
Eye pupil signals information
gain

Alexandre Zénon
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In conditions of constant illumination, the eye pupil diameter indexes the
modulation of arousal state and responds to a large breadth of cognitive
processes, including mental effort, attention, surprise, decision processes, de-
cision biases, value beliefs, uncertainty, volatility, exploitation/exploration
trade-off or learning rate. Here, I propose an information theoretic frame-
work that has the potential to explain the ensemble of these findings as
reflecting pupillary response to information processing. In short, updates of
brain internal model, quantified formally as the Kullback-Leibler (KL) di-
vergence between prior and posterior beliefs, are the common denominator
to all these instances of pupillary dilation to cognition. I show that stimulus
presentation leads to pupillary response that is proportional to the amount
of information the stimulus carries about itself and to the quantity of in-
formation it provides about other task variables. In the context of decision
making, pupil dilation in relation to uncertainty is explained by the wan-
dering of the evidence accumulation process, leading to large summed KL
divergences. Finally, pupillary response to mental effort and variations in
tonic pupil size are also formalized in terms of information theory. On the
basis of this framework, I compare pupillary data from past studies to simple
information theoretic simulations of task designs and show good correspon-
dance with data across studies. The present framework has the potential to
unify the large set of results reported on pupillary dilation to cognition and
to provide a theory to guide future research.
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Cognitive pupillary response

Beside the well-known response of pupillary muscles to
light, allowing to narrow the range of light intensity reach-
ing the retina and optimizing its information capacity [1],
pupil size varies also as a function of a wealth of cogni-
tive phenomena, including mental effort [2, 3, 4, 5], sur-
prise [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], emotion [16], deci-
sion processes [17, 18, 19, 20], decision biases [21, 19, 22],
value beliefs [23, 24, 25], volatility (unexpected uncertainty;
[26, 27, 28, 10], exploitation/exploration trade-off [29, 30],
attention [31, 32, 33, 34, 35, 36], uncertainty [37, 19, 38,
12, 21, 23, 25], confidence [39], response to reward [40],
learning rate [41, 10, 42, 43, 41], neural gain [44, 10, 36, 45]
or urgency [46]. These variations in diameter follow coher-
ent changes in neural activity throughout cortex, regulated by
neuromediators, and referred to as arousal [47, 48, 49, 50].
The present work is based on the strong hypothesis that the
ensemble of phenomena that trigger changes in pupil-linked
arousal all depend on a basic underlying information theo-
retic process: the update of brain internal models. We will
review a large breadth of findings from the literature and will
reinterpret them under the light of that framework.

Surprise and self-information

One of the first cognitive variables that was shown to in-
fluence pupillary responses is surprise, defined in informa-
tion theory as the negative logarithm of the probability of an
event. This quantity is also called self-information, because
it measures how much information is gained when observ-
ing an event. Pupil size has been shown to respond vigor-
ously and robustly to surprise, with dilation in response to
events in inverse proportion to their frequency of occurrence
in a trial [51, 14, 52]. Pupil also responds to stimulus dis-
appearance, in inverse proportion to how likely the stimulus
is to disappear at that given time [9]. Along the same line,
pupillary dilation has been reported in relation to the prob-
ability of a reward outcome, independently of its sign (i.e.
responses are equivalent for losses and rewards; Van Slooten
et al. [25], Lavín et al. [6], Satterthwaite et al. [37]) or even
to the occurrence of errors, as a function of their likelihood
[53]. When events have probability distributions defined
along continuous feature spaces (e.g. position, number line),
pupil also responds in inverse proportion to the probability
density of occurrence of that feature [13, 10]. When event
occurrences depend on past trial history, pupil responses re-
flect surprise taking account of that history [12, 10]. Despite
this apparent consistency of findings, no attempts have been
made so far to assess whether the relationship between pupil
size and event probability follows a logarithmic trend, as pre-
dicted if pupil signals self-information. To step in this direc-
tion, the data from aforementioned studies is plotted against
quantified surprise values in Fig. 1 (see squares in figure).

This analysis is restricted to studies that reported probabili-
ties quantitatively and measured pupil size in millimetres or
percents. Precise comparison across studies is not possible
given that detailed conditions are not available (i.e. time and
performance pressure, lighting conditions, baseline arousal
levels, etc.) and that measurement methods may differ. How-
ever, this visualization already suggests that pupil dilation is
linearly proportional to self-information, within and across
studies.

Information about task variables

The examples mentioned so far show that pupil size di-
lates in proportion to the amount of information needed to
encode sensory stimuli. When a surprising stimulus is pre-
sented, self-information is large and pupils dilate. How-
ever, sensory stimuli such as cues, can also carry informa-
tion about other, separate events. Pupillary response to such
cases was investigated in Preuschoff et al. [7], in which stim-
uli informed participants on their winning probability. Sub-
jects had to bet on which of two cards, whose values were
revealed afterwards, was going to be larger. In this study,
Preuschoff and colleagues looked at the pupil response to the
display of the first card value. Here all values (from 1 to
10) were equally likely, such that self-information was equal
in all conditions. However, some cards provided more in-
formation than others about the chance of having a winning
or losing bet. For example, when the first card was a 10,
there was a guarantee of winning/losing if participant had
bet on the first card being larger/smaller (there were no ties
in the game). Conversely, a 5 provided little information
about the chance of winning, since probabilities were still
close to 50-50. Such gradual gain of information about the
probability distribution of a variable (chance of winning in
the present case) can be quantified by the Kullback-Leibler
(KL) divergence between prior and posterior variable distri-
butions. KL divergence can be interpreted as the amount of
information gained about the true probability distribution of
a variable, after receiving new data. KL divergence provides
a generalized measure of information gain that is equivalent
to self-information in the case of detection or discrimination
tasks. Remarkably, the pupillary response to first card value
presentation in Preuschoff et al. [7] followed closely the KL
divergence between subjects’ belief on winning probability
before and after observing the first card value (see light blue
circles in figure 1 and panel A in figure 2), even though
these results were not discussed as such in the paper.

When the second card was presented, different situations
could occur. The predictions could be confirmed, in which
case little information would be gained (e.g. first card was 8,
predicting first card being larger, and second card was 5, con-
firming predictions), or they could be contradicted, in which
case a lot of information would be gained (e.g. first card was
8 but second card was 9). Here again, pupil responded in pro-
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Figure 1. Relationship between information cost and pupil dilation in previous studies. Information cost was quantified as
the KL divergence between prior and posterior beliefs. Squares in the graph illustrate pupillary responses to discrimination or
detection tasks, in which KL divergence simplifies to stimulus self-information. Circles illustrate pupil dilations in response
to task variables and decision making. See supplementary information for details.

portion to the amount of information being gained about win-
ning probability, quantified as KL divergence (see figure 1
and panel B in figure 2). The findings of Preuschoff et al. [7]
are compelling for several reasons. First, pupil size variations
occurred following participants’ choice and were thereby not
affected by decision processes or motor responses, reflect-
ing purely inferential processes. Second, they allow us to
make clear quantitative predictions in terms of information
processing and these predictions are strikingly confirmed.

One difference between surprise and KL divergence mod-
els of pupil response is that, if pupil responded only to sur-
prise, it would always depend on the frequency of occur-
rence of presented stimulus, independently of task. In con-
trast, KL divergence models predict that pupil will respond
to the amount of information provided by stimuli about task
variables. This difference was exploited in two studies by
Reinhard and colleagues [8, 54] in which stimulus probabil-
ities were manipulated in a GO/NOGO tasks. In accordance
with the information model, Reinhard et al. showed that
pupillary response depended only on the probability of oc-
currence of the features of the GO/NOGO stimuli that were

informative about the task (e.g. when GO was defined by
the occurrence of 1-letter as opposed to 2-letter stimuli, the
identity of the letter being presented was irrelevant and failed
to affect pupil response; see simulated results in figure 1).
More generally, several studies have found that pupillary re-
sponses to stimuli depend on whether they are attended to or
not [31, 32, 34, 55, 56] and that these responses scale with
the subjective salience of the stimuli [35, 56, 57]. In atten-
tional blink experiments, targets that follow closely previous
target occurrences remain sometimes undetected. In these
cases, pupillary response to target occurrence is greatly di-
minished [32]. Larger pupil dilation is associated with larger
distractor interference [58], and increased processing of sub-
liminal cues [59], in agreement with the view that pupil re-
sponse scales with the quantity of visual information being
processed.

Decision making

When decisions are made in the absence of uncertainty,
such as in simple stimulus-response association tasks, the re-
lationship between pupil response and information gain is
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Figure 2. Data from Preuschoff et al. [7] (left y-axis), together with simulations based on KL divergence between probability
distribution of winning before and after viewing the stimuli (right y-axis). Responses to first card presentation is shown in
panel A, whereas panel B illustrates responses to second card presentation. See supplementary material for details.

straightforward. For example, in Richer and colleagues, both
reaction time and pupil dilation were shown to vary as a func-
tion of the number of stimulus-response associations [38], in
accordance with the classical Hick-Hyman law [60]. Here
the information cost of the decision can be quantified as the
log of the number of possible stimulus-response associations
in the task, which is equivalent to the KL divergence between
prior and posterior beliefs [61] (see figure 1, yellow circles).

In conditions of uncertainty, the situation is slightly more
complex. Satterthwaite and colleagues tested participants on
a task similar to that of Preuschoff et al. [7], except that
the decision followed, rather than preceded, the display of
the first card value [37]. Participants had to pick either the
face-up or face-down deck of cards. The second card value
was then revealed and the trial was won if the card from the
chosen deck was the largest [37]. Interestingly, in that case,
the results were exactly opposite those of Preuschoff: when
the first card was less informative (e.g. 5), making it more
difficult for the subject to choose which deck to pick, the
pupil response was larger than when the first number was
either small or large, a case for which decision was eas-
ier to make. The reaction time associated with the deci-
sion followed the same pattern, being larger for less infor-
mative values. This observed relationship between reaction
time and pupillary dilation has been found in many stud-
ies [46, 19, 62, 24, 63, 2, 64] and pupillary responses are
best modelled by means of regressors that extend during the

whole reaction time period of the trial rather than by brief
pulses limited to stimulus onset [18, 22]. These findings sug-
gest that the process from which pupillary dilation originates
is maintained during the whole decision process.

The finding that uncertain or conflictual decisions are
slower than decisions for which more information is avail-
able from stimulus is classical in the decision making litera-
ture. It can be modeled as a drift diffusion process in which
noisy evidence accumulates until a threshold is reached and
in which the rate of accumulation depends on how close the
option values are to each other [65, 66]. Drift diffusion mod-
els can also be interpreted as time-resolved Bayesian deci-
sion making processes in which each accumulation step cor-
responds to the update of prior to posterior belief [67]. The
noisier the evidence, the more updates will tend to go in the
wrong direction. Therefore, the summed quantity of infor-
mation accumulated over the whole decision process is larger
when evidence is noisy than when it is not. Thus, results
from Satterthwaite et al. [37] can be accounted for by con-
sidering the sum of the KL divergences resulting from every
update along the drift diffusion process (see figure 3 and
light orange circles in figure 1). In Urai et al. [19] and Col-
izoli et al. [24], pupil size was measured during motion dis-
crimination tasks and was shown to vary in parallel with de-
cision uncertainty and reaction time: it decreased with stimu-
lus strength for correct trials (low uncertainty), but increased
with stimulus strength in error trials (high uncertainty). This
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pattern of results can also be explained by recurring to drift
diffusion models of decision making and by assuming vari-
able drift rates [66]. Along the same line, Cheadle et al.
[45] showed that during a task in which evidence accumu-
lated over eight successive stimulus presentation, pupillary
responses were proportional to the amount of evidence pro-
vided by each stimulus. Moreover, this response was mod-
ulated by recency and confirmation biases, which both also
affected decisions. So pupil responses tracked decision up-
dates, as predicted by our proposal. In de Gee et al. [18]
and de Gee et al. [22], pupil responses in detection and 2-
alternative forced choice tasks were shown to be inversely
proportional to the probability of the choice and hence to the
KL divergence between prior and posterior: in conservative
participants (biased towards NO), YES choices led to larger
responses, while the opposite tended to be found in more lib-
eral participants (biased towards YES). Pupil responses were
also shown to vary as a function of the influence of the prior
on perceptual decisions in de Gee et al. [22] and Krishna-
murthy et al. [21]: when prior beliefs have less weight (be-
cause of better control or attentional allocation or because
of low prior reliability), more information is extracted from
the sensory stimulus, KL divergence is larger and pupil di-
lates more. Along the same line, when the occurrence of
surprising outcomes suggests the task structure may have
changed, pupil dilations is even larger [10, 21, 26]. This is
because such environmental volatility is associated with in-
creased learning rate and thus increased influence of sensory
evidence on internal models of the task. Indeed, the extent
to which volatility affected learning rate correlates with the
magnitude of the pupil response [10, 21]. Together, these
findings on pupillary response to volatility and surprise con-
firm that pupil diameter scales with how much novel sensory
evidence is used to update current belief states.

Mental effort

Another common findings in the literature is that pupil
size varies as a function of task demands and subject’s en-
gagement in the task, suggesting the view that pupillary di-
lation indexes mental effort [2, 4, 5, 68, 69, 70]. We have
recently proposed that mental effort too can be quantified as
the average KL divergence between prior and posterior be-
liefs [61]. Effortful tasks often include large number of asso-
ciations between stimuli and responses, resulting in low prior
beliefs for each association and requiring large updates in or-
der to reach precise posterior beliefs (e.g. N-back task; see
simulations of N-back task from Rondeel et al. [68] in Fig.
1, red circle). Other cases of difficult tasks are those in which
prior beliefs do not match task statistics (e.g. Stroop task), or
in which task statistics change constantly (e.g. switch tasks),
also implying large updates and large information costs (see
simulations of Stroop and switch tasks from Rondeel et al.
[68] in Fig. 1, orange and yellow circle). So the present

proposal that pupil size scales with information gain can also
be applied to complex tasks and accounts for the classical
relation between mental effort and pupillary dilation.

Tonic pupil size

So far we have restricted our discussion to phasic pupil
responses, i.e. the change in pupil size that follows event on-
set. However, the tonic variations in pupillary diameter, usu-
ally measured during baseline epochs that precede trial on-
sets have also some interesting properties. These tonic pupil-
lary changes have been related to the modes of discharge
observed in noradrenergic neurons [29, 63, 48, 47, 50, 30].
Large phasic responses occur when baseline firing rates of
noradrenergic neurons are low and would correspond to
small tonic pupil size, whereas large baseline noradren-
ergic activity would be associated with large tonic pupil
size but small phasic responses [71, 29, 63, 72, 47]. In-
deed, negative correlations between spontaneous changes in
tonic and phasic pupil size have been reported repeatedly
[29, 20, 63, 44, 73, 18, 74, 72], even though task-induced
or interindividual changes in tonic and phasic pupil size go
often in the same direction [12, 21, 10, 30, 25, 75].

The relation between spontaneous changes in tonic pupil
size and behaviour follows an inverted u-shape, with optimal
performance being associated with intermediate pupil size,
evoking Yerkes-Dodson law [63, 72, 48, 47, 58]. Large tonic
pupil sizes are concurrent with mind-wandering, distractibil-
ity and exploratory behaviour [33, 30, 76, 29, 77] while very
low tonic pupil sizes are associated with low vigilance and
sleepiness [78, 79, 80, 63, 36, 71, 72, 47]. However, in con-
trast with aforementioned spontaneous changes, increases in
tonic size that are task-induced occur, on the contrary, in con-
ditions of high task demand: when taxing working memory
[81], when counting stimuli silently [82], following changes
of contingency [25, 83, 21, 10, 30, 25, 26] or in conditions of
high uncertainty [12].

Assuming that tonic variations of pupil size, like phasic
task-induced changes, reflect quantitatively the amount of in-
formation being processed by the brain may help reconcile
these contradictory findings in a parsimonious way. When
information is attached to abrupt sensory signal, it leads to
phasic dilation whose magnitude is proportional to the KL di-
vergence between prior and posterior beliefs. In the absence
of clear onset, tonic pupil size reflects information processing
from memory, i.e. manipulation of working memory, plan-
ning, mind-wandering, mental imagery or offline learning.
Therefore, tonic pupil size would increase when cognitive
activity occurs out of sync with task events [76], hence de-
creasing limited cognitive resources available for main task
[61], leading to distractibility and exploratory behaviour, but
it would also increase during demanding covert computa-
tions on working memory [81, 82, 25]. However, confirming
this hypothesis requires quantifying out-of-sync information
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Figure 3. Simulation of reaction times (panel A) and percent correct responses (panel B) from Satterthwaite et al. 2007 by
means of a DDM process. Panel C illustrates the resulting KL divergences (grey bars), which follow the same trend (increasing
with uncertainty) as the pupil size reported in the original study (black dots). It is noteworthy that the model used to simulate
these data has decision threshold as single degree of freedom. See supplementary material for more details.

processing in terms of KL divergence, like we did for phasic
pupillary responses. Since we cannot provide such quantified
predictions on the basis of current literature, this will have to
rely on future experimental studies.

Relation to alternative theories

Pupillary responses, because of their relation to the no-
radrenergic system [71], have previously been linked to un-
expected uncertainty [27, 84], sometimes taken as synonym
to surprise [7, 28, 6] and sometimes as an equivalent of
volatility, i.e. how likely the environment dynamics is to
change [84, 27, 21, 85, 86, 87]. These two definitions are
strongly related since surprising observations suggest that
the statistical structure of the environment may have changed
[88]. While surprise is event-related and could be linked to
phasic pupillary changes [28], volatility varies slowly and
could be related to tonic pupil size [27]. Unexpected un-
certainty relates also strongly to the problem of exploita-
tion/exploration trade-off, another concept linked to pupil-
lary responses [30, 29, 83, 89]: when confidence in the inter-
nal model of the environment drops following surprising ob-
servations, exploitation strategies lose value with respect to
alternative exploration strategies [84]. However, recent data
has shown that variations of tonic pupil size are not indica-
tive of unexpected uncertainty, but are rather a signature of
reducible uncertainty (ambiguity resulting from poor model
of environment, caused by undersampling; Krishnamurthy
et al. [21]) or expected uncertainty (related to the variance of
the task; De Berker et al. [12]). This is also in line with
the finding that pupil size does not depend only on nora-

drenaline but also on other neuromediators such as acetyl-
choline [50], whose function has been associated with encod-
ing of expected uncertainty [27]. Phasic pupillary responses,
on the contrary, were shown to correlate with unexpected un-
certainty [21]. However, since volatility is a slow-changing
property of the environment, this observed correlation with
phasic pupillary changes must reflect the fact that, when prior
knowledge on environment is unreliable (i.e. volatility is
high), more weight is given to new sensory evidence, as op-
posed to prior biases [90, 84, 27], and model updates between
prior and posterior beliefs are more expansive [90], leading
to larger pupillary dilations. Overall, current evidence does
not seem to favour the view that pupil dilation would be in-
dicative of specific types of uncertainty but, as I argue in
the present work, would rather signal information process-
ing, which itself depends strongly on uncertainty conditions.

Limitations

Notably, two studies reported results that appear to be in
contradiction with our information model. In O’Reilly et al.
[13], the onset of unexpected saccadic targets led to pupillary
dilations, but when these violations of expectation indicated
the need to update the internal model of saccade target dis-
tributions, pupillary responses were smaller than when these
unexpected events were identified as being outliers (identi-
fied by their colour). In Van Slooten et al. [23], pupillary
response to the outcome of subjects’ choices in a 2-arm ban-
dit task was shown not to depend on modelled expectations:
when subjects were thought to expect a large reward, their
pupillary response was similar regardless of feedback. Fur-
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ther, the magnitude of the decision-related response scaled
with the difference between the available options, and feed-
back pupillary response was inversely proportional to the
model learning rate, both results being in apparent contra-
diction with previous literature [10, 37, 19] and the present
proposal. In both aforementioned cases, pupillary responses
were compared to variables of computational models fitted
to behaviour, as opposed to direct task variables. These be-
havioural models are based on assumptions and conclusions
drawn from the models are valid only to the extent that these
assumptions are justified. For example, in O’Reilly et al. [13]
the model assumed participants did not update their internal
model when faced with outlier stimuli. However, it could be
argued that participants always updated their internal models
in the face of surprising targets but had to put extra work to
cancel these updates when figuring out that the target was an
outlier. So while the results of O’Reilly et al. [13] and Van
Slooten et al. [23] appear to contradict our view and invite
us to remain cautious in our conclusions, possible alternative
interpretations of their data suggest that more investigations
should be conducted to resolve this apparent inconsistency.

Conclusion

In the present paper, the factors that trigger changes in
pupil-linked arousal were discussed under the light of infor-
mation theoretic framework. The hypothesis that pupil size
scales with the amount of information being processed, al-
lowed us to explain a wide range of data, sometimes with
quantitative predictions. This view applies both to tonic and
phasic pupillary responses, the difference being that phasic
responses mark information processing triggered by precise
event onset while tonic pupillary changes are not precisely
aligned to external events.

Beside the factors that trigger pupillary changes, an
equally important issue concerns the computational effects of
pupil-linked arousal, and more generally, its functional role
in brain computations. This issue goes beyond the scope of
the present paper and will be discussed in future work.
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and Racsmány M. 2017. Tonic no-
radrenergic activity modulates ex-
plorative behavior and attentional
set shifting: Evidence from pupil-
lometry and gaze pattern analy-
sis. Psychophysiology, 54, 1839–
1854. (doi: 10.1111/psyp.12964).

84 Parr T and Friston K. J. 2017.
Uncertainty, epistemics and active
Inference. J. R. Soc. Interface,
14, 20170376. (doi: 10.1098/rsif.
2017.0376).

85 Yu A and Dayan P. 2003. Ex-
pected and unexpected uncertainty:
ACh and NE in the neocortex.
Nips 15, 15, 157–164. (doi:
citeulike-article-id:496920).

86 Payzan-LeNestour E, Dunne S,
Bossaerts P, and O’Doherty J.
2013. The Neural Representation
of Unexpected Uncertainty dur-
ing Value-Based Decision Making.

Neuron, 79, 191–201. (doi: 10.
1016/j.neuron.2013.04.037).

87 Heilbron M and Meyniel F. 2019.
Confidence resets reveal hierar-
chical adaptive learning in hu-
mans. PLoS Comput. Biol., 15,
e1006972. (doi: 10.1371/journal.
pcbi.1006972).

88 Soltani A and Izquierdo A. 2019.
Adaptive learning under expected
and unexpected uncertainty. (doi:
10.1038/s41583-019-0180-y).

89 Lewis G. J and Bates T. C. 2015.
Pupil diameter tracks the explo-
ration–Exploitation trade-off dur-
ing analogical reasoning and ex-
plains individual differences in
fluid intelligence. J. Cogn. Neu-
rosci., 28, 308–318. (doi: 10.1162/

jocn).

90 Moens V and Zénon A. 2019.
Learning and forgetting using re-
inforced Bayesian change detec-
tion. PLoS Comput. Biol., 15,
e1006713. (doi: 10.1371/journal.
pcbi.1006713).

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/693838doi: bioRxiv preprint 

https://doi.org/10.1101/693838
http://creativecommons.org/licenses/by-nc/4.0/

