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Many ecosystems, from vegetation to biofilms, are composed of territorial populations that com-
pete for both nutrients and physical space. What are the implications of such spatial organization
for biodiversity? To address this question, we developed and analyzed a model of territorial re-
source competition. In the model, all species obey trade-offs inspired by biophysical constraints
on metabolism; the species occupy non-overlapping territories while nutrients diffuse in space. We
find that the nutrient diffusion time is an important control parameter for both biodiversity and
the timescale of population dynamics. Interestingly, fast nutrient diffusion allows the populations
of some species to fluctuate to zero, leading to extinctions. Moreover, territorial competition spon-
taneously gives rise to both multistability and the Allee effect (in which a minimum population is
required for survival), so that small perturbations can have major ecological effects. While the as-
sumption of trade-offs allows for the coexistence of more species than the number of nutrients – thus
violating the principle of competitive exclusion – overall biodiversity is curbed by the domination
of “oligotroph” species. Importantly, in contrast to well-mixed models, spatial structure renders di-
versity robust to inequalities in metabolic trade-offs. Our results suggest that territorial ecosystems
can display high biodiversity and rich dynamics simply due to competition for resources in a spatial
community.
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Living things exist not in isolation but in commu-
nities, many of which are strikingly diverse. Tropical
rainforests can have more than 300 tree species in a
single hectare [1], and it has been estimated that one
gram of soil contains 2,000-30,000+ distinct microbial
genomes [2, 3]. Understanding the relationship between
biodiversity and the environment remains a major chal-
lenge, particularly in light of the competitive exclusion
principle: in simple models of resource competition, no
more species can coexist indefinitely than the number of
limiting resources [4, 5]. In modern niche theory, com-
petitive exclusion is circumvented by mechanisms which
reduce niche overlaps and/or intrinsic fitness differences
[6, 7], suggesting that trade-offs may play an important
role in the maintenance of biodiversity. Intriguingly, di-
versity beyond the competitive-exclusion limit was re-
cently demonstrated in a resource-competition model
with a well-mixed environment and exact metabolic
trade-offs [8]. However, many ecosystems are spatially
structured, and metabolic trade-offs are unlikely to be
exact. While some spatial structure is externally im-
posed, it also arises from the capacity of organisms to
shape their environment. How does self-generated spa-
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tial structure, along with realistic metabolic constraints,
impact diversity?

Various studies have clarified how intrinsic environ-
mental heterogeneity (e.g. an external resource gradi-
ent) fosters biodiversity by creating spatial niches [9–
13]. Others have demonstrated that migration between
low-diversity local environments can lead to “metacom-
munities” with high global diversity [14–19]. But how
is diversity impacted by local spatial structure? Re-
cent models suggests that spatial environments with-
out intrinsic heterogeneity can support higher diversity
than the well-mixed case [20–25], although the effect
depends on the interactions and details of spatial struc-
ture [26, 27]. In these models, competition follows phe-
nomenological interaction rules. In some cases, trade-
offs have been invoked to limit fitness differences [21]
and penalize niche overlap [25], but did not otherwise
structure the spatial interactions. All these models al-
low coexistence when the combination of spatial segre-
gation and local interactions weakens interspecific com-
petition relative to intraspecifc competition. However,
it remains unclear how such interactions relate to con-
crete biophysical processes.

Here, we study biodiversity in a model where
species interact through spatial resource competition.
We specifically consider surface-associated populations
which exclude each other as they compete for territory.
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This is an appropriate description for biofilms, vegeta-
tion, and marine ecosystems like mussels [28] or coral
[29], in contrast with models that represent populations
as overlapping densities and better describe motile or
planktonic populations [9, 30]. The well-mixed envi-
ronment is an explicit limit of our model, so we are able
to isolate the unique effects of spatial structure.

We find that, contrary to expectations, introduc-
ing population territories into a model with metabolic
trade-offs reduces biodiversity relative to the well-mixed
case. Extinctions occur over a new timescale inversely
related to the nutrient mixing time. Spatial structure
also leads to the emergence of multiple steady states
and the Allee effect, so that small perturbations may
have drastic consequences. Finally, we find that overall
biodiversity is curbed by the domination of “oligotroph”
species but is robust to inequalities in metabolic trade-
offs.

RESULTS

Model

We developed a model of territorial populations com-
peting for diffusing resources to clarify the relationship
between spatial structure, metabolic trade-offs, and bio-
diversity. The model is spatially explicit and relates
the mechanistic dynamics of competition to parame-
ters with clear biological meaning. Crucially, compet-
ing populations are not interpenetrating, so populations
are competing for both nutrients and territory.

Specifically, we consider m species competing for p
nutrients in a one-dimensional space of size L with
periodic boundary conditions (a ring). The rate of
supply of nutrients is specified by the supply vector
~S = (S1, S2...Sp) such that

∑
i Si = S, where S is

the total nutrient supply rate in units of concentra-
tion/time. The nutrient supply is spatially uniform, so
there is no external environmental heterogeneity. Each
species σ ∈ [1...m] is defined by its metabolic strategy
~ασ = (ασ1, ασ2...ασp), which specifies the proportion of
its metabolic resources (e.g. enzymes) it allocates to
the consumption of each nutrient. Metabolic trade-offs
are implemented via a constraint on the enzyme budget,
namely

∑
i ασi = E for all species (except where noted).

Metabolic strategies and the supply can be represented
as points on a simplex of dimension p− 1 (Fig. 1A and
Fig. 2A inset, for example). Each species occupies a
segment of the ring corresponding to its population nσ,
so that nσ is a length and σ = 1...m specifies a spatial
ordering. For example, the population with strategy ~α2

occupies the segment of the ring between populations
with strategies ~α1 and ~α3. Populations never overlap, so
the total population satisfies

∑
σ nσ = L. Figures 1B

and C show an example of the time evolution of one
such spatial community consisting of 11 species com-
peting for three nutrients.

While the supply of nutrients is spatially uniform,
the local rate of nutrient consumption depends on the
metabolic strategy of the local species, and nutrients
diffuse in space. We study the regime where popula-
tion growth is nutrient-limited, so the rate of uptake of
each nutrient is linear in its concentration. Thus, within
each region occupied by a single species σ, the nutrient
concentrations cσi obey

∂cσi
∂t

= Si − ασicσi +D
∂2cσi
∂x2

, (1)

where D is the diffusion coefficient for all nutrients.
As nutrient processing is generally much faster than
growth, we assume a separation of timescales, such that
nutrient concentrations equilibrate before populations
change. Then ∂c

∂t = 0, and

cσi(x) =
Si
ασi

+Aσi exp
(
x

√
ασi
D

)
+Bσi exp

(
−x
√
ασi
D

)
.

(2)
The constants of integration Aσi and Bσi are fixed by
the physical requirement that ci(x) be continuous and
differentiable at the population boundaries. Figure 1D
shows the concentrations of the three nutrients after
the populations shown in Fig. 1B and C have reached
steady state. The competitors transform the uniform
nutrient supply into a complex spatial environment by
depleting their preferred nutrients while allowing other
nutrients diffuse to their neighbors.

The populations change in time according to

dnσ
dt

=
∑
i

ασi

(
v

∫ nσ

0

ci(x) dx

)
− δnσ, (3)

where δ is the death rate and the integral is taken over
the territory occupied by species σ. v is a length that
converts nutrients to territory growth. The total pop-
ulation remains fixed at L, corresponding to competi-
tion for a share of a fixed total territory. This implies∑
σ ṅσ = 0, which requires δ = vS, i.e. the death rate

matches the nutrient value of the total supply rate. We
choose units of time and concentration such that v = 1
and S = 1, without loss of generality. In the exam-
ple shown in Fig. 1B and C, nine species coexist, far
exceeding the three-species limit set by competitive ex-
clusion.

The spatial nutrient environment influences the pop-
ulation dynamics via the dimensionless diffusion time
τD ≡ L2E/D, which is the time for nutrients to diffuse a
distance L relative to the uptake time. Competitors in-
teract only through the nutrient environment, so when
nutrients diffuse instantaneously (τD = 0), the spatial
dynamics reduce to the well-mixed dynamics. (See SI
Appendix for the τD → 0 expansion.)
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Figure 1. A model with spatial structure and metabolic
trade-offs supports more species than expected from the
principle of competitive exclusion. Example with three nu-
trients and eleven species starting with equal populations.
(A) Each species uptakes nutrients according to its enzyme-
allocation strategy (ασ1, ασ2, ασ3). Because strategies sat-
isfy the budget constraint

∑
i ασi = E, each can be repre-

sented as a point on a triangle in strategy space. The nu-
trient supply ~s = (E/S)~S = (0.25, 0.45, 0.3) is represented
as a black diamond. Colors correspond to strategies and are
consistent throughout the figure. (B) Each species occupies
a fraction of a one-dimensional space (a ring) and has a cor-
responding time-dependent population size nσ(t). Here, the
nutrient diffusion time τD is 400. (C ) Population dynamics
from A. Nine species coexist on three nutrients. (D) Con-
centrations of the three nutrients at steady state (vertical
black lines denote boundaries between populations).

Biodiversity

How does territorial spatial structure influence bio-
diversity? As an illustrative example, we consider ten
species competing for two resources. The simplex in the
inset of Fig. 2A shows how each of the strategies (col-
ored dots) and the nutrient supply (diamond) divide
between the two nutrients. In Fig. 2A, the nutrients
are well-mixed (τD = 0), and all ten species coexist
at steady state. The steady state of the spatial case
shown in Fig. 2B still exceeds competitive exclusion,
with three species coexisting on two resources, but much
of the biodiversity is lost. This behavior is striking, as it
contrasts with many competition models where spatial
structure increases diversity relative to the well-mixed
case [20–26]. In those models, diversity increases be-
cause spatial segregation, combined with local interac-
tions, weakens interspecific competition. Here, however,
the resource environment is uniformly coupled via dif-
fusion, so competition remains strong. Strategies that
are poorly matched to the nutrient supply allow unused
nutrients to diffuse away to competitors; such popula-

Figure 2. Spatial structure reduces diversity compared to
the well-mixed limit of instantaneous nutrient diffusion. (A)
Top: A well-mixed population of ten species with equal ini-
tial populations competing for two nutrients. All ten coex-
ist at steady state. Bottom: Same as Top, but with dif-
ferent initial populations. The community reaches a new
steady state. (Inset) Strategies ~ασ and resource supply
~s = (0.4, 0.6). (B) Top: Same species and nutrient supply
as A, but in a spatial environment with nonzero nutrient dif-
fusion time. Only three species survive. Bottom: Same as
Top, but with different initial populations. The community
reaches the same steady state. (C ) Fraction of initial species
coexisting at steady state with ~s = (0.4, 0.6); a population
is considered extinct if nσ/L < 10−6 (mean ± SD for 400
random sets of ten strategies). The well-mixed model has
survival fraction 0.99±0.08. (D) Effective number of species
M at steady state (mean ± SD for same strategies as C ).

tions shrink until the nutrient fluxes are balanced or the
species goes extinct. This contrasts with the well-mixed
case, where at steady state all the nutrient concentra-
tions are equal so every strategy can coexist [8]. Thus
territorial spatial structure heightens competitive differ-
ences between strategies, even when all obey the same
trade-offs.

How representative is the behavior seen in Fig. 2A
and B? In Fig. 2C and D we show results for many
randomly generated territorial communities, confirming
that the loss of biodiversity is a generic feature of spa-
tial structure, and that the nutrient diffusion time τD
acts as a control parameter for biodiversity. In the well-
mixed model, all ten species typically coexist. (See [8]
for a discussion of the “convex hull condition” for coex-
istence.) Figure 2C shows the mean fraction of species
coexisting at steady state for nonzero τD. Spatial com-
munities still violate competitive exclusion, but a large
fraction of species go extinct. Even among those that
survive, spatial structure reduces biodiversity by ren-
dering abundances highly unequal. Using the same data
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Figure 3. Steady-state diversity is governed by a simple
condition: diversity crashes if there is an “oligotroph” whose
strategy satisfies Rσ < p. (A) Probability of effective num-
ber of species M at steady state. For each nutrient sup-
ply, we simulated 2000 sets of 20 strategies. Strategies were
chosen uniformly at random except the case shown in red
(~s = (0.2, 0.8)), where oligotrophs were excluded. τD = 10
here and below. (B) For ~s = (0.4, 0.6) (orange in A), we
plot all strategies that appear in the most diverse 10% of
simulations (90th percentile and above ofM). No strategies
appear in the oligotroph region, demarcated by the blue
dashed lines. (C ) Same as A but for three nutrients. (D)
Strategies that appear in the most diverse 10% of simula-
tions for ~s = (0.2, 0.4, 0.4) (teal in C ). The oligotroph region
is nearly empty.

as C, Fig. 2D quantifies this via the effective number
of species M = exp{(H)}, where H = −

∑
σ pσ log pσ

is the Shannon entropy and pσ = nσ/L. (Intuitively,
M is the number of equal populations yielding H. See
SI Appendix for full rank abundance curves.) The aver-
age community loses ≈ 1/3 of its steady-state diversity
as τD grows from 0.01 − 1600. In well-mixed commu-
nities, all ten species are typically present in compara-
ble proportions, but in the spatial model, one species
dominates. Once this population is large compared to√
E/D, increasing τD adds to the “bulk” population in

its interior, decreasing overall diversity (see SI Appendix
for details). However, aggregate measures of diversity
in 2C and D belie a wide distribution of outcomes. For
example, only three species survive in Fig. 2B, whereas
nine coexist in Fig. 1. Why are some steady-state com-
munities so much more diverse than others?

In order to identify which features of the initial set
of species determine steady-state diversity, we gener-
ated many random communities with species drawn uni-
formly from strategy space. Figures 3A and C show the
distributions of the steady-state diversity M as a func-
tion of s1, the supply of Nutrient 1. The number of

nutrients does not explain the difference in outcomes.
However, diverse steady states proliferate as the supply
becomes more balanced between nutrients. What dis-
tinguishes high diversity outcomes? Figures 3B and D
show every strategy present in every community with
high diversity. Diverse communities have one thing in
common: they lack species in the region of strategy
space where Rσ ≡

∑p
i Rσi < p. Here, Rσi ≡ Si/ασi

is the uniform concentration of Nutrient i an isolated
population with uptake ασi would produce given a sup-
ply rate Si. Thus Rσ is the total nutrient concentration
maintained by and sustaining an isolated species σ at
steady state. For comparison, Rσ diverges for special-
ists (ασi = 0), while a perfect generalist (ασi = 1/p)
has Rσ = p, as does a strategy that perfectly matches
the supply (ασi = Si). Strategies satisfying Rσ < p sur-
vive on even lower total nutrient concentrations, so we
christen them “oligotrophs.” Their ability to create and
survive on the minimum total nutrient concentration al-
lows them to drive competitors extinct, thus reducing
diversity. This recalls Tilman’s famous result that the
species with the lowest equilibrium concentration of its
limiting resource (the lowest R∗) can displace all oth-
ers competing for that resource [15]. However, the R∗
rule is due to a species’ innate superiority in consum-
ing a single resource, whereas the oligotroph condition
arises in a competition for multiple resources between
intrinsically equal species.

To test whether it is simply the presence/absence of
oligotrophs that controls overall biodiversity, we gen-
erated random communities in an environment with
an asymmetric nutrient supply (s1 = 0.2), but ex-
cluded oligotrophs. The resulting steady-state commu-
nities are much more diverse (Fig. 3A, red) than the
case where oligotrophs are allowed (Fig. 3A, purple).
Hence an asymmetric nutrient supply reduces diversity
by increasing the probability that an oligotroph will be
present. The oligotroph condition captures the intuition
of the R∗ rule – species with low resource requirements
dominate – but does not require biological superiority
or preclude coexistence beyond competitive exclusion.

Alternative Steady States and Slow Dynamics

How does the outcome of spatial competition depend
on initial conditions? Consider the well-mixed system
in Fig. 2A. All that differs between the top and bottom
subplots are the initial populations, but the same set of
species has two very different steady states; not even the
hierarchy of populations is preserved. In fact, there is an
m − p dimensional degenerate manifold of fixed points
corresponding to the communities that construct the
same steady-state nutrient environment c∗i = S/E ∀ i.
The final population may lie anywhere on this manifold.
By contrast, in the spatial ecosystem of Fig. 2B, both
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Figure 4. Spatial structure replaces the steady-state degen-
eracy of the well-mixed case with slow modes in population
space. (A) Trajectories in population space for a three-way
competition at different values of τD (Inset: strategies and
supply). The direction and color of the arrows show the di-
rection and magnitude of dnσ/dt, respectively. (B) Same as
A, but with stochastic dynamics due to random births and
deaths; see SI Appendix for details. (Inset: Trajectory color
as a function of time.) Left: Species 3 drifts to extinction.
Right: nσ(t) for the population trajectory at Left.

sets of initial populations converge to the same unique
steady state.

The relationship between the steady states in the
well-mixed and spatial regimes can be visualized in a
simple example. Figure 4A shows the phase behav-
ior of three species competing for two resources. Here,
m − p = 1, so the well-mixed case (left) has a one-
dimensional degeneracy of steady states. In the spatial
community (middle/right), the degenerate manifold col-
lapses to a single fixed point. (Here the fixed point is
unique, but this is not always the case; see Fig. 5.)
This discontinuous change in the steady states is re-
flected in Fig. 2C and D, where the diversity for any
τD 6= 0 is substantially lower than for the well-mixed
limit τD = 0. Figure 4A also clarifies another striking
difference between Fig. 2A, in which the well-mixed
community approaches steady state at approximately
the individual death rate δ, and Fig. 2B, in which the
spatial community approaches steady state orders of
magnitude more slowly. This emergent slow timescale
and the breaking of degeneracy are intimately related:
for any nonzero diffusion time τD, the degenerate man-
ifold becomes a corresponding slow manifold, which the
population rapidly reaches and then crawls to a fixed
point. Linear stability analysis around this fixed point
reveals a relaxation time tslow ∼ 1/τD, which diverges
as τD → 0. (See SI Appendix for details.)

What are the ecological implications of this slow re-
laxation to steady state? In general, diverse commu-

Figure 5. (A, B) Two species competing for two nutrients,
with supply ~s = (0.3, 0.7) and τD = 400. Arrows indicate
flow away from unstable fixed points. (A) Bistability for
α11 = 0.29. (B) Allee effect for α11 = 0.31. Species 2 goes
extinct if its initial population is too low. (C ) The Allee
effect in a competition with ten species and two nutrients,
with ~s = (0.4, 0.6) and τD = 100. The blue and brown
species displace each other, depending on initial conditions.

nities with m − p � 1 could have tens or hundreds of
slow modes for population changes. These modes shape
the response to perturbations: a microbial community
might recover from one antibiotic very rapidly and an-
other very slowly, depending on the shift in popula-
tion space. Even without an intervention, real popula-
tions will have stochastic fluctuations around the steady
state. Figure 4B shows trajectories through population
space for the same species and nutrient supply as in Fig.
4A, but with demographic noise due to stochastic births
and deaths. Ecological drift is confined to the slow
manifold, and fluctuations primarily excite the popula-
tion’s “soft mode” of the balance between Species 2 and
Species 3. These two have similar strategies, and either
can drift to extinction, whereas Species 1 always sur-
vives. In the absence of noise, increasing τD decreases
fixed-point diversity (Fig. 2D). With noise, however,
steady states in the well-mixed limit are unstable to
fluctuations along the degenerate manifold. Increasing
the “restoring force” (∼ τD) can prevent species from
fluctuating to extinction, and so spatial structure can
stabilize diversity.

Although the well-mixed case has degenerate steady
states, the steady-state nutrient environment is unique,
and small initial population differences lead to small dif-
ferences in the steady state (see Fig. 4A). By contrast,
spatial communities can have multiple steady-state nu-
trient environments, and similar populations may end
in very different steady states. For example, in a com-
petition of two species for two resources, Fig. 5A and
B show the steady states as a function of α21, with α11

held fixed. (ασ1 is the enzyme allocation of Species σ
to Nutrient 1. Due to trade-offs, this also fixes ασ2.)
In Fig. 5A, there are two alternative steady states
with both species coexisting. The unstable fixed point
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separates the relatively equal community of the lower
branch from the upper branch where Species 1 dom-
inates. This bistability leads to discontinuous transi-
tions, where small changes (the populations crossing the
separatrix, or the strategy exiting the bistable phase)
can have dramatic consequences. Figure 5B shows an-
other region of strategy space where the outcomes are
bistable, but now the alternatives are coexistence and
exclusion. Above the unstable fixed point in Fig. 5B,
Species 1 drives Species 2 to extinction. Otherwise,
they coexist with Species 2 having the larger popula-
tion. This is an example of the Allee effect: Species
2 can only survive if its population exceeds a thresh-
old. (See SI Appendix for a phase diagram of the full
strategy space.)

The Allee effect persists in more complex communi-
ties. Figure 5C shows a ten-species competition where
the brown and blue species can displace each other de-
pending on the initial conditions, modifying the eight
other species’ fates in the process. Thus multistabil-
ity and the Allee effect emerge naturally in our territo-
rial model, even though the species interact exclusively
through competition for resources.

Unequal Enzyme Budgets

Metabolic trade-offs are plausible because all mi-
crobes face the same biophysical constraints on
metabolism and protein production, but trade-offs are
unlikely to be exact in real ecosystems. How does this
impact biodiversity in our model? Figure 6A shows re-
sults for ten species with exact trade-offs (

∑
i ασi = E

for all species) competing for two resources. The well-
mixed community is very diverse, while the spatial com-
munity is not. In Fig. 6B, each species allocates the
same fraction of its enzyme budget to each nutrient as
in 6A, but each with its own total enzyme budget Eσ.
Diversity collapses in the well-mixed system, but the
spatial community actually becomes more diverse. Fig-
ures 6C and D show that this behavior is typical via
comparison of the steady-state diversity of communi-
ties where each species’ enzyme budget is drawn from a
Normal Distribution with mean 1 and standard devia-
tion δE. Well-mixed communities (C ) are very diverse
if trade-offs are exact (δE = 0), but any disparity in
the enzyme budgets causes diversity to collapse; only
one or two species survives at steady state. The spa-
tial communities (D) are less diverse for δE = 0, but
their diversity 〈M〉 actually increases with δE. This
is due to an asymmetric effect: oligotrophs lose their
dominance with a very small decrease in Eσ, but other
species require a large increase in Eσ to dominate (see
SI Appendix for details). As a result, spatial commu-
nities with imperfect trade-offs can display biodiversity
well beyond the competitive-exclusion limit.

Figure 6. Territorial spatial structure renders diversity ro-
bust to variation in enzyme budgets. (A) In a community
with equal enzyme budgets and ~s = (0.4, 0.6) (Left), ten
species coexist in the well-mixed model (Center), whereas
only three coexist in the spatial model (Right). (B) In a
community with the same strategies as A but unequal en-
zyme budgets (Left), two species coexist in the well-mixed
model (Center), whereas seven coexist in the spatial model
(Right). (C ) Probability of effective number of speciesM at
steady state for random enzyme budgets, in the well-mixed
model with ~s = (0.4, 0.6). For 2000 sets of strategies, each
of 20 initial species’ enzyme budgets Eσ was drawn from
N (1, δE). (D) Same as C but for spatial model.

DISCUSSION

We analyzed a model of spatial resource compe-
tition among territorial surface communities such as
biofilms, vegetation, or coral. Each species has a con-
crete metabolic strategy subject to biophysical trade-
offs. The nutrient environment has no intrinsic hetero-
geneity but is globally coupled via diffusion, so com-
petitors shape it via consumption. We found that the
resulting spatial structure restricts biodiversity, in stark
contrast to previous models where spatial segregation
increases diversity by weakening competition. In the
simplest of these cases, different resources are parti-
tioned into different regions, providing spatial niches [9–
13]. Alternatively, competitors may self-organize into
patches linked by migration [14–16, 18, 19] or into ag-
gregates with local interactions [20–26]. External re-
source gradients can also increase diversity, because dif-
fusion of dense motile populations prevents any species
from monopolizing resource-rich regions [9, 10]. In our
model, the situation is very different. Because the ex-
ternal nutrient supply is uniform and the entire space is
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linked via diffusion, no spatial niches emerge; competi-
tors have nowhere to hide. This is reminiscent of ecolog-
ical reaction-diffusion models without external sources,
where global coupling reduces diversity [26] and nonuni-
form steady states only become possible for unequal dif-
fusion coefficients or complex geometries [27]. Our com-
munities are fundamentally different, however, as they
occupy exclusive territories and exceed the competitive-
exclusion limit in spite of a simple geometry and uni-
form diffusion coefficients.

What controls diversity in our model? The degree of
nutrient mixing τD controls the evenness of abundances
by setting the population of the dominant species,
while the presence of oligotrophs distinguishes steady
states of high coexistence from those with many extinc-
tions. Oligotrophs drive competitors extinct because
they have the lowest total nutrient requirements, in
rough analogy with the lowest R∗ rule for well-mixed
systems [15]. However, oligotrophs obey the same
trade-offs as every other species, and their dominance
arises from the relationship between their strategies and
the nutrient supply rather than any innate superiority.
The composition of the nutrient supply sets the strategy
range of oligotrophs, so it is effectively another control
parameter for diversity. In spite of highly nonlinear dy-
namics and many parameters, the oligotroph condition
provides a simple criterion for diversity.

Spatial structure also provides a novel mechanism
for discontinuous transitions between alternative steady
states. Such sudden shifts, or “catastrophes”, attract
significant attention due to their implications for ecosys-
tem resilience [31]. The Allee effect occurs in a large
variety of ecosystems [32], and is particularly relevant
to the conservation of rare species. It is usually un-
derstood as the result of transparently cooperative pro-
cesses, such as production of a public good [32], and
modeled via an explicit cooperative term. In resource-
competition models, multistability has been observed
when species consume nutrients one at a time [33] or
with unequal stoichiometries [34]. Here, both the Allee
effect and multistability emerge naturally from the abil-
ity of a population to render its resource environment
more favorable to itself. Interestingly, the Allee-effect
species are oligotrophs, underscoring the special ability
these strategies have to impact their ecosystems.

It has been observed that spatial structure increases
the time to reach equilibrium [35]. Here we showed
precisely how a new dynamical timescale emerges from
spatial structure. We found that the slow dynamics are
confined to a manifold in population space. These slow
modes of the population are subject to large fluctua-
tions due to noise (e.g. demographics). Slow relaxation
also means that for a rapidly changing nutrient supply,
the population might never reach steady state, poten-
tially saving some species from extinction.

Finally, we find that spatial structure allows diversity

to persist with imprecise metabolic trade-offs. In the
well-mixed system without noise, any deviation from ex-
actly equal enzyme budgets leads to ecosystem collapse
[8]. Spatial communities, however, remain diverse with
only approximate trade-offs. In fact, variation in en-
zyme budgets actually increases mean diversity by im-
pairing oligotrophs. The persistence of diversity beyond
competitive exclusion with inexact trade-offs makes it
more credible that trade-offs play a role in maintaining
the surprising diversity of real ecosystems.

Our results suggest several future research directions.
A two-dimensional extension of the model exhibits the
same loss of biodiversity due to oligotrophs and uneven
abundances (see SI Appendix ), and it will be interest-
ing to explore 2D pattern formation in more depth.
One might also consider resources that diffuse at dif-
ferent rates. This can lead to nonuniform steady states
in reaction-diffusion systems [27]. Finally, in microbial
communities, gene regulation and evolution are often
relevant on ecological timescales, so it would be natural
to allow species to modify their strategies.

In summary, we find that spatial structure engenders
more realistic communities: it curtails the unlimited
diversity of the well-mixed model, but allows for coex-
istence beyond the competitive exclusion principle even
in the absence of exact metabolic trade-offs. Our results
demonstrate that mechanistic interactions, arising from
biophysical constraints such as space and metabolism,
can allow even simple models to capture some of the
rich behaviors of real ecosystems.

METHODS

The population ODEs (Eq. 3) were solved numeri-
cally using Mathematica’s “NDSolve”. The cσ,i depend
on nσ through the coefficients {Aσi, Bσi}, which are
fixed by requiring that ci(x) be continuous and dif-
ferentiable at the population boundaries. The nutri-
ent equations are simpler under the change of variables
x→ x−

∑
σ′<σ

nσ′ . Then cσ,i(x) runs from 0 to nσ, yield-

ing the system

cσ,i(nσ) = cσ+1,i(0)

c′σ,i(nσ) = c′σ+1,i(0)
(4)

which was solved using Mathematica’s “LinearSolve”
with periodic boundary conditions (cmi(nm) = c1i(0),
corresponding to a ring).

Details on the well-mixed model, stochastic dynam-
ics, and figure parameters can be found in SI Appendix.
Code will be available on GitHub.
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