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Abstract 29	

Pathogenic yeast species can cause life-threatening infections in humans. The two leading 30	

yeast pathogens, Candida albicans and Cryptococcus neoformans, cause systemic infections 31	

in >1.4 million patients world-wide with mortality rates approaching 75%. It is thus 32	

imperative to study fungal virulence mechanisms, stress response pathways, and the efficacy 33	

of antifungal drugs. This is commonly done using mammalian models. To address ethical and 34	

practical concerns, invertebrate models, such as wax moth larvae, nematodes, or flies, have 35	

been introduced over the last two decades. To address short-comings in existing invertebrate 36	

host models, we developed fifth instar caterpillars of the Tobacco Hornworm moth Manduca 37	

sexta as a novel host model for the study of fungal virulence and drug efficacy. These 38	

caterpillars can be raised at standardised conditions, maintained at 37˚C, can be injected with 39	

defined amounts of yeast cells, and are susceptible to the most threatening yeast pathogens, 40	

including C. albicans, C. neoformans, C. auris, and C. glabrata. Infected caterpillars can be 41	

rescued by treatment with commonly deployed antifungal drugs and importantly, fungal 42	

burden can be assessed daily throughout the course of infection in a single caterpillar’s faeces 43	

and hemolymph. Notably, these animals are large enough so that weight provides a reliable 44	

and reproducible measure of fungal virulence. This model combines a suite of parameters that 45	

recommend it for the study of fungal virulence. 46	

 47	

Introduction 48	

 Fungal infections pose a serious threat to human health and well-being world-wide. 49	

Each year, as many, if not more patients, die of fungal infections than of malaria or 50	

tuberculosis1. The leading yeast pathogens, Candida albicans and Cryptococcus neoformans, 51	

together account for >1,400,000 life-threatening infections world-wide with mortality rates 52	

approaching 75%1. Candidemia, most commonly caused by C. albicans, is the fourth most 53	

common cause of nosocomial blood stream infections, only surpassed by infections with 54	

Staphylococci and Enterococcus spp. Disturbingly, candidemia incidence rates are on the 55	

rise. Within less than ten years, incidence rates increased by 36%2. Although cryptococcosis 56	

incidence rates are on the decline in North America, this AIDS-defining illness is responsible 57	

for 15% of all AIDS-related deaths world-wide2,3. This already dire situation is further 58	

confounded by the emergence of drug resistant yeast species. Patients at risk of developing 59	

invasive candidemia are often prophylactically treated with fluconazole, while the 60	

echinocandins are considered a first line defence strategy4. Yet, C. glabrata, the most 61	
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common non- albicans Candida species associated with nosocomial blood stream infections5, 62	

is intrinsically less susceptible to azole drugs and acquires resistance to echinocandins 63	

rapidly6. The rapid global spread of multi-drug resistant C. auris has further exacerbated the 64	

threat posed by fungi. C. auris was first reported in 2009 in Japan7. In 2015, C. auris arrived 65	

in Europe causing an outbreak involving 72 patients in a cardio-thoracic hospital in London8. 66	

C. auris outbreaks have been reported from South Korea, India, Spain, Columbia, 67	

Switzerland, Germany, Israel, Kuweit, and Oman9. Most concerningly, up to 25% of C. auris 68	

isolates are multi-drug resistant, with some strains being resistant to three of the four drug 69	

classes available for the treatment of systemic candidemia. In addition to the unacceptably 70	

high burden on human health, fungal infections substantially increase health care costs. 71	

Treatment requires extended hospitalisation, resulting in additional costs of up to $45,000 in 72	

adult patients or up to $119,000 in paediatric patients in the case of candidemia10. 73	

 It is thus imperative to investigate fungal virulence and host response mechanisms. 74	

This is traditionally done in mammalian models. The most frequently employed models 75	

include the mouse tail vain infection model for systemic candidemia, the mouse 76	

gastrointestinal infection model of candidemia, the mouse Candida vaginitis model11, the 77	

mouse inhalation model of cryptococcosis12, the rabbit chronic cryptococcal meningitis 78	

model13, and the rabbit Candida keratitis model14. While mammalian models combine a 79	

number of features that make them particularly amenable for the study of fungal diseases, 80	

such as susceptibility, availability of knock-out mutants, and comparable histology to human 81	

disease, using mammals is ethically controversial, economically challenging, and requires 82	

extensive board certifications and documentations. Furthermore, specific applications, such 83	

as the screening of large-scale fungal mutant libraries are not sustainable in mammalian 84	

models. 85	

In an effort to reduce the usage of mammals as model hosts, alternative invertebrate 86	

models have been developed and used in fungal virulence research over the past two decades. 87	

The most commonly employed invertebrate species include the nematode Caenorhabditis 88	

elegans, the fly Drosophila melanogaster, and larvae of the Greater Wax moth Galleria 89	

mellonella. All three species can be easily maintained in the laboratory at a much lower cost 90	

than mice or rabbits and have been successfully used for the study of diverse yeast pathogens, 91	

such as C. neoformans15,16, C. albicans16-18, C. parapsilosis18-20, C. glabrata19,21. Of note, 92	

invertebrate models differ in their applicability and the best suitable model should be 93	
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carefully selected22. Unlike mammalian host models, these invertebrates do not have adaptive 94	

immunity but all have components of the innate immune system23,24, some of which are 95	

conserved with mammals. This includes the Toll-like receptors found in the fly25 and the 96	

homolog of the MKK3/6 kinase in the nematode26. Ironically, it is the Toll-like receptors that 97	

protect flies from infections with C. neoformans27, C. albicans28, and C. glabrata29 and the 98	

MKK3/6 homolog SEK-1 protects the nematode from bacterial invaders26. Thus, to increase 99	

susceptibility of flies and nematodes to fungal pathogens, Toll and sek-130 mutants need to be 100	

used. A key limitation for the study of human pathogens, is the inability of the nematode and 101	

the fly to survive human body temperature. Only Galleria can withstand 37˚C16. The Galleria 102	

genome has been announced very recently31, yet a detailed analysis, including annotations, is 103	

still missing. Due to their long-standing history as eukaryotic models, well-curated genomes 104	

and genome databases exist for the nematode and the fly. Yet, neither organism allows for the 105	

delivery of an exact inoculum of fungal cells, only Galleria can be directly injected with a 106	

defined cell number. Until recently, Galleria larvae for research had to be purchased from 107	

fishing shops. Now, UK-based TruLarv is selling research grade larvae while extensive stock 108	

collections exist for the fly and nematode. 109	

 An insect model with a long history in research, the Tobacco Hornworm Manduca 110	

sexta, has yielded important insights into flight mechanisms, nicotine resistance, hormonal 111	

regulation of development, metamorphosis, antimicrobial defences, and bacterial 112	

pathogenesis. M. sexta laboratory stocks have been derived from animals collected in North 113	

Carolina, USA32 and been maintained in laboratories on both sides of the Atlantic for several 114	

decades. In the wild, M. sexta is most commonly encountered in the southern United States, 115	

where it feeds on solanaceous plants and is thus considered a plant pest. M. sexta’s research 116	

portfolio includes innate immunity33, a genome sequence that has been complemented with  117	

tissue-specific transriptomic analyses34, numerous successful applications of RNAi35-39, and 118	

protocols for the efficient extraction of hemocytes for down-stream analyses40. But despite its 119	

versatility and prominent role in bacterial pathogenesis research, M. sexta has yet to be 120	

explored for its suitability as a host model for fungal infections. 121	

 Here, we aimed to establish M. sexta as a novel model host for the study of fungal 122	

virulence. Inbred animals from the University of Bath’s research colony, that has been 123	

established in the 1980s, were tested for their ability to live at 37˚C, their susceptibility to 124	

different yeast species, and the reproducibility of C. albicans mutant phenotypes obtained in 125	
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mice virulence studies. Indeed, the caterpillars grow at 37˚C while maintaining susceptibility, 126	

specific C. albicans mutants are just as attenuated in their virulence in M. sexta as they are in 127	

mice, and notably, M. sexta are susceptible to the leading yeast pathogens C. albicans, C. 128	

neoformans, as well as the emerging C. auris. To expand M. sexta’s applicability as a host 129	

model, we developed an infection protocol that permits screening of fungal burden 130	

throughout the course of infection in a single animal and uses weight as a proxy measure for 131	

virulence in addition to survival. M. sexta can furthermore be used to test efficacy of common 132	

antifungal drugs. Our results define M. sexta characteristics that recommend the caterpillars 133	

as a non-mammalian host model for the study of fungal virulence. 134	

Materials and Methods 135	

Origin of the Bath colony of Manduca sexta 136	

 The colony has been in continuous culture since 1978 without the addition of animals 137	

from elsewhere. Bath’s genetic stock was derived from animals from the Truman-Riddiford 138	

laboratories at the University of Washington in Seattle, USA. Their animals date back to the 139	

ones originally collected in North Carolina in 197632. 140	

.  141	

Caterpillar and yeast culture conditions 142	

M. sexta caterpillars were reared to fifth instar under standardised conditions. They 143	

were maintained in 125 ml disposable cups (Sarstedt Ltd., Cat. No. 75.1335), on a wheat 144	

germ-based diet (Appendix 1), at a constant temperature of 25˚C with 50% humidity, and 12 145	

hours of light and dark cycles. Three days prior to infections with fungi, animals were shifted 146	

to a formaldehyde-free diet as the compound is toxic to non-methylotrophic yeast. 147	

For infection assays, yeasts were grown overnight in 50 ml YPD (1% yeast extract, 148	

2% peptone, 2% dextrose) and cells harvested by centrifugation for 3 minutes at 3,000 rpm. 149	

The cell pellet was washed twice with 1x phosphate buffered saline (PBS) and suspended in 5 150	

ml 1x PBS. Cells were counted and numbers adjusted as indicated. C. albicans YSD85 151	

(Table 1) cells were heat-inactivated by incubation at 65˚C for 20 minutes. For long-term 152	

storage, yeast isolates were maintained at -80˚C in 25% glycerol. 153	

Yeast infections and measurements of fungal burden and drug efficacy 154	
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100 µl of washed and number-adjusted yeast suspension were injected into each 155	

caterpillar with a 30G1/2” needle (BD Microlance) and a 1 ml NORM-JECT syringe. 156	

Animals were injected through their distal left proleg. Following injection, each animal’s 157	

weight was recorded. Animals were scored for survival and weight once daily for three to 158	

four days post infection. During the course of the experiment, animals were kept on a 12 hour 159	

light and dark cycle at the temperature indicated and on their regular diet. 160	

To measure fungal burden in caterpillar faeces and hemolymph, six animals were 161	

injected with either 1x PBS or 106 cells of the wild type YSD89 or the hog1 mutant strain 162	

YSD883 and kept at 37˚C. On day 1, two animals were selected from each group. These 163	

animals were weighted and their hemolymph and faeces collected daily throughout the course 164	

of infection. To collect hemolymph, animals were first kept on ice for 15 minutes. The ‘horn’ 165	

was then surface sterilised with 70% ethanol and its top 1-2 mm clipped with a pair of micro 166	

scissors. Hemolymph was collected in a pre-chilled 1.5 ml Eppendorf tube and cooled 167	

immediately to reduce polymerisation and melanisation. One faecal pellet was collected daily 168	

with sterile forceps, weighted and suspended in 500 µl 1x PBS. Prior to diluting, the mixture 169	

was thoroughly vortexed for 10 seconds, and centrifuged for 5 seconds using a table top 170	

centrifuge to separate faecal matter. To quantify fungal burden, hemolymph and faecal 171	

samples were plated either directly onto YPD-agar with Kanamycin 50 µg/ml or in ten-fold 172	

serial dilutions. Agar plates were incubated at 30˚C for 48 hours and colonies counted. 173	

To assess the efficacy of commonly used antifungal drugs, animals were infected with 174	

107 cells of YSD85 or PBS and treated with increasing doses of fluconazole and caspofungin 175	

(Sigma Aldrich, Inc.) as indicated. Drugs were injected with an ethanol-sterilized Hamilton 176	

syringe in a total volume of 10 µl per animal, 30 minutes post-infection. Caterpillars were 177	

weighted and scored for survival on the day of injection and the following three days. 178	

Statistical analyses 179	

Survival plots were made using the survminer R package (https://CRAN.R-180	

project.org/package=survminer), and differences were evaluated using the Kaplan-Meier 181	

method. Weight and fungal burden were plotted using ggplot241 and weight differences were 182	

evaluated using linear models with day post-inoculation and the interaction between 183	

treatment and dpi as fixed effects and individual as a random effect using nlme 184	
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(https://CRAN.R-project.org/package=nlme). All analyses were done using RStudio version 185	

1.1.442.  186	

Results 187	

 We first aimed to determine if M. sexta fifth instar caterpillars, reared and maintained 188	

at standard conditions (Fig. 1a), are susceptible to Candida albicans. To do so, groups of ten 189	

animals were infected with increasing doses of the widely used C. albicans laboratory strains 190	

SC5314 and SN9542. Animals were scored daily for survival for three consecutive days while 191	

being maintained at 25˚C. Dead animals differ from live ones in that their bodies go limp and 192	

turn grey-green in colour, which is in stark contrast to the vivid turquoise of live animals 193	

(Fig. 1b). Indeed, caterpillars that were infected with C. albicans succumbed to the yeast in a 194	

dose-dependent manner. Both C. albicans strains killed M. sexta caterpillars efficiently at 195	

inocula of 106 or 107 cells per animal (Fig. 1c). To determine if survival measures in 196	

caterpillars are comparable to those obtained in the current gold standard, the murine model 197	

of systemic candidemia, we tested C. albicans mutants with published phenotypes of either 198	

attenuated virulence, such as the hog1∆/∆43 and ahr1∆/∆44 mutants, or wild-type levels of 199	

virulence, such as cka2∆/∆45. Cross-species virulence levels are comparable for Hog1, which 200	

is as essential for virulence in caterpillars as it is in mice. Cka2 is not required to establish 201	

systemic infections in mammals but is in caterpillars. Ahr1, while required for virulence in 202	

mammals, appears to be dispensable for virulence in caterpillars (Fig. 1d). 203	

 Given the importance of temperature for fungal virulence, we aimed to determine if 204	

M. sexta retained their susceptibility to C. albicans at human body temperature of 37˚C. 205	

Temperature itself does not affect caterpillar survival or development (Fig. S1) but animals 206	

are ten times more susceptible to infections with C. albicans at 37˚C than they are at 25˚C 207	

(Fig. 2a). At 37˚C, 106 C. albicans cells per animal lead to 100% mortality on day 4, while 208	

107 cells are required for the same outcome at 25˚C (Fig. 1b). To exclude the possibility that 209	

mortality is due to starvation rather than the outcome of a host-pathogen interaction, we 210	

infected caterpillars with live and heat-killed C. albicans wild-type cells at 37˚. Only live 211	

cells, but not heat-killed Candida cells, kill caterpillars suggesting that killing is not due to 212	

nutritional limitations (Fig. S2). Demonstrating susceptibility of M. sexta caterpillars to 213	

Candida albicans supports their suitability as an alternative host model for the study of 214	

fungal virulence but also highlights the need for additional measures of fungal virulence. To 215	

add granularity to fungal virulence data collected from M. sexta, we complemented measures 216	
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of survival with quantifications of weight and fungal burden throughout the course of 217	

infection. To collect weight data, caterpillars were weighted prior to infection and then daily 218	

throughout the course of infection. Weight gain in animals infected with a low dose of 104 219	

cells did not significantly differ from those injected with 1x PBS but caterpillars infected 220	

with105 cells per animal exhibited significant weight loss. Too few animals survived 221	

infection with 106 cells to allow for a meaningful comparison (Fig. 2b). After establishing 222	

susceptibility of M. sexta to C. albicans at 37˚C, we aimed to validate the attenuated 223	

virulence phenotype of the hog1∆/∆ mutant strain. To test this, caterpillars were infected with 224	

106 cells per animal with the wild type strain, the hog1∆/∆ mutant, and the complemented 225	

strain hog1/hog1::HOG1 and compared to the control group injected with 1x PBS. The 226	

hog1∆/∆ mutant is less virulent than the wild type (Fig. 2c). Animals infected with the 227	

hog1∆/∆ mutant strain JC 50 gained significantly more weight than those infected with the 228	

wild type RM1000, while infection with the complemented strain JC52 leads to a comparable 229	

lack in weight gain (Fig. 2d). 230	

 To further expand the applicability of M. sexta caterpillars as a host model for fungal 231	

infections, fungal burden in the hemolymph and faeces was quantified daily throughout the 232	

course of infection. Since neither the collection of hemolymph nor that of faeces necessitates 233	

killing of the animal, data could be collected daily throughout the infection for the same 234	

caterpillar. Animals infected with the wild type and the hog1∆/∆ mutant strain YSD883 were 235	

compared to control animals injected with 1x PBS only. Analysing fungal burden by counting 236	

colony-forming units in faeces and hemolymph in two animals per group, revealed an 237	

increase in CFU counts in the animals infected with the wild type but not the hog1∆/∆ mutant 238	

or the PBS-control group (Figs. 3a, b). While no yeasts were detected in either group one day 239	

post infection (p.i), CFUs in faeces and hemolymph are detectable two days p.i. in animals 240	

injected with the wild type. Three days p.i., the CFU count in the wild-type group increase 241	

while CFUs are detected for the first time in the hog1∆/∆ group. In keeping with the increase 242	

in fungal burden, weight gain in the wild-type infected group was reduced, while hog1∆/∆ 243	

infected animals gained weight at a similar rate to the control animals (Fig. 3c). Thus, 244	

measurements of fungal burden, that can be obtained from the same animal throughout the 245	

course of infection, provide a valuable parameter for the study of fungal virulence. 246	

 The currently available armamentarium of antifungal drugs is limited and often 247	

lacking in efficacy. Studying drug efficacy and drug mode of action in the host are thus 248	
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pertinent to the much needed development of novel antifungal drugs and further 249	

characterisation of existing compounds. To establish suitability of M. sexta as a model for 250	

drug efficacy testing, we recorded survival and weight of animals infected with the C. 251	

albicans wild-type strain SC5314 and treated with increasing doses of two common 252	

antifungals, fluconazole and caspofungin (Fig.4). Treatment with fluconazole or caspofungin 253	

resulted in overall improved survival and weight gain. Pair-wise comparisons between 254	

different drug concentrations with the untreated control animals yielded no statistical 255	

significance for the fluconazole-treated group of caterpillars but those being treated with 2 256	

mg/kg and 4 mg/kg of caspofungin survived significantly better than those without treatment 257	

or those that only received 1 mg/kg of caspofungin (Table 2). 258	

 While C. albicans undoubtedly is a leading fungal pathogen of humans, clinical 259	

manifestations of fungal infections are not limited to C. albicans. To broaden M. sexta’s 260	

applicability, we sought to determine the caterpillars’ susceptibility to other fungal 261	

pathogens. To this end, animals were infected with C. neoformans, C. auris, and C. glabrata 262	

in addition to C. albicans. Type strains of Saccharomyces cerevisiae, the baker’s or brewer’s 263	

yeast and Metschnikowia pulcherrima, a yeast inhabiting fruits and flowers46 served as 264	

reference points for attenuated virulence  infections. Animals were infected with increasing 265	

doses of yeast cells starting at 105 cells per animal and up to 109 cells per animal. Groups of 266	

ten animals per yeast cell dose and species were then screened for survival and weight daily 267	

(Figs. 5 and 6). Notably, only infections with pathogenic yeast species caused reduced 268	

survival of caterpillars (Fig. 5). Infections with S. cerevisiae or M. pulcherrima did not affect 269	

survival of caterpillars. Comparing survival amongst the pathogenic yeast species revealed C. 270	

albicans to be the most severe. 107 C. albicans cells per animal result in 100% killing within 271	

in 24 hours. 109 C. auris cells were required to kill all animals within four days and the same 272	

dose of C. glabrata resulted in 75% killing. 108 C. neoformans cells were required to achieve 273	

50% killing within four days, comparable to survival of animals infected with C. glabrata. It 274	

should be noted that due to high viscosity of the cell suspension, we could not test higher 275	

concentrations than the ones stated. In addition to assessing survival, each surviving 276	

caterpillar’s weight was recorded daily. Interestingly, while infections with S. cerevisiae or 277	

M. pulcherrima did not kill caterpillars, infected animals displayed reduced weight gain (Fig. 278	

6). Infections with C. albicans resulted in severely reduced weight gain, even at the lowest 279	

yeast dose tested. Animals infected with C. auris and C. glabrata responded in a dose-280	

dependent manner, the higher the yeast dose, the more dramatic the weight loss. Notably, 281	
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animals infected with the lowest dose of C. neoformans grew better than PBS-injected control 282	

animals. Increasing the yeast dosage, however, resulted in significantly reduced weight gain. 283	

This bi-phasic pattern, resembling hormesis47 in which a low dose of an environmental agent 284	

is beneficial, while a high dose is toxic, could be due to C. neoformans’ immunogenic 285	

capsule48. Caterpillars displaying variable degrees of susceptibility to different yeast species, 286	

with weight providing an additional measure of host damage, suggests that this host model is 287	

broadly applicable for the study of fungal virulence. 288	

Discussion 289	

 M. sexta caterpillars are naturally susceptible to the leading human yeast pathogens. 290	

Unlike other host models, they permit assessment of fungal burden daily throughout the 291	

course of infection in a single animal by either collecting faeces or hemolymph. M. sexta can 292	

be maintained at 37˚C, is large enough to be injected with a specified yeast inoculum and for 293	

weight to be a reliable measure of virulence. C. albicans mutant virulence phenotypes found 294	

in mice can be replicated and yeast inocula required to elicit a response in caterpillars are 295	

comparable to those used in the murine model. Additionally, the caterpillars permit study of 296	

antifungal drug efficacy. These parameters commend this invertebrate as a novel host model 297	

for the study of fungal virulence. 298	

This new model system allows for fungal burden to be monitored throughout the 299	

course of infection in a single animal via CFU count. This is unlike any other experimental 300	

system, where fungal burden is either an endpoint measure in the mouse kidney, in 301	

homogenised was moth larvae49,nematodes50, flies51, or requires genetically modified 302	

fluorescent yeast strains for microscopic imaging and analyses52. While we did detect very 303	

low CFU counts in the PBS control 3 days post infection, we consider this spurious finding 304	

due to cross contamination as preliminary experiments of plating contents of hemolymph and 305	

faeces of naïve animals did not detect any yeast growth (data not shown). As a consequence, 306	

we amended to protocol to include changing gloves when handling animals of different 307	

treatment groups. 308	

When reviewing the weight data collected as part of our study, we noticed two 309	

interesting aspects. First, while S. cerevisiae and M. pulcherrima do not affect caterpillar 310	

survival, infections with either species led to reduced weight gain. The dichotomy between 311	

survival and weight observed here, further emphasizes that fungal virulence comprises more 312	
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than a measure of survival. It appears that M. sexta would allow to discrimination between 313	

disease (weight) and death (survival) quantitatively adding further granularity to measuring 314	

fungal virulence. Secondly, infections with C. neoformans resulted in increased caterpillar 315	

weight gain at a low yeast dose but reduced weight gain at higher doses. This pattern 316	

resembles the concept of hormesis often deployed by toxicologists to describe the response to 317	

toxins, where exposure to a low dose is beneficial while a higher dose results toxicity due to 318	

overcompensation in response to disruption of homeostasis53. While tissue-specific hormetic 319	

responses have been described in flies, where a virus-acquired cytokine relays ageing54, and 320	

examples of abiotic factors or signalling molecules affecting peas and aphid infestation55, 321	

immunity in plants56,57, life-span in malaria-transmitting Anopheles58, and larval development 322	

in Black Cutworm59, this example here could be the first involving a eukaryotic host-323	

pathogen relationship. The underlying factor remains to be elucidated but C. neoformans’ 324	

highly immunogenic capsule seems to be an excellent candidate48. 325	

Heat-killed C. albicans cells appear to be entirely non-pathogenic in M. sexta 326	

caterpillars as neither survival nor weight are affected by innoculation with heat-killed yeast 327	

cells. The lack of mortality in response to innoculation with heat-killed yeast cells indicates 328	

that yeast viability and proliferation are required for pathogenesis and excludes the possibility 329	

of death due to an allergic reaction in response to a large number of fungal cells. This appears 330	

to differ from the responses of other host models to fungal pathogens. While susceptibility 331	

was reduced, but still measurable, in G. mellonella60 and the two-spotted cricket61, heat-killed 332	

C. albicans cells elicited 100% mortality in a sepsis-like murine model62. In mice, serum 333	

levels of β-(1,3)-glucan levels were elevated in animals injected with heat-killed yeast cells 334	

when compared to those infected with live cells. Indeed, heat inactivation leads to increased 335	

exposure of β-(1,3)-glucan on the C. albicans cell surface63 and β-(1,3)-glucan activates the 336	

innate immune response in invertebrates and mammals64. Given the complexity of receptors 337	

involved in recognition of fungal invaders65 and the lack of a response in M. sexta and other 338	

invertebrates indicates that they may not host all or identical receptors as mammals. 339	

 We showed that Manduca sexta caterpillars expand the repertoire of invertebrate 340	

models for the study of fungal disease. It combines the unique advantage of allowing 341	

measurement of fungal burden with standard quantifications of survival and weight. 342	

Although, M. sexta genomic and transcriptomic analyses are currently still in their infancy, 343	

we would expect that the Tobacco Hornworm’s long history of being an invaluable model for 344	
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diverse facets of biology will lead to reliable tools in combination with genetic tractability 345	

and protocols establishing the yeasts’ fate inside the caterpillar. 346	
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Appendices 577	

Appendix 1 – Food preparation 578	

 579	

Premix  Diet cake 

Amount Ingredient  Amount Ingredient 

2,700 g Wheatgerm  336 g Premix 

1,260 g Casein  1,770 ml Distilled water 

1,080 g Sucrose  22.5 g Agar 

540 g Dried active yeast  4 ml Corn oil 

360 g Wesson’s Salt  4 ml Linseed oil 

36 g Choline chloride  8 ml 4% Formaldehyde 

72 g Cholesterol   0.2 g Chlorotetracycline 

36 g Methyl paraben  0.2 g Vanderssant vitamins 

54 g Sorbic acid  8 g Ascorbic acid 

For the premix, deactivate the yeast by microwaving for 5 minutes on low power 580	

before mixing all components thoroughly. Store in a cool, dry place. 581	

 For the diet cake, heat up 650 ml of water on a hot plate while melting the agar in 1 l 582	

of water by microwaving. Combine the agar with the pre-warmed water, 336 g of premix, 583	

formaldehyde and oils and mix thoroughly using a stand mixer. Dissolve vitamins, antibiotic, 584	

and ascorbic acid in the remaining 30 ml of water and add to mixing bowl once the content 585	

has cooled below 50˚C to prevent inactivation of vitamins and antibiotic. Line a large ice 586	

cube tray with sterile aluminium foil (sterilise by spraying with 70% ethanol) and pour 587	

mixture into tray. Let the diet mix set for about 1.5 hours, wrap tightly in aluminium foil and 588	

store at 4˚C. Keeps for 3 weeks. 589	

  590	
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Tables 591	

Table 1: Yeast strains used in this study. 592	

Strain ID Strain Name Species Source 

YSD89 SN95 C. albicans  

YSD85 SC5314 C. albicans  

YSD883 hog1∆/∆ C. albicans This study 

YSD87 BWP17 C. albicans 66 

YSD190 VIC84 (cka2∆/∆) C. albicans 67 

YSD192 VIC93 (cka2/cka2::CKA2) C. albicans 67 

YSD302 CAS12 (ahr1∆/∆) C. albicans 44 

YSD303 CAS13 (ahr1/ahr1::AHR1) C. albicans 44 

YSD304 RM1000 C. albicans 68 

YSD305 JC52 (hog1/hog1::HOG1) C. albicans 68 

YSD306 JC50 (hog1∆/∆) C. albicans 68 

YSD790 YPS143 S. cerevisiae 69 

YSD1448 NCYC2580 M. pulcherrima 70 

YSD465 2001 C. glabrata 71 

YSD1454 TA004-14 C. auris 72 

YSD1028 H99 C. neoformans 73 

 593	
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Table 2: Statistical significance values of survival of animals treated with antifungal drugs 595	
compared to those not receiving treatment. 596	
 597	

Fluconazole Caspofungin 

Concentration p-value Concentration p-value 

1 mg/kg 0.54 1 mg/kg 0.8 

4 mg/kg 0.63 2 mg/kg 0.015 

16 mg/kg 0.68 4 mg/kg 0.0022 

32 mg/kg 0.27   

64 mg/kg 0.13   

 598	
  599	
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Figure Captions 600	

Figure 1: M. sexta caterpillars are susceptible to infections with C. albicans. a) M. sexta 601	

fifth instar caterpillar prior to injection weighing ~2 g. b) 24 hours post injection, the dead 602	

animal on the left has lost colour and rigor compared to the live animal on the right. c) 603	

Survival curves of animals infected with C. albicans SN95 or SC5314. Killing occurs in a 604	

dose-dependent manner at 106 and 107 yeast cells per animal. d) Survival curves of animals 605	

infected with C. albicans mutants with attenuated virulence phenotypes in mice or epithelial 606	

cell models. The hog1∆/∆ and cka2∆/∆ mutants exhibit attenuated virulence, while virulence 607	

of the ahr1∆/∆ mutant is comparable to the wild type. The hog1∆/∆ mutant differs 608	

significantly from the wild type (p=0.0001). The complemented strain hog1/hog1::HOG1 609	

kills M. sexta at a level comparable to that of the wild type strain (p=0.21). The cka2∆/∆ 610	

mutant is significantly less virulent than the wild type (p=0.00021), while the complemented 611	

strain cka2/cka2::CKA2 is not (p=0.054). Virulence of the ahr1∆/∆ mutant and the 612	

complemented strain ahr1/ahr1::AHR1 does not differ significantly from the wild type 613	

(ahr1∆/∆ p=0.72; ahr1/ahr1::AHR1 p=0.38). 614	

Figure 2: Elevated temperatures increase susceptibility of M. sexta to C. albicans. a) M. 615	

sexta caterpillars succumb to infection with the laboratory strain SC5314 in a dose-dependent 616	

manner at 37˚C but less inoculum is required than for infections at 25˚C. b) The weight of 617	

caterpillars infected with 104 cells per animal was comparable to that of caterpillars injected 618	

with 1x PBS, while animals infected with 105 cells showed a significant reduction in weight. 619	

c) Attenuated virulence of the hog1∆/∆ mutant is retained at 37˚C. d) Animals infected with 620	

the mutant strain gain significantly more weight than those infected with the wild type strain. 621	

Infection with the complemented strain results in a comparable lack of weight gain. 622	

Figure 3: Fungal burden in faeces and hemolymph increases throughout the course of 623	

infection. Colony forming units per gram faeces (a) and 100 µl hemolymph (b) in the 624	

hog1∆/∆ mutant (YSD883), the wild type (SN95) and the control animals. Counts increase 625	

over time in the wild-type infected animals but not the ones injected with the hog1∆/∆ mutant 626	

or PBS. c) Weight increases in animals infected with hog1∆/∆ comparable to those injected 627	

with PBS, while animals injected with the wild type C. albicans strain experience reduced 628	

weight gain. The peak and drop in weight observed in the hog1∆/∆ and PBS groups, marked 629	

with a ¤ is coinciding with the onset of pupation. This ‘pupation drop’ is due to the animals 630	

refraining from food upon entering the early stages of pupation. 631	
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Figure 4: Antifungal efficacy testing of fluconazole and caspofungin. Groups of ten C. 632	

albicans infected caterpillars were treated with increasing doses of antifungal drug. a) 633	

Survival improves upon treatment with fluconazole, while weight remains largely stagnant in 634	

surviving animals (b). c) Caspofungin treatment has a positive effect on M. sexta survival and 635	

weight (d). Weight data were not analysed for significance due to the lack of animals in the 636	

no treatment group. 637	

Figure 5: Caterpillars are susceptible to common yeast pathogens. Groups of ten animals 638	

were infected with increasing doses of yeasts and survival was recorded daily. Caterpillars 639	

are not susceptible to S. cerevisiae or M. pulcherrima but infections with C. neoformans, C. 640	

glabrata, C. auris and C. albicans result in significantly reduced survival rates.  641	

Figure 6: Caterpillar weight as a measure of virulence. Recording caterpillar weight daily 642	

revealed that yeast infections affect weight regardless of mortality rates. Daily weight 643	

measures were compared to that of PBS-injected animals and statistical significance assessed 644	

as follows: * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. 645	

 646	

Figure S1: Caterpillar growth is comparable between standard colony temperature and 647	

host body temperature. Groups of ten animals were kept on standard diet at 25˚C and 30˚C 648	

(a) or 25˚C and 37˚C (b) for four days. Animals were scored daily for survival and weight as 649	

a measure of development. Within these parameters, caterpillar development is comparable 650	

across all three temperatures. 651	

Figure S2: Heat-killed C. albicans cells do not affect caterpillar survival or weight gain. 652	

Groups of ten animals were injected with either live C. albicans wild-type YSD85 cells, heat-653	

killed cells, or PBS. a) Only live yeast cells kill caterpillars. b) The weight gain in animals 654	

infected with heat-killed Candida cells is comparable to that of animals injected with PBS. 655	
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