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Abstract—Antiparallel microtubule bundles are essential
structural elements of many cytoskeletal structures, for
instance the mitotic spindle. In such bundles, neighbouring
microtubules are bonded by specialised crosslinkers of the
Ase1/PRC1/MAP65 family that can diffuse longitudinally
along microtubules. Similarly, some kinesin motors impli-
cated in bundle formation have a diffusible tail allowing
them to slide passively along microtubules. We develop
here a theory of two microtubules connected by motors and
diffusible connectors, in different configurations that can
be realized experimentally. In all cases, the microtubule
sliding speed derived analytically is validated by stochastic
simulations and used to discuss recent experimental re-
sults, such as force generation by kinesin-14, and overlap
stabilization by Ase1. Some systems can produce steady
overlaps that are determined by the density of crosslinkers
on the microtubule lattice. This property naturally leads
to robust coordination between sliding and growth in
dynamic bundles of microtubules, an essential property
in mitosis.

1 INTRODUCTION

Arrays of parallel microtubules are indispensable in
cells, appearing for instance in mitotic spindles [24],
neuronal dendrites [28], or marginal bands of blood
platelets [11]. Observed in cross-section by electron
microscopy, these arrays have a regular organisation
that is composed either of square, triangular [24], or
even hexagonal unit cells [21]. These bundles are formed
by specialised molecular crosslinkers that mechanically
connect adjacent microtubules. Some crosslinkers only
bind when the microtubules are oriented in the same
direction [17], while others bind only when the micro-
tubules are antiparallel [24]. Molecular motors can also
connect microtubules and slide them relative to each
other, resulting in overlap shortening, and these changes
can be opposed by crosslinkers. Overlaps formed in vitro
with stabilised microtubules can reach an equilibrium
length, that arises from the interplay between molecular

crosslinkers and motors. Bundles found in vivo often
include dynamic microtubules, but their overlaps can
nevertheless reach a steady state length. In the case of
central spindle overlap, for instance, microtubule plus
ends elongation leads to additional sliding, whereby the
overlap length appears to remain constant, preserving the
mechanical connection between the microtubules [16].
The resulting slow separation of spindle poles is thought
to be necessary to complete mitosis [18]. Unravelling the
mechanisms by which microtubule overlaps are stabilised
and regulated is essential to understanding mitosis and
other key processes in cell biology.

In recent years, a number of systems involving dif-
fusible crosslinkers and motors have been studied in vitro.
Importantly, this work showed that two microtubules
were sufficient to form a stable antiparallel overlap, if the
correct kind of motor was used. Particularly, kinesin-14
was shown to lead to stable overlaps [1], in contrast to
kinesin-5, which moves antiparallel microtubules apart at
constant speed [19]. Noteworthy, the kinesin-14 family
members Ncd and HSET, in addition to a motor head,
contain a diffusible tail [2], making them able to form
asymmetric connections with motor and diffusible head
bound to different microtubules. Interestingly, Kinesin-14
can only reach sub-picoNewton forces when crosslinking
antiparallel microtubules [10], even though its motor
domain is able to exert picoNewton forces in vitro. This
suggests that the diffusible tail of kinesin-14 limits the
force exerted by its motor domain.

The crosslinkers of the MAP65/Ase1/PRC1 family
preferentially crosslink antiparallel microtubules [6], and
can diffuse longitudinally along single microtubules and
microtubule overlaps [7]. Fission yeast cells expressing
excess Ase1 exhibit slower mitotic spindle elongation
[16], [8]. In HeLa cells, PRC1 is required for the
stabilisation of the anaphase midzone [29], and has
recently been observed to locate to the bridging fibres
connecting sister k-fibres, suggesting that this protein
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may also have a role during metaphase [15]. In vitro,
diffusible crosslinkers can oppose sliding by molecular
motors [1], [9], [26]. Being passive in nature, one might
have expected the force required to move a head to be
proportional to the sliding speed. It was found however
that the resistance to sliding can increase dramatically
with the density of the molecules on the antiparallel
overlap [1], suggesting the existence of a critical density
of crosslinkers above which the system jams. These
crosslinkers are also able to widen an overlap in vitro, in
the absence of any motor [9], leading to the idea that they
could be regarded as a gas confined within the overlap.

Such phenomena were understood by considering the
discrete nature of the microtubule lattice with its well
known periodicity of 8 nm, given that only one head,
at most, may bind to a tubulin heterodimer. In these
experiments, diffusible crosslinkers remain associated
preferentially with the overlap region, where the two
binding domains can be bound. Statistically, overlap
extension creates more possibilities for the crosslinkers
to bind, resulting in an entropic pressure effectively
pushing the microtubules ends apart. Inversely, when
sliding results in the densification of the crosslinkers in
the overlap, the resistance to sliding increases, eventually
reaching a steady state overlap length, which can remain
stable for several minutes [1], [9], [27], [4].

Entropic expansion was previously modelled using both
an analytical model and a computational model (lattice-
based stochastic simulations) [9]. Interestingly, while the
analytical model did not quantitatively match the experi-
mentally observed behaviours, the computational model
did, as it exhibited a drag that increased exponentially
with the number of crosslinkers. Discrete models are
arguably more complicated to analyse, as they rely on
many assumptions, any of which could greatly influence
the dynamics of the system. We extend their analytical
theory, showing good agreement with their experiments.

Diffusible crosslinkers were modelled so far without
active force generators, following in vitro conditions.
However, in the cellular context, they most likely operate
together with molecular motors. Whether some coordi-
nation mechanism is needed to form stable overlaps, or
not, has not been yet been theoretically examined.

Aiming to understand how motors and diffusible micro-
tubule binders can be combined to form stable overlaps,
we study here four related systems (Fig. 1) inspired by
the in vitro work pre-cited. All systems contain two
antiparallel microtubules and we only consider their
motion in one dimension. We also presume a constant
overlap length, assuming that microtubule growth matches
the sliding exactly. This point will be discussed. The
four systems differ in the way the diffusible and motor

Motor

fs stall force
v0 unloaded speed
vm = v0 − fm/γm with γm = fs/v0

Non-diffusible head

ku unbinding rate
κ stiffness of linker
γc = κ/ku effective drag coefficient

Diffusible heads

D1 1D diffusion rate
a lattice unit length
vd = fd/γd with γd = kBT/D1

TABLE I: Microtubule binding heads

heads are associated to form connecting molecules. In
system A, crosslinkers bind and unbind but do not diffuse
along microtubules, while sliding is produced by bivalent
motors. System B is similar, except that the crosslinkers
can diffuse along microtubules and never unbind. It
was realised in vitro using PRC1 and kinesin-5 [20].
System C corresponds to experiments using Kinesin-
14 [10], in which the sliding is produced by motors
composed of a diffusible tail and a motor head, without
crosslinkers. Finally, in system D, diffusible motors pull
against diffusible crosslinkers. This was explored with
Kinesin-14 and Ase1 [1], [9]. Another system in which
Kif4A motors directly pulled on PRC1 crosslinkers was
modelled previously by us [4], and thus omitted here.
These systems offer gradual complexity and different
outcome. After defining a common set of assumptions,
we predict the sliding speed of the microtubules in each
system.

2 ASSUMPTIONS

The general assumptions are the same for all systems.
Motor and crosslinking entities are made of two heads,
binding to different microtubules. Unbound entities are
uniformly distributed in space, and their heads can
bind with equal rates kb if they reach a microtubule.
A bound head may unbind with constant rate ku. If
one head is attached, the other head can attach to the
other microtubule if it is overlapping at this position,
also with rate kb. An entity bound to two microtubules
exerts an elastic force of stiffness κ and zero resting
length (Fig. 1a). At the time of second binding, the gap
δ between the two heads is null, but if microtubules
slide, a tension f = κδ will build up. This tension
is relieved if the heads move appropriately along the
microtubules, or if the microtubules slide relative to each
other. The movement of the heads along the microtubule is
affected by the tension f in the associated link, differently
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Fig. 1: Schematics of the modelled systems
Systems containing two antiparallel microtubules, arranged with an overlap length L that is constant because microtubules grow
at the required speed to compensate exactly for the sliding. (a) In system A, microtubule sliding is determined by bivalent
motors (green circular heads) and crosslinkers (blue square heads). These crosslinkers bind and unbind but do not slide along
microtubules. Motor heads move actively towards the plus ends and tend to reduce the overlap. Crosslinkers resist this motion
until they unbind. (b) System B combines bivalent motors and diffusible crosslinkers (purple diamond heads). Motors and
crosslinkers do not bind or unbind but may slide along microtubules. Motors create tension in the linkers that hinder their
progression, while promoting the hopping of crosslinkers heads and microtubule sliding. A steady state is reached where motors
and crosslinkers move on average at the same speed towards the plus end. By impairing the movements of the crosslinkers
(red crossed arrows), occupancy decreases the sliding speed. (c) System C has diffusible motors composed of a motor head
(green circle) with a diffusible head (orange diamond). Tension generated by active motor movement is released by hopping of
diffusible heads, and microtubule sliding. (d) System D has diffusible motors as described in (c) and diffusible crosslinkers as
described in (b). Diffusible heads of crosslinkers (purple diamonds) interfere with other molecules of the same category but not
across category.

for motors and passive heads. We consider three types
of heads (Table 1). Motor heads move continuously,
since we are considering situations where jamming of
motors does not occur. Attached motor heads move
towards the plus-end with a speed vm = v0 (1− fm/fs),
depending on the force against which the motor is pulling
fm, its unloaded speed v0 and stall force fs. Thus,
an antagonistic force reduces motor speed linearly, as
shown experimentally [12]. We define γm = fs/v0, the
characteristic drag coefficient of the motor head, such that
vm = v0 − fm/γm. This equation determines the force-
velocity relationship of the motor. We note that Kinesin-
14 moves towards the minus end of microtubules, but as
microtubule assembly dynamics are ignored here and only
one type of motor is present, we can ignore microtubule
polarity as the system is unchanged by swapping ‘plus’
and ‘minus’ throughout. Non-diffusible passive heads
do not move along microtubules, and must unbind to
relocate on a filament, releasing the associated linker
tension immediately. We define γc = κ/ku, the effective
drag coefficient of the crosslinkers. Diffusible passive
heads are modelled following [9]. They bind at discrete
sites on the microtubule lattice, separated by a = 8 nm.
Passive heads can diffuse on this lattice by hopping to
adjacent sites with a rate k0. However, a crosslinker head

may not move to a position that is already occupied, nor
step out of the microtubule at its ends. In the absence
of external force, passive heads hop equally in both
directions, undergoing pure 1D diffusion with a coefficient
D1 = k0 a

2. When the tension fd in the linker between
the heads builds up, the upstream (k+) and downstream
(k−) rates differ. How these rates vary is not known, but
thermodynamic consideration dictates that for any pair of
states (a, b) with potential energies (Ua, Ub), the transition
rates should satisfy Arrhenius law: ka→b/kb→a = eε with
ε = (Ua − Ub) /kBT , and this is fulfilled by assuming
[23]:

ka→b =
ε

1− e−ε
k0 and kb→a =

ε

eε − 1
k0 (1)

Since U = 1
2κδ

2, the hopping rates read:

k+ =
α− β

1− eβ−α
k0 and k− =

α+ β

eα+β − 1
k0, (2)

where α = a fd/kBT expresses the bias caused by force
and β = κa2/2kBT echoes the difficulty of reaching
a neighbouring binding site due to the stiffness of the
linker. The diffusion rate of a crosslinker that is bound to
two overlapping microtubules is defined by a, k0 and β
and the microtubule’s own movements. In this article, we
adopt the continuum limit that is obtained by neglecting
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Common Linker stiffness κ 100 pN/µm
Lattice size a 8 nm

Rigid crosslinker Unbinding rate ku 2.38 s−1

Binding rate kb 1 s−1

Bivalent motor

Unbinding rate ku
†0.01 s−1

Binding rate kb
†0.01 s−1

Unloaded speed v0 0.05 µm/s
Stall force fs 6 pN

Diffusive crosslinker 1D Diffusion rate D1 0.1 µm2/s

Diffusive motor
Unloaded speed v0 0.2 µm/s
Stall force fs 6 pN
1D Diffusion rate D1 0.1 µm2/s

TABLE II: Parameters of simulations
Parameters used in the computer simulations, unless specified. †
Binding and unbinding of bivalent motors is disabled in System B.

the contribution of β. The drift speed along a microtubule,
under a given force, then reads:

vd = a
(
k+ − k−

)
=
fd
γd
, (3)

with γd = kBT/k0a
2, the characteristic drag coeffi-

cient of a diffusible head. Accordingly, we adopted
κ = 100 pN/µm, a value for which the continuum limit
is valid, for forces in the pN range (see discussion). Mi-
crotubules are incompressible lines oriented in opposite
directions. The orientation of each microtubule dictates
the natural movement of attached motors. The estimated
viscous drag γfil ∼ 3πξH/[log(H/d) + 0.312] depends
on the length of the microtubule H , its diameter d and
the viscosity of the fluid ξ, following [22].

3 RESULTS

3.1 System A: Conventional motors and crosslinkers

We consider first non-diffusible crosslinkers that can
bind and unbind from the antiparallel microtubules with
constant rates kb and ku (Fig. 1a). The motors are of
the Kinesin-5 family, sliding antiparallel microtubules
apart. Given that all binding/unbinding rates and the
overlap length are constant, there is a steady number
of active motors in the system, producing an average
force F between the microtubules. There is also a steady
number of crosslinkers c, and their combined force must
balance the motor force. The average force per crosslinker
is then fd = F/c = κ δ. Microtubules slide when
one crosslinker unbinds, as the force of the motor is
redistributed on a smaller number of crosslinkers. To
evaluate the sliding associated with an unbinding event,
we can consider the balance of forces after detachment:
F/(c− 1) = κ δafter. The maximum displacement of the

microtubule is therefore δafter − δ = δ/(c− 1). This will
be the actual displacement, if the timescale of binding is
sufficiently slow to allow the system to reach equilibrium,
corresponding to c kb γfil � κδ. This condition holds
true for realistic parameter values. In this regime, each
filament will move at speed vfil = kuδ c/(c− 1), since 2c
heads can unbind, and each unbinding event leads to a
translation of both filaments by δ/2(c− 1). We can now
calculate the force of the motors. Fast processive motors
that are able to reach stall force (v0κ/fs � ku, see table
2), will have reached a steady state defined by the force-
velocity relationship vm/v0 = 1 − fm/fs. If m is the
average number of bound motors, fm = F/m = κδc/m,
and by substituting vfil we finally derive:

v0
vfil

= 1 +
c− 1

m

γc
γm

. (4)

The filament speed (vfil/v0) is simply determined by the
ratio of bound crosslinkers to motors (Fig. 2a) and the
associated drag coefficients. As the system is symmetric,
the filaments slide apart at speed 2vfil, not exceeding 2v0
as expected. Speed is independent of the absolute density
of the molecules on the microtubule, and stable overlaps
never form.

3.2 System B: Bivalent motors and diffusible crosslinkers

We now consider diffusible crosslinkers, that however
do not bind or unbind for simplicity (Fig. 1b). This setup
is comparable to the PRC1/kinesin-5 system [20]. To
account for the fact that only one crosslinker head may
occupy each lattice site (a = 8 nm), we introduce the
probability ρc ∈ [0, 1] for a lattice site to be occupied,
and treat this value as if it was uniform along the
lattice. In reality, since filament ends act as diffusion
barriers, crosslinkers may accumulate at filament ends
[1], [9]. However, in our case where the overlap is kept
constant by microtubule growth, the crosslinkers remain
equidistributed, and this parameter is effectively uniform.
Therefore, ρc = c a/L, and Eq. 3, becomes

vd = (1− ρc)
fd
γd
. (5)

In vitro, the viscous drag of the filament is small
compared to the drag of diffusible crosslinkers. For
example, with ξ < 0.01 Pa.s, the viscous drag per unit
length for microtubules is ∼ 0.015 pN.s.µm−2 whereas
γd = 0.04 pN.s.µm−1 for D1 = 0.1µm2/s. Hence, at
densities above 1 crosslinker/µm, the force exerted by
the viscous drag of the solution remains negligible, such
that the force in the motor links should equal the force in
the crosslinker links. With m motors and c crosslinkers,
and calling fm and fd the forces per molecule, this means
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F = mfm = c fd. In the steady state, because of the
symmetry, motors and crosslinkers are immobile in space,
and the speed of the heads is equal to the speed of the
filament: vfil = vm = vd. Using the motor force-velocity
relationships (vm = v0 − fm/γm) and Eq. 5, we derive:

v0
vfil

= 1 +
1

1− ρc
c

m

γd
γm

. (6)

In addition to the ratio of motor to crosslinkers and
their drag coefficients, the density of crosslinkers on the
microtubule lattice also sets the filament speed (Fig. 2b).
Higher occupancy leads to lower speeds (see Fig. 2b,
black line obtained for ρc = 0). In the regime where the
second term of the right hand side dominates, the speed
is proportional to the number of motors. Sliding only
stops when ρc = 1.

3.3 System C: Diffusible motors

We now consider diffusible motors composed of a
motor head linked with a diffusible head (Table 1, Fig.
1c). We focus on the low density regime, and model the
diffusible tail on a lattice without occupancy limits such
that multiple heads can bind to the same site. A diffusible
head unbinds immediately upon reaching the end of a
filament.

At steady state, motors move towards the plus-end of
their microtubule. Diffusible heads follow their motor
at a distance δ behind, effectively moving towards the
minus-end of the microtubule to which they are bound.
With all links pulling in the same direction, the forces
f of the links add up and the movement of the filament
is vfil = mf/γfil, with m the number of links. The mean
speeds of motor heads (vm) and diffusible heads (vd) are
relative to their microtubules, which move in opposite
directions, and the steady state requires vm−vfil = vd+vfil.
From the motor force-velocity and Eq. 3 we then derive
v0 − f/γm = f/γd + 2vfil and finally:

v0
vfil

= 2 +
γfil

m

(
1

γd
+

1

γm

)
. (7)

This formula can be compared to the sliding speed
obtained in a gliding assay in which immobilised motors
are pulling directly on the microtubule: v0/vfil = 1 +
γfil/(mγm). Firstly, the factor 2 in Eq. 7 indicates that
diffusible motors, since they only contain one motor
domain, can only slide microtubules at half their unloaded
speed, unlike tetrameric kinesin-5 motors, which can slide
microtubules at their unloaded speed. Secondly, part of
the work produced by the motors is necessarily wasted in
moving the diffusible head. Optimal microtubule transport
is obtained for 1/γd → 0, but if the passive head can
move, only a fraction of the motor force is transmitted

to the link. This effect can be understood by considering
immobile microtubules, for which the force in the link f
is set by:

v0
f

=
v0
fs

+
1

γd
(8)

If fs � v0γd (the tail is hard to move), all the motor work
is transmitted (Fig. 3a), but in any case the transmitted
force is limited to γd v0 (Fig. 3a, dashed line). If γd > γm,
a significant fraction of the motor work will be used in
sliding the diffusible head, rather than the microtubules.
However, if γd � γm (expected for the measured values),
the force required to transport the diffusive tail on the
microtubule is negligible compared to the stall force, and
the motor heads move nearly at their unloaded speed.
This means that the force produced is γd v0 (Fig. 3a,
dashed line), corresponding to the drag force produced
by diffusive tails moving at the motor’s unloaded speed.

System C was simulated for a motor with the char-
acteristics of kinesin-14: v0 ∼ 0.2µm/s, fs ∼ 5 pN
[10] and D1 ∼ 0.1µm2/s [2], [14] (Fig. 3a, dots). We
recover Eq. 7 and increasing viscosity reduces the sliding
speed as anticipated (Fig. 3b). With γd = 0.04 pN.s/µm
and γm = 25 pN.s/µm, certainly γd � γm and the
reduced sliding speed is set by v0/vfil = 2 + γfil/(mγd).
An interesting prediction can be derived from this formula.
One can expect the drag of a filament to be roughly
proportional to its length H (as predicted for H > 2µm
[22]), and if the linear density of active motors is constant,
the sliding speed will be independent of the length of
the microtubule (since γfil/m is constant). This is what
has been experimentally observed [10].

3.4 System D: Diffusible motors and diffusible crosslink-
ers

We now add symmetric diffusible crosslinkers to
system C (Fig. 1d). As shown experimentally, this slows
down the sliding speed [1], [10]. In these experiments,
one microtubule is fixed while an antiparallel shorter
one is free to move and crosslinked by the diffusible
crosslinker Ase1 and the motor Ncd. Sliding occurs at a
constant speed set by the ratio of motors to crosslinkers.
When the transported microtubule reaches the end of the
fixed microtubule, the sliding stalls and eventually a stable
overlap is established. During this time where the overlap
decreases, the density of Ase1 increases but the density of
Ncd remains unchanged. This suggests that Ncd turnover
is faster than sliding, and that Ase1 does not compete
with Ncd for binding sites. We make corresponding
assumptions, with diffusible crosslinkers that do not
unbind, and diffusible motors that bind and unbind with
constant rates. Diffusible crosslinkers are modelled as in
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System B and the diffusible motors as in System C, and
they do not interfere with each other for binding (Fig
1d). The diffusible heads from Ase1 and Ncd are distinct,
and we note their drag coefficients γd and γt respectively
(’t’ for tail of Ncd). Given the observed parameters of
kinesin-14 (v0 ∼ 0.2µm/s, D1 ∼ 0.1µm2/s [10], [2]) we
expect forces produced by diffusible motors (Eq. 8, with
D1 ∼ 0.1µm2/s) to be in the same range as entropic
pressure. The main force opposing the motor is thus
the drag of the diffusible crosslinkers, as in System B,
while the filament drag is negligible. We can use the
contribution of the (positive) entropic pressure directly
from [9]: P = −(kBT/a) log(1−ρc). The force balance
becomes c fd+P = mfm. We can calculate the filament
sliding speed vfil given that vd = vfil and vm−vfil = vt+vfil.
Using Eq. 5, we obtain the following relation:

vfil =

[
v0 −

P

mγtm

]
/

[
2 +

c γd
(1− ρc)mγtm

]
, (9)

where we have defined 1
γtm

= 1
γt
+ 1

γm
. The denominator

of the right hand side resembles the previous equations,
while the numerator accounts for the entropic pressure.
Speed decreases with crosslinker drag (cγd) and increases
with motor tail drag (mγtm) as expected. For low
densities (ρc � 1), the sliding speed depends on the
ratio of motors to crosslinkers [1]. Interestingly, the
model predicts negative speeds if the entropic pressure
is sufficient (Fig. 3c). Thus, stable overlaps may form
for which ρc < 1. The result can be expressed from
the density of species in the overlap ρm = ma/L and
ρc = c a/L as:

vfil =

[
v0 +

kBT log(1− ρc)
ρm Lγtm

]
/

[
2 +

ρc γd
(1− ρc) ρm γtm

]
This reformulation highlights that the contribution of en-
tropic pressure decreases with overlap length L, because
it only depends on density, while the other forces exerted
by motors and crosslinkers scale with L. Moreover, at
high occupancies where ρc ∼ 1, the speed tends to zero
as:

vfil ∼
kBT

Lγd
(1− ρc) log(1− ρc) (10)

3.5 Entropic overlap expansion

We wondered if System D could recapitulate en-
tropic overlap expansion, resulting from confinement
of crosslinkers. This was measured experimentally by
first applying hydrodynamic flow, to compress overlaps,
and subsequently stopping the flow and measuring the
expansion speed (Figure 3B from [9]). The expansion is
purely driven by entropic forces, and can be analysed by
omitting the motors from System D. We considered pairs

of microtubules of length 20 µm, with different initial
overlap lengths. Assuming that the force under which
these overlaps were formed is the same, the density of
crosslinkers prior to the release of the force should be
similar, since entropic forces depend only on density.
Following these assumptions, the force per crosslinker is
fd =

P
c and using (2) we would predict a sliding speed:

vfil = a (1− ρc)
[
k+(fd)− k−(fd)

]
(11)

Assuming that k0 could be different on microtubule
overlaps and on single microtubules, the measured
diffusion constant on overlaps (0.011µm2/s) can be
matched by multiple combinations of κ and k0 (Fig. 4a).
For such combinations, stochastic simulations show good
agreement with the experimental data (Fig. 4b, c). For
κ < 300pN/µm the theory remains in good agreement
with the stochastic model, provided that one uses Eqs. 2
to evaluate Eq. 11, taking into account the contribution of
β. It seems that multiple parameter combinations could
be adequate to model these results.

3.6 Steady overlaps

In this last section, we consider the situation where
sliding results in overlap shrinkage. Specifically, we
aim to understand in vitro experiments that showed
overlaps remaining for several minutes [1], [9], [26]. This
phenomenon occurs when the turnover of crosslinkers
is slower than sliding, such that crosslinkers accumulate
in the overlap. On the contrary, if crosslinker turnover
is sufficiently fast, the density of crosslinkers does not
increase, and stable overlaps do not form [20]. Eq. 6
predicts that sliding stops when ρc ∼ 1. For values of
γm � γd (the motors are stronger than the crosslinkers),
the sliding indeed stops when crosslinkers are totally
compacted at L = c a (Fig. 5a). However, for a diffusible
motor, the entropic pressure can promote L > c a (Fig.
5b). From Eq. 9, an equilibrium between entropic pressure
and motor force is reached if:

− 1

L
log

(
1− c a

L

)
=
v0 ρm γtm
kBT

(12)

This result is confirmed by simulations (Fig. 5b), showing
that even if entropic forces are smaller than the typical
stall force of a single motor head, they are able to stabilise
overlaps at densities above total compaction. Also, from
Eqs. 6 and 9, we predict that, once a steady state length
is reached, it can still decrease if crosslinkers unbind, or
increase if more crosslinkers bind. Interestingly, diffusion
rate of the crosslinkers does not affect final overlap length,
but rather the speed at which this steady state is reached.
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4 DISCUSSION

We have examined different ways by which motors
and crosslinkers can be combined to make a stable
overlap, predicting the sliding speed of the microtubules
in each case. The analytical predictions matched the
discrete stochastic simulations with κ = 100 pN/µm. The
equations resulting from the mean field approximation,
without ignoring β, were solved numerically to improve
the fit (Fig. 4c). However, for much higher values of
κ and small forces per crosslinker, the system becomes
qualitatively different. Microtubules adopt positions in
which their lattices are in register, with an offset between
them that is a multiple of the lattice unit. This regime was
analyzed recently [25], showing how the jumping rate
between two adjacent positions can depend exponentially
on the number of crosslinkers. While the value of κ is
critical in this model [25] as well as in ours, we note
that the force may not be Hookean, such that measuring
κ may be an ill-posed quest. In addition, the dependency
of forward and backward rates on the force postulated in
[9] is different from ours (Eq. 2), but both assumptions
seem theoretically valid. Perhaps the most effective way to
discriminate between these models is to directly determine
the hopping rates of Ase1 under force.

The properties of the motors and diffusible crosslinkers
operating in bundles are likely tuned for working together.
Indeed, diffusible crosslinkers can regulate the sliding
of diffusible motors, but they have little effects on the
sliding caused by kinesin-5, even when they are in fair
excess [20]. Given their biophysical characteristics, we
can estimate if a motor would be hindered by crosslinkers
or not. Kinesin-5 has a stall force of 1—10pN [5], and
a speed of around 100 nm/s [5]. The diffusion rates
of individual heads of kinesin-14 and Ase1 have been
measured and they seem to be in the range of 0.1 −
0.01 µm2/s [5]. From this, it appears that γd � γm,
suggesting that kinesin-5 motors would easily run over
diffusible crosslinkers (Fig. 2c), which has indeed been
observed [20]. Such strong motors can slide microtubules
until the crosslinkers reach total compaction. Entropic
pressure may be sufficient to stall less efficient force
generators. Kinesin-14 (v0 ∼ 0.2 µm/s and fs ∼ 1pN
[10]) has a diffusion rate that is comparable to Ase1/PRC1
diffusion. Thus γm � γt, and we predict a significant
effect on sliding speed, even at low occupancies (Fig.
3c). Thus many qualitative experimental observations are
explained from the values of the parameters that have
been published.

We have compared two types of molecular breaking:
conventional crosslinkers that bind and unbind and
diffusible heads. With the first type of breaking, sliding is

determined by the ratio between motors and crosslinkers
(Fig. 2a), while with the second type it depends also on
the density of crosslinkers (Fig. 2b and 3c). Conventional
crosslinkers do not sustain stable overlaps but diffusible
crosslinkers can do so with both weak or strong motors.
Motors like Kinesin-14 may stall against the entropic
pressure (Fig. 5b) without compacting the crosslinkers
completely. Motors such as Kinesin-5 would stop when
crosslinker compaction prevents further sliding (Fig. 5a).

System D (Fig. 4b, c) represents the experimental
setups of [9], and reproduces qualitatively their main
observations. Thus, while exponential friction [25] could
explain the experimental expansion experiments [9], we
propose here that considering lattice occupancy (Eq.
10) while adjusting parameters that are otherwise not
constrained by experiments (Fig. 4) can also lead to the
results observed. This alternative theory also explains
that, under certain conditions, the sliding speed induced
by kinesin-14 in the presence of Ase1 is independent
of the overlap length, as observed in [1]. The same has
been observed for kinesin-5 and PRC1 [20].

We have assumed that microtubules would grow at
the required speed to maintain the overlap steady. We
could however relax this assumption in simulations where
microtubules were growing at a constant speed vg. They
indeed reached a steady state overlap where growth and
sliding equalise (Fig. 5c). A sharp reduction in speed at
high densities of crosslinkers, as predicted for bivalent
(Fig. 2c) and diffusible motors (Fig. 3c), is a key property
for this synchronisation to happen. It allows for sliding
to be conditioned on microtubule growth: microtubule
elongation lowers the density of crosslinkers, and motors
repack these crosslinkers by sliding the microtubules.
Consequently, sliding and growing speeds will match
without any further adjustment. The condition for this to
spontaneously occur is that the motor/crosslinker system
should be able to keep up with the required quantity of
sliding: vg should be slower than the maximum speed
at which the microtubule can slide. Thus the appropriate
equation (e.g. 6 or 9) are useful to estimate the conditions
under which a stable overlap can be established.

We concluded that the timescale of crosslinker turnover
was a critical parameter of the system. If turnover is
faster than sliding, overlaps slide apart, as observed
experimentally [20]. If turnover is slower than sliding,
stable overlaps may form. Interestingly, fission yeast
cells reduce the turnover of Ase1 upon anaphase entry,
where maintenance of overlaps at the central spindle is
important for the separation of spindle poles, suggesting
that turnover regulation is active in cells [3]. Upon the
action of only a few motors, the crosslinkers form stable
overlaps, as observed experimentally [4]. The length of
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such overlap is determined by a simple rule: the overlap
decreases until crosslinkers reach their maximal density.
This is a remarkably simple and robust mechanism that
does not require fine-tuned parameter values or intricate
feedback loops. Thus, cells could adjust the length of the
overlap by controlling the expression of crosslinkers.

Mechanically, with one molecular link every 8 nm
over a few micrometers, such connections between two
antiparallel microtubules are very strong. They are strong
in the directions orthogonal to their main axis, as needed
to maintain the two microtubules aligned. They are also
strong in the axial direction, which is essential, particu-
larly during anaphase where these overlaps contribute to
spindle elongation. In contrast, any mechanism based on
entropic pressure created by a ‘confined gaz of crosslinker’
is limited to relatively low forces and bound to result
in high longitudinal compliance. This may or may not
be desired depending on the operational demands placed
upon the bundle.

In conclusion, perhaps the key property of these
systems is to be able to accommodate microtubule
assembly while maintaining steady and strong antiparallel
connections, a conserved landmark of anaphase. While
our theory is directly applicable to microtubules pairs
formed in vitro, it will be valuable in the future to pursue
geometrically realistic bundles made of more than two
microtubules, to comprehend the mechanisms of action
of diffusible crosslinkers in vivo.
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6 STOCHASTIC SIMULATION METHODS

We used the Open Source project Cytosim in 1D
(www.github.com/nedelec/cytosim). The top (resp. bot-
tom) microtubule is represented by an ordinate p (resp.
p′) and a direction d = +1 (resp. d′ = −1). The location
of the heads are recorded by their distance from the
minus-end, a.k.a the abscissa xi, such that the position in
space is p+d xi. An array of boolean values T is used for
each microtubule to represent lattice occupancy, where
T [i] corresponds to abscissas in [ai, a(i+1)]. The system
is evolved using a time step of τ = 10−5s. Hopping to

neighboring sites are stochastic events, simulated using a
random number generator: a rate R is simulated by testing
θ < 1− e−Rτ at every time step. Hopping is forbidden if
the lattice is occupied, and the lattice is updated at each
molecular binding, unbinding or displacement. The force
in a link is κ δ with δ = xi−x′i. The movement of motors
is represented by updating the abscissa: xi = xi+v τ . The
total force on each microtubule is calculated by summing
all link forces. A Brownian dynamic approach using
an overdamped Langevin equation is used to model the
system, with an implicit numerical integration scheme
[13]. The steady state speeds in Fig. 2, 3b, c were
calculated from 40s of simulated time. The sliding speed
was obtained by regression of the distance between the
microtubule minus ends, from 8 to 40 seconds. Steady
state speed measurements in Fig. 5c were calculated
similarly from 100s of simulated time. The fitting for
bivalent motors (blue dots) was done using data from
70 to 100s, and from 40 to 100s for diffusive motor
(orange squares). The steady state force in Fig. 3a was
measured from 40s of simulated time. The microtubules
(as shown on Fig. 1c), were immobilized by a Hookean
element of stiffness κs. The steady state force is the
average force exerted by these elements from 8 to 40
seconds. For each simulation, κs was adjusted to ensure
that it would always have a similar stretch at steady
state: κs ∝ a(Dm/v0kT + 1/fs). The steady state
overlap length for bivalent motors (Fig. 5a) was taken
as the final overlap length after 100s of simulated time,
while for diffusive motors, the average overlap length
was calculated from 80 to 200 seconds. The diffusion
rate of crosslinker in overlaps (Fig. 4a) was calculated
from the mean squared displacement (MSD/2t) of 1000
crosslinkers bound to two microtubules after 1 second of
simulated time, in simulations with an infinite capacity
lattice. The expansion speed (Fig. 4b) was measured
from 15 seconds of simulated time by regression of the
distance between microtubule plus ends. All source code
for simulation and analysis are available from the authors
upon reasonable requests.
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Fig. 2: Systems A&B, bivalent motor and diffusible or non-diffusible crosslinkers
(a) Steady state speed for system A, with motors (fs = 6 pN, v0 = 0.05 µm/s) pulling non-diffusible crosslinkers (κ =
100 pN/µm, ku = 2.38 s−1), resulting in γc/γm = 0.35. Dots represent the results of individual simulations containing 30
(blue circles), 60 (orange squares) or 90 (grey triangles) crosslinkers and a random number of motors (1 to 375). The line
indicates Eq. 4. (b) Steady state speed for system B, with bivalent motors (fs = 6 pN , v0 = 0.05 µm/s) and diffusible
crosslinkers (D1 = 10−4µm2/s), resulting in γd/γm = 0.35. Dots represent the results of individual simulations containing 60
(blue circles), 120 (orange squares), 240 (grey triangles) crosslinkers, and a random number of motors (1 to 380). Coloured lines
show the corresponding predictions of Eq. 6. The black line represents the prediction for ρc = 0. (c) Steady state sliding speed
for system B, varying D1 of crosslinkers. Dots represent the results of individual simulations, with D1 = 3.5× 10−5 (blue
discs), D1 = 3.5×10−4 (orange squares) and D1 = 3.5×10−3µm2/s (grey triangles), resulting in γd/γm = 1; 10−1 and 10−2,
respectively. These simulations included an equal amount of crosslinkers and motors, randomly chosen between 5 and 375.
Since motors and crosslinkers do not unbind, the mean occupancies of crosslinkers and motors are equal. Coloured lines show
the corresponding predictions of Eq. 6. L = 3µm for all the simulations on this figure, and the horizontal and vertical positions
of simulation dots are calculated from the simulation results (see methods).
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Fig. 3: Systems C&D, sliding by diffusible motors
(a) The maximum usable force of a diffusible motor is limited by the drag coefficient of its diffusible head γd. Dots represent
the results of individual simulations with fixed microtubules and Kinesin-14 like motors (fs = 6 pN , v0 = 0.2 µm/s) and
D1 ∈ [10−7, 1]µm2/s. The line represents the prediction of Eq. 8. The dashed line represents the upper limit γd/γm. (b) Sliding
speed for system C, with Ncd-like diffusible motors (fs = 6 pN , v0 = 0.2 µm/s, D1 = 0.1 µm2/s), for different viscosities
ξ in Pa.s: 0.01 (blue discs), 0.1 (orange squares) and 1 (grey triangles). Dots represent the results of individual simulations
containing a random number of motors in [1, 100]. Coloured lines show the corresponding predictions of Eq. 7. (c) Sliding
speed for system D, with diffusible motors, as in (b), and diffusible crosslinkers (D1 = 0.1 µm2/s). Dots represent the results
of individual simulations with varying number of motors: 100 (blue circles, ρm = 0.06), 200 (orange squares, ρm = 0.12), 300
(grey triangles, ρm = 0.18). The number of crosslinkers is randomly chosen in [1, 300]. Coloured lines show the corresponding
predictions of Eq. 9. Note that simulations cannot yield negative speeds because overlap is kept constant by growth. For all
simulations, L = 3µm. All dots are placed according to the values of the relevant quantities averaged after the system has
reached steady state (see methods).
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Fig. 4: Entropic expansion of compressed overlaps

(a) Pairs of D1 and κ that best matched the observed diffusion rate of Ase1 in overlaps. For every value of κ (from 10 to
300 pN/µm), simulations were run scanning 50 values for D1 (from 0.011 to 0.085 µm2/s). A dot is placed indicating the D1

for which the simulated diffusion of 1000 crosslinkers was closest to the experimental value (0.011 µm2/s). (b) Expansion
speed for an overlap containing diffusible crosslinkers, as described in [9]. Blue dots represent the initial speed of sliding of
individual simulations (κ = 75 pN/µm), equilibrated with an occupancy ρc = 0.65. The black line represents the prediction of
Eq. 11 with β ∼ 0, and the dotted line indicates the result obtained without this approximation. The experimental data (orange
squares) is reproduced from [9] with permission. (c) Same as (b), but with a different value of the parameters: κ = 250 pN/µm
and ρc = 0.1.
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Fig. 5: Steady state overlaps length and entropic forces

(a) Steady state overlap length for system B with non-growing microtubules. Dots represent the results of individual simulations,
with 1 to 40 bivalent motors (fs = 6 pN , v0 = 0.05 µm/s). The number of crosslinkers (D1 = 0.1 µm/s2) is 120 (blue
discs), 240 (orange squares) and 360 (grey triangles). Coloured lines indicate total compaction. (b) Steady state overlap length
for system D with non-growing microtubules. Dots represent the results of individual simulations, with 1 to 200 crosslinkers
(D1 = 0.1µm2/s). The number of motors (D1 = 0.1µm2/s, fs = 6pN ) is 100 (blue discs), 200 (orange squares) and 300 (grey
triangles) and v0 = 0.2µm/s. Coloured lines indicate Eq. 12 and the dashed line indicates the predicted equilibrium obtained
by not neglecting β in Eq. 2. (c) Sliding speed for systems B (blue circles) and D (orange squares), in which microtubules grow
at a constant speed vg (x-axis). Dots represent the results of individual simulations with 150 crosslinkers and 100 motors (blue)
or 300 motors and 75 crosslinkers (orange). The parameters are as in (a) and (b). The black line indicates equality between
growth and sliding speeds.
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