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Abstract 21 

Understanding how the human brain integrates information from the environment with 22 

ongoing, internal brain signals in order to produce individual perspective is an essential element 23 

of understanding the human mind. Brain signal complexity, measured with multiscale entropy, 24 

has been employed as a measure of information processing in the brain (Carpentier et al., 2016), 25 

and we propose that it can also be used to measure the information available from a stimulus. We 26 

can directly assess the correspondence, or functional isomorphism, between brain signal 27 

complexity and stimulus complexity as an indication of how well the brain reflects the content of 28 

the environment in an analysis that we termed complexity matching. Music makes an ideal 29 

stimulus input because it is a multidimensional, complex signal, and because of its emotion and 30 

reward-inducing potential. We found that electroencephalography (EEG) complexity was lower 31 

and more closely resembled the musical complexity when participants performed a perceptual 32 

task that required them to closely track the acoustics, compared to an emotional task that asked 33 

them to think about how the music made them feel. Music-derived reward scores on the 34 

Barcelona Music Reward Questionnaire (Mas-Herrero et al., 2013) correlated with worse 35 

complexity matching and higher EEG complexity. Compared to perceptual-level processing, 36 

emotional and reward responses are associated with additional internal information processes 37 

above and beyond those in the external stimulus.  38 
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Significance Statement: Experience of our world is combination of the input from the 39 

environment, our expectations, and individual responses. For example, the same piece of music 40 

can elict happiness in one person and sadness in another. We researched this by measuring the 41 

information in pieces of music and whether listener’s brain more closely followed that, or 42 

whether additional information was added by the brain. We noted when listener’s were reacting 43 

to how music made them feel, their brains added more information and the degree to which this 44 

occurred related to how much they find music rewarding. Thus, we were able to provide clues as 45 

to how the brain integrates incoming information, adding to it to provide a richer perceptual and 46 

emotional experience. 47 

 48 

Complexity matching: brain signals mirror environment information patterns during music 49 

listening and reward 50 

 51 

Some contemporary theories suggest that functional brain networks engage and 52 

disengage to integrate information during cognitive processes (Tononi et al., 1994; McIntosh, 53 

2000; Bressler and Kelso, 2001). This network activity generates highly variable and complex 54 

brain signals; therefore, brain signal complexity can serve as an indicator of the information 55 

processing of the system (Deco, Jirsa, & McIntosh, 2011; Ghosh et al., 2008; McIntosh, 56 

Kovačević, & Itier, 2008). Accordingly, brain signal complexity is higher during states of greater 57 

knowledge representation (e.g. Heisz, Shedden, & McIntosh, 2012), and increased following 58 

longitudinal music training (Carpentier et al., 2016). The present study measured signal 59 

complexity to investigate whether there is a correspondence between information patterns in 60 
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brain signals and those in the individual’s environment. Furthermore, we were interested in 61 

whether this correspondence would be related to the cognitive-affective state of the individual.  62 

Music offers an ideal stimulus from which to measure information content. Complicated 63 

music structures are created following application of combination rules to subordinate motifs. 64 

This makes it possible to describe a functional isomorphism between the brain and environment 65 

information by calculating music complexity and comparing it to the complexity of brain signals 66 

of the listener. We propose that this measure of comparison between EEG complexity and music 67 

complexity, or complexity matching, will provide a relative indication of the degree to which 68 

environmental information structure is reflected in brain signal structure.  69 

Complexity matching is calculated as Procrustes distance (Gower, 1975) between the 70 

music and EEG multiscale entropy (MSE). MSE calculates sample entropy at multiple 71 

timescales (Costa et al., 2002, 2005). Like brain signals, music also has structure at multiple 72 

timescales, and MSE seems an appropriate measure of complexity for a given music passage. 73 

Procrustes distance produces a quantity of similarity between the structure of the music and the 74 

structure of the ensuing brain signals. A relatively high value of matching together with lower 75 

EEG MSE would suggest that the brain has activated the necessary information processing 76 

resources for immediate perception, and little else. Conversely, relatively lower complexity 77 

matching but high neural complexity would suggest that internal processes, different from 78 

immediate stimulus perception, dominate the neural response. This metric was inspired by the 79 

ideas in Tononi et al. (Tononi et al., 1996) 80 

The level of brain-environment information integration may be related to cognition and 81 

subjective perspective. To examine the relationship between brain-environment matching and 82 

cognitive-affective state, we calculated complexity matching while participants performed a 83 
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music perception task and a music emotion evocation task. We expect that active attention to the 84 

acoustics of the music during the perceptual task will be accompanied by brain signal complexity 85 

that more closely resembles the music, compared to the emotional task that involves additional 86 

internally processes and, therefore, will provide less of a match to the environment. 87 

We also analyzed the relationship between complexity matching and music-derived 88 

reward scores from the Barcelona Music Reward Questionnaire (BMRQ). The ability to perceive 89 

musical structure is essential to the enjoyment of music (Meyer, 1956; Huron, 2006): therefore, it 90 

is possible that a certain minimum quantity of complexity matching may be required for the 91 

listener to have the necessary appreciation of the underlying ‘gist’ or skeleton structure of the 92 

piece. Perhaps without sufficient neural integration of music signals, the listener would be unable 93 

to perceive separate noise sounds as unified. In accordance with our prediction that the emotional 94 

task will be associated with a lower complexity match than the perceptual task, we expect that 95 

higher music reward involves internally-driven, individual responses and therefore will correlate 96 

with higher complexity and lower complexity matching. 97 

 98 

Materials and Methods 99 

Participants 100 

Eighteen healthy young adults aged 19-35 (M = 26; 10 female) were recruited from the 101 

Greater Toronto Area to take part in the study and provided written informed consent in 102 

accordance with the joint Baycrest Centre-University of Toronto Research Ethics Committee. 103 

Prior to arriving to the lab for the experimental session, participants completed an online 104 

questionnaire about their music listening habits, and musical training was assessed as a 1-5 scale: 105 

1) No formal training, cannot play an instrument; 2) Can play an instrument without formal 106 
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training; 3) Less than 1 year of formal music training; 4) Between 1-5 years of formal training; 107 

and 5) More than 5 years of formal training. 108 

Barcelona Music Reward Questionnaire 109 

Music reward is highly individual, and the BMRQ was developed to describe some of the 110 

main facets of the variance in how people experience reward from music listening (Mas-Herrero 111 

et al., 2013). Participants are asked to indicate the level of agreement with each of 20 statements 112 

by using a 5-point scale ranging from (1) “fully disagree” to (5) “fully agree,” with a higher 113 

score indicating the subject experiences more music reward and a lower score indicating they do 114 

not experience music associated rewarding feelings. These statements represent five major 115 

factors of music reward: (1) Emotional Evocation; (2) Mood Regulation; (3) Musical Seeking; 116 

(4) Social Reward; and (5) Sensory-Motor.  117 

Emotional Evocation refers to the idea that music can both convey and induce emotion 118 

(also referred to as emotional contagion), such as joy or sadness, and that listeners might seek out 119 

music that contains emotion (Juslin and Laukka, 2004; Juslin and Västfjäll, 2008; Vuoskoski and 120 

Eerola, 2012). The BMRQ distinguishes evoked feelings, which may be short-lived and vary 121 

across a single music piece; from the way some listeners use music to alter their own longer 122 

lasting mood or hedonic state after the song has finished (e.g. Carter, Wilson, Lawson, & Bulik, 123 

1995; Västfjäll, 2001). Mood Regulation refers to the idea that music can be used to comfort, 124 

relieve stress, or enhance relaxation (for a review see Juslin & Sloboda, 2010), and a particular 125 

point has been raised about the use of music in marketing or film to manipulate and induce 126 

hedonic states (Cohen, 2001). Musical Seeking can also be referred to as “knowing about music.” 127 

This facet describes that some listeners get reward from extracting, pursuing, sharing, and 128 

seeking information regarding specific music pieces, composers, performers, or other 129 
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information related to music. Listeners may also experience pleasure when recognizing music 130 

quotations or allusions to other works. Social Reward may be gained by music through its 131 

enhancement of social bonds or social cohesion (Cross and Morley, 2009). Lastly, the Sensory-132 

Motor facet captures reward experienced by the pull music has over some people to move to 133 

music. 134 

Behaviour Tasks 135 

Forty operatic and classical musical segments were selected after piloting for a range of 136 

emotional reactions of the listener and of pitch and tempo. The pieces spanned a range with only 137 

instruments to both instruments and voice. For this study, we wanted to ensure the range of 138 

individual experience was as broad as possible to get reasonable ranges of arousal and valence 139 

ratings and comparable volatility in the perceptual task. Segment lengths ranged between 0:40-140 

1:17 min. This choice was made to allow each segment to conclude naturally at the end of a 141 

musical phrase, rather than ending abruptly in the middle. Thirty pieces were selected for the 142 

emotional task and ten pieces for the perceptual task (Table 1). Importantly, there was no 143 

difference in the music complexity (MSE) between the tasks (p > 0.1). 144 

Table 1. List of songs for each tasks 

Emotional Valence Songs 
 

• Adams “Nixon in China, ‘Beginning’” 

• Adams “Disappointment Lake” 

• Bach “No. 3 Aria ‘Es Ist Vollbracht’” 

• Barber “Adagio for Strings” 

• Brahms “Intermezzo No. 2 in A Major, Op. 118” 

• Delibes “Lakmé/Flower Duet” 

• Elgar “Variation IX (Adagio) ‘Nimrod’” 

• Galvany “Oh My Son” 

• Gluck “Armide Act Iv Air Sicilien” 

• Goodall “Belief” 

• Ives “Three Places in New England Orchestral Set 

No.1” 

• Liszt "Totentanz” 

• Monteverdi “Zefiro Torna” 

• Mozart “Cosi fan tutte” 

• Mozetich “The Passion of Angels” 

• Penderecki “Threnody to the Victims of 

Hiroshima” 

• Puccini "O soave fanciulla” 

• Rameau “Entrée de Polymnie” 

• Richter “Vivaldi’s Summer” 

• Rossini “Barbiere di Siviglia: Largo Al Factotum” 

• Schroer “Field of Stars” 

• Schumann-Liszt “Liebeslied (Widmung)” 

• Staniland “Solstice Songs No. 2 Interlude” 

• Stravinsky “Glorification of the Chosen One” 

• Tarrega “Recuerdos De La Alhambra” 

• Verdi “Messa Da Requiem: Dies Irae-Tuba Mirum 

Part 1” 

• Verdi “Messa Da Requiem: Dies Irae-Tuba Mirum 

Part 2” 
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• Part “Spiegel im Spiegel” • Wagner “Die Walkurie, Act 3: Ride of the 

Valkyries” 

• Wagner “Tristan Und Isolde/ Act 2 – Prelude” 

Perceptual Songs 
 

• Beethoven “Sonata in A Major Op. 69” 

• Brahms “Violin Concerto in D, Op 77-3” 

• Glass “Glassworks Opening” 

• Haydn “Cello Concerto in D Major” 

• Mozart “Symphony No. 40 in G-minor, K. 550, 

Finale” 

• Praetorious “Praeambulum” 

• Strauss – Der Rosenkavalier Act III/Duet-

Denouement and Grand Waltz – Coda” 

• Strauss “September” 

• Vivaldi “Concerto for Violin, Stings and 

Harpsichord in G” 

• Vivaldi “Stabat Mater” 

 145 

During the emotional task, a computer screen in front of participants showed four 146 

quadrants marked on two dimensions: Stimulating-Relaxing, and Pleasant-Unpleasant (Figure 1). 147 

Participants were asked to move a mouse around the quadrant space in a continuous manner 148 

during each song based on how the music made them feel on the two dimensions. Participants 149 

were explicitly instructed to report of their own feelings during music listening, and not the 150 

alternative of reporting on what emotions they believe are expressed in the music (emotional 151 

conveyance). The task design was modeled after the valence-arousal model of Hunter & 152 

Schellenberg, 2010. They labeled their dimensions high arousal-low arousal and positive 153 

valence-negative valence, and we altered our labels after pilot tests to be more intuitive for 154 

subjects. This valence-arousal model is designed to capture a wide range of emotions. In their 155 

study, difference valence and arousal combinations were associated with multiple different 156 

emotions. For example, high arousal/negative valence was correlated with distress, fear and 157 

anger, low arousal/positive valence was associated with feelings of peace, contentment and 158 

relaxation. Participants from our pilot sample gave similar reports. In this way, it is possible to 159 

capture a larger range of emotions without limiting responses to more specific emotions. 160 

 The perceptual task mimicked the emotional task, with the difference being participants 161 

were required to assess pitch and tempo for each song (Figure 1). Once again, a screen in front of 162 
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them displayed four quadrants with two dimensions (High-Low Pitch and Fast-Slow Tempo), 163 

and participants moved a mouse in a continuous manner on the screen based on the pitch and 164 

tempo of each song. 165 

 166 

Figure 1. Participants viewed screens with each of the above quadrants during each task. They were asked to move 167 
a mouse continuously around the quadrant space depending on how the music was making them feel in that moment 168 
(emotional task) or based on their judgments of pitch and tempo (perceptual task). 169 
 170 

Experimental Procedure 171 

The experimental session began with five perceptual task songs, followed by all thirty 172 

emotional songs, and concluded with the remaining five perceptual songs. Perceptual songs were 173 

always presented in the same order. Emotional songs were presented in one of two 174 

counterbalance orders. Pieces in the first order were curated to have a sense of flow between 175 

them and avoid jarring transitions from one song to the next that may disrupt emotional 176 

experiences. The second order was the reverse of the first. There was no significant effect of 177 

counterbalance order on any of our measures. All stimuli were presented through ER 3A insert 178 

earphones (Etymotic Research, Elk Grove, U.S.A.), while participants were seated in a 179 

soundproof room. 180 

EEG Recording and Pre-Processing 181 

Pleasant Unpleasant 

Relaxing 

Stimulating 

Emotional Valence Task 

High Pitch Low Pitch 

Slow Tempo 

Fast Tempo 

Perceptual Task 
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EEG was recorded using a 64+10 Biosemi Active Two System at a sampling rate of 512 182 

Hz. Continuous EEG recordings were bandpass filtered at 0.5-90 Hz, with a notch filter at 55-65 183 

Hz for line noise. The shortest music segment was 40 seconds, so EEG data for each song was 184 

segmented into 4 x 10 s epochs and baseline corrected based on a 200 ms pre-stimulus interval. 185 

Trials with excessive signal amplitude were rejected. Ocular and muscle artifact removal was 186 

performed on the remaining concatenated trials using Independent Component Analysis (ICA) 187 

implemented in EEGLAB (Delorme and Makeig, 2004). The highest number of trials lost for any 188 

subject was 8 out of 40, 7 subjects retained all trials, and the average number rejected trials from 189 

remaining subjects was 2.67, with no difference in trial rejection between conditions. 190 

We performed source estimation at the 68 ROIs of the Desikan-Killiany Atlas (Desikan 191 

et al., 2006), using sLORETTA (Pascual-Marqui, 2002) as implemented in Brainstorm (Tadel et 192 

al., 2011). Brainstorm is documented and freely available for download under the GNU general 193 

public license (http://neuroimage.usc.edu/brainstorm). Source reconstruction was constrained to 194 

the cortical mantle of the brain template MNI/Colin27 defined by the Montreal Neurological 195 

Institute (Holmes et al., 1998). Current density for one source orientation (X component) was 196 

estimated for 15,768 equally spaced vertices and the source waveform was mapped at the 68 197 

brain regions of interest as an average taken over all vertices in each region. Multiscale Entropy 198 

was calculated on the source waveform at each ROI for each subject as a measure of brain signal 199 

complexity. 200 

Data Analyses 201 

Multiscale Entropy 202 

MSE has been previously validated as a measure of brain signal complexity (Catarino et 203 

al , 2011; McIntosh et al., 2008; Mišić, Mills, Taylor, & McIntosh, 2010). We calculated MSE in 204 
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two steps using the algorithm available at www.physionet.org/physiotools/mse. First, the source 205 

EEG and music signals were progressively down-sampled into multiple coarse-grained 206 

timescales where, for scale t, the time series is constructed by averaging the data points with non-207 

overlapping windows of length t. Each element of the coarse-grained time series, yj
(τ), is 208 

calculated according to Eq. (2): 209 

                                                 𝑦𝑗
(𝜏)

=
1

𝜏
∑ 𝑥𝑖,1 ≤

𝑁

𝜏

𝑗𝜏

𝑖=(𝑗−1)𝜏+1

                                               (1) 210 

The number of scales is determined by a function of the number of data points in the 211 

signal and MSE was calculated for 100 timescales [sampling rate (512Hz) * epoch (10,000 212 

ms)/50 time points per epoch = maximum of 102.4 scales].  213 

Second, the algorithm calculates the sample entropy (SE) for each coarse-grained 214 

timeseries yj
(τ):  215 

                                            𝑆𝐸(𝑚, 𝑟, 𝑁) = 𝑙𝑛
∑ 𝑛𝑖

′𝑚𝑁−𝑚
𝑖=1

∑ 𝑛𝑖
′𝑚 + 1𝑁−𝑚

𝑖=1

                                             (2) 216 

Sample entropy quantifies the predictability of a time series by calculating the conditional 217 

probability that any two sequences of m consecutive data points that are similar to each other 218 

within a certain similarity criterion (r) will remain similar at the next point (m+1) in the data set 219 

(N), where N is the length of the time series (Richman & Moorman, 2000). In this study, MSE 220 

was calculated with pattern length set to m = 2, and similarity criterion was to r = 0.5. The value 221 

r is defined as a proportion of the standard deviation of the original data (Costa, Goldberger, & 222 

Peng, 2004; Richman & Moorman, 2000). MSE estimates were obtained for each participant’s 223 

EEG source time series as a mean across single-trial entropy measures for each timescale.  224 
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Music pieces were imported into Matlab using the wavread function at a sampling rate of 225 

11.25 kHz (MathWorks, Inc. Release 2011b). Music auditory signal MSE was subsequently 226 

calculated with the same parameter values and the same number of timescales as the EEG source 227 

MSE.  228 

Complexity Matching 229 

Complexity matching applies Procrustes analysis to measure the equivalence of the MSE 230 

curve for the auditory signal of a song (X1) and the MSE curve of the EEG source time series of a 231 

participant listening to that song (X2j), for all j ROIs individually (Gower, 1975). It minimizes the 232 

sum of the squared deviations between matching corresponding points (landmarks) from each of 233 

the two data sets (MSE curves), allowing for scaling, translation and orthogonal rotation of X1 to 234 

fit X2j, where choice of label X1 or X2 is arbitrary. X1 and X2j must have the same number of i 235 

sample points, or ‘landmarks’, and Procrustes matches X1i to X2ij. In our simple case of two 236 

vectors, the rotation matrix T such that X1 best fits X2j is given as T = V’U from the singular 237 

value decomposition X1’ X2j = U’SV. Without translation and scaling this problem is known as 238 

Procrustes rotation. Dissimilarity of X1 and X2j is given as the Procrustes distance: 239 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  ∑(𝑋1 − 𝑇(𝑋2𝑗))2

𝑖=1

                                                    (3) 240 

A smaller distance value denotes greater similarity between the two curves, or a closer match 241 

between them. The analysis returns a distance value for each ROI for each participant. Procrustes 242 

distance was calculated using the Matlab function procrustes (MathWorks, Inc. Release 2011b). 243 
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Figure 2 presents a conceptual depiction of our implementation of complexity matching.244 

 245 

Figure 2. Complexity matching applies Procrustes’ analysis to determine a linear transformation (scaling, 246 
translation and orthogonal rotation) of the points in X2 (EEG source MSE for a given ROI) to best match the points 247 
in X1 (song MSE). The goodness-of-fit criterion is the sum of squared errors, and Procrustes distance is the 248 
minimized value of this dissimilarity measure. Distance is standardized by a measure of the scale of X1. 249 
 250 

Spectral Power 251 

Studies have found that MSE and power spectrum density (PSD) provide complementary 252 

information on neural signals (Gudmundsson et al., 2007; McIntosh et al., 2008; Mišić et al., 253 

2010). For example, both measures follow similarities for time maturational changes, but with 254 

different spatial and temporal patterns (McIntosh et al., 2008; Lippé et al., 2009; Mišić et al., 255 

2010). Mišić and colleagues (2014) found substantial differences between PSD and MSE effects. 256 

In their sample, individuals with Autism Spectrum Disorder (ASD) displayed only group main 257 

effects on PSD, but a group x task interaction on MSE, and the effects were different both 258 

spatially and temporally. This indicates that MSE captures an aspect of neural information 259 
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processing in ASD above and beyond what can be gleaned from a traditional analysis of spectral 260 

power.  261 

To determine the extent to which training- and task-based differences in MSE are related 262 

to spectral density, we computed PSD for all single-trial time series. Single-trial power spectra 263 

were computed using the Fast Fourier Transform. To capture the relative contribution from each 264 

frequency band, all time series were first normalized to mean = 0 and SD = 1. Given the 265 

sampling rate of 512 Hz and 5,120 data points per trial, the frequency resolution was effectively 266 

0.100 Hz and the analysis was constrained to the [0.100, 90] Hz range, with a notch filter for line 267 

noise at 55-65 Hz. 268 

Partial Least Squares 269 

Task partial least squares analysis (PLS) was used to statistically assess task and epoch 270 

related effects in MSE and PSD. Task PLS is a multivariate statistical technique similar to 271 

canonical correlation which employs singular value decomposition (SVD) to extract latent 272 

variables (LVs) that capture the maximum covariance between the task design and neural 273 

activity. Each LV consisted of: (1) a singular vector of design scores, (2) a singular vector of 274 

saliences showing the distribution across brain regions and sampling scales, (3) a singular value 275 

(s) representing the covariance between the design scores and the singular image (McIntosh et 276 

al., 1996; McIntosh and Lobaugh, 2004).  277 

The statistical significance of each LV was determined using permutation testing (Good, 278 

2000; McIntosh and Lobaugh, 2004). The rows of X are randomly reordered (permuted) and the 279 

new data were subjected to SVD as before, to obtain a new set of singular values. This procedure 280 

was repeated 500 times to generate a sampling distribution of singular values under the null 281 

hypothesis that there is no association between neural activity and the task. An LV was 282 
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considered significant if a singular value equal to or greater than that of the LV was present less 283 

than 5% of the time in random permutations (i.e. p < 0.05).  284 

The reliability of each statistical effect was assessed through bootstrap estimation of 285 

standard error confidence intervals of the singular vector weights in each LV (Efron and 286 

Tibshirani, 1986). Random sampling with replacement of participants within conditions 287 

generated 500 bootstrap samples. In the present study, this process allowed for the assessment of 288 

the relative contribution of brain regions and timescales to each LV. Brain regions with a 289 

salience weight over standard error ratio > 3.0 correspond to a 99% confidence interval and were 290 

considered to be reliable (Sampson et al., 1989).  291 

Finally, the dot product of an individual subject’s raw MSE data and the singular image 292 

from the LV produces a brain score. The brain score is similar to a factor score that indicates 293 

how strongly an individual subject expresses the patterns on the latent variable and allowed us to 294 

estimate 95% confidence intervals for the effects in each group and task condition. 295 

Behavioural PLS (bPLS) is a variation on task PLS for analyzing the relationship 296 

between brain measures and the behaviour (McIntosh and Lobaugh, 2004; Krishnan et al., 2011). 297 

Similar to task PLS the SVD results in mutually orthogonal LVs, where each LV contains 1) a 298 

singular vector of saliences for the behavioural measures, (2) a singular vector of saliences for 299 

brain activity, (3) a singular value (s) representing the covariance between the behaviour scores 300 

and the singular image. Behaviour saliences indicate task-dependent differences and brain 301 

saliences indicate ROI-dependent differences in the brain-behaviour correlation. 302 

 303 

Results 304 
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One participant was excluded from the study for mild hearing loss determined by 305 

audiogram, and one other was removed for excessive motion during EEG recording, leaving 306 

N=16 subjects. Two participants did not complete the music-training questionnaire, leaving 14 307 

subjects. For music training, of the N=14 participants: 7 reported no formal training, 1 reported 308 

can play an instrument without formal training, 1 reported less than 1 year of formal music 309 

training, 2 reported between 1-5 years of formal training, and 4 reported more than 5 years of 310 

formal training. Thus, this sample does not include a sufficient number of participants who fulfill 311 

the common requirements for musicianship (e.g. at least 10 years of formal music training, 312 

Fujioka et al., 2004), and we did not proceed with analysis of the effects of music training. 313 

Multiscale entropy curves of sound signals from a sample of the songs are visualized in 314 

Figure 3 for illustration purposes. 315 

 316 
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Figure 3. Exemplary multiscale entropy values obtained from the sound signals of a small sample of the songs from 318 
each group. Temporal scale, in milliseconds, refers to the number of data points averaged within non-overlapping 319 
windows, hence the left most values represent fine temporal scales and right more coarse scales. 320 
 321 

Emotional and Perceptual Tasks 322 

We did not observe any within-task effects of emotional (e.g. stimulating compared to 323 

relaxing) or pitch/tempo (fast compared to slow) dimension ratings on any of our brain measures 324 

(MSE, Procrustes distance or PSD; all PLS p > .10). This may be due to the high level of 325 

variance between subjects’ emotional responses (Figure 4), or because the continuous nature of 326 

the behaviour ratings is not well suited to the dichotomization necessary for the present types of 327 

analyses.  328 

  329 

Figure 4. Example single-subject, single-song behaviour heat maps for the emotional valence task. Note the 330 
variation between individuals in both the valence felt and the variability of the valence within each participant and 331 
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song (i.e. some participants were stable in one quadrant while some participants felt a greater range during the same 332 
song). 333 
 334 

Examining both tasks across all four epochs, the emotional task was generally associated 335 

with higher EEG source MSE at time scales below 20, compared to the perceptual task that 336 

showed higher MSE at coarser timescales (>40) (LV = 1, p << 0, Singular Value = 1.81, 31.6% 337 

cross-block covariance; Figure 5; Figure 6). Both tasks showed an increase in MSE at finer 338 

timescales (<20) and a decrease in coarse scale MSE across epochs from the beginning to the end 339 

of the piece of music. The spatial distribution of these effects was such that the emotional task 340 

was associated with higher MSE in finer timescales (Figure 5A) in bilateral bank of the superior 341 

temporal sulcus (bankSTS) and inferior parietal cortex; left hemisphere caudal and rostral middle 342 

frontal, and precentral regions; right mPFC, paracentral, pars triangularis, rostral ACC, 343 

precuneus, SP MT, and ST. The negative bootstrap ratios (Figure 5B) are reliable in bilateral 344 

insula, cingulate, ST, PCC, cuneus, and pericalcarine; left FG, mOFC, SF, parahippocampal, 345 

PCC, precuneus, and lingual; and right hemisphere MF, FP, OFC, IFG, postcentral, entorhinal, 346 

and temporal cortex. 347 

 348 
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Figure 5. PLS first latent variable for the examination of effects of between tasks and within-task epochs on MSE. 349 
(A) The bar graph depicts the data-driven contrast highlighting higher MSE on all epochs of the emotional task 350 
compared to the perceptual task, as well as epoch effects within each task, significantly expressed across the entire 351 
data set, as determined by permutation tests. (B) Cortical regions at which the contrast was most stable as 352 
determined by bootstrapping. Values represent the ratio of the parameter estimate for the source divided by the 353 
bootstrap-derived standard error (roughly z scores). (C) Cortical visualization of stable bootstrap values for fine 354 
(top) and coarse (bottom) scales. 355 
 356 
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 358 
Figure 6. Mean MSE across participants for right superior temporal cortex ROI. (A) All temporal scales, B) 359 
Zoomed into visualize higher MSE for the emotional task at fine scales (<39.1 ms). 360 

 361 

Procrustes’ distance was greater during the emotional task than the perceptual task in 362 

most brain sources (LV = 1, p = 0, Singular Value = 0.81, 54.1% of the cross-block covariance; 363 

Figure 7). All brain regions showed this effect of lower complexity matching on the emotional 364 

task except for bilateral entorhinal, FP, IT, parahippocampal, TP; left bankSTS MT, pars 365 

opercularis, ST; and right FG.  366 
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 368 

Figure 7. First significant PLS result for the examination of effects of between tasks and within-task epochs on 369 
Procrustes’ distance. (A) The bar graph depicts the data-driven contrast highlighting greater distance on all epochs 370 
of the emotional task compared to the perceptual task, as well epoch effects within each task, significantly expressed 371 
across the entire data set, as determined by permutation tests (p = 0). (B) Cortical regions at which the contrast was 372 
most stable as determined by bootstrapping. Values represent the ratio of the parameter estimate for the source 373 
divided by the bootstrap-derived standard error (roughly z-scores).  374 
 375 
  376 
 377 

Music Reward 378 

The participant sample size (N=16) did not provide sufficient power to allow for the 379 

accurate assessment of brain-behaviour relationships on each of the five sub-factors of the 380 

BMRQ. Therefore, an average score across all sub-factors was calculated and used as the overall 381 

measure of music reward. Participant scores on this measure of reward had mean = 3.84 (SD = 382 

0.47) on the 1-5 scale, suggesting this sample overall experiences a medium level of music 383 

related reward. Behavioural PLS assessed the correlation of the participant reward scores with 384 

MSE, distance and PSD on the two tasks and four epochs. 385 

A strong positive correlation between MSE and reward was apparent during both tasks 386 

and all epochs. However, had we reported all epochs, the analysis would have included 8 387 

conditions for only a total N=16; therefore we opted to not report the results of all epochs of both 388 

tasks in order to increase the validity of the statistical analysis and reduce the likelihood of a 389 

Type II error. Here we only report the positive correlation between MSE and reward during the 390 
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first and last epoch of both tasks to demonstrate that the effect is relatively stable from the 391 

beginning to the end of the music (PLS LV1 p = 0, r2 = .38, Singular Value = 61.53, 74.4% of 392 

cross block covariance; Figure 8), and note that the pattern of effect similar for the middle two 393 

epochs. This effect was reliable in bilateral medial OFC, inferior frontal, cingulate, temporal and 394 

occipital regions, left precuneus and right superior frontal cortex.   395 

  396 
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 397 

Figure 8. Behaviour PLS result examining the correlation between MSE and BMRQ reward score on both tasks and 398 
epochs E1 and E4. (A) Brain scores depict participants scores on the brain-behaviour relationship significantly 399 
expressed by the latent variable, as determined by permutation tests (p = 0). (B) Brain regions and frequencies at 400 
which the relationship was most stable as determined by bootstrapping. Together A and B indicate a positive 401 
correlation between MSE and BMRQ score in the highlighted regions. (C) Highlights bootstrap values from B for 402 
spatial regions where effect was stable. Values are taken as peak across scales 20-60. (D) Scatterplot of the brain 403 
scores from the first epoch with BMRQ reward scores depicts the positive relationship (r2 = .38). 404 
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A significant positive correlation was observed between distance and reward during only 406 

the emotional task for all epochs (PLS LV1 p = .012, r2 = .13, Singular Value = 4.29, 72.9% of 407 

cross-block covariance; Figure 9; perceptual task p > .10). This effect was localized to the right 408 

hemisphere frontal regions, rACC, IP, inferior and middle temporal, and lOcc. 409 

 410 

Figure 9. Behaviour PLS result examining the correlation between complexity distance on all epochs of the 411 
emotional task and BMRQ music reward score. (A) Brain scores depict participants score on the brain-behaviour 412 
relationship significantly expressed by the latent variable, as determined by permutation tests (p = .012). (B) Brain 413 
regions and frequencies at which the relationship was most stable as determined by bootstrapping. Together A and B 414 
indicate a positive correlation between distance and BMRQ score in the highlighted regions. (C) Scatterplot of the 415 
brain scores from the first epoch with BMRQ reward scores further displays this positive relationship (r2 = .13). 416 
 417 

Spectral Power 418 

Higher gamma power was observed during the emotional task, and this effect increased 419 

across epochs (PLS LV1, p = 0, Singular Value = .40, 25.5% of cross-block covariance; Figure 420 

10) in all spatial regions except for bilateral precentral gyrus and left pars triangularis. In 421 

comparison, the perceptual task was dominated by power at lower frequencies at the beginning 422 

of the piece of music, and this effect lessened over time.  423 
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424 
Figure 10. First significant PLS result for the examination of effects of between tasks and within-task epochs on 425 
PSD. (A) The bar graph depicts the data-driven contrast highlighting the differences in spectral power profile 426 
between tasks, and their similar epoch effect, significantly expressed across the entire data set, as determined by 427 
permutation tests (p = 0). (B) Cortical regions and frequencies at which the contrast was most stable as determined 428 
by bootstrapping. (C) Cortical visualization of stable bootstrap values (peak within each frequency band) for alpha 429 
(top) and gamma (bottom) band frequencies.  430 
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There was a positive correlation between music-derived reward as measured by BMRQ 432 

score and all spectral frequencies (PLS LV1, p = 0, r2 = .57, Singular Value = 44.49, 66.46 of 433 

cross-block covariance; Figure 11). The effect was spatially widespread across 58 of the 68 434 

parcellated regions. 435 

 436 
Figure 11. bPLS result examining the correlation between PSD and BMRQ reward score on both tasks and epochs 437 
E1 and E4. (A) Brain scores for the brain-behaviour correlation (p = 0). (B) Bootstrap ratios for brain regions and 438 
frequencies. Together A and B indicate a positive correlation between PSD and BMRQ scores across all frequencies 439 
in the highlighted regions. (C) Spatial regions from B where effect was stable in the beta band frequency (13-30 Hz). 440 
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(D) Scatterplot of the brain scores from the first epoch with BMRQ reward scores depicts the positive relationship 441 
(r2 = .57). 442 
 443 

Discussion 444 

We found higher complexity matching in widespread brain regions during the perceptual 445 

task than on the emotional task, using Procrustes’ distance to compare the MSE of EEG signals 446 

to the MSE of the music itself. This indicates that brain signal complexity more closely 447 

resembles the complexity of the music environment when participants were attending to the 448 

acoustics of the music compared to when they were thinking about how the music makes them 449 

feel. These results support a mapping of environmental information to the brain using complexity 450 

esatimation, and that the level of neural ‘mirroring’ is related to the type of cognitive processing 451 

conducted. 452 

Analysis of the EEG MSE values alone found that MSE was higher in relatively finer 453 

timescales (<48.8ms) during the emotional task than the perceptual task, and that both groups 454 

showed an increase of this pattern as the music progressed. These MSE results demonstrate that 455 

emotion is associated with higher information structure, while the complexity matching results 456 

indicate the role of different information structures from environment input. The MSE results 457 

and the complexity matching results together suggest that the emotional task engaged additional 458 

processes, above and beyond the bottom-up sound perception information. 459 

The brain regions that displayed this MSE effect are frequently linked to music cognition 460 

(e.g. right temporal, inferior frontal gyrus; Zatorre et al., 2002) and self-referential emotional 461 

processing (e.g. medial PFC; Amodio & Frith, 2006; Denny et al., 2012; Ochsner et al., 2004). 462 

The effect was also observed in regions that operate as integrative hubs (e.g. medial parietal) that 463 

are densely connected to neighboring regions and have long-range interconnections, enabling 464 

efficient global integration of information necessary for healthy cognitive function (Hagmann et 465 
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al., 2008; Zamora-López et al., 2010; van den Heuvel and Sporns, 2011). This effect is spatially 466 

and temporally (<48.8ms) similar to increased complexity associated with musical training 467 

(Carpentier et al., 2016), and in other studies where higher MSE has been linked to performance 468 

on cognitive tasks that require higher information processing (Mišić et al., 2010; Heisz et al., 469 

2012). Additionally, due to longer stimulus presentation, the current study opens up the analysis 470 

to coarser scales, up to 195.3ms, well beyond what has been possible in our previous studies and 471 

other empirical studies of cognition and brain MSE. We observed that MSE was initially higher 472 

in the perceptual task and decreased over time in the temporal scale range of 78.1-195.3ms, and 473 

we are not aware of any previous studies that have examined empirical brain complexity at this 474 

scale. We suggest the possibility that complexity at these slow timescales is indicative of an 475 

initial distributed and re-entrant search for neural templates associated with the music upon first 476 

listening, followed by a decrease of this activity as the brain settles into the neural solution for 477 

ongoing stimulus processing. However, further investigation of the link between cognition and 478 

complexity at these scales is required. 479 

Higher music reward scores on the BMRQ were associated with a lower complexity 480 

match and higher EEG MSE. This negative correlation between complexity matching and reward 481 

was only observed on the emotional task, not on the perceptual task. Similar to the emotional 482 

task above, we suggest that reward is associated with additional internal information above and 483 

beyond that of the external stimulus. The complementary MSE and matching results suggest that 484 

music reward requires a brain state that is quantitatively and qualitatively different than the 485 

brain’s requirements for music sound perception alone. Music reward is associated with the 486 

activation of multiple different intrinsic processes and high information integration. In other 487 
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words, music reward is a product of ‘the more you add’ to perception on top of immediate 488 

sensory events. 489 

The observed relationship between higher neural information processing and music 490 

reward may be generated by the direct reward experience itself, since pleasurable responses to 491 

music are associated with particular patterns of cortical and subcortical activity not observed 492 

during neutral music perception. Multiple studies have reported connections between music 493 

reward and BOLD activity in vmPFC and OFC, and also IFG, ACC and sensory motor areas  494 

(Blood and Zatorre, 2001; Salimpoor et al., 2013). The relationship between complexity and 495 

reward in the present study was observed in temporal regions, as well as paralimbic and cortical 496 

regions involved in emotional processing (e.g. OFC, insula). Another proposal, not mutually 497 

exclusive to the first, is that the effects capture intermediate internal states that are important to 498 

generating the reward response. For example, the activity may reflect processes related to the 499 

BMRQ factors, such as musical knowledge, or other factors not directly measured by the 500 

BMRQ, like visual imagery or episodic memories evoked by the music (Juslin and Västfjäll, 501 

2008; Vuoskoski and Eerola, 2012). Consistent with this notion, the spatial reliability of the 502 

correlation between distance and music reward suggest that frontal regions (superior, middle, 503 

inferior frontal) were processing internally generated information patterns, while inferior 504 

temporal and anterior cingulate cortex were involved in both the distance and MSE effects.  505 

Integration may be a requirement for the commonly highlighted role of expectancy in 506 

music reward. The theory that rewarding emotional responses to music are derived from 507 

expectations and anticipation during music listening was first extensively described by Meyer 508 

(1956; see also Huron, 2006). It explains that the expectations are generated from explicit and 509 

implicit knowledge of music structure and patterns, and composers create emotional arousal by 510 
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playing with ‘tension and release.’ Anticipation of a familiar rewarding segment of music has 511 

been linked to caudate dopamine release and BOLD activity prior to nucleus accumbens 512 

dopamine activity at peak reward response (Salimpoor et al., 2011). Music expectations were not 513 

behaviourally evaluated in the present study, but there is a logical link between them and brain 514 

signal complexity. Generation of expectations requires sufficient understanding and neural 515 

representation of the structure and patterns in the music. Therefore, it may be that enjoyment of a 516 

piece of music needs to be associated with a minimum amount of information processing that 517 

would allow the listener to appreciate the music as a coherent whole, rather as a sequence of 518 

individual notes. Further investigation of listeners’ enjoyment of individual music pieces, rather 519 

than as general trait music reward, is required to substantiate this theory and make a stronger 520 

connection between brain complexity and music pleasure. 521 

While there were no notable differences in complexity between the song sets for each 522 

task, and the sets were selected to be acoustically and thematically similar, the songs were not 523 

identical for both tasks. This leaves open the possibility that other differences in the chosen 524 

songs are responsible for the observed brain differences between songs. This does raise 525 

interesting options for the future study of how different stimuli properties may influence brain 526 

complexity.  527 

Spectral Power 528 

Congruent with the MSE pattern of the trade-off between faster and slower timescales, 529 

we observed higher gamma power in the emotional task, compared to lower frequency power 530 

associated with the perceptual task, as well as a decrease across time in low frequency power in 531 

regions typically linked to music processing and an increase in gamma in these and most other 532 

regions. Gamma activity has been repeatedly implicated as important for perceptual binding and 533 
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may be associated with binding of musical features at the sensory level and matching of external 534 

acoustic information to internal thought processes for the formation of meaningful concepts 535 

(Bertrand & Tallon-Baudry, 2000; Crone et al., 2001; Keil et al., 1999; Rodriguez et al., 1999; 536 

Tallon-Baudry et al., 1998). Gamma activity is commonly found to be higher in adult musicians 537 

when listening to music and may reflect enhanced binding of musical features (Bhattacharya and 538 

Petsche, 2001, 2005; Shahin et al., 2008; Pallesen et al., 2015). There is also suggestion that 539 

gamma activity may be related to musical expectations (Snyder and Large, 2005). In a study 540 

conducted by Fujioka and colleagues (2009) gamma amplitude increased from baseline for each 541 

tone of a repeating pattern, and this effect continued on trials where the tone was unexpectedly 542 

omitted. None of these studies of the spectral effects of musical training or music listening 543 

conducted spatial analysis; therefore, it is difficult to place this facet of our results in the context 544 

of the other literature. However, our observation of increased gamma power in auditory and 545 

some associative regions is consistent with the hypothesis of the role of gamma in perceptual 546 

binding.  547 

Conclusions 548 

EEG complexity was higher and different from music complexity during the emotional 549 

task in which participants were reflecting on how the music made them feel, compared to the 550 

perceptual task that had participants track pitch and tempo. Complexity matching was also 551 

correlated with BMRQ score, such that music reward was associated with higher neural signal 552 

information and a worse match to the bottom-up music information. These results suggest that 553 

complexity matching can assess the degree to which some cognitive-affective states are 554 

associated with internal information integration which differs from the neural representation of 555 

bottom-up sensory information processing.  556 
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