupervised domains when the requisite amount of data is available. 

 

As such, MethylNet was tasked with estimating the cell-type proportions for six immune cell-

types using the same dataset as supplied for the age analysis. As compared to the other 

EpiDISH estimator methods that utilize the IDOL library, the framework demonstrates 

exemplary performance on this task in R2 and mean absolute error across all cell-types save 

for monocytes, as demonstrated in Table 1 (Figure 3a-b; training and validation performance in 

Supplementary Table 4). Using Shapley attribution, contributions for each of the CpGs for 

driving the predictions of the cell-types was derived. Figure 3c shows the connectivity of their 

hierarchical clustering of these CpG attributions.  

 

The hierarchical clustering between the SHAP scores of each of the cell-types is consistent 

with the known cell lineage, reinforcing that cell lines that have co-evolved similarly share 

similar driving CpGs that are indicative of their cell-type. Some of the cell-types obtained 

improved concordance metrics (e.g. R2) compared to other cell types but had similar absolute 

errors (i.e. MAE). This is likely due to the fact that the total range of proportions of monocytes, 

for instance, from the collected data was small such that these errors could make it difficult to 

correlate the predicted and true cell type proportions. Alternatively, issues with the purity of the 

reference monocytes could complicate reference-library calibration. A similar overlap test was 

conducted between the MethylNet SHAP CpGs and IDOL-derived L-DMR CpGs 

(Supplementary Figure 5). Little overlap was found between the two sets, as only the B-cells 

were able to capture more than 10% of the IDOL CpGs. This does not indicate that MethylNet 

could not identify CpGs that are cell-type specific. Rather, this finding serves to indicate that 
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models with different optimization objectives and number of features available differentially 

attribute CpGs. 

 

To this point, we still do not know at what point do CpGs, across individuals or larger 

groupings reach statistical significance and thus warrant additional inspection. Some 

preliminary analysis can be found in the Supplementary Figures 7 and 8. For the Hannum and 

IDOL analysis, we set this at an arbitrary cutoff value of the top 1000 CpGs per age/cell-type 

group, but the distribution of these Shapley scores and their fidelity to model predictions is an 

active area of research 35. 

 

Pan-cancer Prediction Results 
 

  
Figure 4: Results on test set for pan-cancer sub-type predictions: a) Comparison of 
MethylNet derived pan-cancer classification of test set (n=1676) to UMAP+SVM method. 
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95% confidence intervals for each score were calculated using a 1000 sample non-
parametric bootstrap; b) Hierarchical clustering of average embedding cosine distance 
between all pairs of cancer subtypes. Cancer subtypes from both axes are colored by cancer 
superclasses, derived using the hierarchical clustering method. The clustering of similar 
MethylNet embeddings is concordant with known biology of tissue/cancer type difference. 
Skin and connective tissue cancers, and bile and liver cancers in Cluster 1. All kidney 
cancers in Cluster 2. Bladder, uterine and cervix cancers in Cluster 3. Pairing of colon and 
rectal cancers, both adrenal cancers in Cluster 4. A tie between lung adenocarcinoma and 
mesothelioma in Cluster 5, both of which may develop in similar locations. Pairings between 
stomach and esophagus cancer, and pancreas and prostate cancers in Cluster 6. Brain 
cancers in Cluster 7. Thymoma, Diffuse Large B-Cell lymphomas in Cluster 8. While the lung 
cancers were not paired together, they experienced a high degree of embedded similarity. 
The connectivity between the lung squamous cell cancer and its neighboring types prevented 
the two cancers from being grouped together. 

 
Finally, motivating uses of MethylNet as a mechanism to uncover sources of disease 

heterogeneity and the capability of the workflow to capture features that are tissue-specific, 

MethylNet was employed to make predictions of 32 cancer subtypes (n=1676) (one removed 

due to low sample size) across the pan-cancer TCGA cohort. This analysis yielded 0.97 

accuracy, 0.97 precision, 0.97 recall and 0.97 F1-score, averaged across the different subtypes 

(Figure 4a) (training and validation performance in Supplementary Table 5). These results 

outperform a support vector machine (SVM)-based classification approach, in which MethylNet 

demonstrated a 0.15-unit (18%) increase in F1-score. A breakdown of classification accuracies 

for each subtype is in the supplemental results (Supplementary Tables 6,7). 

 

The latent profiles derived for pan-cancer subtypes given the model training on this predictive 

task showed clustering with high concordance to known cancer type differences. Thresholding 

a hierarchical clustering of the average cosine distance between cancer subtypes from the 

MethylNet derived embeddings (Figure 4b, Supplementary Table 8) indicates clustering of the 

test methylation profiles by eight unsupervised biologically corresponding superclasses. The 

subtypes that define these larger groupings are concordant with expectations from tissue 

differences in cancer biology.  
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Taken together, MethylNet not only makes highly accurate and robust classification 

predictions, but also extracts latent features with high fidelity to the biology of tissue or cancer 

type difference.  

 

The similarity between some of the subtypes may explain why and how certain subtypes did 

not perform as well compared to others (Supplementary Tables 6 and 8). For instance, we see 

that 4 KIRC and KIRP cases were conflated with each other. In addition, two cervix cases were 

predicted to be uterine. There were elevated rates of misclassification between the colon and 

rectal cancer pairings and esophageal, head and neck, and stomach cancer pairings. Finally, 

seven predicted glioblastoma cases were actually low-grade glioma (Supplementary Table 6). 

Thus, subtypes tended to be misclassified only within each superclass. The exception to this 

trend was the misclassification of lung squamous cell carcinomas, four of which were 

predicted to be its adenocarcinoma counterpart, which is consistent with the shared 

embedding profile, and likely reflects similar biology of cellular lineage.  

 

For the cancer subtype analysis, we sought to identify concordance between the latent profiles 

of methylation across cancer types. Because each tumor type has a different baseline DNAm 

profile for its normal tissues-of-origin, and these differences are expected to contribute to the 

prediction, we decided not to attempt derivation of the salient CpGs for each subtype’s 

prediction.  

 

Dataset Scaling and Comparison to Multi-layer Perceptron 
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In addition to evaluating the disease subtypes, we sought to use the TCGA pan-cancer dataset 

to better elucidate the framework’s sensitivity to reductions in number of features and number 

of training samples. Performance was observed to increase linearly with number of training 

samples and logarithmically with available CpGs (Supplementary Figure 9). We also 

demonstrate comparable performance of training a multi-layer perceptron using similar training 

parameters and neural network architecture as MethylNet’s encoder-prediction structure 

(Supplementary Figure 9). MethylNet’s encoders have utility for generative and unsupervised 

tasks through capturing a low dimensional distribution of the data and the strengths in 

initializing the early layers of the prediction model with encoder pretraining. We have also 

included an implementation of the multi-layer perceptron that can be trained within our 

framework. 

 

EWAS Application 

Given the success of MethylNet to capture nonlinear interacting features that cluster, 

recapitulate and assist with predictions, we sought to evaluate MethylNet on the Liu data for 

the prediction of smoking status (current vs. never smoker) and compare the results to a prior 

robust EWAS meta-analysis 36. MethylNet achieved 73% accuracy in predicting smoking status 

despite relatively small training (n=139), validation (n=19) and held-out test sets (n=30) 

(Supplementary Figure 10). There was a significant correlation between the rank of CpGs most 

important in differentiating smoking status found through MethylNet (average SHAP ranking for 

each CpG) and the rank of the CpGs significantly associated with smoking using a significantly 

larger dataset by Joehanes et al. (r=0.69; p-value=0 for statistical test of non-correlation) 

(Supplementary Figure 10). The preservation of these ranks indicates that MethylNet can form 

associations with outcomes that are concordant to known EWAS analyses, even though it 

places more emphasis on interacting features versus the traditional EWAS.  
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Discussion 
 
Here, we introduce MethylNet, a modular deep learning framework that is easy to train, apply, 

and share. MethylNet employs an object-oriented application programming interface (API) and 

has built-in functionality to easily switch between analyses with respect to embedding, 

generation, classification, and regression tasks. We demonstrate MethylNet’s ability to capture 

features that recapitulated the original DNAm data and generated accurate predictions that 

conform with expected biology. MethylNet extends previous approaches by fine-tuning the 

feature extractor and adding additional layers for prediction tasks. It also employs a robust 

hyperparameter search method that optimizes the parameters of the model for generalization 

to unseen data. The pipeline is flexible to the demands of the user. For instance, if a user only 

wanted to train a custom machine learning model on the latent features, the data can be 

extracted before the end-to-end training step. By demonstrating the ability to meaningfully 

encode DNAm features, predictive performance on four tasks; age prediction, cell-type 

deconvolution, pan-cancer subtype prediction, and concordance to the results of a known 

EWAS meta-analysis; we present further support of the applicability of VAEs for feature 

extraction, and more evidence that deep learning presents an opportunity for learning 

meaningful biology and making accurate predictions from feature-rich molecular data.  

 
Strengths, Limitations, and Future Directions 
 
Interpretation of our high dimensional models still has challenges, partially due to the 

drawbacks of assigning feature attributions to high dimensional multi-collinear data. While 

traditional linear models can still be highly predictive, multi-collinearity has the effect of 

adjusting the coefficients of the predictors such that the results are not as interpretable. 

Shapley feature attributions are a promising method used to explain predictions estimating 
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complex models with simpler linear ones as we able to demonstrate agreement between age 

groups and cell lineages and concordance between ranked SHAP scores and ranked p-values 

of CpGs associated with smoking status of a large EWAS meta-analysis.  

 

Our age and cell-type analyses were conducted to demonstrate the capabilities of the deep 

learning tool and models were trained on a relatively small study of blood samples, only a 

subset of those included in the Horvath framework.  

 

Further work can capture features indicative of age acceleration, a popularized prognostic 

indicator tied to the residual between the predicted and actual age. Since initial publications in 

2013, investigators have started using the difference between chronologic and predicted 

DNAm age to investigate questions related to so called biological age or age acceleration37. 

This area of epigenetics is moving towards understanding the relation of the age residual with 

disease risk, and potential to modify it through intervention (e.g. diet and exercise). More 

advanced treatment of the data underlying prediction of age will allow opportunities for 

mechanistically informed intervention studies that aim to reduce age acceleration and improve 

public health.   

 

MethylNet methodology presents alternative framework to uncover functional gene regulation 

that accounts for biological age acceleration and goes beyond the limited set of features used 

to predict methylation age in Horvath, Hannum, and other DNA methylation clocks. As the 

biology of these clocks are still being discovered 38 and due to the non-linear relationship with 

both chronological age 39 and other biomarkers of cell epigenetic cell maturation40, further 

examination of age acceleration and biology should be done through neural networks. 
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Our analyses also only presented predictions across one type of tissue without yet accounting 

for differences in methylation between cell types. MethylNet was shown to capture some of the 

remaining sources of cellular heterogeneity, which can include differential methylation of cell 

subtypes and states that are known to exist, but for which we do not currently have L-DMRs. 

MethylNet represents an opportunity to improve reference-based and reference-free 

deconvolution approaches.  More robust and consistent estimators that address current 

limitations of DNAm-based deconvolution approaches will be the focus of future applications 

of the MethylNet method.  

 

Prior works that have explored pan-cancer prediction in the deep learning space have limited 

their analyses to a small set of CpGs that do not capture a holistic understanding of interaction 

and regulation in the cancer context41. Our results demonstrate that models with a larger 

number of CpGs are needed to accurately capture differences in tissue/cancer subtypes. Since 

MethylNet captures and confounds the biology between similar conditions, it presents an 

opportunity to explore similar therapeutic targets and treatments across disease types of 

similar tissue, within and outside cancer studies. Given the ability of MethylNet to capture the 

differences in the profiles between the cancer subtypes, there is great opportunity to better 

understand heterogeneity of other diseases. 

 

Our analyses refrain from uncovering relationship between the discovered CpGs and functional 

effects because of the difficulties associated with localizing the effect of a small set of CpGs of 

interest. Once the salient attributions are found, CpG analyses experience common pitfalls 

when trying to match CpGs to their nearest gene via the found promoter region. Such analyses 

may ascribe the CpG’s effect in the context of what gene they appear to be regulating. 

However, genes are also regulated at a distance in the 3D topological space by interacting with 
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enhancer regions 42,43. Thus, enrichment methods based on individual gene to CpGs 

relationships implemented in missMethyl44 may not be suitable for interpreting loci identified by 

MethylNet. Ideally, downstream approaches to add biological interpretation would take into 

account chromosome/genome interaction (e.g. through use of Hi-C data) and genome 

topological structure/organization. For instance, enrichment from chromatin state and histone 

modifications present in the target loci as used by ChromHMM and LOLA 45,46 might be more 

warranted. Some model result interpretation issues may be partially circumvented by 

integrating gene expression data into the model or more structurally by building a deep 

learning mechanism to predict gene expression from DNA methylation using other layers of 

information from the genomic context 47. 

 

An important take-away is that as interpretation methods for these high dimensional data are 

pioneered, VAE-based deep learning models will likely find CpGs that interact in ways we 

would not traditionally think about. While the other models were trained on a much smaller set 

of CpGs, MethylNet is able to make its predictions on 200-300K CpGs, capturing complex 

interactions between a much larger set of CpGs. Crucial next steps should address these 

interpretability and confounding concerns through feature selection, covariate adjustment and 

more biologically interpretable informatics methods for CpG interpretation. 

 

Finally, to scale up MethylNet’s deep learning workflows to production grade as well as 

incorporate information from Whole Genome and Reduced Representation Bisulfite 

Sequencing, future renditions may utilize common workflow language (CWL) 48. In addition, 

new Bayesian search methods may be employed to better automate the selection of model 

hyperparameters and automate the construction of the ideal neural network architecture 49,50.  
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Conclusion 
 
We demonstrate a modular, reproducible, and easy-to-use object-oriented deep learning 

framework for methylation data: MethylNet. We illustrate that MethylNet captures meaningful 

features that can be used for future unsupervised analyses and achieves high predictive 

accuracy across age estimation, cell-type deconvolution, cancer subtype, and smoking status 

prediction tasks. MethylNet’s accuracy at these tasks was superior, or at least equivalent to, 

other methods and interpretations of the model’s outputs demonstrated agreement with prior 

literature. We hope that MethylNet will be used by the greater biomedical community to rapidly 

generate and evaluate testable biological hypotheses involving DNA methylation data through 

a scalable, automated, intuitive, and user-friendly deep learning framework. 

 
Methods 
 
Description of Framework 
 
Here, we present a description of a modular and highly accessible framework for deep learning 

tasks pertaining to unsupervised embedding, supervised classification and multi-output 

regression of DNA methylation (DNAm) data. The MethylNet pipeline comprises modules and 

commands specifically pertaining to embedding, prediction, and interpretation.  

 

First, after preprocessing using PyMethylProcess. The dataset is split into training, validation, 

and testing sets using train_test_val_split of the preprocessing pipeline utilities. 

 
Training the Feature Extractor to Embed Data 
 
The embedding module is used to pretrain the final prediction model by using Variational 

Autoencoders to find unsupervised latent representations of the data. Pre-training is an 

important part of transfer-learning applications. The knowledge extracted from learning 
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unsupervised representation of the data is used towards learning predictive tasks with a lower 

data requirement. Data fed into these VAEs pass through an encoder network that serves to 

compress the data and then this compressed representation is fed into a decoder network that 

attempts to reconstruct the original dataset while attempting to generate synthetic samples. 

The model attempts to balance the ability to generate synthetic samples with the ability of the 

data to be accurately reconstructed. The weight given to generation versus reconstruction can 

be set as a hyperparameter 51. Generating synthetic training examples are important for adding 

noise while training a network for prediction tasks, a component which serves as a form of 

regularization to make the algorithm more generalizable to real-world data. While synthetic 

data can be generated using MethylNet via the generate_embed command, this generative 

process is meaningfully utilized during training, when the algorithm samples from the latent 

distribution of the embedded data to regularize. Nevertheless, the ability to reconstruct the 

original dataset is important because it governs how latent representations of the data are 

capturing features that properly describe the underlying signal. 

 

In order to run the embedding module on the input MethylationArray training and validation 

objects, perform_embedding is executed via the command line interface. Hyperparameters of 

the autoencoder model can be scanned via the launch_hyperparameter_scan command. This 

randomly searches a grid of hyper-parameters and randomly generates neural network 

topologies (number of layers, number of nodes per layer). The complexity (network width and 

depth), of which can be weighted by the user. The framework stores the results of each training 

run into logs to find the model with the lowest validation loss (Binary Cross Entropy 

reconstruction loss plus KL-Loss of the validation set) (hyperparameters with lowest validation 

loss can be found in Supplementary Table 9). Alternatively, results from the embedding module 
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can be input into any machine learning algorithm of choice. Embedding results are visualized 

through interactive 3-D plots by running transform_plot from PyMethylProcess. 

 
Training for Prediction via Transfer Learning 
 
MethylNet can be used to perform classification, regression, and multi-output regression tasks 

via the prediction module. The prediction module uses MLPFinetuneVAE to fine-tune encoding 

layers of VAE model while simultaneously training a few appended hidden layers for prediction. 

The make_prediction command is run for these prediction tasks, and hyper parameters such 

as model complexity and learning rate and schedulers are scanned via the 

launch_hyperparameter_scan module (hyperparameters with lowest validation loss can be 

found in Supplementary Table 10). The final model is chosen if it has the lowest validation loss 

(Mean Squared Error for Regression, Cross-Entropy for Prediction), and the output model is a 

snapshot at the epoch that demonstrated the lowest validation loss. The test set is also 

evaluated immediately after the model is trained using the training set. The results from 

MethylNet can be immediately benchmarked and compared for performance to other machine 

learning algorithms, which can be evaluated using the general_machine_learning module from 

PyMethylProcess. Furthermore, ROC Curves and classification resorts can be output using 

plot_roc_curve and classification_report and regression reports are generated via 

regression_report. A confusion matrix of misclassifications can be generated from 

PyMethylProcess’s plot_heatmap. Finally, the training curves for both the embedding and 

prediction modules can be visualized using the plot_training_curve command (example 

prediction embedding plots found in Supplementary Figure 6; analysis training curves can be 

found in Supplementary Figure 11). 

 
Interpretation of Results 
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Predictions from MethylNet can be interrogated in two ways. The first approach uses SHAPley 

feature attribution to assign a contribution score to each CpG based on how much it 

contributed to the prediction. The second approach compares learned clusters of embeddings 

of methylation samples (and corresponding subtypes), for biological plausibility.  

 

The SHAPley value interpretations, available using methylnet-interpret approximate the more 

complex neural network model using a linear model for each individual prediction, the 

coefficients of which are Shapley values. Shapley values represent the contributions of each 

CpG to the individual predictions. They are produced after the prediction model and test 

MethylationArray are input to the produce_shapley_data command, which dumps a 

ShapleyData object into memory. The Shapley coefficients can be averaged by condition to 

yield summary measures of the importance of each CpG to the coarser category, and the 

coefficients can be clustered to demonstrate the similarity between methylation subtypes and 

coarser conditions, which can be compared to known biology. 

 
Description of Experiment 
 
We evaluated our MethylNet framework (hyperparameter scan, embedding, fine-tuning 

predictions, interpretation) using 34 datasets from n=9,500 samples for four different prediction 

tasks: classification (TCGA pan-cancer subtype and smoking prediction), regression (age 

prediction), and multi-output regression (cell-type deconvolution).  

 

PyMethylProcess was used to preprocess the data, and yielded MethylationArray objects that 

contain a matrix of beta values for each individual and the corresponding phenotype 

information 14. The MethylationArray data for each of these three experiments were split into 

70% training, 20% testing, and 10% validation sets. The training set was used to update the 
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parameters of the model. The validation set was used to terminate training early and choose 

hyperparameters that would be most generalizable to a test set. The test set was used for final 

model evaluation and interpretation. More information on model training can be found in the 

supplementals. For each score, 95% confidence intervals were computed using a one 

thousand sample non-parametric bootstrap. 

 

First, MethylNet’s generative analysis was conducted on 8 arrays representing 8 groupings of 

features of the Johansson data, found by running a KMeans clustering algorithm on a UMAP 

clustering of CpG Methylation profiles. Each group was trained using a 50-job VAE 

hyperparameter scans to yield the ideal embedding. A generate_embed command was used to 

first embed methylation profiles and then decode them to their predicted values. All of the beta 

values of the CpGs of the individuals of the test set were compared to those found by 

generating the data from the latent embeddings. 

 

MethylNet was then configured for regression tasks and applied to derive sample age 

estimates in the Johansson data, using the reported chronological age as the ground truth. 

These results were compared to those derived from the Hannum and Horvath clocks using 

cgageR30,31,52. The Shapley framework was employed to quantify the importance of the CpGs in 

making predictions for age across 8 different age groups split by 10-year increments. The CpG 

importance was compared between the groups through hierarchical clustering to find 

similarities between the age groups. The one thousand most important CpGs from each group 

were extracted and overlapped with CpGs defined by the Hannum model to depict the 

concordance of important CpGs between MethylNet and the Hannum model.  

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 29, 2019. ; https://doi.org/10.1101/692665doi: bioRxiv preprint 

https://doi.org/10.1101/692665


 XXVIII 

For a second task, MethylNet was configured for multi-target regression to estimate cell-type 

proportions. First, estimateCellCounts2, using the 450K legacy IDOL optimized library 11, was 

used to deconvolve the cell-type proportions from each sample to develop our best proxy to 

ground truth outcomes for training the model. The MethylNet model was trained on the 

estimateCellCounts2 estimates of cell-type proportions for six different immune cell-types. 

MethylNet was then compared to results derived from applying the 350 IDOL derived CpGs 

legacy library from FlowSorted.Blood.EPIC53 using two different deconvolution methods 

Robust Partial Correlations (RPC) and Cibersort implemented in EpiDISH54. The importance of 

each CpG to each cell-type was then quantified through SHAP. These Shapley coefficients 

were compared using hierarchical clustering. A similar clustering profile would indicate these 

cell-types share similar driving CpGs, and recovery of the cell-lineage dendrogram would 

demonstrate concordance with known biology. The one thousand most important CpGs from 

each cell-type were extracted and overlapped with the IDOL CpGs to inspect if the two models 

picked up similar cell-type-specific CpGs. Additional details regarding SHAP can be found in 

the supplementary material. 

 

 

In the next task, MethylNet was used to classify samples to cancer types. The data for the 

classification task are from 8891 TCGA-acquired samples, representing 32 different cancer 

types (Supplementary Figure 1 and Supplementary Tables 1,2), and preprocessed using 

PyMethylProcess to yield a 200k CpG beta matrix. The features with the highest mean absolute 

deviation across samples were selected to both limit the computational complexity, memory of 

model training and capture the highest variation in the data. The highly variable sites are 

assumed to be more biologically meaningful than the lower variable sites. The MethylNet 

analysis pipeline was conducted on the pan-cancer dataset. The results from MethylNet were 
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compared to a popular omics classification approach, a uniform manifold approximation and 

projection (UMAP) embedding of the samples, followed by support vector machine (SVM) 

classification. UMAP is an effective way to reduce the dimensionality of the data as well as 

preserve meaningful local and global structure in the data 55,56. Both were performed using 

PyMethylProcess’s general_machine_learning module, which executed a hyperparameter grid 

search of the SVM model. Finally, the embeddings of the different cancer subtypes were 

compared by calculating of the average cosine distance between clusters in the test samples. 

These distances were clustered using hierarchical clustering to form larger superclasses of 

cancer that demonstrate a shared embedding profile.  

 

A sensitivity analysis was conducted to understand how MethylNet scales with number of 

training samples and features. The TCGA cohort dataset was utilized and split into 

MethylationArrays of increasing number of features, scaled almost logarithmically for low 

number of features and then number of features were scaled linearly. This generated sixteen 

separate datasets. These datasets were trained in parallel with 100-job hyperparameter scans 

to yield final predictions. The sensitivity analysis on training set size split up the training set into 

10% increments from 10% to 100%, and each of the 10 sets were trained using 150-job 

hyperparameter scans. The number of training epochs was reduced to 50 for each analysis to 

limit the computational compute time.  

 

Finally, a 100-job hyperparameter scan was conducted to predict smoking status on the Liu 

data. Gradient-based SHAPley estimates were acquired using SHAP. The CpG SHAP score for 

the test set samples were subset by the CpGs significantly associated with smoking identified 

by Joehanes et. al. 2016. The average rank of the highest absolute SHAPly score for each 

CpGs across individuals were compared to the rank of CpGs most significantly associated with 
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smoking reported by Joehanes et. al. 2016. Correlation of these rank orders was determined 

through Pearson’s correlation coefficient and a non-correlation statistical test was employed to 

find a p-value for the relationship. 

 

Data Availability Statement 
Data used in this study was acquired from GEO accessions GSE87571, GSE42861, and from 
The Cancer Genome Atlas (TCGA). Test data is available in our GitHub repository and the data 
can be tested using Code Ocean at: https://codeocean.com/capsule/6373790/tree . 
 
Code Availability Statement 
MethylNet was built using Python 3.6 and utilizes the PyTorch framework to run its deep 
learning models on GPUs using CUDA, although CPUs are also suppored. The workflow is 
available as an easily installable command line tool and API via PyPI as methylnet and on 
Docker 57 as joshualevy44/methylnet. The Docker image contains a test pipeline that requires 
one line to run through the hyperparameter training and evaluation of all framework 
components and can run on your local personal computer in addition to high performance 
computing. Help documentation, example scripts, and the analysis pipeline are available in the 
MethylNet GitHub repository (https://github.com/Christensen-Lab-Dartmouth/MethylNet). 
Tests of our pipeline’s functionality can be conducted on Code Ocean at:  
https://codeocean.com/capsule/6373790/tree . 
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