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Integrative Analysis of Axolotl Gene Expression Data From Regenerative and Wound 
Healing Limb Tissues 

ABSTRACT 

Axolotl (Ambystoma mexicanum) is a urodele amphibian endowed with remarkable regenerative 

capacities manifested in scarless wound healing and full restoration of amputated limbs. Several 

regenerative cues of the axolotl limb were successfully unraveled due to the advent of high-

throughput technologies and their employment in tackling research questions on several OMICS 

levels. The field of regenerative biology and medicine has therefore utilized the axolotl as a 

major and powerful experimental model. Studies which have previously unraveled differentially 

expressed (DE) genes en masse in different phases of the axolotl limb regeneration have 

primarily used microarrays and RNA-Seq technologies. However, as different labs are 

conducting such experiments, sufficient consistency may be lacking due to statistical limitations 

arising from limited number of sample replicates as well as possible differences in study designs. 

This study, therefore, aims to bridge such gaps by performing an integrative analysis of publicly 

available microarray and RNA-Seq data from axolotl limb samples having comparable study 

designs. Three biological groups were conceived for the analysis; homeostatic tissues (control 

group), from amputation/injury timepoint up to around 50 hours post amputation (wound healing 

group), and from 50 hours to 28 days post amputation/injury (regenerative group). Integrative 

analysis was separately carried out on the selected microarray and RNA-Seq data from axolotl 

limb samples using the “merging” method. Differential expression analysis was separately 

implemented on the processed data from both technologies using the R/Bioconductor “limma” 

package. A total of 1254 genes (adjusted P < 0.01) were found DE in regenerative samples 

compared to the control, out of which 351 showed magnitudes of Log Fold Changes (LogFC) > 

1 and were identified as the top DE genes from data of both technologies.  Downstream analyses 

illustrated consistent correlations of the logFCs of DE genes distributed among the biological 

comparisons, within and between both technologies. Gene ontology annotations demonstrated 

concordance with the literature on the biological process involved in the axolotl limb 

regeneration. qPCR analysis validated the observed gene expression level differences between 

regenerative and control samples for a set of five genes. Future studies may benefit from the 

utilized concept and approach for enhanced statistical power and robust discovery of biomarkers 

of regeneration. 
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1. INTRODUCTION 

Ambystoma mexicanum (Axolotl) is a salamander species of amphibians which has recently been 

established as a promising vertebrate model system for developmental and regenerative biology 

due to its unique features of high regenerative capacity, scarless wound healing, and low cancer 

incidence [1,2]. What distinguishes axolotls is the preservation of their juvenile features when 

they reach sexual maturity [3]. Due to their inability to undergo natural metamorphosis, axolotls 

keep on exhibiting embryonic-like cell characteristics, which promotes the finely-tuned 

regenerative capacity of their body parts throughout their lifespan [1,4]. Organs such as the heart 

[5–7], spinal cord [8], and even brain [9] are prime examples of what axolotls can faithfully 

regenerate besides their limbs. It’s been suggested that, unlike the amniote vertebrate, the 

successive regenerative capacity of axolotls may be driven by a weak inflammatory response due 

to their simpler adaptive immune system [1,10]. In response to experimental induction of 

metamorphosis via thyroid hormone administration, diminished regenerative power of axolotls is 

observed for some body parts such as appendages [11,12], while such regenerative potential 

seems to be unobstructed for other parts of the body [1,13].     

The process of axolotl limb wound healing and regeneration involved several key genes [14–20] 

and proceeds in several stages. In response to an amputation, a thin wound epidermis forms 

around the severed stump within 24 hours due to the migration of a collection of epidermal cells 

to the amputation site. The newly constructed epidermis substantially differs structurally and 

molecularly from an intact, fully differentiated epidermis [21,22]. Within 48 hours thereafter, the 

wound area is infiltrated by macrophages where they phagocyte the debris of dead cells and clear 

the wound zone from different kinds of pathogens. Such an indispensable role of macrophages 

for successful regeneration has been demonstrated by previous studies [23]. In the following 

couple of days, several key processes such as activation of progenitor cells as well as 

dedifferentiation of terminally differentiated cells take place as a result of secretion of mitogens 

and growth factors from the epidermis accompanied by innervation [22]. These processes lead to 

the formation of what’s known as the blastema, which is characterized by highly proliferative, 

heterogenous cells that are morphologically similar to fibroblasts [22,24]. They are encoded with 

precise positional information, behave as autonomous units, and exhibit unidirectional signaling 

driven by factors originating from wound epidermis [22]. After blastema cells reach a definitive 
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size, they flatten out for cartilage to condense, allowing the differentiation of the required tissue 

types, and ultimately constructing a delicately-sized, perfectly regenerated limb that is identical 

to the amputated one [22].  

Axolotls can be easily bred year-round and their generation time is not more than a year [22,25]. 

Multiple studies have been successful in applying transgenesis and genome editing techniques on 

these animals [26–30]. While the genome of the axolotl is a simple diploid with 14 pairs of 

chromosomes, its enormous, highly repetitive sequence and long introns [31] have been the 

major hurdles towards obtaining a full genome assembly due to the inability of acquiring 

sufficient read-length and the absence of an improved methodology of genome assembly [22]. 

Consequently, only very recently sequencing and assembly of axolotl genome was reported [32]. 

Therefore, proteomics, transcriptomics (RNA-Seq), and microarrays have been the primary, 

indispensable tools for investigating gene networks and pathways of axolotl’s regenerative 

mechanisms [17,22,33–36]. While microarrays can be used to design probes for any condition of 

interest, RNA-Seq facilitates the detection of a wider range of expression values at a single-

nucleotide resolution as well as accurately detects highly expressed genes with no saturation 

effect that is typically observed in microarrays [22]. Moreover, RNA-Seq allows for novel 

discoveries of mRNAs particularly for non-model systems and has the ability of quantifying 

isoforms of genes. Recent advances paved the way for even using individual cells as the source 

of low RNA input, which resulted in an illuminating understanding of the specific cells and 

tissues contributing to the process of limb regeneration [22,37].   

Despite such advancements and success in utilizing microarrays and RNA-Seq technologies in 

the quest for unraveling the mechanisms of axolotl limb regeneration, a strong and popular 

methodology that has the potential for enhancing our current knowledge on limb regeneration is 

missing in the axolotl literature. Integrative data analysis (IDA) is a key methodology that is 

applied across many scientific disciplines and aims to derive scientific consensus on a particular 

research question [38–40]. Although the concept of IDA has recently been expanded to refer to 

experiments aiming to integrate information from several layers of “omics” information (aka 

multi-omics) [41], the utilized IDA in this study refers to the process of combining information 

from different platforms across independent studies [40]. The latter IDA concept is commonly 

used in biomedical sciences to detect differentially expressed (DE) genes for having a better gene 
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signature for basic science and clinical applications [40,42,43]. As microarray and RNA-Seq 

data are increasingly becoming publicly available, IDA can benefit the axolotl regeneration field 

by improving candidate gene selection and establishing biomarkers for different stages of limb 

regeneration.  

Factors such as directly-incomparable experimental techniques between different studies due to 

poorly articulated experimental designs as well as data deposition in public databases with no 

relevant publications are the main reasons why many biological research and preclinical medical 

sciences have not embraced the application of IDA very quickly [38]. Therefore, when such 

factors are no longer an obstacle, the advantages of implementing IDA can be realized from the 

limitations of individual studies. First and foremost, the cost of utilizing new technologies often 

times leads to the collection of a limited number of replicates [38]. Moreover, researchers are 

faced with challenging statistical issues arising from such limited replicates, manifested in high 

false-positive and false-negative observations [38,44]. Lastly but not least, an overlap of 

experimental design of individual studies may in some cases generate similar data, due to lack of 

an established IDA pipeline. Therefore, when IDA is applied, sample size increases, individual 

study-specific biases are minimized, and more statistical power is achieved [39,40,45–47]. Meta-

analysis and cross-platform normalization (aka “merging”) are two fundamental approaches to 

perform IDA [40]. While meta-analysis integrates statistics from different studies at a “late 

stage”, merging integrates data before running the statistical test [40]. It has been argued that 

whenever datasets are selected for answering particularized questions and are reasonably 

homogenous, the merging method outperforms meta-analysis for biomarker discovery analyses 

[40,48].   

In this study, we aimed to identify the genes that could be considered as biomarkers for the 

regenerative phase of axolotl limb which starts around 2 dpa until 28 dpa by separately 

implementing integrative data analysis on publicly available microarray and RNA-Seq axolotl 

data using cross-platform normalization (merging) methodology. We report the finding of 1254 

differentially expressed (DE) genes (adjusted P < 0.01), commonly identified by microarray and 

RNA-Seq integrative data analysis in the regenerative phase compared to the control (intact) 

limb. In addition, out of those 1254 DE genes, the top 351 genes enriched in several biological 

processes (adjusted p-value < 0.05) such as regulation of cell cycle processes, mitotic nuclear 
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division, regulation of mRNA metabolic processes, muscle filament sliding and contraction, 

muscle structure development, and cardiac muscle tissue morphogenesis.  Overall, this report 

identifies a set of commonly found differentially expressed genes curated from various studies. 

Our methodological approach would be benefited by the regeneration community, offering a 

closer look at the differentially expressed genes that are present in up-to-date high-throughput 

gene expression studies.   

2. METHODS 

2.1. Gene-expression Data Collection 

Gene Expression Omnibus (GEO) database [49,50] (http://www.ncbi.nlm.nih.gov/geo/) and the 

European Nucleotide Archive (ENA) database [51] (https://www.ebi.ac.uk/ena) were used to 

collect microarray and RNA-Seq axolotl data, respectively. The collected data were subjected to 

selective criteria filtering which was set according to Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) [52], based on which GEO series were collected as 

follows: 

1) GEO series data deposited until September 2018. 

2) Non-redundant series. 

3) Series pertinent to Axolotl tissues. 

4) Series having unduplicated datasets. 

The number of GSM files representing our meta-data design (group types), how many of each 

group belong to which sub-platforms and to which study (series), is provided in Table 1 for 

Microarray technology [16,53–55] and in Table 2 for RNA-Seq technology [17,36,53,56,57]. 

The accession number of the GEO series (GSE number), title, publication, number of the 

selected samples, number of the total samples, platform type, link to the gene-expression data, 

and the year of each study can be found in Supplementary Table 1 for Microarray technology 

and in Supplementary Table 2 for RNA-Seq technology. Further detailed information such as 

GSM accessions and timepoints are provided in Supplementary Tables 3 and 4 for Microarray 

and RNA-Seq technologies, respectively.   
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2.2. Gene-expression Data Processing 

R programming environment (version: 3.5.1) [58], packages from open development software 

Bioconductor Project [59,60], and parts of a published gene-expression analysis workflow [61] 

were used for integrative data analyses of microarray and RNA-Seq axolotl data.  

The full axolotl microarray data processing workflow can be found in Supplementary Figure 1. 

CEL files from the 3 Affymetrix datasets (GSE116615, GSE67118, GSE37198) were processed 

as a single dataset having a total of 236 samples (21 control, 51 wound healing, 164 

regenerative) and 20080 probesets. Summarization, quantile-normalization, and log2-

transformation were applied on this dataset by using the Robust Multichip Average (RMA) 

algorithm from the Bioconductor’s “affy” package in R [62]. Samples from the Agilent dataset 

(GSE36451) were collected from GEO as summarized, quantile-normalized, and log2-

transformed, having a total of 77 samples (5 control, 42 wound healing, 30 regenerative) and 

43796 probesets. The resultant two datasets (Affymetrix and Agilent) were filtered for lowly-

expressed probesets using Bioconductor’s “Biobase” package in R [59]. Probesets with 

intensities higher than a manual threshold of a “4” median intensity in at least as many samples 

of the smallest group were kept, resulting in 17658 probesets for Affymetrix dataset and 41579 

probesets for Agilent dataset. The former probesets were annotated using AMBY_002a520748F 

Affymetrix probeset annotation file (~ 20k probesets) provided by Sal-Site 

(http://www.ambystoma.org/genome-resources/20-gene-expression) and the latter probesets 

were annotated using GPL15342 Agilent annotation file obtained from GEO 

(https://www.ncbi.nlm.nih.gov/geo/query/ acc.cgi?acc=GPL15342). The annotation yielded 

13316 Affymetrix and 21419 Agilent probeset-gene mappings including duplicates, respectively. 

The “WGCNA” R package [63] was used to remove those duplicates by respectively collapsing 

the Affymetrix and Agilent data from probeset-level to gene-level while taking the maximum 

row mean value of the duplicated probesets to represent the corresponding gene, yielding a total 

of 10442 Affymetrix and 5083 Agilent unique genes. The latter two gene lists were then merged 

together resulting in 4322 unique genes common between Affymetrix and Agilent datasets. 

Thereafter, the gene lists of both of the Affymetrix and Agilent log2-transformed data were each 

substituted with the 4322 common gene list, followed by transforming each of them to z-scores 

[64] in order to minimize the batch effect between the two platforms. The resultant two z-scored 
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Affymetrix and Agilent lists were merged together, yielding a single dataset of 313 samples (26 

control, 93 wound healing, 194 regenerative) and 4322 genes.  

The steps of axolotl RNA-Seq data processing workflow can be found in Supplementary 

Figure 2. Fastq files corresponding to samples from the 5 GSE datasets were obtained from the 

European Nucleotide Archive (ENA) database. Datasets with paired-end libraries are 

GSE116777 (2 control, 3 wound-healing), GSE92429 (3 control, 4 regenerative), and 

GSE103087 (4 regenerative), whereas both GSE74372 (1 control, 3 regenerative) and GSE34394 

(1 control, 4 wound-healing, 7 regenerative) are single-end libraries. Recently, an axolotl 

transcriptome “V5 contig assembly” with contig length of 19,732 bp was published by Dwaraka 

et al., [53] and was chosen to be our transcriptome reference. According to the authors, a total of 

31,886 pairwise alignments with more than 98 % sequence similarity were detected between V5 

RNA-Seq contigs and the 20,036 V3 contigs which were used to design Affymetrix microarray 

probesets (AMBY_002a520748F) already having an annotation file. Therefore, since our 

microarray analysis pipeline included those microarray probesets along with its annotation file, a 

new annotation file for the 31,886 aligned contigs of the V5 assembly was generated for our 

RNA-Seq analysis pipeline by merging the 31,886 V5 contigs-V3 probesets alignment with V3 

(AMBY_002a520748F) annotation file, resulting in around 25,000 genes. The transcriptome-

wide quantifier “Salmon” tool [65] was then used to separately quantify the expression of the 

transcripts of each of the 5 datasets by indexing the V5 transcriptome upon which direct 

quantification of the reads was carried out. The R/Bioconductor “tximport” package [66] was 

used to import the scaled counts generated from transcript abundances along with our RNA-Seq 

annotation file, yielding a count matrix of all samples from the 5 datasests combined (32 

samples) with 10,000 unique genes. Lowly expressed genes were filtered out by keeping genes 

having minimum counts for at least some samples using R/Bioconductor’s “edgeR” package 

[67,68]. The filtered count data was then converted to log2-counts per million (logCPM) and was 

made ready to be used for linear modeling for differential expression analysis using the “voom” 

function from R/Bioconductor’s “limma” package [69–71].  

2.3. Differential Expression Analysis (DEA) 

Microarray DEA was performed on the z-scored, combined data (313 samples, 4322 genes), 

while RNA-seq DEA was performed on the logCPM (voom) counts (32 samples, 7562 genes), 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 5, 2019. ; https://doi.org/10.1101/693523doi: bioRxiv preprint 

https://doi.org/10.1101/693523
http://creativecommons.org/licenses/by-nc-nd/4.0/


respectively. The following analyses were performed using the R/Bioconductor “limma” 

package [69–71]. Three biological group comparisons were conceived for DEA of both 

microarray and RNA-Seq data. First of which aims to observe gene expression changes in wound 

healing tissues compared to homeostatic tissues (control group). The second comparison aims to 

observe gene expression changes in regenerative tissues group compared to control group. The 

third comparison aims to observe gene expression changes occurring in regenerative tissues 

compared to wound healing tissues. Design matrices were incorporated for each contrast to 

account for group type and study origin (batch factor) of every sample, followed by a fitted 

linear model on the expression data for each gene, which were then ranked based on an order of 

evident differential expression by applying the empirical Bayes method. False discovery rate 

(FDR) using the Benjamini-Hochberg (BH) method was controlled at 0.01, below which all 

genes were extracted representing lists of DE genes for each comparison from microarray and 

RNA-Seq data.  

2.4. Principal Component Analyses, Clustered Heatmaps, and Correlations 
  

In order to explore overall relationship occurring among samples of the z-scored microarray data 

and that of the “voom” counts RNA-Seq data, for each comparison, principal component 

analysis (PCA) was separately implemented on each of them in base R. PCA was also separately 

used on DE microarray and DE RNA-Seq data while minimizing the “study origin” batch effect 

using “limma” R package [69] to illustrate how differentially expressed genes determine the 

clustering among samples, for every comparison. Complementary to both PCA approaches, 

heatmaps with Sample-to-Sample clustering based on “Manhattan” distance were implemented 

using “pheatmap” R package [72]. The distribution and correlation of the DE genes among the 

three comparisons within each technology and the subsequent comparison of correlation of the 

DE genes between the two technologies were carried out using Venn diagram online tool 

(http://bioinformatics.psb.ugent.be/webtools/Venn/) and scatter plots using the R/Bioconductor 

“ggplot2” package [73]. Pair-wise correlation testing of logFC of the DE genes for the three 

comparisons within and between the two technologies was performed using the “Spearman” 

correlation test in base R.  

2.5. Gene Ontology Enrichment Analysis 
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Gene Ontology annotations of the top DE genes commonly identified by microarray and RNA-

Seq DE analyses were carried out using Bioconductor’s “clusterProfiler” package in R [74]. The 

top up-regulated and down-regulated Entrez ID-mapped genes of each comparison were 

separately queried against the three GO categories (biological process “BP”, cellular component 

“CC”, and molecular function “MF”). The background gene list was all Entrez IDs from axolotl 

Affymetrix (AMBY_002a520748F) annotation file. The organism database was set as homo 

sapiens “org.Hs.eg.db”, the adjusted p value method was Benjamini & Hochberg (BH), and 

cutoffs for p and q values were set to 0.05. Redundant GO terms were eliminated using 

“simplify” function from the clusterProfiler package [74]. The latter package was also used to 

visualize some GO categories and genes using a heatmap-like plot (heatplot) and a circular net 

(cnetplot). Bar plots of the top 10 terms of GO categories were generated using the 

R/Bioconductor “ggplot2” package [73].   

2.6. Heatmap Generation for Top 100 Regenerative vs. Control Genes  

 
The top 100 DE genes detected by DEA of each technology in regenerative vs. control 

comparison were visualized in a clustered heatmap using “pheatmap” package in R [72]. The 

samples were clustered using the “Manhattan” distance measure. The genes were hierarchically 

clustered using “Complete Linkage” method. The values were centered and scaled in the row 

direction.   

2.7. qPCR  analysis 

RNA was isolated from axolotl limb tissues (0,1 and 7 dpa) using TRIzol reagent (Invitrogen). 

RNA quantity was checked by spectrophotometry using a NanoDrop ND-1000 (NanoDrop) and 

quality of isolated RNA was assessed by gel electrophoresis. M-MLV Reverse Transcriptase 

(Thermo Fisher Scientific) was used to perform reverse transcription according to 

manufacturer’s procedure. Quantitative PCR assays were performed at following conditions: 

initial denaturation at 95 °C for 2 minutes, and 40 cycles of denaturation at 95 °C for 5 seconds, 

annealing at 55 °C for 10 seconds and extension at 72 °C for 15 seconds. For qPCR reactions, 

SensiFAST™ SYBR® No-ROX Kit (BIOLINE, BIO-98005) and CFX Connect Real-Time PCR 

Detection System (BIO-RAD) was used. Gene expression levels were calculated using the 
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2−ΔΔCt method and cDNA concentrations were normalized with Ef1-α (elongation factor 1-

alpha) housekeeping gene. Primers used in this study are listed in Supplementary Table 5. 

 

3. RESULTS 

3.1 Gene-expression Data Selection and Search Criteria 

Three biological groups were set for our integrative data analysis; “control” group 

(intact/amputated/injured limbs and/or flank wounds at 0-hour timepoints, “wound healing” 

group (amputated/injured limbs and/or flank wounds up to around 50-hours post 

amputation/injury, and “regenerative” group (amputated/injured limbs and/or flank wounds of 

time points ranging from around 50 hours to 28 days post amputations/injuries). According to the 

criteria for microarray data selection (Figure 1), a total of 4 GSE datasets (series) were selected, 

three of which were based on the Affymetrix Ambystoma mexicanum platform of slightly 

different versions; GSE116615 is based on GPL25286 [AMBY_002a520748F], while 

GSE67118 and GSE37198 are both based on GPL15153 [AMBY_002a520748F]. The fourth 

study (GSE36452) is based on the Agilent-019788 Ambystoma mexicanum platform of 

GPL15342 [44k_v3_20080327] version. The excluded samples out of the selected microarray 

datasets were those of denervated limbs (in GSE37198) which can’t regenerate and those of limb 

buds (in GSE36451) that are totally distinct from a fully mature, amputated limb. Overall, 6 

samples from GSE116615 dataset, 198 samples from GSE67118 dataset, 32 samples from 

GSE37198 dataset, and 77 samples from GSE36451 dataset were selected, forming a total of 313 

samples. Out of those, 26 are control samples, 93 are wound healing samples, and 194 are 

regenerative samples, all of which to be used for the integrative microarray analysis (Table 1).  

As for the criteria for RNA-Seq data selection (Figure 1), a total of 5 GSE datasets (series) were 

selected, all of which were based on slightly different versions of the Illumina Ambystoma 

mexicanum platform; GSE116777 used GPL21473 HiSeq 2000, GSE103087 and GSE92429 

both used GPL22800 HiSeq 2500, and GSE74372 and GSE34394 both used GPL14997 Genome 

Analyzer IIx. The excluded samples out of the selected RNA-Seq datasets were those identified 

as an outlier (in GSE116777) by the authors [53], those which underwent several rounds of 
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amputation-regeneration (in GSE103087), those which were prepared for small RNA (sRNA) 

profiling experiments (in GSE74372), those which were mouse samples (in GSE34394), and 

those extracted from multiple positions along the axolotl limb except for those of the upper-arm 

to be used in the control group as well as the proximal and distal blastemas to be used in the 

regenerative groups (in GSE92429). Overall, 5 samples from GSE116777 dataset, 4 samples 

from GSE103087 dataset, 7 samples from GSE92429 dataset, 4 samples from GSE74372 

dataset, and 12 samples from GSE34394 dataset were selected, forming a total of 32 samples. 

Out of those, 7 are control samples, 7 are wound healing samples, and 18 are regenerative 

samples, all of which to be used for the integrative RNA-Seq analysis (Table 2).  

Further detailed information about the selected microarray and RNA-Seq studies on the overall 

design, selected and total number of samples, and the biological group types we conceived for 

the integrative analysis are summarized in Supplementary Tables 1-4.  

3.2 Whole Gene Expression Data-based PCA and Heatmap Clustering  
 

The first principal component (PC1) as well as the sample-to-sample clustering heatmap of the z-

scored, microarray data (4322 genes) show a rough separation among the samples based on their 

group types; for control and regenerative samples (Figure 2A,B) and for the other two group 

pairs (control and wound healing, regenerative and wound healing) (Supplementary Figures 

3A,B and 4A,B). However, the second principal component (PC2) seems to separate the samples 

based on their study origin. Therefore, the source of variation is likely explained by differential 

gene expression between the group types.  

On the other hand, the separation among the samples displayed by the first principal component 

(PC1) in addition to the sample-to-sample clustering heatmap of the voom-counts, RNA-Seq 

data (7562 genes) seems to be influenced by their study origin, conspicuously between 

GSE34394 and the rest; for control and regenerative samples (Figure 2C,D) and for the other 

two group pairs (control and wound healing, regenerative and wound healing) (Supplementary 

Figures 3C,D and 4C,D). The second principal component (PC2), however, seems to roughly 

separate the samples based on their group types.   
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The whole gene expression data-based PCA and clustering approach appears to emphasize an 

overall batch factor (study origin) which has a more dominant effect on how samples are 

separated than the time points (group types) in both microarray and RNA-Seq data.  

 

3.3 DEA-based PCA and Heatmap Clustering 

DEA of the z-scored, microarray data resulted in 2748 DE (adj p-value < 0.01) genes in 

regenerative vs. control, while 2092 genes and 3166 genes were DE (adj p-value < 0.01) in 

wound healing vs. control and regenerative vs. wound healing, respectively. Furthermore, DEA 

of the voom-counts, RNA-Seq data yielded 2992 DE (adj p-value < 0.01) genes in regenerative 

vs. control, while 423 genes and 2371 genes were DE (adj p-value < 0.01) in wound healing vs. 

control and regenerative vs. control, respectively. The result of DEA for every comparison 

showed p-value enrichment near-zero peak corresponding to the number of DE genes from 

microarray data (Supplementary Figure 5) and RNA-Seq data (Supplementary Figure 6), 

among which the aforementioned number of DE genes were considered significant (adj p-value 

< 0.01).  

The first principal component (PC1) as well as the sample-to-sample clustering heatmap of the z-

scored, microarray DEA-based data show a clear separation among the samples based on their 

group types; for regenerative vs. control (Figure 3A, B) and for the other two comparisons 

(Supplementary Figures 7A, B and 8A, B). However, the second principal component (PC2) 

indicates no strong separation of any type. Therefore, differential gene expression between the 

group types is evidently the dominant source of variation in this case. Likewise, the separation 

among the samples displayed by the first principal component (PC1) in addition to the sample-

to-sample clustering heatmap of the voom-counts, RNA-Seq DEA-based data, unlike the whole 

gene expression data-based approach, is apparently based on their group types, while the second 

principal component (PC2) seems to point towards no particular separation of any type; for 

regenerative vs. control (Figure 3C, D) and for the other two comparisons (Supplementary 

Figures 7C, D and 8C, D). Thus, PC1 along with the heatmap clustering sufficiently and 

strongly demonstrate such high variation among the samples stems from differential expression 

between the group types.  
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Overall, the batch factor (study origin) has apparently been minimized during DEA as illustrated 

by the DEA-based PCA and clustering approach, which further demonstrated how group types 

are separated as a result of differential gene expression in both microarray and RNA-Seq data.  

3.4 Distribution of DE genes is evident among all three comparisons 

DE genes were found to be distributed among wound healing vs. control, regenerative vs. 

control, and regenerative vs. wound healing comparisons from both microarray (Figure 4A) and 

RNA-Seq (Figure 4B) data. This means that genes could possibly be differentially expressed in 

more than one comparison, simultaneously.  

From microarray data, 42 genes were uniquely DE in wound healing vs. control, 105 genes were 

uniquely DE in regenerative vs. control, and 405 genes were uniquely DE in regenerative vs. 

wound healing. While regenerative vs. control and wound healing vs. control have 457 DE genes 

in common, regenerative vs. control and regenerative vs. wound healing have 1168 DE genes in 

common, and wound healing vs. control and regenerative vs. wound healing have 575 genes in 

common. All three comparisons shared 1018 DE genes.  

From RNA-Seq data, 62 genes were uniquely DE in wound healing vs. control, 1226 genes were 

uniquely DE in regenerative vs. control, and 573 genes were uniquely DE in regenerative vs. 

wound healing. While 145 genes are commonly DE in regenerative vs. control and wound 

healing vs. control, 1582 genes are commonly DE in regenerative vs. control and regenerative vs. 

wound healing, and 177 genes are commonly DE in wound healing vs. control and regenerative 

vs. wound healing. All three comparisons shared 39 DE genes.  

Although the distribution of DE genes in evident among comparisons, they may not necessarily 

share the same status of gene regulation; i.e., a gene can be up-regulated in one comparison and 

down-regulated in another one. In order to test this notion, correlations of the logFCs of the 

genes commonly DE in two or more comparisons were calculated in a pair-wise trend and 

visualized through scatter plots. Interestingly, the observed correlations within microarray data 

(Figure 4C-H) share a similar pattern of gene regulation directionality within RNA-Seq data 

(Figure 4I-N).  
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The Spearman correlation coefficients for logFCs of the genes commonly DE in regenerative vs. 

control and regenerative vs. wound healing in microarray and RNA-Seq data are 0.85 and 0.94, 

respectively (Figure 4C,I). Likewise, the coefficients for logFCs of the genes commonly DE in 

regenerative vs. control and wound healing vs. control in microarray and RNA-Seq data are 0.96 

and 0.93, respectively (Figure 4E,K). This positive correlation indicates that genes which are 

DE in those comparisons mostly have the same direction of gene regulation (mostly up-regulated 

or down-regulated) with those in their respective comparison. On the other hand, the coefficients 

for logFCs of the 575 genes and 177 genes commonly DE in wound healing vs. control and 

regenerative vs. wound healing in microarray and RNA-Seq data are - 0.71 and - 0.95, 

respectively (Figure 4D,J). This negative correlation indicates that those genes are mostly 

oppositely regulated in these two different comparisons. The pair-wise correlations for the 1018 

genes and 39 genes DE in all three comparisons in microarray (Figure 4F-H) and RNA-Seq 

(Figure 4L-N) data, respectively, demonstrate that those genes follow the same trend as when 

they are shared by only the two corresponding comparisons. From microarray data, the 1018 

genes DE in regenerative vs. control and regenerative vs. wound healing are positively correlated 

(rs = 0.52), in regenerative vs. control and wound healing vs. control are positively correlated (rs 

= 0.77), and in regenerative vs. wound healing and wound healing vs. control are negatively 

correlated (rs = - 0.02).  From RNA-Seq data, the 39 genes DE in regenerative vs. control and 

regenerative vs. wound healing are positively correlated (rs = 0.03), in regenerative vs. control 

and wound healing vs. control are positively correlated (rs = 0.54), and in regenerative vs. wound 

healing and wound healing vs. control are negatively correlated (rs = - 0.71). 

3.5 Some DE Genes are Commonly Detected by the Analyses of Microarray and RNA-Seq 
data 

Microarray and RNA-Seq DEA was carried out on the 4322 and 7562 genes, respectively. Since 

the same annotation source (AMBY_002a520748F probeset annotation file) was used for the 

analyses from both technologies, a total of 3653 genes are common between them (Figure 5A). 

Therefore, differing numbers of DE genes per comparison that would be commonly identified by 

the analyses of both technologies is conceivable. Indeed, after merging the DE gene list (adj P-

value < 0.01) of microarray data with that of RNA-Seq data for each comparison, we found 170, 

1254, and 1047 DE genes commonly identified by both technologies in wound healing vs. 
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control, regenerative vs. control, and regenerative vs. wound healing, respectively (Figure 5B-

D).  Each set of those common DE genes per comparison were tested for their logFC correlation 

between both technologies and were visualized using scatter plots. The common DE genes of all 

three comparisons had positive Spearman correlations of their logFCs between the two 

technologies; rs = 0.74 for wound healing vs. control, rs = 0.71 for regenerative vs. control, and rs 

= 0.77 for regenerative vs. wound healing (Figure 5E-G).   

3.6 Identifying the Top DE Genes Commonly Detected by the  Analyses of Microarray and 
RNA-Seq Data 

In spite of having a significance level of an adjusted P < 0.01 of the DE genes detected by the 

analyses of both technologies for each comparison, many of those genes have low magnitudes of 

logarithmic fold changes (|logFC| < 1). Moreover, although the correlation of the logFCs of the 

DE genes between the two technologies is positive with a fairly high coefficient for each 

comparison, the number of genes with conflicting directionality of gene expression would still be 

an issue. Thus, in order to reliably call those genes “DE”, another criterion could be set through 

which the top significant genes can be extracted from the list of genes detected by both 

technologies, thereby, decreasing the number of genes with low logarithmic fold changes as well 

as those with opposite directions of gene expression.  We, therefore, set the criterion as follows: 

first of all, genes with logFC magnitudes > 1 are separately extracted from both microarray and 

RNA-Seq DE lists. Next, the resultant two lists are merged to yield the top DE genes commonly 

detected by both microarray and RNA-Seq analyses. Based on this criterion, the extracted top 

DE genes commonly detected by both technologies are 91 genes in wound healing vs. control, 

351 genes in regenerative vs. control, and 280 genes in regenerative vs. wound healing. Those 

genes along with their logFC from both technologies is listed in Supplementary Table 6. The 

correlation of the logFCs of those top DE genes between the two technologies is positive, with a 

Spearman’s coefficient of 0.44 for wound healing vs. control, 0.72 for regenerative vs. control, 

and 0.76 for regenerative vs. wound healing (Figure 5H-J). Those top DE genes were merged 

together to see whether they are distributed among the three comparisons. Indeed, some of those 

top DE genes are commonly DE in more than one comparison. However, notably, this time the 
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number of top DE genes commonly DE in all three comparisons is zero, and the number of top 

DE genes specific to each comparison is relatively high (Figure 5K).  

3.7 GO Terms are Enriched by the Top DE Genes of Each Comparison 

Our top DE genes detected by the DEA of each of the two technologies enriched a variety of 

biological processes (BP), cellular components (CC), and molecular functions (MF), for each 

comparison (Supplementary Tables 7-9). Biological processes such as mitotic nuclear division, 

chromosome segregation, RNA splicing, regulation of cell cycle process, and extracellular 

matrix organization were found among the top 10 BPs enriched by the top 181 up-regulated 

genes (Figure 6A). Those up-regulated genes also enriched several cellular components, such as 

chromatin, nuclear chromosome, and spindle, all being among the top 10 CC categories (Figure 

6A).  On the other hand, muscle filament sliding, muscle contraction, heart contraction, 

generation of precursor metabolites and energy, glucose metabolic process, and gluconeogenesis 

were detected among the top 10 biological process enriched by the top 166 down-regulated 

regenerative vs. control genes (Figure 6B). Cellular components such as contractile fiber, actin 

cytoskeleton, and muscle-myosin complex were among the top 10 CC categories enriched by 

those downregulated genes (Figure 6B). The latter genes also enriched several molecular 

functions, including actin filament binding, microfilament motor activity, and calmodulin 

binding, all of which are among the top 10 MF categories (Figure 6B).  

3.8 Heatmap of top 100 and qPCR results 

In order to look at the most differentially expressed genes detected by the DEA of both 

microarray and RNA-Seq data in regenerative samples compared to the controls all in a single 

and interpretable plot, the top 100 DE genes were selected and visualized in a gene-wise 

hierarchically-clustered heatmap (Figure 7A). The clustering shows an overall conspicuous 

clustering between regenerative and control samples from data of each technology. qRT-PCR of 

selected genes at 0,1, and 7 dpa was performed to validate the IDA approach. MMP13, TGFB1, 

MAPK6, Keratin17 and Coagulation factorXIII were used to test the accuracy of our analysis. 
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Expression levels of all these genes were upregulated at day1 and day7 compared to day0 

(Figure 7B), which is consistent with output of our analyses. 

4. DISCUSSION 

This study reports an integrative data analysis on axolotl gene-expression data. To our 

knowledge, this is the first study describing an integrative analysis methodology by which 

publicly available microarray and RNA-Seq axolotl data were leveraged in order to identify 

differentially expressed genes marking the wound healing and regenerative phases of the axolotl 

limb.  

Despite the more frequent and persistent application of late-stage data integration (aka “meta-

analysis”) in the literature in contrast to early-stage data integration (aka “merging”) [40], the 

latter has been applied in several studies [40,75–77] and was chosen for the purpose of our study. 

Previous studies have propounded that Late-stage data integration may perform less competently 

than early-stage data integration when the goal of the analysis is to discover robust biomarkers 

[40]. It has been postulated that computing separate statistics and taking the average is often less 

powerful compared to aggregation of data as a first step and then deriving statistics from this 

data [40,78]. For instance, a higher number of differentially expressed genes was detected by 

early-stage integrative data analysis as reported by Taminau et al [39]. Another advantage of the 

merging method is facilitating the application of prediction models which were originally built 

for a subset of studies onto studies from different platforms [40,42].   

While the merging method recognizes all samples coming from different datasets across different 

platforms as a single dataset when testing the same hypothesis, the existence of systematic biases 

may introduce unwanted batch effects (non-biological differences) during the analysis of gene 

signatures and, consequently, true biological differences can be masked among the conditions of 

interest [39,40,48,79]. Moreover, several intra-laboratory variables that may have ambiguous or 

absent GEO entries such as amputation site, size, feeding, and maintenance protocols of axolotls 

are amongst many factors which can influence how control and test samples cluster together, and 

probably contributing to the observed batch effect in whole gene expression data-based PCA and 

clustering heatmap (Figure 2 and Supplementary Figures 3 and 4). Nonetheless, preservation 

of true biological (gene-expression) differences between experimental groups were successfully 
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attained after DEA and visualized through PCA and clustering heatmap (Figure 3 and 

Supplementary Figures 7 and 8), indicating an indecisive role of any intra-laboratory variables. 

Notably, minimization of batch effects and maximization of true gene-expression differences 

were mainly due to the application of transformation and normalization techniques during data 

processing [40,64] along with accounting for the experiment source (study origin) for each 

sample while performing DEA [69].    

The consistency of the results obtained from each of microarray and RNA-Seq DEAs with one 

another indicates a fairly valid approach of integrative analysis that we took. First and foremost, 

the correlations of each pair-wise distribution of the DE genes among all three comparisons from 

microarray data (Figure 4A, C-H) accord with those from RNA-Seq data (Figure 4B, I-N). 

Positive correlations are always observed among the genes commonly DE in regenerative vs. 

control and regenerative vs. wound healing (Figure 4C, F, I, L), as well as among those 

commonly DE in regenerative vs. control and wound healing vs. control (Figure 4E, G, K, M). 

Further, negative correlations are always observed among the genes commonly DE in 

regenerative vs. wound healing and wound healing vs. control (Figure 4D, H, J, N). This also 

suggests a possibly true underlying biological behavior of those genes in their respective 

comparisons. Secondly, DE genes commonly detected by DEA of each of the two technologies 

are always positively correlated between microarray and RNA-Seq data, along with their top DE 

genes, for every comparison (Figure 5B-J). Several previous studies have also reported such 

strong positive correlations between microarray and RNA-Seq data [80–83]. Although most of 

the DE genes are positively correlated between the two technologies for each comparison, small 

number of genes have opposite gene expression direction, which is probably attributable to 

artifacts of gene expression technologies. Nevertheless, the number of those genes with an 

opposite direction was found significantly low for the top DE genes (Figure 5H-J). Even more, 

the distribution of those top DE genes among all three comparisons suggests a pattern in which 

the more top DE genes are extracted the more specialized those genes become to a particular 

comparison (Figure 5K). 

Some of the top DE genes detected by both technologies in wound healing vs. control 

comparison concur with previously identified genes in the wound healing response. In wound 

healing process, at around 6-8 hours post-amputation (hpa), epithelial cells tend to migrate to the 
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amputation site to form the “wound epithelium (WE)” beneath which are cellular and 

extracellular debris as well as a damaged vasculature [54,84]. Basel cells of this wound 

epidermis lacking a basement membrane at 24 hpa are characterized with highly up-regulated 

thbs1 gene [53,85], which was found as a top up-regulated gene in our wound healing vs. control 

list. Furthermore, matrix metalloproteinases activity is required to regulate the extracellular 

matrix and these proteins are enriched in the wound epidermis as soon as an injury takes place 

[86]. Our wound healing vs. control top DE genes list also included metalloproteinases such as 

mmp1, mmp3, mmp19, and their regulator timp1, in addition to the extracellular matrix-

generating component tnc [53]. Complete list of the top DE genes in wound healing vs. control is 

presented in Supplementary Table 6 and GO terms enriched by them is documented in 

Supplementary Table 7.   

Genes which were previously implicated in the regenerative process also concord with some of 

our top DE genes detected by both technologies in regenerative vs. control comparison. 

Following two days post-amputation, processes such as DNA replication, mitosis, and cell cycle 

are enriched by a set of up-regulated genes the majority of which signify a transition phase in the 

limb regeneration program during 2-3 dpa interval [16]. After 3 dpa, those genes either undergo 

an increased rate of up-regulation or sustain a relatively constant expression until 28 dpa [16]. 

Concordantly, many gene ontology terms, particularly those related to cell cycle, were enriched 

by many of our top up-regulated regenerative vs. control genes, such as mitotic nuclear division, 

positive regulation of cell cycle, and DNA conformation change (Figure 6C). This punctuated 

increase of cell cycle transcripts is, therefore, indicative of a striking change in the population of 

proliferative cells taking place at the stump of the distal limb [16]. Besides, earlier studies have 

reported significant reduction of muscle-specific genes over the course of limb regeneration 

[15,16,53,57,87]. During early response to limb amputation, the limb stump also undergoes 

muscle tissue remodeling along with diminished levels of muscle-specific transcripts [53]. The 

reduction in the expression of muscle-specific transcripts, however, becomes so significant by 

around 10 dpa which strongly implies a complete absence of muscle tissues [16]. Therefore, 

depletion of muscle tissues in such an absolute manner is propounded to be an essential step 

towards the recruitment of progenitor cells and the initiation of blastemal outgrowth [53]. This 

observation is also in line with our top down-regulated regenerative vs. control genes which 

enriched many muscle-specific GO terms, including muscle filament sliding, regulation of 
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muscle contraction, and muscle cell development (Figure 6C). In addition to the reduction of 

muscle-specific transcripts by 10 dpa, expression levels of some transcripts associated with 

metabolic processes also markedly drop by around the same time [16,53]. Indeed, some of our 

top down-regulated regenerative vs. control genes enriched several GO terms associated with 

cellular metabolic processes, such as NADH metabolic process, ATP biosynthetic process, and 

regulation of ATPase activity (Figure 6C).  

Another interesting observation is that cellular metabolic genes are still expressed by the cells 

which do not die or undergo reprogramming. Therefore, non-absolute, moderate depletion of 

some metabolic genes in contrast to the complete reduction of muscle-specific genes during the 

regenerative phase was previously shown [53]. This relationship was also discovered in our 

regenerative vs. control comparison between top down-regulated muscle-specific genes and 

some of the metabolic genes functioning in electron transport chain and mitochondria, most of 

which are not among the top DE genes (Figure 6D). As depicted, those metabolic genes are 

much less down-regulated than the muscle-specific genes during the regenerative phase.   

When discussing “top DE genes” or “DE genes”, we refer to those genes commonly detected by 

the DEA of each of microarray and RNA-Seq. However, an important point to underline here is 

that two of the muscle-specific genes (myh6, myh3) and a metabolic gene (ndufv2) from Figure 

6D were detected DE (adjusted P < 0.01) only by RNA-Seq DEA. Since Affymetrix and Agilent 

data’s gene lists were merged together, the resultant microarray genes did not completely match 

those of RNA-Seq which were annotated using the Affymetrix annotation file. Consequently, 

many genes which were used for RNA-Seq DEA were not represented in the final 4322 

microarray gene list. This is, therefore, indicative of the fact that the reliability of our results may 

be extended to those DE genes specifically detected by only RNA-Seq DEA, and not to be 

limited to those commonly detected by the DEA of each of the two technologies. Excluding the 

Agilent dataset from microarray DEA could -probably- lead to less complicated downstream 

analysis. On the other hand, sample size is often a key for and a fundamental premise of having a 

successful and powerful integrative analysis; and in this study, this concept was further fulfilled 

by integrating the Agilent dataset.  

There are some inherent limitations about this study that need to be addressed. Despite our 

successful minimization, the merging methodology cannot guarantee the complete removal of 
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between-laboratory heterogeneity (batch effects) across experiments. In some cases, the quality 

of the deposited, original data could play a deterministic role in the acquisition of the most 

statistically-sound downstream results. The major limitation to underline, however, lies within 

the concept of data integration itself along with the gene-level data processing approach we took. 

Integrative analysis of different platforms provides statistical power through increased sample 

size at the expense of having a large number of genes for differential expression and downstream 

analyses. The process of merging the genes of Affymetrix platform with those of Agilent 

platform showed a decrease in the total number of microarray genes which were used for DEA. 

Moreover, the approach of annotating our integrated RNA-Seq data from the 31k contigs-V3 

probesets alignment eliminated a plethora of transcripts which could be important in the limb 

regeneration process. Therefore, a “meta-analysis” approach which would utilize probeset-level 

information for separately processing data from each platform, from each technology, and then 

combining the resultant statistics could solve the aforementioned issues. That being said, since 

we rather chose the “merging” approach on the premise that it is well suited for biomarker 

discovery, collapsing information from prove-level to gene-level was an absolute necessity due 

to platform design variations and for direct comparability with RNA-Seq DEA results. It is also 

plausible to conceive the RNA-Seq annotation process from the list of Affymetrix-Agilent genes 

instead of the whole Affymetrix annotation file, which would also lead to a decrease in the total 

number RNA-Seq genes to be used for DEA, not to mention the further decrease that normally 

comes from the filtering steps. Therefore, in this study, we tried to sustain a trade-off between 

increased statistical power through integration of data and having the maximum possible number 

of genes to be analyzed.  
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CONCLUSION 

To the best of our current knowledge, this is the first study describing an integrative analysis of 

publicly available microarray and RNA-Seq axolotl data, with an aim to uncover differentially 

expressed genes signifying the wound healing and regenerative phases of the axolotl limb. The 

validity of our DEA methodology can be realized from observing the same distribution pattern of 

DE genes within the DEA of each technology and the positive correlation of the DE genes along 

with the top ones between both technologies for all three comparisons; wound healing vs. 

control, regenerative vs. control, and regenerative vs. wound healing.  Our results included many 

DE genes enriched in a wide variety of biological processes in accord with those described in 

previous studies. From such concordance, we also suggest considering the results of RNA-Seq 

DEA to be as reliable as those commonly detected by DEA of both technologies. qPCR 

experiment (Figure 7B) provides another layer of evidence to validate our computational 

findings. Future direction of this study would aim to functionally validate more of our top DE 

genes to possibly identify some of them as biomarkers for the regenerative phases of the axolotl 

limb. Besides, other statistical approaches can be applied as an extension to the described 

methodology, such as using ANOVA test to detect DE genes among all experimental groups at 

once that could provide an enhanced, unified interpretation and visualization of the data. We 

hope for this study to provide the required confidence for researchers around the world to 

consider our DE lists for their functional studies. We also think that researchers can integrate 

their data into our methodology, thereby increasing sample size for more statistical confidence 

and better biomarker discovery.  
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Figure 1: Flow diagram illustrating the selection criteria used for separately performing integrative 
analysis on microarray and RNA-seq data from axolotl samples. The diagram is prepared according to 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

Figure 2: Whole gene expression data-based principal component analysis and sample-to-sample 
clustering heatmaps for control and regenerative samples of A,B) Microarray quantile-normalized, log2-
transformed, z-scored, data (4322 genes, 220 samples) and of C,D) RNA-seq logCPM (voom) counts 
(7562 genes, 25 samples). A,C) principle component analysis. B,D) sample-to-sample clustering heatmap. 
The number of samples per group are; 26 control and 194 regenerative for microarray data; 7 control and 
18 regenerative for RNA-Seq data.  

Figure 3: DEA-based principal component analysis and sample-to-sample clustering heatmaps for 
regenerative vs. control comparison of A,B) Microarray quantile-normalized, log2-transformed, z-scored 
data after DEA (2748 DE genes, 220 samples) and of C,D) RNA-seq logCPM (voom) counts data after 
DEA (2992 DE genes, 25 samples).  A,C) principle component analysis. B,D) sample-to-sample 
clustering heatmap. The number of samples per group are; 26 control and 194 regenerative for microarray 
data; 7 control and 18 regenerative for RNA-Seq data. The DE genes have an adjusted p-value < 0.01. 

Figure 4: Venn Diagram of the distribution of significant genes (adj.p <0.01) among the three 
comparisons, from A) Microarray data and B) RNA-Seq data; A,B) Each complete circle represents the 
number of differentially expressed genes of a certain comparison as resulted by DEA. C-H) Scatter plots 
of the log-fold change of significant genes (adj.p <0.01) shared by two or more comparisons from 
microarray data (as shown in A). C) Scatter plot of the logFC of the 1168 DE genes shared by 
Regenerative vs. Control and Regenerative vs. Wound healing comparisons. D) Scatter plot of the logFC 
of the 575 DE genes shared by Regenerative vs. Wound healing and Wound healing vs. Control 
comparisons. E) Scatter plot of the logFC of the 457 DE genes shared by Regenerative vs. Control and 
Wound healing vs. Control comparisons. I-N) Scatter plots of the log-fold change of significant genes 
(adj.p <0.01) shared by two or more comparisons from RNA-Seq data (as shown in B). I) Scatter plot of 
the logFC of the 1582 DE genes shared by Regenerative vs. Control and Regenerative vs. Wound healing 
comparisons. J) Scatter plot of the logFC of the 177 DE genes shared by Regenerative vs. Wound healing 
and Wound-healing vs. Control comparisons. K) Scatter plot of the logFC of the 145 DE genes shared by 
Regenerative vs. Control and Wound healing vs. Control comparisons. F-H, L-N) Pair-wise scatter plots 
of the logFC of the 1018 and 39 DE genes shared by all three comparisons from microarray and RNA-
Seq data, respectively; F,L) Regenerative vs. Control and Regenerative vs. Wound healing, G,M) 
Regenerative vs. Control and Wound healing vs. Control, H,N) Regenerative vs. Wound healing and 
Wound healing vs. Control. 

Figure 5: A) Venn Diagram of the initial number of genes used before differential expression analysis. 
This number for each platform is obtained just after the filtering and /or merging. B-D)  Venn diagrams of 
the distribution of DE genes (adj p-value < 0.01) between Microarray and RNA-seq data as well as E-G) 
scatter plots of the log-fold change of the common DE genes between the two technologies for B,E) 
wound healing vs. control, C,F) regenerative vs. control, and D,G) regenerative vs. wound healing. H-J) 
Scatter plots of the log-fold change of the top DE genes (adj p-value < 0.01, logFC magnitudes > 1) 
commonly identified by Microarray and RNA-seq technologies’ analyses for H) wound healing vs. 
control (91 top DE genes), I) regenerative vs. control (351 top DE genes), and J) regenerative vs. wound 
healing (280 top DE genes). K) Venn Diagram of the distribution of the top DE genes (adj p-value < 0.01, 
logFC magnitudes > 1) commonly identified by the analyses of both technologies among the three 
comparisons.  

Figure 6: A) top 10 GO terms of each of biological processes and cellular components enriched by the 
top 181 up-regulated genes in regenerative vs. control comparison commonly identified by both 
technologies’ analyses. B) top 10 GO terms of each of biological processes, cellular components, and 
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molecular functions enriched by the top 166 down-regulated genes in regenerative vs. control comparison 
commonly identified by both technologies’ analyses. C) Biological processes related to cell cycle, 
muscle-tissues, and metabolism enriched by some of the top up-regulated and down-regulated genes in 
regenerative vs. control comparison. D) some of the top DE muscle-specific genes and other DE 
metabolic genes being down-regulated in regenerative vs. control comparison at different rates.  

Figure 7: A) clustered heatmap of the top 100 DE genes commonly detected by the analyses of both 
technologies in regenerative vs. control comparison. B) qRT-PCR of selected 5 genes which are up-
regulated at 1 and 7 dpa compared to day0. 
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Supplementary Figure 1: Detailed workflow for Affymetrix and Agilent Microarray axolotl data 
processing prior to differential expression analysis. 

Supplementary Figure 2: Detailed workflow for Illumina RNA-Seq data processing prior to differential 
expression analysis.  

Supplementary Figure 3: Whole gene expression data-based principal component analysis and sample-
to-sample clustering heatmaps for control and wound healing samples of A,B) Microarray quantile-
normalized, log2-transformed, z-scored data (4322 genes, 119 samples) and of C,D) RNA-seq logCPM 
(voom) counts data (7562 genes, 14 samples). A,C) principle component analysis. B,D) sample-to-sample 
clustering heatmap. The number of samples per group are; 26 Control and 93 wound healing for 
microarray data; 7 control and 7 wound healing for RNA-Seq data. 

Supplementary Figure 4: Whole gene expression data-based principal component analysis and sample-
to-sample clustering heatmaps for regenerative and wound healing samples of A,B) Microarray quantile-
normalized, log2-transformed, z-scored data (4322 genes, 287 samples) and of C,D) RNA-seq logCPM 
(voom) counts data (7562 genes, 25). A,C) principle component analysis. B,D) sample-to-sample 
clustering heatmap. The number of samples per group are; 194 regenerative and 93 wound healing for 
microarray data; 18 regenerative and 7 wound healing for RNA-Seq data. 

Supplementary Figure 5: Raw P and adjusted-P value distribution of microarray DEA results. p-value 
histogram (left) and adj.P.Value histogram (right) were plotted after DEA on Microarray data for the 
following comparisons A,B) wound healing vs. control, C,D) regenerative vs. control,  E,F) regenerative 
vs. wound healing. 

Supplementary Figure 6: Raw P and adjusted-P value distribution of RNA-Seq DEA results. p-value 
histogram (left) and adj.P.Value histogram (right) were plotted after DEA on RNA-Seq data for the 
following comparisons A,B) wound healing vs. control, C,D) regenerative vs. control,  E,F) regenerative 
vs. wound healing. 

Supplementary Figure 7: DEA-based principal component analysis and sample-to-sample clustering 
heatmaps for wound healing vs. control comparison of A,B) Microarray quantile-normalized, log2-
transformed, z-scored data after DEA (2092 DE genes, 119 samples) and of C,D) RNA-seq logCPM 
(voom) counts data after DEA (423 DE genes, 14 samples).  A,C) principle component analysis. B,D) 
sample-to-sample clustering heatmap. The number of samples per group are; 26 control and 93 wound 
healing for microarray data; 7 control and 7 wound healing for RNA-Seq data. The DE genes have an 
adjusted p-value < 0.01. 

Supplementary Figure 8: DEA-based principal component analysis and sample-to-sample clustering 
heatmaps for wound healing vs. control comparison of A,B) Microarray quantile-normalized, log2-
transformed, z-scored data after DEA (3166 DE genes, 287 samples) and of C,D) RNA-seq logCPM 
(voom) counts data after DEA (2371 DE genes, 25 samples).  A,C) principle component analysis. B,D) 
sample-to-sample clustering heatmap. The number of samples per group are; 194 regenerative and 93 
wound healing for microarray data; 18 regenerative and 7 wound healing for RNA-Seq data. The DE 
genes have an adjusted p-value < 0.01. 
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