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Abstract 23 

Glycans are fundamental cellular building blocks, involved in many organismal functions. 24 

Advances in glycomics are elucidating the roles of glycans, but it remains challenging to 25 

properly analyze large glycomics datasets, since the data are sparse (each sample often has only a 26 

few measured glycans) and detected glycans are non-independent (sharing many intermediate 27 

biosynthetic steps). We address these challenges with GlyCompare, a glycomic data analysis 28 

approach that leverages shared biosynthetic pathway intermediates to correct for sparsity and 29 

non-independence in glycomics. Specifically, quantities of measured glycans are propagated to 30 

intermediate glycan substructures, which enables direct comparison of different glycoprofiles 31 

and increases statistical power. Using GlyCompare, we studied diverse N-glycan profiles from 32 

glycoengineered erythropoietin. We obtained biologically meaningful clustering of mutant cell 33 

glycoprofiles and identified knockout-specific effects of fucosyltransferase mutants on tetra-34 

antennary structures. We further analyzed human milk oligosaccharide profiles and identified 35 

novel impacts that the mother’s secretor-status on fucosylation and sialylation. Our substructure-36 

oriented approach will enable researchers to take full advantage of the growing power and size of 37 

glycomics data. 38 

  39 

  40 
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Introduction 41 

Glycosylation is a highly abundant and complex post-translational modification, decorating 42 

between one-fifth and one-half of eukaryotic proteins1,2. These diverse carbohydrates account for 43 

12-25% of dry cell mass and have important functional and pathological roles3,4. Despite their 44 

importance, glycans have complex structures that are difficult to study. The complex structures 45 

of glycans arise from a non-template driven synthesis through a biosynthetic network involving 46 

dozens of enzymes. A simple change of a single intermediate glycan or glycosyltransferase will 47 

have cascading impacts on the final glycans obtained5,6. Unfortunately, current data analysis 48 

approaches for glycoprofiling and glycomic data lack the necessary systems perspective to easily 49 

decode the interdependency of glycans. It is important to understand the network behind the 50 

glycoprofiles so that we can better understand the behavior of the process. 51 

    New tools aiding in the acquisition and aggregation of glycoprofiles are emerging, making 52 

large-scale comparisons of glycoprofiles possible. Advances in mass spectrometry now enable 53 

the rapid generation of many glycoprofiles with detailed glycan composition7–10, exposing the 54 

complex and heterogeneous glycosylation patterns on lipids and proteins11,12. Large glycoprofile 55 

datasets and supporting databases are also emerging, including GlyTouCan13, UnicarbDB14, 56 

GlyGen and UniCarbKB15. 57 

    These new technologies and databases provide opportunities to examine global trends in 58 

glycan function and their association with disease. However, the rapid and accurate comparison 59 

of glycoprofiles can be challenging with the size, sparsity and heterogeneity of such datasets. 60 

Indeed, in any one glycoprofile, only a few glycans may be detected among the thousands of 61 

possible glycans16. Thus, if there is a major perturbation to glycosylation in a dataset, few 62 

glycans, if any, may overlap between samples. However, these non-overlapping glycans may 63 
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only differ in their synthesis by as few as one enzymatic step. Thus, it can be difficult to know 64 

which glycans to compare. Furthermore, since glycans often share substantial portions of their 65 

biosynthetic pathways with each other, statistical methods that assume independence (e.g., t-66 

tests, ANOVA, etc) are inappropriate for glycomics. Here we address these challenges by 67 

proposing glycan substructures, or intermediates, as the appropriate functional units for 68 

meaningful glycoprofile comparisons, since each substructure can capture one step in the 69 

complex process of glycan synthesis. Thus, using substructures for comparison, we account for 70 

the shared dependencies across glycans.  71 

    Previous work has investigated the similarity across glycans using glycan motifs, such as, 72 

glycan fingerprinting to describe glycan diversity in databases17, align glycan structures18, 73 

identify glycan epitopes in glycoprofiles19, deconvolve LC-MS data to clarify glycan 74 

abundance20, or compare glycans in glycoprofiles leveraging simple structures21. These tools use 75 

information on glycan composition or epitopes; however, further accounting for shared 76 

biosynthetic steps across glycans could provide complete biosynthetic context to all glycan 77 

epitopes. That context includes connecting all glycans to the enzymes involved in their synthesis, 78 

the order of the enzyme reactions, and information on competition for glycan substrates. Thus, a 79 

generalized substructure approach could facilitate the study of large numbers of glycoprofiles by 80 

connecting them to the shared mechanisms involved in making each glycan.  81 

    Here we present GlyCompare, a method enabling the rapid and scalable analysis and 82 

comparison of any number of glycoprofiles, while accounting for the biosynthetic similarities of 83 

each glycan. This approach addresses current challenges in sparsity and hidden interdependence 84 

across glycomic samples, and will facilitate the discovery of mechanisms underlying the changes 85 

among glycoprofiles. We demonstrate the functionality and performance of this approach with 86 
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both protein-conjugated and unconjugated glycomic analysis, using recombinant erythropoietin 87 

(EPO) N-glycosylation and human milk oligosaccharides (HMOs). Specifically, we analyzed 88 

sixteen MALDI-TOF glycoprofiles of EPO, where each EPO glycoprofile was produced in a 89 

different glycoengineered CHO cell line9,11. We also analyzed forty-eight HPLC glycoprofiles of 90 

HMO from six mothers22. By analyzing these glycoprofiles with GlyCompare, we quantify the 91 

abundance of important substructures, cluster the glycoprofiles of mutant cell lines, connect 92 

genotypes to unexpected changes in glycoprofiles, and associate a phenotype of interest with 93 

substructure abundance and flux. We further demonstrate that such analyses gain statistical 94 

power since GlyCompare elucidates and uses shared intermediates. The analysis of the EPO and 95 

HMO datasets demonstrate that our novel framework presents a convenient and automated 96 

approach to elucidate novel insights into complex patterns in glycobiology. 97 

Results 98 

Glycomic data may fail to recover biologically meaningful clusters 99 

Due to the sparsity and non-independence of glycoprofile, clustering and comparing different 100 

glycoprofiles can be challenging23. We tested this by clustering glycoprofiles from a panel of 101 

different Erythropoietin (EPO) glycoforms, each produced in different glycoengineered CHO 102 

cell lines. In the clustering, many neighboring samples were not coming from the most 103 

genetically similar mutants, and thus did not recapitulate the severity of glycosylation disruption 104 

(Fig. 1a and Supplementary Fig. 1). These challenges prompted us to develop GlyCompare, a 105 

substructure-based approach to glycan analysis. Using GlyCompare, we decomposed the 106 

glycoprofiles of glycoengineered EPO into glyco-motif abundance profiles and easily recovered 107 

the expected severity of glycoengineered effects (Fig. 1b). The glyco-motif abundances mitigate 108 
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major statistical challenges of working with glycoprofiles. In the next section, we describe how 109 

we decompose glycoprofiles into glyco-motif abundance profiles. 110 

 111 

GlyCompare decomposes glycoprofiles to facilitate glycoprofile comparison 112 

Glycoprofiles can be decomposed into abundances of glycan intermediate substructures. The 113 

resulting substructure profile has richer information than whole glycan profiles and enables more 114 

precise comparison across conditions. Since glycan biosynthesis involves long, redundant 115 

pathways, the pathways can be collapsed to obtain a subset of substructures while preserving the 116 

information of all glycans in the dataset. We call this minimal set of substructures “glyco-117 

motifs.” The GlyCompare workflow consists of several steps wherein glycoprofiles are 118 

annotated and decomposed, glyco-motifs are prioritized, and each glyco-motif is quantified for 119 

subsequent comparisons. The specific workflow is described as follows.  120 

    First, to characterize each glycoprofile with substructures, all substructures in the 121 

glycoprofiles are identified and occurrence per glycan is quantified (Fig. 1c-d). Thus, a complete 122 

set of glycan substructures is obtained for all glycans in all glycoprofiles being analyzed. For 123 

each glycoprofile, the abundance of each substructure is calculated by summing the abundance 124 

of all glycans containing the substructure. This results in a substructure profile, which stores 125 

abundances for all glycan substructures (Fig. 1e) in given glycoprofile. The summation over 126 

similar structures asserts that similar structures follow the same synthetic paths, which is 127 

appropriate for glycosylation wherein synthesis is hierarchical and acyclic (Supplementary Fig. 128 

2,3). Therefore, a substructure abundance is not simply a sum over similar structures, it is a 129 

meaningful sum over biosynthetic pathways. 130 

    Second, to identify the most informative substructures (i.e., glyco-motifs), substructures are 131 
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prioritized using the substructure network. The substructure network is built by connecting all 132 

substructures with biosynthetic steps (Fig. 1f). Starting from the monosaccharides, each level of 133 

the network represents another biosynthetic step, with one more monosaccharide than the 134 

previous level. The edges in the network represent enzymatic additions of each monosaccharide. 135 

These edges are weighted by the correlation between the abundances of the substrate and product 136 

substructures across all samples. Redundant substructures can be easily identified since their 137 

parent-child substructure abundances will be perfectly correlated. Substructure network 138 

reduction proceeds by collapsing links with a perfect correlation between substrate and product 139 

substructures, and only retaining the product substructure (see methods section for further 140 

details). We demonstrate this network reduction in Fig. 1f. We identify redundant substructures 141 

when the abundance of parent substructures and descendant substructure are perfectly correlated 142 

across all glycoprofiles (connected with solid arrow). We remove the parent substructure 143 

(substrate) while keeping the child substructure (product). The remaining substructures are 144 

termed glyco-motifs; they completely describe the variance at the substructure level. The 145 

abundances of all glyco-motifs are then represented as a glyco-motif profile, the minimal subset 146 

of meaningful substructure abundances represent glycoprofiles (Fig. 1f). 147 

    For larger datasets, summarizing the glyco-motifs becomes necessary. Glyco-motif vectors, 148 

like glycoprofiles, can be clustered (Fig. 1g and Supplementary Fig. 4). We defined a 149 

representative substructure as the common structure in a glyco-motif cluster (Fig. 1h). The 150 

representative substructure describes the glycan features that vary the most across samples. To 151 

extract the common structural features in each cluster, we calculated the average weight of each 152 

monosaccharide. Monosaccharides with a weight larger than 51% are preserved, which 153 
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illustrates the predominant structure in the cluster. This allows one to quickly evaluate the 154 

distinguishing glycan features that vary across samples in any given dataset.  155 

    The workflow we described here successfully connects all glycoprofiles in a data set through 156 

their shared intermediate substructures, thus allowing robust analysis of the differences across 157 

glycomics samples and the evaluation of the associated genetic bases.  158 

 159 

GlyCompare accurately clusters glycoengineered EPO samples 160 

The poor clustering of the engineered EPO glycosylation data9 included clustering of 161 

glycoprofiles with low phenotypic similarity (Fig. 1a and Supplementary Fig. 1,5). This 162 

inconsistency and poor clustering stems from the inherent sparseness of glycoprofiles, i.e., each 163 

glycoprofile only has a few glycans. Thus, the matrix of all samples is very sparse, unfit for 164 

standard clustering approaches and hard to interpret. Particularly problematic is that pairs of 165 

glycans differing in a single monosaccharide are treated as two completely different glycans 166 

under standard clustering approaches. Thus, we found that clustering is affected more by the 167 

presence or absence of a glycan, rather than structural similarity.  168 

    GlyCompare addresses these problems by elucidating hidden similarities between glycans 169 

after decomposing glycoprofiles to their composite substructures. The 52 glycans were 170 

decomposed into their constituent glycan substructures, resulting in a substructure vector with 171 

613 glycan substructures and a further simplified 120 glyco-motif vector (Supplementary Fig. 172 

6). The glyco-motif clustering clearly distinguished the samples based on the structural patterns 173 

and separated profiles into groups more consistently associated with the extent of changes in the 174 

profile than the raw glycan-based clusters (Fig. 1b and Supplementary Fig. 5). 175 
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    The sixteen glycoprofiles clustered into three groups with a few severely modified outliers 176 

(Fig. 1b), and the 120 glyco-motifs clustered into twenty-four groups, each summarized by 177 

representative substructures Rep1 - Rep24 (Fig. 2a and Supplementary Fig. 4). The clusters of 178 

glycoprofiles are consistent with the genetic similarities among the host cells. Specifically, the 179 

major substructure patterns cluster individual samples into four categories: ‘wild-type (WT)-180 

like’, ‘mild’, ‘medium’ and ‘severe’. The WT-like category contains one group, WT and 181 

B4galt1/2/3/4/ knockouts, which contains most of the substructures seen in WT cells. The mild 182 

group includes the Mgat4b/4a, Mgat4b, and Mgat5 knockouts, where each lose the tetra-183 

antennary structure, and an St3gal4/6 knockout, which loses the terminal sialylation. The 184 

medium category is a group that contains knockouts of St3gal4/6 and Mgat4a/4b/5, knockouts of 185 

Mgat4a/4b/5 and B3gnt2, knockouts of Mgat4a/4a/5 with a knock-in of human ST6GAL1, and 186 

knockouts of Mgat4a/4b/5 and St3gal4/6. The medium disruption category lost the tri-antennary 187 

structure. The ‘severe’ category includes three individual glycoprofiles with knockouts for Fut8, 188 

Mgat2, and Mgat1, each of which generate many glycans not detected in the WT-like, mild or 189 

medium categories. While some glyco-motif clusters can be seen in the glycoprofile clusters, 190 

there are important differences, and the glyco-motif clusters provide more information and 191 

improved cluster stability (Supplementary Fig. 4,7). These results demonstrate the performance 192 

improvement of glyco-motif abundance over glycan abundance in assessing the structural 193 

similarity between different glycoprofiles. 194 

 195 

GlyCompare summarizes structural changes across glycoprofiles  196 

GlyCompare helps to more robustly group samples by accounting for the biosynthetic and 197 

structural similarities of glycans. Further analysis of the representative structures provides 198 
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detailed insights into which structural features vary the most across samples. To accomplish this, 199 

we rescaled the representative structure abundances and identified significant changes in 200 

representative substructure abundances between mutant cells and WT (Fig. 2a,b). This highlights 201 

the specific structural features of glycans that are impacted when glycoengineering recombinant 202 

EPO. 203 

    As expected, in the Mgat1 knockout glycoprofile, only high mannose N-glycans are seen. 204 

Also, in the Mgat2 knockout, the glycan substructure of bi-antennary on one mannose linkage 205 

significantly increases, and the unique structure of bi-antennary LacNac elongated in the N-206 

glycans emerges in the St3gal4/6 and Mgat4a/4b/5 knockouts. Along with expected changes in 207 

α-1,6 fucosylation in the Fut8 knockout glycoprofile, we also observed an increase in the tetra-208 

antennary poly-LacNac elongated N-glycan without fucose, which has not been previously 209 

reported (One-sided one-sample wilcoxon test, Rep19: p=2.7 × 10'(, Rep21: p=2.0 × 10'() 210 

(Fig. 2c). In the St3gal4/6 knockout (Fig. 2c), we observed the relative abundance of structures 211 

with sialylation significantly decreased, while the tetra-antennary and triantennary poly-LacNAc 212 

elongated N-glycan substructure without sialylation significantly increased (Rep13: p= 213 

1.3 × 10'*, Rep20: p=2.3 × 10'(). Finally, the Mgat4b, Mgat4a/4b and Mgat5 knockouts (Fig. 214 

2d) lose all core tetra-antennary substructures (Rep16: unscaled abundance=0). While 215 

triantennary substructures with GlcNac elongation increased significantly for Mgat4b (Rep13: 216 

p=2.6 × 10'*, Rep14: p=2.5 × 10'(), the poly-LacNac elongation structure disappeared. 217 

Interestingly, while both the Mgat4b and Mgat5 knockouts do not have the tri-antennary poly-218 

LacNac elongated N-glycan, the Mgat4a/4b mutant keeps a highly abundant poly-LacNac branch 219 

(Rep15: p= 2.4 × 10'(). Thus, through the use of GlyCompare, we identified the specific glycan 220 
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features that are impacted not only in individual glycoengineered cell lines, but also features 221 

shared by groups of related cell lines. 222 

 223 

GlyCompare reveals phenotype-associated substructures and trends invisible at the whole 224 

glycan level 225 

Many secreted and measured glycans are also precursors, or substructures, of larger glycans (Fig. 226 

3a). Thus, the secreted and observed abundance of one glycan may not equal to the total amount 227 

synthesized. GlyCompare can quantify the total abundance of a glycan by combining the glycan 228 

abundance with the abundance of its products. To demonstrate this capability of GlyCompare, 229 

we analyzed HMO abundance, and examined the impact of secretor status and days postpartum 230 

on HMO abundance. We obtained forty-seven HMO glycoprofiles from 6 mothers (1, 2, 3, 4, 7, 231 

14, 28 and 42 days postpartum (DPP)), 4 “secretor” mothers with functioning FUT2 (α-1,2 232 

fucosyltransferase), and 2 “non-secretor” mothers with non-functional FUT2. With GlyCompare 233 

addressing the non-independence of HMOs, we could use powerful statistical methods to study 234 

trends in HMO synthesis. Specifically, we used regression models predicting secretor status and 235 

DPP from substructure abundance. 236 

    We first checked both the glycan-level and substructure-level clustering of the glycoprofile. 237 

Samples with same secretor status and days postpartum (DPP) were successfully grouped 238 

(Supplementary Fig. 8). Further examination of the glyco-motif abundance (i.e., the total 239 

amount of substructure synthesized) revealed phenotype-related trends invisible at the level of 240 

the whole glycan profile. For example, the LSTb substructure (X62) increased in secretor 241 

mothers (Wald p = 2 × 10'./) and decreased in non-secretor mothers over time (Wald p < 242 

2 × 10'./; Fig. 3b). Yet, the same trend was weak or inconsistent for all glycans containing the 243 
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X62 substructure: LSTb, DSLNT and DSLNH (Fig. 3b-e). LSTb weakly shows a similar trend 244 

to X62. LSTb decreases over time in non-secretors (Wald p = 6.53 × 10'() but the time-245 

dependent increase in secretors is barely significant (Wald p = 0.046) and the effect size is small 246 

(marginal R2 = 0.088). Unlike X62, DSLNT shows no significant increase over time (Coef=-247 

0.39, Wald p = 0.17) in secretor mothers. Finally, unlike the decrease over time seen in non-248 

secretors in X62, DSLNH shows a significant increase over time in non-secretors (Wald p = 249 

2.91x10-8). The secretor-specific trends in total LSTb are only clearly visible by examining the 250 

X62 substructure abundance (Fig. 3c). Thus, while secretor status is expected to impact HMO 251 

fucosylation, GlyCompare reveals associations with non-fucosylated substructures. Viewing 252 

substructure abundance as total substructure synthesized provides a new fundamental measure to 253 

the study of glycoprofiles, it also creates an opportunity to explore trends in synthesis.  254 

 255 

GlyCompare identifies flux in HMO biosynthesis 256 

We next applied GlyCompare to explore changes in HMO synthesis over time. For this, we 257 

estimate the flux for each biosynthetic reaction by quantifying the abundance ratio of products 258 

and substrates from parent-child pairs of glycan substructures. Thus, we could study changes in 259 

HMO synthesis through the systematic estimation of reaction flux across various conditions.  260 

    We found several reactions strongly associated with secretor status. As expected, the estimated 261 

reaction flux from the LNT substructure (X40) to the LNFPI substructure (X65), was strongly 262 

associated with secretor status (Wilcox p =1.3 × 10'.0). In secretors, 36.2% (s.d. 12.7%) of X40 263 

was converted to X65, compared to non-secretors, wherein only 5% (s.d. 1.3%) of X40 was 264 

converted.  265 
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    Although secretor status is defined by the fucosyltransferase-2 genotype, not all secretor-266 

associated reactions were fucosylation reactions. We further explored the secretor-X62 267 

association using the product-substrate ratio to estimate flux. Specifically, we examined the 268 

upstream reaction (Fig. 3f) of LNT (X40) to LSTb (X62) and the downstream reaction (Fig. 3g) 269 

of LSTb (X62) to DSLNT (X106). We measured the upstream reaction of LNT converting to 270 

LSTb, using the X62/X40 ratio over time, however, no significant change was observed with 271 

respect to secretor status (Wald p=0.55). In the conversion of LSTb to DSLNT, we found a 272 

secretor-specific reaction increase in flux. Specifically, the X106/X62 ratio was significantly 273 

higher (Wald p=0.018) in secretor mothers (Fig. 4g; Supplementary Table 3c) In the average 274 

non-secretor mother, 52.3% (s.d. 15.1%) of LSTb is converted to DSLNT. Meanwhile in 275 

secretors, the average conversion rate is 81.8% (s.d. 7.2%). The LSTb to DSLNT conversion rate 276 

appears higher in secretors while conversion from the LSTb precursor, LNT, appears unchanged; 277 

any changes in sialylation is intriguing, considering secretor status is associated with genetic 278 

variation of a fucosyltransferase. Examining the product-substrate ratio has revealed a 279 

phenotype-specific reaction propensity thus providing insight to the condition-specific synthesis. 280 

 281 

GlyCompare increases statistical power of glycomics data 282 

GlyCompare successfully provides new insights by accounting for shared biosynthetic routes of 283 

measured oligosaccharides. Since it includes information on the similarities between different 284 

glycans, we wondered how our approach impacts statistical power in glycan analysis. Thus, to 285 

quantify the benefit of glyco-motif analysis, we constructed a large number of regression models 286 

associating either glyco-motif abundance or glycan abundance, with a DPP and secretor status 287 

(see Methods). We found that regressions trained with glyco-motif abundance are more robust 288 
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than those trained on whole glycan HMO abundance, as indicated by the increased coefficient 289 

magnitude (Wilcoxon p = 0.0047, Fig. 4a), and decreased standard error (Wilcoxon p = 0.033, 290 

Fig. 4b). An increase in the stability of a statistic can result in an increased effect size. Consistent 291 

with the increased coefficient magnitude and decreased standard error, the effect size also 292 

increased, as measured by the marginal R2 (mR2) of glyco-motif-trained regressions (Wilcoxon 293 

p=0.04, Fig. 4c). These effects were confirmed with a bootstrapping t-test; bootstrapping p-294 

values were less than or equal to Wilcoxon p-values within 0.001. Increases in statistic 295 

magnitude, statistic stability, and effect size are all expected to increase the power of an analysis. 296 

Using the median, 1st quartile, and 3rd quartile of observed mR2, we estimated the expected 297 

power of glyco-motif-trained and glycan-trained regressions at various sample sizes. The 298 

expected power of a glyco-motif-trained regression reaches 0.8 at 36 samples and 0.9 with 57 299 

samples while a glycan-trained regression requires more than double the sample size to reach a 300 

comparable power (Fig. 4d). Thus, using GlyCompare for glyco-motif-level analysis can 301 

substantially increase the robustness and statistical power in glycomics data analysis since it 302 

allows for the comparison of different glycans who share biosynthetic steps. 303 

Discussion 304 

Glycosylation has generally been studied from the whole-glycan perspective using mass 305 

spectrometry and other analytical methods. From this perspective, two glycans that differ by only 306 

one monosaccharide are distinct and are not directly comparable. Thus, the comparative study of 307 

glycoprofiles has been limited to changes between glycans shared by multiple glycoprofiles or 308 

small manually curated glycan substructures17. GlyCompare sheds light on the hidden 309 

biosynthetic interdependencies between glycans by integrating the biosynthetic pathways into the 310 
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comparison. Glycoprofiles are converted to glyco-motif profiles, wherein each substructure 311 

abundance represents the cumulative abundance of all glycans containing that substructure. This 312 

enumeration and quantification of substructures can be easily scaled up to include many 313 

glycoprofiles in large datasets. Additionally, since no prior information is required beyond 314 

glycan identities and quantities, the method can even facilitate analysis of glycans with limited 315 

characterization. Thus, it brings several advantages and new perspectives to enable the 316 

systematic study of glycomics data.  317 

    First, the GlyCompare platform computes a glyco-motif profile (i.e., the abundances of the 318 

minimal set of glycan substructures) that maintains the information of the original glycoprofiles, 319 

while exposing the shared intermediates of measured glycans. These sample-specific glyco-motif 320 

profiles more accurately quantify similarities across glycoprofiles. This is made possible since 321 

glycans that share substructures also share many biosynthetic steps. If the glycan biosynthetic 322 

network is perturbed, all glycans synthesized will be impacted and the nearest substructures will 323 

directly highlight where the change occurred. For example, in EPO glycoprofiles studied here, 324 

the tetra-antennary structure is depleted in the Mgat4a/4b/5 knockout group and the downstream 325 

sialylated substructure depleted when St3gal4/6 were knocked out. Such structural patterns 326 

emerge in GlyCompare since the tool leverages shared intermediate substructures for clustering, 327 

thus identifying common features in glycans measured across diverse samples.  328 

    Second, new trends in glycan biosynthetic flux become visible at the substructure level. For 329 

example, in the HMO data set, multiple HMOs are made through a series of steps from LNT to 330 

DSLNH (Fig. 4a). Only when the substructure abundances and product-substrate ratios are 331 

computed are we able to observe the secretor-dependent differences in the abundance of the 332 

LSTb substructure, X62. This is particularly interesting since secretor status is defined by 333 
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changes in α-1,2 fucosylation, but we see here additional secretor-dependent changes to 334 

sialylated structures with no fucose. These are the systemic effects invisible without a systems-335 

level perspective due to the interconnected nature of glycan synthesis; this disparity underlines 336 

the power of this method. 337 

    Third, the sparse nature of glycomic datasets and the synthetic connections between glycans 338 

make glycomic data unfit for many common statistical analyses. However, the translation of 339 

glycoprofiles into substructure abundance provides a framework for more statistically powerful 340 

and robust analysis of glycomic datasets. Single sample perturbations, such as the knockouts in 341 

the glycoengineered EPO, can be compared to wild-type; all substructure data can be normalized 342 

and then rigorously distinguished from the control using a one sample Wilcoxon-test. 343 

Furthermore, conditions or phenotypes with many glycoprofiles, such as the secretor status in the 344 

HMO dataset, can be compared using a variety of statistical methods to evaluate the association 345 

between the phenotypes and glycosylation. For example, in HMO data, we revealed that the α-346 

1,2 fucose substructure is enriched in secretor status, consistent with the previous studies24–26. 347 

Because the substructure approach includes comparisons of glycans that are not shared across the 348 

different samples, but that share intermediates, GlyCompare decreased sparsity and increased 349 

statistical power. Thus, one can obtain richer glycan comparisons of representative substructures, 350 

total synthesized abundance, and flux. 351 

Finally, in combination with the substructure network, we can systematically study glycan 352 

synthesis. The product-substrate ratio provides an estimation of flux through the glycan 353 

biosynthetic pathways. Using the HMO dataset, we demonstrate the power of this perspective by 354 

showing that more LSTb is converted to DSLNT in the secretor mother. The perspectives made 355 

available through GlyCompare are not limited to Wilcoxon-tests and regression models. Because 356 
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the substructure-level perspective minimizes biosynthetic dependency between glycans, glyco-357 

motif abundances can be used with nearly any statistical model or comparison demanded by a 358 

dataset. We have reduced the sparse and non-independent nature of glycoprofiles, thereby 359 

making countless comparisons and new analyses possible. 360 

 361 

Conclusions 362 

In conclusion, GlyCompare provides a novel paradigm for describing complex glycoprofiles, 363 

thus enabling a wide range of analyses and facilitating the acquisition of detailed insights into the 364 

molecular mechanisms controlling all types of glycosylation.  365 
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Methods 465 

Data, source code, examples, Jupyter notebooks for generating manuscript figures, and 466 

CodeOcean capsule available at: 467 

https://github.com/LewisLabUCSD/GlyCompare 468 

 469 

N-glycosylation of EPO glycoprofile collection and analysis 470 

N-glycosylation data were previously published and described elsewhere9. Briefly, these data 471 

were generated as follows. Different combinations of glycosyltransferase genes were knocked 472 

out using zinc-finger nucleases. Both single gene and multigene mutants were generated. 473 

Erythropoietin (EPO) was transfected into the library of glycoengineered cell lines. After 474 

overexpression of EPO, glycans were cleaved using PNGase, and then assayed by mass 475 

spectrometry. Upon retrieval of these data from the study, we picked 16 glycoprofiles that are 476 

used again in their following up study 11 and further processed the data as follows. All 477 

measurements were taken from distinct samples.  478 

    Glycan substructures were extracted from the observed glycans. Substructure abundance was 479 

calculated from glycan abundance of all glycans containing the substructure. A minimal set of 480 

120 glyco-motifs substructures identified by substructure network to compare the mutants. 481 

Finally, representative substructures were extracted to pool abundance and summarize the 482 

structural changing across mutants. Each of these operations is further specified below. 483 

 484 

HMO glycoprofile collection and analysis 485 

Following Institutional Review Board approval (Baylor College of Medicine, Houston, TX), 486 

lactating women were given written informed consent. Women with diabetes or impaired 487 
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glucose tolerance, anemia, or renal or hepatic dysfunction were excluded from the study. Women 488 

were 18-35 years of age, had uncomplicated singleton pregnancies with vaginal delivery at term 489 

(>37 weeks) and pregnancy Body Mass Index (BMI) remained <26kg/m2. Infants were healthy 490 

and exclusively breastfed. Forty-eight milk samples were collected from 6 human mothers (1, 2, 491 

3, 4, 7, 14, 28, and 42 days postpartum (DPP)). More information on subject selection, exclusion, 492 

study design, and breast milk collection has already been published 22,27 493 

    HMO composition and abundance was measured by high-performance liquid chromatography 494 

(HLPC) following fluorescent derivatization with 2-aminobenzamide (2AB, CID: 6942) as 495 

previously described 28,29. Raffinose (CHEBI:16634, CID:439242), a non-HMO oligosaccharide, 496 

was added to each milk sample as an internal standard at the very beginning of sample 497 

preparation to allow for absolute quantification. Of the 300-500 predicted HMO, the 16 most 498 

abundant HMO were detected based on retention time comparison with commercial standard 499 

oligosaccharides and mass spectrometry analysis including 2-fucosyllactose (2'FL), 3-500 

fucosyllactose (3'FL), 3-sialyllactose (3'SL), lacto-N-tetrose (LNT), lacto-N-neotetraose (LNnT), 501 

lacto-N-fucopentaose (LNFP1, LNFP2 and LNFP3), sialyl-LNT (LSTb and LSTc), difucosyl-502 

LNT (DFLNT), disialyllacto-N-tetraose (DSLNT), fucosyl-lacto-N-hexaose (FLNH), difucosyl-503 

lacto-N-hexaose (DFLNH), fucosyl-disialyl-lacto-N-hexaose (FDSLNH) and disialyl-lacto-N-504 

hexaose (DSLNH). Because these are the most abundant HMOs, these glycoprofiles represent 505 

the least sparse subset of the entire HMO glycoprofile which is extremely sparse. GlyTouCan 506 

IDs for each HMO are listed in Supplementary Table 2. Technicians were blinded to metadata 507 

associated with each sample. In addition to absolute concentrations, the proportion of each HMO 508 

per total HMO concentration (sum of all integrated HMO) was calculated and expressed as 509 
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relative abundance (% of total, 𝑤2/𝛴𝑤∗). The presence of 2-FL defines secretor status. All 510 

measurements were taken from distinct samples. 511 

    HMO abundances profiles were treated similarly to the N-glycans. We identified and 512 

quantified 26 glyco-motifs from 121 substructures. We compared glyco-motif abundance and 513 

their abundance ratios directly to secretor status along the log of days postpartum. 514 

 515 

Glycoprofile preprocess procedures 516 

Three procedures were used for preprocessing the studied glycoprofiles (Fig. 1c). First, 517 

glycoprofiles are parsed into glycans with abundance. In each glycoprofile, the glycans are 518 

manually drawn and exported with GlycoCT format using the GlyTouCan Graphic Input tool13. 519 

GlycoCT formatted glycans are loaded into Python (version 3+) and initialized as glypy.glycan 520 

objects using the glypy (version 0.12.1). Assuming we have a glycoprofile i, the corresponding 521 

abundance of each glycan j in glycoprofile i is represented by 𝑔27. For example, the relative m/z 522 

peak in the mass spectrum or the abundance value in an HPLC trace, is calculated relative to the 523 

total abundance of glycans in this glycoprofile 𝑔27/𝛴𝑔2∗. Glycans with ambiguous topologies are 524 

handled by assuming they belong to every possible structure with equal probability, thereby 525 

creating all possible n structures but with 𝑔27/𝑛𝛴𝑔2∗ abundance of each. Second, glycans are 526 

annotated with glycan substructure information, and this information is transformed into the 527 

substructure vector. Substructures within a glycan are exhaustively extracted by breaking down 528 

each linkage or a combination of linkages of the studied glycan. Note that this method cannot 529 

currently deal with glycans with ring topology. All substructures extracted are merged into a 530 

substructure set S. Substructures are sorted by the number of monosaccharides and duplicates are 531 

removed. Then, each glycan is matched to the substructure set S producing a binary glycan 532 
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substructure presence (1) or absence (0) vector, 𝑥27. Lastly, a substructure (abundance) vector is 533 

calculated as 𝑝2 = 𝛴𝑥27𝑔27/𝛴𝑔2∗ representing the abundance of the substructures s in this 534 

glycoprofile, where 𝑝2 = (𝑠.2, . . . , 𝑠?2). Third, a substructure network is built based on the 535 

substructure vectors. The substructure network is a directed acyclic graph wherein each node 536 

denotes a glycan substructure. Given the substructure set S, the root node starts from the 537 

monosaccharides or a defined root core structure, and a child node is a substructure that has only 538 

one monosaccharide added to its parent node. We note that one child node might have multiple 539 

parent nodes and vice versa. The child node depends on its parent node(s) since it cannot exist 540 

alone without any parent node.  541 

 542 

Generating the glyco-motif vector bases on the substructure abundance 543 

A larger subset of the substructure network is necessary to uniquely describe a more diverse set 544 

of glycoprofiles while fewer substructures are needed to describe more similar glycoprofiles 545 

sufficiently. Comparisons become more focused when only examining these variable 546 

substructures. By checking the substructure network, the substructures that have the same 547 

abundance can be merged without any information loss. In other words, after the substructure 548 

network is generated, it is simplified by merging the substructure nodes. As illustrated in Fig. 1f, 549 

the parent-child substructure pairs with perfectly correlated abundance (solid arrow), can be 550 

merged. We remove the parent node while keeping the child node. Furthermore, an epitope 551 

substructure can also be removed if they are 100% correlated with the bigger substructure 552 

containing that epitope. Base on our rule, the merging criteria are based on how child 553 

substructure node 𝑠A depends on the parent substructure node 𝑠B. The dependency is the Pearson 554 

correlation of their abundance across all glycoprofiles, 𝑐𝑜𝑟𝑟(𝑠B∗, 𝑠A∗). If the correlation is 1, we 555 
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can conclude that the addition of the specific monosaccharide is not perturbed across all 556 

glycoprofiles, which means they carry the same information. Thus, the parent node can be 557 

pruned without information loss. All remaining nodes, namely, the glyco-motifs, are used to 558 

cluster the glycoprofiles.  559 

    Meanwhile, we use the “monosaccharides weight” to track the nodes merging process. All 560 

node weights are initialized as 1. When a node is removed, the weight is equally divided and 561 

distributed to child nodes whose correlation with the removed node is 1. Since this method 562 

redistributes weight from the root to leaves, the last decedent substructure node with a non-563 

unique abundance pattern gains the most weight. The weights W are used later for generating the 564 

representative substructures. 565 

 566 

Procedures for glycoprofile clustering and identifying representative glycan substructures 567 

The preprocessed glycoprofiles (see details in the “glycoprofile preprocess procedures”) generate 568 

the substructure vectors to enable further clustering analysis. Here we used the Pearson 569 

correlation and ‘complete’ distance to cluster the glycoprofiles. This procedure clusters the 570 

glycoprofiles and substructures.  571 

    To identify the representative glycan substructures, a set of glycan substructures with weights 572 

W are first aligned. Then, we calculate the sum of monosaccharide weights for each glycan 573 

substructure. The representative substructure is thus defined as the glycan substructures with 574 

their summed monosaccharide weights greater than 51% of the total weight of glycan 575 

substructures. Lastly, the averaged abundances of the representative substructures are generated 576 

to assess their differential expressions between different glycoprofiles.  577 

 578 
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Test the abundance changes on representative substructures  579 

We use the representative substructures to summarize and analyze the structural and quantitative 580 

changes across glycoprofiles. For the abundance of a representative substructure in a glyco-motif 581 

cluster, we use the substructure monosaccharide weights to calculate the weighted average of 582 

substructure abundance. Since the abundance range of representative substructures across 583 

different glycoprofiles are different, we re-centralized the representative substructure abundance 584 

based on WT and scaled them with standard deviation. We can find many interesting signals 585 

since there are many representative substructures extremely deviating from the WT’s abundance. 586 

Since the abundance distributions are not normally distributed, we used a one-sided 1-sample 587 

Wilcoxon test to test if the abundance of a representative substructure in a glycoprofile is 588 

significantly divergent. Effect size, r, was calculated as z/sqrt(N)30. A Bonferroni correction 589 

(n=16) was used to correct for multiple testing, so p=0.0031 is used as criteria and effect sizes 590 

are all above 0.68. 591 

 592 

Testing the substructure-phenotype association 593 

We estimated the influence of Secretor status on HMO and glyco-motif abundance using 594 

generalized estimating equation (GEE, R3.6::geepack31,32). GEE models account for resampling 595 

bias in longitudinal measurements33; other regression models, like generalized linear models, 596 

overestimate the sample size and power by ignoring this bias. Unlike mixed effect models, which 597 

can account for resampling bias, GEE allows non-linear relations between the outcome and 598 

covariates, while accounting for correlation among repeated measurements from the same 599 

subject. Here we used GEE with exchangeable correlation structure (assuming the within-subject 600 

correlation between any two time-points is ρ). To stabilize the variance and equalize the range, 601 
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we log and z-score standardized each HMO and glyco-motif measurement. We also used the log 602 

of days postpartum (DPP) to linearize the relationship over time. The Wald test was used to 603 

measure the significance of Secretor status contribution. For additional information and 604 

diagnostic statistics for specific regressions, see Supplementary Table 3a,b. All regression can 605 

be found in Supplementary Fig. 9. 606 

 607 

Product-substrate ratio as a proxy for flux and estimating flux-phenotype associations 608 

To further isolate glyco-motif-specific effects from biosynthetic biases, we explored methods to 609 

control for the product-substrate relations. First, we isolated the relative abundance of parent-610 

child pairs of glyco-motifs in the substructure network; these are product-substrate relations like 611 

LNT and LSTb. Glyco-motif abundance represents the total substructure synthesized; therefore, 612 

when we examine the product-substrate ratio, we measure the total amount of the substrate 613 

substructure converted to the product substructure in the sample. Thus, the product-substrate 614 

ratio is a proxy for flux. Using logistic GEE regression modeling, similar to the approach used 615 

for testing substructure-phenotype associations, we can measure the influence of estimated flux 616 

between two glycans on secretor status; here we predicted secretor status from estimated flux 617 

log(DPP). For additional information and diagnostic statistics, see Supplementary Table 3c. 618 

 619 

Glyco-motif Abundance Robustness and Power Analysis 620 

GEE models, similar to those used in Supplementary Fig. 9, were trained using either glyco-621 

motif or whole HMO relative abundance. To stabilize the variance, equalize the range and make 622 

the regressions comparable, we used a square root and z-score normalization on each HMO and 623 

glyco-motif measurement. Glyco-motif or glycan relative abundance was predicted from either 624 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 29, 2019. ; https://doi.org/10.1101/693507doi: bioRxiv preprint 

https://doi.org/10.1101/693507
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

29 
 

DPP alone, Secretor status alone, DPP + Secretor status, or DPP + Secretor status + 625 

DPP:Secretor. To avoid biasing the analysis with misfit or uninformative models, models with 626 

small coefficients (|coef|<0.5) or extremely non-normal abundance distributions (Shapiro-Wilks 627 

p < 0.001) were removed. Model robustness measures including, coefficient magnitude (nglycan-628 

stats=39, nmotif-stats=86), standard error (nglycan-stats=39, nmotif-stats=86) and marginal R2 (nglycan-stats=21, 629 

nmotif-stats=47) were used to compare model performance. Robustness measures from glycan-630 

trained and glyco-motif-trained models were compared using one-sided Wilcoxon rank sum test 631 

with continuity correction. We validated these findings using a 10,000 iteration one-sided, two-632 

sample bootstrapping t-tests (Rv3.6::nonpar::boot.t.test); bootstrapping p-values were less than 633 

or equal to Wilcoxon rank sum p-values within 0.001. Finally, using the Rv3.6::pwr::pwr.r.test 634 

v1.2.2 package, statistical power was predicted between n=5 and n=200 for the median and 635 

interquartile range of effect sizes observed in glyco-motif-trained and glycan-trained models. 636 

 637 

  638 
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Figure Legends 639 

Fig. 1 | The GlyCompare workflow for glycoprofile decomposition and comparison. a, 640 

Sixteen glycoprofiles from glycoengineered recombinant EPO cluster poorly when based solely 641 

on raw glycan abundance. b, GlyCompare was used to compute and cluster EPO glyco-motif 642 

vectors, resulting in three dominant clusters of glycoprofiles and a few individuals that have 643 

severe changes in their glycan structural pattern (distance threshold=0.5) and twenty-four 644 

clusters of glycan substructures (distance threshold=0.19). c and d, A glycoprofile with 645 

annotated structure and relative abundance is obtained and the glycans are decomposed to a 646 

substructure set S and the presence/absence vectors is built. Presence/absence vectors are 647 

weighted by the glycan abundance, and are summed into a substructure vector p. e , Seven 648 

example glycoprofiles are represented here with their substructure vectors. f, To simplify the 649 

substructure vectors to contain a minimal number of substructures, a substructure network is 650 

constructed to identify the non-redundant glyco-motifs that change in abundance from their 651 

precursor substructures. g, The glycoprofiles can be re-clustered with simplified glyco-motif 652 

vectors for a clearer result. h, Clustered substructures can be analyzed to identify the most 653 

representative structure in the group. For example, four substructures with different relative 654 

abundance were aligned together and the monosaccharides with weight over 51% were 655 

preserved. 656 

 657 

Fig. 2 | Changes in representative substructures can be quantified and compared to WT. a, 658 

The representative substructure table contains representative substructures for each of the 24 659 

substructure clusters. The color scale represents the averaged abundances of the substructures in 660 

each cluster. The substructures are sorted based on the glycan structure complexity, followed by 661 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 29, 2019. ; https://doi.org/10.1101/693507doi: bioRxiv preprint 

https://doi.org/10.1101/693507
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

31 
 

the number of branches, the degree of galactosylation, sialylation, and fucosylation. b, The 662 

significantly differentially expressed glycan substructures are illustrated by Standard-scaled 663 

abundance of twenty-four glycan substructures, compared with WT. c, Differential fucosylation 664 

is illustrated for the Fut8 knockout. The red (black) triangles represent the presence/absence of 665 

fucose in the representative substructures. Differential sialylation is illustrated for the St3gal4/6 666 

knockout. The purple/black diamonds represent the presence/absence of the sialylation in the 667 

representative substructures. d, Changes in branching are presented for the Mgat4a/4b/5 668 

knockouts. The tetra-antennary substructures (Rep16 - 22) decreased considerably. The 669 

triantennary substructures with elongated GlcNac (Rep13 -14) increase significantly (p-value < 670 

0.0031). However, the elongated triantennary structure (Rep15) decreases considerably for the 671 

Mgat5 and Mgat4b knockouts, while the Mgat4a/4b knockouts remain high abundance (p-value< 672 

0.0031). In the CHO dataset, the glycan substructure generated by Mgat4a/4b and Mgat5 will be 673 

considered as the same topologically.  674 

 675 

Fig. 3 | Analysis of intermediate substructures with GlyCompare elucidates associations in 676 

abundance and flux with secretor status over time, which are missed in the standard whole-677 

glycan analysis. a, The substructure intermediates for four connected HMOs are shown here. 678 

The synthesis of larger HMOs must pass through intermediate substructures that are also 679 

observed HMOs, where the substructures are as associated with measured HMOs as follow 680 

X40=LNT, X62=LSTb, X106=DSLNT, X138=DSLNH. b-e, Over time (DPP), X62, LSTb, 681 

DSLNT, and DSLNH show different trends for secretors and non-secretors. Furthermore, the 682 

abundance of aggregated X62 shows significant positive-correlation with secretor and negative-683 

correlation with non-secretor. f and g, Panels examine the product-substrate ratio for two 684 
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reactions in panel a. X40, the LNT substructure, is a precursor to X62, the LSTb substructure, 685 

which is a precursor to X106, the DSLNT substructure. We estimate the flux of these 686 

conversions from X40 to X62 and X62 to X106 by examining the product-substrate ratio, i.e., 687 

the proportion of the total synthesized substrate converted to the product. LSTb/LNT 688 

substructure relative abundance ratios are not associated with secretor status while DSLNT/LSTb 689 

ratios are. Odds ratios (OR) corresponding the ratio association with secretor status.  690 

 691 

Fig. 4 | Glyco-motif level statistics require half as many samples to reach the same level of 692 

statistical power. a and b, The use of glyco-motifs improves measures of regression robustness. 693 

The coefficient magnitude and Standard Error indicate the magnitude of the measured effect and the 694 

confidence with which a coefficient can be estimated. c, The R2 describes the effect size of a regression; 695 

we used marginal R2 (mR2) because it was appropriate for the regression models used34. d, We predicted 696 

power for a range of sample sizes (n=5-200) given the median effect size (solid line) within the 697 

interquartile range (shaded region) for glyco-motif-trained regressions (mR2: median=0.45, Q1=0.31, 698 

Q3=0.68) and the median effect size for glycan-trained regressions (mR2: median=0.33, Q10.18, 699 

Q3=0.44). Here, the use of GlyCompare and glyco-motif abundances required approximately half the 700 

number of samples to achieve equivalent power as standard glycan measures. 701 

  702 
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Fig. 1 | GlyCompare effectively clusters panels of distinct glycoprofiles through glycoprofile 703 

decomposition and glyco-motif identification.  704 
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Fig. 2 | Changes in representative substructures can be quantified and compared to WT 706 

with the standard-scaled abundance bar plot 707 

  708 

a

1.0

0.8

0.6

0.4

0.2

0

Abundance table for representative substructures

Gl
yc

op
ro

file
s

Representative substructures (Rep #)
b Standard-scaled representative substructures

(recentralized with WT abundance)

3.0

1.5

0

-1.5

-3.0

Gl
yc

op
ro

file
s

71 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Representative substructures (Rep #)
71 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

KO_Fut8  
KO_St3gal4/6

Fucosylated
Unfucosylated
Sialiated
Unsialiated

KO_Mgat5
KO_Mgat4a/4b
KO_Mgat4b

71 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Representative substructures (Rep #)

St
d-

sc
al

ed
 d

iff
er

en
ce

St
d-

sc
al

ed
 d

iff
er

en
ce

Standard-scaled representative substructures
(recentralized with WT abundance)

KO. Mgat1
 
KO. Mgat2

KO. Fut8

KI.ST6GAL1,KO Mgat4a/4b/5.St3gal4/6

KO. Mgat4a/4b/5_B3gnt2

KO.Mgat4a/4b/5

KO. St3gal4/6_Mgat4a/4b/5

KO. Mgat5

KO. Mgat4a/4b

KO. Mgat4b

KO. St3gal4/6

KO. B4galt1

KO. B4galt2

KO. B4galt3

KO. B4galt4

WT

c

d

 KO. Mgat1
 
KO. Mgat2

KO. Fut8

KI.ST6GAL1,KO Mgat4a/4b/5.St3gal4/6

KO. Mgat4a/4b/5_B3gnt2

KO.Mgat4a/4b/5

KO. St3gal4/6_Mgat4a/4b/5

KO. Mgat5

KO. Mgat4a/4b

KO. Mgat4b

KO. St3gal4/6

KO. B4galt1

KO. B4galt2

KO. B4galt3

KO. B4galt4

WT

Clustering
group
Severe
Medium
Mild
WT-like

Rep:

Rep:

Rep:

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 29, 2019. ; https://doi.org/10.1101/693507doi: bioRxiv preprint 

https://doi.org/10.1101/693507
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

35 
 

Fig. 3 | Analysis of intermediate substructures with GlyCompare elucidates associations in 709 

abundance and flux with secretor status, which are missed in the standard whole-glycan 710 

analysis. 711 
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Fig. 4 | Glyco-motif level statistics require half as many samples to reach the same level of 713 

statistical power 714 
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