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We studied the fine temporal structure of spiking patterns of groups of up to 100 simulta-
neously recorded units in the prefrontal cortex of monkeys performing a visual discrimination
task. We characterized the vocabulary of population activity patterns using 10 ms time bins
and found that different sets of population activity patterns (codebooks) are used in different
task epochs and that spiking correlations between units play a large role in defining those
codebooks. Models that ignore those correlations fail to capture the population codebooks
in all task epochs. Further, we show that temporal sequences of population activity patterns
have strong history-dependence and are governed by different transition probabilities between
patterns and different correlation time scales, in the different task epochs, suggesting differ-
ent computational dynamics governing each epoch. Together, the large impact of spatial and
temporal correlations on the dynamics of the population code makes the observed sequences
of activity patterns many orders of magnitude more likely to appear than predicted by models
that ignore these correlations and rely only on the population rates. Surprisingly, however,
models that ignore these correlations perform quite well for decoding behavior from popula-
tion responses. The difference of encoding and decoding complexity of the neural codebook
suggests that one of the goals of the complex encoding scheme in the prefrontal cortex is to
accommodate simple decoders that do not have to learn correlations.

keywords: prefrontal cortex, population activity, spatiotemporal response correlation, encoding, decoding,
decision-making, maximum entropy

INTRODUCTION

The analysis of neural codes has often been described in terms of characterizing two "dictionaries:" An
encoding dictionary that maps stimuli into neural responses and a decoding one, which maps neural activity
into estimated stimuli or behavioral outcomes [1, 2]. While encoding and decoding are strongly coupled,
their respective dictionaries may have very different structures and properties. In engineering, encoding
is typically designed to maximize information rate through overcoming noise, whereas decoding aims at
reconstructing the original signal, minimizing a well defined error function [3]. The brain operates under
very different requirements and constraints. Neural encoding needs to convey the relevant information to
downstream circuits, in an efficient way under constraints of time, energy, noise, and number of neurons
[2, 4, 5]. The nature of the code also depends on the architecture and state of the encoding network of
neurons, which may create complex and even variable codes in different encounters with the same stimulus
or execution of similar actions, especially for neural processes that evolve over time [6]. Neural decoding
needs to give a reduced representation of the stimulus, often in terms of a decision or action for the
organism to take, whereby minimizing an error function that is typically unknown in full to us. Also, what
information is relevant may vary from one moment to the next, depending on the needs and goals of the
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organism. Thus, decoding in the brain is typically far from a direct inverse of encoding and would typically
retrieve only part of the information encoded in upstream networks; in engineering terms this would mean
a very "lossy" decoding [3]. So, despite their inherent coupling, neural encoding and decoding could follow
different operational principles.

We study here the nature of the population code of the prefrontal cortex (PFC) in monkeys during a
perceptual decision making task. The PFC is an especially interesting brain region to study population
encoding and decoding due to its role in many high-level cognitive functions [7–9], and the prevalent
recurrent connectivity and large number of synapses between its neurons [10, 11], which provide a structural
basis for rich dynamics to emerge. Decision making is typically a temporally extended process, often
described in terms of different functional stages: gathering information, transforming information to a
choice, and acting upon the choice [12]. Accordingly, the relation between neural activity and decision
making is commonly studied using tools from decision theory, e.g., by projecting neural activity on a
decision variable [13–16]. In particular, for perceptual decisions based on accumulation of sensory evidence,
it has been shown that dynamics of population firing rates reflect the accumulation process that leads to
the decision [13, 16, 17].

Characterization of encoding in large neural populations hinges on mapping the spatial and temporal
structures of spiking patterns, and how they carry information [18–24]. Past analyses have largely relied
on the firing rates of individual units and their dynamics. Yet, in many neural circuits, the joint activity
patterns of large populations of neurons have been shown to be strongly correlated on short time scales
[25–28], both in terms of signal correlations [29–33] and noise correlations [34–36]. Thus, the study of
population codes requires a detailed mapping of the joint spiking patterns of large populations of neurons
and their evolution through time, without making a priori assumptions, to uncover the underlying design
principles in terms of spiking patterns, correlations, time scales, and their functional implications. We
therefore use statistical modeling of population spiking activity at fine temporal resolutions to characterize
the spatial and temporal structure of population dynamics and their functional timescales in the prefrontal
cortex of monkeys.

Using highly accurate statistical models of the spiking patterns of 100 units, we show that strong spatial
and temporal correlations at the population level shape the encoding dictionary. We further characterize
history-dependence and the dynamics of population spike patterns, demonstrating that the spike patterns
and their sequences strongly depend on the epoch of the task and computations performed by the network.
The timescale of temporal dependence in the code is only tens of milliseconds, suggesting that conventional
rate-based analyses that rely on longer analysis windows would fail to accurately capture the neural code.
Finally, we show that despite the strong spatio-temporal correlations in encoding, and maybe because
of them, the resulting code is one that is readable by a simple decoding scheme that does not take these
correlations explicitly into account. These properties make the neural code suitable for versatile and complex
computations while also making it easy for downstream areas to interpret prefrontal responses.

RESULTS

We recorded the activity of groups of over 100 units from the prefrontal cortex of two macaque monkeys
performing a perceptual decision making task. Electrophysiological recordings were done using Utah arrays,
over 15 sessions, each consisting of more than a thousand trials (see Methods). Monkeys were trained to
perform a direction discrimination task based on the movement of random dots [13, 37]. On each trial,
the monkey fixated on a central fixation point, and then presented with two targets representing the two
possible motion directions. After a short interval, a patch of randomly moving dots was shown, followed
by a delay period of variable length. After the delay, the monkey made a saccade to one of the two
targets, based on the net motion direction (Fig. 1A), and then maintained fixation on the chosen target
until feedback. Correct choices were rewarded with juice, and errors were signaled with a distinct tone.
As previously reported, monkeys’ performance was strongly correlated with task difficulty, ranging from
chance for 0% motion coherence to perfect accuracy for the highest motion strength [17, 38, 39]. Further,
single cell responses varied both with motion strength and choice [16, 17, 38].
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In contrast to previous studies which focused mainly on mean responses of single units or populations of
units over extended periods, we set out to characterize spatial and temporal patterns in the spiking activity
of the recorded population (Fig. 1B). We discretized the recorded neural activity into ∆t = 10ms bins, such
that in each time bin, the activity of the population was described by a binary vector x = [x1, x2..., xN ],
where xi = 1 designates that the ith neuron spiked in that bin and xi = 0 means the neuron was silent
(Fig. 1C). We analyzed the nature of activity patterns of the population in six non-overlapping task epochs:
fixation, target, dots motion, delay, saccade, and post-saccade fixation (Fig. 1A-B). The analyses focused
on 300 ms periods in each epoch and, therefore, were done across 30 non-overlapping 10 ms bins.

Strong correlations among units dominate population vocabulary during all epochs of the
task

We start by analyzing the joint activity patterns of the population in single time bins. In all epochs,
many of the population activity patterns appeared much more often than expected from the firing rates
of the units. Figure 1D shows two examples from different epochs, where models that ignored correlations
between units and relied only on the units’ firing rates, failed to predict the prevalence of specific spike
patterns. These independent models, fitted for each task epoch, are given by p̂inde (x) =

∏
i p̂e(xi), where

p̂e(xi) is the probability of cell i to spike in each of the time bins in epoch e, ignoring the correlations
between units. The failure of independent models suggests that the empirical population spiking patterns
(vocabulary) demonstrates very strong network correlations, in all epochs, consistent with previous studies
of population coding in different neural systems [25, 26, 29, 30, 32, 33].

Because direct sampling of the distribution of population activity patterns for more than a handful of
units is impossible — due to the exponential growth of the potential activity patterns with population size
— we have to rely on statistical models to quantitatively describe the population code and study it [25, 26,
29, 31]. Since independent models were insufficient, we followed [25, 26, 31], and used the maximum entropy
framework to model population activity, taking correlations into account. We recall that for a given set
of observable functions of the data, the most parsimonious model among all models consistent with those
observables, is the one with the highest entropy [40]. This maximum entropy (ME) model does not make
any additional (arbitrary) assumptions, and because entropy is convex, it can be found numerically using
gradient descent based methods. We compared the performance of several classes of ME models for the
different epochs of our task: the pairwise based models that rely on firing rates of the units and all pairwise
correlations between them (p(2), which are equivalent to Ising models in physics), the k-Ising models, which
extend the pairwise models by adding k-th order synchrony values of the population [31], and random
projections (RP) models, which rely on random sets of nonlinear projections of the population activity [32].
Thus, for example, the pairwise models for each of the sessions and individual epoch, e, were given by

p̂e(x) =
1

Ze
exp

∑
i

αeixi +
1

2

∑
i,j

βeijxixj

 , (1)

where αei and β
e
ij were fit to satisfy the empirical average firing rates, 〈xi〉emp = 〈xi〉p̂e and the correlations

between all pairs of units, 〈xixj〉e = 〈xixj〉p̂e . In these equations, 〈〉 denote averages over the empirical
data or model, and Ze is a normalization term or partition function.

We found that the pairwise models were typically orders of magnitude more accurate than the indepen-
dent models that were based only on firing rates: Fig. 1E shows the comparison of models in one of the
sessions, on held out test data for each of the epochs, over many groups of 50 units. On average, the set
of observed activity patterns in an epoch were 104 to 105 more likely under the pairwise models than in
the independent ones. Similar differences were observed in both animals across different sessions, despite
variability for individual sessions and groups of neurons selected for analysis in each session (The median
over average groups in sessions was ∼ 6 · 103; see see Fig. S1C). The pairwise models, k-Ising models,
and RP models were relatively similar in their performance across epochs (see Fig. 2), and so we focus
henceforth on pairwise models because of their superior interpretability. Importantly, the collective effect
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Figure 1: Behavioral task and correlated activity of pre-arcuate gyrus neural populations in different
task epochs. A. Task design. Sequence of epochs in each trial: Fixation, Target presentation, Dots motion, Delay
period, Saccade to chosen target, and Post-saccade fixation (see main text and Methods). To facilitate distinction of
epochs throughout the paper, a unique color is designated to each epoch. B. Examples of population spiking raster
plots from two trials where the monkey chose the left (top) or the right target (bottom). Analyses focused on 300
ms windows in each of the six task epochs, as marked by the corresponding epoch color. Particular events during
the trial - appearance of fixation point (FP), and of target (Trg), etc. are marked by arrows above spike rasters. C.
Example of spike patterns after binary discretization into 10ms bins. D. Examples of predictions of the independent
and pairwise maximum entropy models for observed population spiking patterns of a group of 50 units in two epochs:
fixation (left) and saccade (right). The gray funnels show the 99 % confidence interval due to the finite amount of
data. E. Likelihood ratio between the pairwise and independent models in all epochs. Dots mark individual groups
of 50 units (randomly chosen), and black bars denote averages over 50 random groups of 50 units. Note that the y
axis is a logarithmic scale. F. Likelihood ratio between the pairwise and independent models is shown for different
population sizes, for 3 representative epochs. Averages over 20 random groups are shown in bold line; values for
individual groups are shown for the fixation epoch by thin red lines.
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of the correlations among units became larger with population size (Fig. 1F), so that at the level of 100
units, the observed epochs were ∼ 1010 more likely to appear than expected by independent models. The
failure of the independent models and the accuracy of the pairwise models were similar for all epochs in
all experimental sessions and animals (Fig. 1C), and the results were robust for time bins of different size
(Fig. 7).

Distinct vocabularies of population spiking patterns are used in different task epochs
While the same population activity pattern might appear in multiple epochs, their relative occurrence,

p̂e(x), could be vastly different (see examples in Fig. 2A). To investigate how distinguishable the distribu-
tions of activity patterns in different epochs are, we compared the likelihood of each epoch given activity
patterns, p(e|x), which we estimated using Bayes rule, p̂(e|x) = p̂e(x|e) ∗ p(e)/p̂(x). Fig. 2B shows the
distinguishability of successive epochs, reflecting that the population activity patterns during the target,
motion, and delay epochs were largely similar to one another, whereas the other epochs were more special-
ized. We quantify the differences between epochs over multiple groups of 50 units in one session using a
likelihood-based classifier of activity segments from individual trials. This classifier identified the correct
epoch with high accuracy, shown by the decoding accuracy for held out test data in Fig. 2C.

Temporal dependence and transition rules between population spiking patterns in different
epochs

Having mapped the space of population vocabulary, we set out to determine the nature of the trajectories
that a neural population traverses, i.e., temporal sequences of activity patterns, and the rules that govern
these dynamics. The dynamics of population spiking patterns in different epochs can be described in
terms of trajectories in the space of patterns. We show here such trajectories in terms of their likelihood
to appear in different epochs (Fig. 3A). To study these trajectories, we extended the pairwise maximum
entropy models by adding temporal correlations between units [41, 42]. To model a sequence of states,
x(t−m),x(t−m+ 1), ...,x(t), we extended the maximum entropy framework to find the minimal models
that retained the correct firing rates 〈xi〉 and pairwise correlations at the same time bin 〈xi(t)xj(t)〉, as in
eq. (1), but also added the correlations between units at different time bins, 〈xi(t)xj(t′)〉, for t 6= t′. These
models give the probability to observe a sequence of m+ 1 states:

pe(x(t−m),x(t−m+ 1), ...,x(t)) =

1

Ze
exp

∑
i,t

αeixi(t) +
∑
i,j,t

βeijxi(t)xj(t) +
∑
i,j,k,t

θeij(k)xi(t)xj(t− k)

 (2)

where αei , β
e
ij , and θ

e
ij(k) were calculated by fitting the observed population spike patterns over different

time gaps, in epoch e, and k = 1, 2... denotes the duration of gap between the time bins (see a diagram of
the interactions between units in the model in Fig. 3B). We compared the performance of different variants
of these models, using all possible combinations of parameters: single unit firing rates, pairwise correlations
(in the same time bin), temporal autocorrelations of individual units, and pairwise temporal correlations
between units. As we discuss below, we found that models that relied on αi, βij , and θii(k), (Fig. 3C)
captured most of the spatial and temporal structure needed for highly accurate predictions in all epochs.
Using θij(k) gave marginally better models in some cases, but suffered from over-fitting issues in others.

From the models of sequences of spiking patterns in eq. 2, we inferred conditional temporal models of the
population. These models describe the temporal progression of the population code, namely the probability
to observe a population activity pattern following a sequence of patterns, pe(x(t)|x(t−1), ...,x(t−m)). We
used these models to quantify the effect of recent history in shaping the neural population trajectories. Our
quantification was based on the likelihood ratio of these models and pe(x(t)), namely 〈ΠT

t=1
p(x(t)|x(t−1))

p(x(t)) 〉.
The temporal dependencies were apparent already for a single time bin (m = 1) compared to models that
ignored temporal correlations: The likelihood ratio of these two models for held out test data significantly
exceeded 1 in all task epochs, indicating the effect of recent history on the population activity. The exact
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Figure 2: Distinct distributions of population spiking patterns were observed in different task epochs.
A. The probability of occurrence of 3 example population spike patterns in different task epochs. Each grey polygon
connects the probability of a particular population spike pattern to appear in each of the six epochs. Each of these
patterns is dominantly present in one of the epochs, but are still likely to appear in the other epochs, albeit with
lower probability. B. p(epoch|pattern) for all spike patterns occurring in successive epochs of the task. A group of
50 units from a single session is used for the figure. Individual dots represent different spike patterns and their color
indicates the epoch in which they appeared. C. Epoch classification confusion matrix shows the average likelihood
that the observed sequences of spike patterns in an epoch are most likely to come from that or other epochs. Results
were averaged over 50 groups of 50 units.

magnitude of the effect of history varied across epochs (Fig. 3D). Notably, similar results were obtained for
all experimental sessions and monkeys (Fig. S4A). The temporal dependence between states scaled with
the size of the population considered (Fig. 3E). We verified that these results were not a consequence of
increased model complexity: We generated a similar number of synthetic sequences of population activity
patterns from the temporally independent model that was fitted to the data, pe(x(t)), and found that
fitting a conditional temporal model to these data pe(x(t)|x(t−1)) correctly recovered the lack of temporal
correlation in them (Fig. 4B).

The conditional models pe(x(t)|x(t − 1)) describe the probabilistic “transition rules” between states in
each of the epochs. Fig. 3F shows parts of the transition matrices as log p(x(t)|x(t− 1))/p(x(t)) for three
epochs, using the same randomly selected subset of 2000 activity patterns that appeared in held out test
data (showing the full transition matrices for all states of a group of 50 units requires 250 rows and columns,
which cannot be accommodated in a single figure). These matrices suggest relative similarity in transitions
between some epochs (e.g. , motion and delay matrices), and clear distinctions between others (e.g. motion
vs saccade). We quantified the similarity of the transition matrices between all pairs of epochs i and j
(Fig. 3G), using Jensen-Shannon divergence

∑
x(t−1)DJS [pei(x(t)|x(t− 1))||pej (x(t)|x(t− 1))]. The figure

demonstrates that epochs differed not only by the distribution of activity patterns, but also in how patterns
transitioned over time. Next, we characterized these transitions for sequences of population spike patterns.

History-dependence and characteristic time scales of population spiking dynamics in different
epochs

The temporal dependence between activity patterns of the population extended beyond the single time
step we focused on in the previous section. The likelihood ratio between history-dependent models of
the population activity, pe(x(t)|x(t − 1), ...,x(t −m)), and ones that did not use history dependence kept
growing with the length of history of states we considered, m, for all epochs, as shown in Fig. 4A, for one
of the experimental sessions. The improvement with history length did not fully saturate for windows up
to 80ms (which was the maximum length that we could accurately model for groups of 50 units). However,
the dependence of the likelihood ratios on m were accurately fit with an exponential function of the form
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Figure 3: Spatio-temporal models captured the dynamic aspect of the neural code. A. For two sequences
of population activity patterns from different epochs, we plot the likelihood of different task epochs, p(epoch|pattern).
Patterns from the same epoch are connected by a line of the same color based on their sequence. This example reflects
the temporal distinguishability of these epochs. B. Illustration of the full spatio-temporal maximum entropy model
- black circles represent units, with each column representing a different time step. Edges represent interactions,
colored by class: spatial interactions, βij , are shown in blue, temporal ones between the same cell at different times,
θii, in green, and spatio-temporal ones, θij , in red. C. Same as in B, for the reduced version of the model, which
did not include θij ’s . D. The ratio between the likelihood of spike pattern sequences in 300 ms epochs under the
one time step conditional model p(x(t)|x(t − 1)) and p(x(t)) for all task epochs. Dots mark individual randomly
selected groups of 50 units, and the black bar denoted the average over 20 groups. E. Likelihood ratio of temporally
conditional models and non-conditional ones as in D, shown as a function of the number of units used for three
representative epochs (Fixation, Motion, and Saccade). Bold lines show averages over groups and trials whereas thin
lines show individual trials from one session for one of the epochs (Saccade). F. Transition probabilities between
states are shown for three epochs, for a randomly selected group of 2000 patterns that appeared in the data. Note
that in all cases the matrices show the transition probabilities between the same 2000 states in the same order. G.
Distinguishability of epochs based on the similarity of their state transition matrices (from F) between all pairs of
epochs. See main text for details.
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Figure 4: Time scales and strength of history dependence in shaping population spiking pattern
sequences. A. Likelihood ratio of observed population response trajectories from one session for all rightward
choices (sequences of population spiking patterns) of models with different sequence lengths and those of the memory-
less models are plotted vs. the length of sequence. Data points represent averaged results over 20 randomly chosen
groups of 50 units from one session; error bars representing STD over groups are smaller than marker size. Curves
show the fit of an exponential model (see text for details). B. Median of the asymptotic values of the exponential
fit of the temporal correlations, L∞, and the corresponding time constants τ , are shown for all epochs. Parameters
were estimated for 5 sessions separately for leftward and rightward choices in each session; error bars represent the
25 and 75 percentiles.

L(t) = L∞(1 − e−t/τ ),where the fitted parameters were the time constant for the history dependence, τ ,
and the asymptotic value of the likelihood ratio L∞.

The differences between epochs were apparent in both the asymptotic values of the correlation effect
and their corresponding time constants (typically ranging from 20 to 60 ms), as shown for multiple sessions
in Fig. 4B. These values reflect the effect of the temporal correlations in limiting the variety of the neural
population trajectories that occur in an epoch. The effect of history in shaping the neural trajectory is
strongest during fixation. As might be expected, history has the lowest relative impact on population spiking
patterns during the motion-viewing epoch, when randomly varying sensory inputs shape the monkey’s
upcoming choice. However, we emphasize that even there, the spiking history limits the set of likely
trajectories by many orders of magnitude in likelihood units.

These models reveal the different processing dynamics in the epochs, on scales much shorter than the
common temporal windows used for firing rate models. The shortest time scale was found in the saccade
epochs (∼25ms), where stereotyped motor plans are executed, whereas the longest time scales were found
in target epochs and after the saccade, when the monkey awaited the feedback. The quality of the fits
implies that population spiking patterns became conditionally independent of past history after 75-150 ms
(∼ 3τ , which would constitute a temporal Markov blanket [27, 43]).

Comparing the performance of different variants of the maximum entropy models for the epochs reveals
the nature of the processing or computation that is performed. We found that the βij were critical for
the models’ performance (Fig. 5A) such that models without them were orders of magnitude inferior in
describing the dynamics of population activity. Adding θii(k) captured most of the temporal structure
needed for highly accurate models in all epochs (Fig. 5A). Notably, models that also included temporal
relations across units θi,j 6=i were better in some sessions but did not generalize on held-out test data for
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Figure 5: Decomposition of the effect of spatial and long temporal correlations on population activity
A. Comparison of spatio-temporal models with different sets of parameters where the reference is the independent
model that relies only on firing rates (i.e. models with only αi’s). Results are shown for one group of 50 cells during
the delay epoch of one of the sessions, using a one step history, as a representative example. B. Average likelihood
ratios of spatial and spatio-temporal models versus the corresponding independent model, for the different epochs.
Ratios of spatial models, only with βij , are shown in blue, and models also with θii from one step to 8 steps, are
shown in shades of red for different history dependence. Data was averaged over 20 randomly selected groups of 50
units.

other sessions. Thus, the correlations between units at the same time bin set the baseline structure for the
population activity, which is then modulated by the single cell temporal auto-correlations.

Fig. 5B summarizes the relative effect of spatial and temporal correlations on the population code in the
different epochs. Compared to independent models, the spatial correlations make the observed patterns 104

to 105 times more likely, and the temporal structure increase that by additional 3 to 4 orders of magnitude.
Overall, the observed sequence of activity patterns are 104 to 107 more likely than expected from firing
rates across different epochs. Similar results were obtained for all experimental sessions and monkeys (Fig.
S4). As in the previous sections, using 20ms time bins did not change the strength and time scales of the
spatial or temporal correlations (Fig. S7).

Temporal sequences of population spiking patterns leading to a decision
Our modeling approach enables us to track when population spiking patterns begin to reflect upcoming

choices and how the codes associated with different choices evolve and diverge over time. We fit separate
models for each of the epochs - conditioned on the monkey’s choices. Using these models, we calculated
the likelihood that an observed spiking pattern would occur for rightward or leftward choices. Assessing
the likelihood for a sequence of patterns over a 300ms window in each epoch, we generated predictions for
the most likely choice and compared it with the monkey’s actual choices. The ratio between the likelihood
values of models trained on left and right choices in each of the epochs, given by

〈ΠT
t=1

pe(x(t)...x(t+m)|right)
pe(x(t)...x(t+m)|left) 〉test data (3)

measures the difference between population trajectories for the different choices. Figure 6A shows the like-
lihood ratios of individual trajectories reflecting how the vocabularies used for right vs left trials become
distinguishable during different epochs. Note that we have further divided the Motion epoch into over-
lapping sub-epochs to better reflect the temporal dynamics of the likelihood ratios. The predicted choices
based on these likelihood ratios were highly accurate for the saccade and post-saccade epochs (as expected),
and showed a gradual rise during motion viewing and delay epochs (Figure 6B), compatible with formation
of decisions based on sensory input in those periods [12, 44–46].

Because the monkey’s accuracy was dependent on the coherence of the moving dots (Fig. 6C), we
investigated how task difficulty influenced the dynamics of population spiking patterns. We split trials into
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Figure 6: Evolution of neural trajectories towards a decision. A. The likelihood of individual trials was
computed under a model trained on trials that ended with rightward choices and another model trained on trials
with leftward choices. The likelihood ratio of individual test trials is shown for different epochs along the trial. Each
line denotes a trial and is colored based on the monkey’s choice. Here, we use three different windows during the
motion epoch (early: 100-400ms after motion onset, middle: 300-600 (this is the same as motion epoch above),
and late: 500-800). B. Accuracy of decoding the monkey’s decision at different epochs during the trials. Black
line shows the average over sessions and gray lines show individual sessions. C. Accuracy of monkeys in different
experimental sessions is shown as a function of motion coherence. D. Accuracy of decoding the monkey’s decision
at different epochs along the trials is shown for trials grouped by strength of motion coherence: Weak denotes trials
with coherence <5%, Medium, 5-10%, and Strong, >15%.
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Figure 7: Decoding behavior using correlations and without them gives similar results, despite the
strong network correlations. A. The likelihood ratio of independent models for right and left decisions was
compared for each epoch, on trials that ended with rightward and leftward decisions. Results shown are averages
over individual trials in different sessions. B. Same as (A), using the spatio-temporal models.

strong, medium, and weak motion strengths, for correct responses to each motion direction, and trained
separate models for trials in each group. We found that the difference between left and right choices
(Fig. 6D) increased with coherence level (compare e.g. [13]), suggesting that the population spike patterns
represent integration of sensory evidence, as previously demonstrated in this brain region [13, 16, 17, 44].
These differences were apparent only motion and delay, and not during saccade, as expected.

Decoding decisions using different models of population spiking
Complex encoding mechanisms and correlations can result in codes that are easy to decode, and simple

encoding might result in codes that are hard to decode. This idea has been common in theoretical models,
such as liquid state machine [47, 48] and decoding algorithm as in [49], Hopfield networks [50], adaptive codes
[6], predictive coding [51–53], as well as other biological systems such as genetic networks. In particular,
evaluating encoding by a certain class of decoders can give useful lower bounds on the amount and nature
of encoded information, but may not give the correct interpretation of the encoded information.

Following these ideas, we asked how well we can decode the monkey’s choices at different epochs, using
the independent models and the pairwise models based on spatial and temporal correlations between units.
Despite the strong impact of spatial and temporal correlations on the neural population responses and
dynamics, we found that the independent models were largely on par with the best pairwise models for
decoding the choices (Fig. 7).

The independent model has a much lower number of parameters (o(n) instead of o(n2) for the pairwise
model) and is, therefore, easier and faster to train with limited samples. The observation that the decoding
accuracy of the independent and best pairwise models are largely similar partially stems from finite exper-
imental data. However, it also demonstrates that while correlations are essential for encoding dynamics of
the prefrontal cortex, they are not the only information bearing elements in the neural code. Rather, the
prefrontal code is accessible to simple linear decoders that do not need to know details of local circuitry
and correlated activity in the population to be accurate.

11

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 18, 2019. ; https://doi.org/10.1101/693192doi: bioRxiv preprint 

https://doi.org/10.1101/693192


Discussion

We have presented a detailed analysis of the spatio-temporal structure of the code of large populations of
neurons in the prefrontal cortex of monkeys performing a perceptual decision-making task. This is the first
time that the relative contributions of the spatial and temporal structure of the spiking patterns of large
populations in the primate prefrontal cortex and their dynamics have been mapped at a fine resolution in
individual trials. By using the maximum entropy framework to build the mathematically minimal statistical
models of the data that rely on different correlation structures, we were able to quantify the effect of firing
rates, spatial correlations, and temporal correlations on the neural population vocabulary in different epochs
of individual trials and their dynamics.

We found that the correlations among units have a very strong impact on the vocabulary of large
populations and their dynamics. The observed vocabulary is many orders of magnitude more likely to
appear under models that incorporate correlations between units. Spatial correlations (over a short time
window of 10 ms) have the strongest impact, and together with the temporal correlations over tens of
milliseconds, cause the spike pattern sequences observed in the data to be 104 to 107 times more likely than
predicted by models that ignore the correlations and rely just on the firing rates of individual units. Thus,
the population code of the prefrontal cortex is shaped by spatio-temporal correlations. These models reveal
not only the strength of correlations in shaping the code for different task epochs, but also the characteristic
time constants for the dynamics of sequences of states in different epochs of the task. We found these time
constants to be generally shorter than the typical temporal windows used in previous studies.

A similarly strong impact of correlations for encoding of information by large populations of neurons
has been observed in different neural systems, from the retina, to visual cortex, hippocampus, and the
prefrontal cortex. While these systems differ in the nature of the dominant correlations and their temporal
structures, the unifying theme is one of population codes that are shaped by the correlation structures.
The implications are a codebook and sequences of states that inhabit a much narrower subspace of the
high dimensional population activity state space. Binary spike patterns occupy corners of a hypercube
in the native state space of population activity. Correlations in the neural code limit the visited corners
and dynamics of transitions from one corner to others. One can think of "tubes" embedded in a higher
dimensional space that define the set of possible transition vectors in the state space. In the population
code of PFC, the "width" of these tubes is much narrower and dynamics within them much more directed
than expected from a population of independent units. Past theoretical analyses have suggested that such
designs would maximize information transmission in noisy environments, and help match the neural code
to the statistical structure of relevant stimuli [54].

Given the prevalent and dominant nature of correlations in the code of large populations, it might seem
surprising that decoding of information from neural populations that ignore them has been so successful.
We have found that ignoring the correlations in decoding, results in performance which is roughly on par
with decoders that take them into account. While this may be an idiosyncratic feature of our task (see
e.g. [55]), we suggest that this may also be a design principle of the code: While encoding depends on
the dynamics of the inputs and the synaptic organization of the circuit, these complicated correlated codes
may have evolved to be read easily. In particular, a decoder that ignores correlations that have a huge
impact on encoding would still give very accurate decoding. The idea of complicated encoding systems
yielding easily decodable codes has been previously suggested [56, 57]. Although simple decoders have been
successfully used to read out neural population responses in diverse cortical circuits [13, 15, 58–62], the
complexity of the neural encoding and decoding has been rarely quantified in the same dataset. We provide
such a direct comparison in large populations of simultaneously recorded cortical neurons for the first
time, demonstrating strong influence of history-dependent spatial and temporal correlations on encoding
in conjunction with a simple decoding scheme.

Our results match previous studies in the retina, where it has been shown that much of the semantic
organization of population codes can be learned by models that ignore correlations, despite the orders of
magnitude failures of such independent models in capturing the encoding dictionary. This organization of
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the code facilitates using linear decoding as an efficient means for learning and reading out behaviorally
relevant information [35, 36]. The match between retinal and prefrontal populations, as well as similar
results in sensory cortex [32], suggest common functional and design principles that govern encoding and
decoding across biological neural circuits.

Recent analysis of history dependence in the posterior parietal cortex [21], has shown correlations in
population activity in mice performing a spatially and temporally extended decision making task, which
lasted over seconds. Aside from differences in the species and the nature of the task, our modeling of spiking
patterns focused on much shorter time windows and allowed us to characterize the underlying temporal
structure of dependence between population states. In particular, the time scales we identified reflect the
windows beyond which population activity becomes independent of its past, even if correlated. In other
words, one can get arbitrarily long temporal correlations where the intrinsic window of dependency is much
shorter. Linking the time scales in [21] and the population spiking time scales we find here would hopefully
enable the dissection of computation and "working memory" in the PFC.

Our analysis of population dynamics through modeling of spiking patterns using fine temporal win-
dows, brings together the power of decomposition of spatio-temporal structure of population activity and
detailed modeling of spiking patterns of large neural populations. This combination extends methods like
tensor decomposition [63, 64], as we provide an interpretable generative model and do not depend on metric
based approaches, and machine learning based approaches for modeling spiking patterns as autoencoders
(LFADS). More broadly, the current framework is easily applicable to other neural systems, and can be
used to study the nature of sequences of states [18, 19, 65].
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Methods

Experimental setup. Monkeys performed a direction discrimination task with random dots. Each trial
began with fixating on a fixation point (0.3o diameter) at the center of the monitor. Eye position was
measured with a scleral search coil or an infrared tracking camera. Once the monkey fixated, two targets
appeared on the screen, indicating the two possible motion directions. Afterwards, a random dots stimulus
was shown for Tstim = 800ms [13, 37]. Monkeys were trained to discriminate whether the net motion
direction was toward one target or the other. The proportion of dots moving coherently in the same
direction (coherence or stimulus strength) determined task difficulty, and was randomly chosen in each trial
from a fixed set. Stimulus offset was followed by a delay period of variable duration usually ranging from
300ms to 1500ms. The delay period ended in a ‘go’ cue, marked by the disappearance of the fixation point,
after which the monkey made a saccade to one of 2 targets. If the chosen target matched the direction of
motion, the monkey received a liquid reward. A distinct tone was played for errors. Trials with 0% motion
coherence were rewarded randomly with a probability of 0.5.
Experimental Data. Extra-cellular recordings were performed from neural populations of the prefrontal
cortex of macaque monkeys. All experimental procedures conformed to the National Institutes of Health
Guide for the Care and Use of Laboratory Animals and were approved by the New York University Ani-
mal Welfare Committee and Stanford University Animal Care and Use Committee. Recordings from the
prefrontal cortex were obtained by implantation of 96-channel Utah arrays in the prearcuate gyrus (area
8Ar) of macaque monkeys (macaca mulatta). During the experiments, monkeys performed a direction
discrimination task with random dots [13, 37]. Neural spike waveforms were saved online (sampling rate,
30 kHz) and sorted offline (Plexon Inc., Dallas). Throughout the paper we use the term “units” to refer to
both well-isolated single neurons and multi-units. Number of units in different sessions ranged from 169 to
250 units.
Definition of task epochs. Task epochs were defined using experimental behavior and neural activity
(see Fig. S1B), as in earlier studies [13]. We chose 300ms windows in each epoch consisting of 30 bins
of ∆t = 10ms, or 15 bins of ∆t = 20ms. In learning the spatio-temporal models, which require history
dependence, we used up to 100 ms preceding the analysis window as the history of neural activity for the
first time point. Epochs were defined as follows: Fixation - starting 100 ms after fixation point onset;
Target - starting 100 ms after target onset; Motion - starting 300 ms after dots onset; Delay - starting 100
ms after dots offset; Saccade - starting 150 ms before saccade onset; Post-saccade fixation - starting 250 ms
after eyes reached the chosen target.
Modeling population activity patterns using maximum entropy models. As described in [40],
the maximum entropy framework gives the most parsimonious or random statistical model, given a set of
observable functions of the data. As we discretized neural activity into small temporal bins of size ∆t,
which were either 10 or 20 ms long, the spiking or silence of neuron i at a particular time bin was given
by a binary variable xi (’1’ denotes spiking in that bin, and ’0’ denotes silence) and the binary vector x
designates the population activity pattern at that time bin. For a set of observable functions of the form
〈fµ(x)〉 (where 〈〉 denote the average over the data), the maximum entropy model for that set of observables
or constraints is given by finding p̂(x) that maximizes

−
∑
x
p̂(x) log2 p̂(x) +

∑
µ

λµ(〈fµ(x)〉data − 〈fµ(x)〉p̂(x)) + λ0

(∑
x
p(x)− 1

)
.

This distribution is given by p̂(x) = 1
Z exp

(∑
µ λµfµ(~x)

)
, where the Lagrange multipliers, λµ are found

numerically, and Z is a normalization term or partition function. If the observables are only the firing rates
of individual units, 〈xi〉, then the model is given by p̂ind(x) = 1

Z exp (
∑

i αixi), or the independent model.
Adding the pairwise correlations between all neurons, means adding constraints for 〈xixj〉, and the pairwise
maximum entropy model is given by p̂(2)(x) = 1

Z exp
(∑

i αixi + 1
2

∑
i,j βijxixj

)
(see also [25, 26]). Adding
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synchrony constraints gave the k-pairwise models [31]. Spatio-temporal models added observable functions
of the form 〈xi(t)xj(t + τ)〉t, and the form of their models is given in equation 2 (see also [34, 54]). The
random projection models rely instead on random nonlinear observable functions as described in [32].

Models were fitted as described in [32], using the maxent toolbox [66], except for the parameters of the
independent models that were found using its closed-form solution. The code used to train the models is
publicly available [66] as an open-source MATLAB toolbox at https://orimaoz.github.io/maxent_toolbox/.
Briefly, we trained the probabilistic models by seeking the parameters λµ that would minimize the Kullback-
Leibler divergence between the model p̂(~x;~λ) and the empirical distribution pemp(~x), which is equivalent to
maximizing L(~λ) =

∑
~x pemp(~x) log p̂(~x;~λ), which is a concave function whose gradient is given by

G(~λ) = 〈~h(~x)〉pemp − 〈~h(~x)〉
p̂(~x;~λ)

. (4)

We found the values λµ that maximize the likelihood by iteratively applying the gradient (Eq. 4) with
Nesterov’s accelerated gradient descent algorithm. We computed the empirical expectation in Eq. 4 (left-
hand term) by summing over the training data, and the expectation over the parameters ~λ(j) by summing
over synthetic data generated from p̂(x;~λ(j)) using Metropolis-Hasting sampling.
Measuring similarity of coding dictionaries. We quantified the difference between coding vocabularies
using the Jensen-Shannon divergence DJS [p(x)|q(x)] [3], a symmetric measure of the similarity between
two probability distributions p(x) and q(x), which equals 0 if the distributions are identical, and 1 for
non-overlapping distributions. It is defined as

DJS [p(x)|q(x)] =
1

2
(DKL[p(x)|M(x)] +DKL[q(x)|M(x)])

where M(x) = 1
2 [p(x) + q(x)], and DKL is the Kullback-Leibler divergence [3], given by DKL[f(x)|g(x)] =

Σxf(x) log2
f(x)
g(x) , a non-negative measure, which equals 0 if the distributions are identical.
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