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Abstract 

In recent years, it has become increasingly clear that a number of learning processes are at 

play in visuomotor adaptation tasks. In addition to the presumed formation of an internal model of 

the perturbation, learners can also develop explicit knowledge allowing them to select better actions 

in responding to a given perturbation. Advances in visuomotor rotation experiments have underscored 

the important role that such “explicit learning” plays in shaping adaptation to kinematic perturbations. 

Yet, in adaptation to dynamic perturbations, its contribution has been largely overlooked, potentially 

because compensation of a viscous force field, for instance, is difficult to assess by commonly-used 

verbalization-based approaches. We therefore sought to assess the contribution of explicit learning in 

learners adapting to a dynamic perturbation by two novel modifications of a force field experiment. 

First, via an elimination approach, we asked learners to abandon any cognitive strategy before selected 

force channel trials to expose consciously accessible parts of overall learning. Learners indeed reduced 

compensatory force compared to standard Catch channels. Second, via a manual reporting approach, 

we instructed a group of learners to mimic their right hand’s adaptation by moving with their naïve 

left hand. While a control group displayed negligible left-hand force compensation, the Mimic group 

reported forces that approximated right-hand adaptation but appeared to under-report the velocity 

component of the force field in favor of a more position-based component. We take these results to 

clearly demonstrate the contribution of explicit learning to force adaptation, underscoring its 

relevance to motor learning in general.  
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New & Noteworthy 

While the role of explicit learning has recently been appreciated in visuomotor adaptation 

tasks, their contribution to force field adaptation has not been as widely acknowledged. To address 

this issue, we employed two novel methods to assay explicit learning in force field adaptation tasks 

and found that learners can voluntarily control aspects of force production and manually report them 

with their untrained limb. This suggests that an explicit component contributes to force field 
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adaptation and may provide alternative explanations to behavioral phenomena commonly thought to 

reveal a complex organization of internal models in the brain. 

Introduction 

Sensorimotor adaptation is considered important for maintaining skilled motor performance 

and has been studied extensively, with adaptation to kinematic (Helmholtz 1867; Cunningham 1989) 

and dynamic sensorimotor perturbations (Lackner and Dizio 1994; Shadmehr and Mussa-Ivaldi 1994) 

serving as model paradigms. When imposed perturbations are removed after training, an adapted 

visuomotor map is evidenced by characteristic aftereffects. The transfer of these aftereffects to non-

practiced situations has been taken as evidence that the brain learns an internal model, which mimics 

the input-output relationship of the system being controlled (Shadmehr and Mussa-Ivaldi 1994; 

Wolpert and Kawato 1998), and uses them for anticipatory compensation of expected perturbations. 

The observation that these aftereffects sometimes occur despite the learners’ awareness that the 

perturbation has been removed has been taken as evidence that adaptation of internal models is an 

implicit process, inaccessible to awareness or intentional control. Furthermore, the fact that 

aftereffects in amnesic patients, including patient HM, persisted over days has indicated that 

adaptation does not depend on declarative memory (Shadmehr et al. 1998).  

Nevertheless, it has also been shown that learners can leverage declarative or propositional 

knowledge (Stanley and Krakauer 2013), to consciously modify actions in the face of a perturbation 

(Cohen 1967; Jakobson and Goodale 1989; Redding and Wallace 2002; Heuer and Hegele 2008; Taylor 

and Ivry 2011; Taylor et al. 2014), a capacity that we refer to as “explicit learning.” Recent advances in 

visuomotor rotation paradigms have quantified this component’s contribution to kinematic 

perturbations: Heuer and Hegele had learners provide perceptual judgements on the movement 

direction and/or amplitude required to compensate a visuomotor perturbation (Heuer and Hegele 

2008, 2009). Benson and colleagues instructed learners about a cursor rotation, using a clock analogy, 

and tested the quality of their strategy after practice by a structured interview (Benson et al. 2011). 

Taylor and colleagues asked learners to verbally report their aiming strategy on individual trials based 

on a set of visual landmarks (Taylor et al. 2014) . All of these studies support the idea that explicit 

learning is a fundamental contributor to the learning curve in such tasks.  

 Results obtained by these methods suggest that explicit learning may underlie a range of 

behaviors that were previously explained by extensions of implicit internal models, such as savings 

(Morehead et al. 2015), structural learning (Bond and Taylor 2017), and context-dependent learning 

by abstract cues (Hegele and Heuer 2010; Schween et al. 2019), thus highlighting its importance for 

motor learning (see Krakauer et al. 2019 for a recent review). 
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For the case of dynamic sensorimotor perturbations, most commonly investigated by 

perturbing movements through a robot-generated force field (Shadmehr and Mussa-Ivaldi 1994), only 

a handful of studies have addressed potential explicit learning (Kurtzer et al. 2003; Hwang et al. 2006; 

Keisler and Shadmehr 2010; McDougle et al. 2015; Thürer et al. 2016). Kurtzer and colleagues 

instructed a group of participants to “match the effort” of their baseline movements when confronted 

with a force field and found that it diminished learning compared to a group instructed to “match the 

kinematics” (Kurtzer et al. 2003). This disengagement by instruction seems incompatible with implicit 

adaptation in visual perturbation experiments, which proceeds so stereotypically that it can sometimes 

harm task performance (Mazzoni and Krakauer 2006; Taylor and Ivry 2011; Schween et al. 2014; Lee 

et al. 2018a). Keisler and Shadmehr, assuming a two-process model with a “fast” and a “slow” 

component of force field learning (Smith et al. 2006), found that a declarative memory task 

retroactively interfered with the fast component (Keisler and Shadmehr 2010), suggesting that this fast 

component, being susceptible to declarative memory load, might be explicit in nature (Morehead et 

al. 2011). This is further supported by McDougle and colleagues, who asked learners to report their 

off-target aim in response to a force field using a circular array of visual landmarks. The authors found 

that the time course of aiming reports overlapped with the putative fast process of adaptation 

(McDougle et al. 2015).  

 Despite these clues, the role of explicit learning in force field adaptation still appears to be 

considered very minor, if not negligible. A factor contributing to this may be that explicit learning has 

often been linked to a capacity for verbal report, and learners in force field paradigms are frequently 

unable to report an explicit strategy or even describe the force field’s dynamics when asked to do so. 

However, the ability to verbalize is limited by the learner’s capacity for communication, and thus may 

not adequately assess explicit learning in all cases (Stadler 1997; Stanley and Krakauer 2013). It seems 

reasonable to assume that responses to dynamic force fields are less easily verbalized than simple off-

target aiming in response to cursor rotations, and this may explain why learners are unable to 

adequately report strategies in force field experiments. Previous attempts to ease this problem may 

be considered limited because these either assessed awareness as an indirect marker of explicit 

learning (Hwang et al. 2006), or used assessment techniques, such as a circular array of landmarks for 

reporting aiming angles, that do not reflect the relevant task dimension (Sing et al. 2009; McDougle et 

al. 2015).  

We therefore revisited the question of explicit learning contributions to force field adaptation 

using two novel experimental paradigms designed to minimize the problems surrounding 

verbalization. Our first approach (experiments 1 and 2) was rooted in “elimination” techniques 

frequently utilized in visuomotor rotation paradigms (Heuer and Hegele 2008; Werner et al. 2015): We 
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circumvented the problem of learners verbally describing a complex strategy by instead instructing 

them to refrain from using strategies on selected force channel trials (Scheidt et al. 2000). Our second 

approach (experiment 2) aimed to obtain reports in a dimension more suited to the viscous force field 

than verbal reports (McDougle et al. 2015): Here, we asked participants to mimic the force 

compensation learned with their right hand using their left hand, allowing us to measure the relevant 

dimension (e.g., velocity, position) of explicit force compensation strategies. 

Methods 

We recruited 87 human volunteers from the participant pool maintained by Princeton 

University’s Psychology Department to participate in the experiments in exchange for payment or 

course credit. All participants provided written, informed consent. Experimental protocols were 

approved by Princeton University’s Institutional Review Board and complied with the relevant 

guidelines and regulations. 

The apparatus was a Kinarm End-Point Lab (RRID: SCR_017060) run with commercial software 

(Dexterit-E) in a unimanual (experiments 1 and 2) or bimanual configuration (experiment 3). 

Participants sat in front of the robotic manipulandum, grasping its handle(s) at approximately the level 

of the lower chest. They rested their head against the edge of a downward-facing horizontal 47-inch, 

1920x1080 pixel resolution LCD monitor (LG47LD452C, LG Electronics), and gazed into a horizontal 

mirror mounted below the monitor. This configuration creates the illusion that the visual display 

appears in the plane of the movement. By moving the robot handle, participants could move a screen 

cursor (blue disc, 10 mm diameter) that matched handle position.  

The robot could generate field, null, and channel trials. On field trials, the robot generated a 

velocity-dependent force field (Shadmehr and Mussa-Ivaldi 1994): 𝐹 = 𝑏 ∗ (   0  1  
−1  0  

) ∗  (�̇�
�̇�

), where 

(𝑥,̇ �̇�) are directional velocities and a positive field constant 𝑏 creates a clockwise force field. On null 

trials 𝑏 was zero, and the robot did not actively influence the movement. On channel trials (Scheidt et 

al. 2000), the robot constrained the movement to a straight line through start and target by generating 

a spring of 12 
𝑘𝑁

𝑚
 with a damping coefficient of 50 

𝑁

𝑚∗𝑠
 (6 

𝑘𝑁

𝑚
 and 20 

𝑁

𝑚∗𝑠
 for experiment 3). The channels 

served as test trials, allowing us to measure the predictive forces participants learned to exert in 

response to the field in the absence of stiffness influences. 

Experiment 1 

Each trial began with the robot passively moving the participant to a start location (white disc, 

15 mm diameter) on the participant’s midline, approx. 45cm in front of their chest. After the 

participant held this position for 200 ms, a target (white disc, 15 mm diameter) appeared on the 

midline, 120 mm from the start position, and the participant’s task was to slice through the target in a 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 7, 2019. ; https://doi.org/10.1101/694430doi: bioRxiv preprint 

https://doi.org/10.1101/694430
http://creativecommons.org/licenses/by/4.0/


5 
 

rapid shooting movement. We chose these open-loop movements rather than more standard closed-

loop movements as our channel instructions (see below) would theoretically have prevented task 

success on field trials, and we did not want our participants to reason about the difference between 

field and channel trials. Target hits were reinforced by a pleasant “ding” sound. Movement speed was 

incentivized by a “too slow” message appearing if movement time exceeded 350 ms. If participants 

moved before the appearance of the target or if movement time exceeded 1000 ms, the trial was 

aborted and repeated.  

Twenty-five participants (mean age: 21, range: 18-26 years, 16 female) practiced a force field 

with 𝑏 = ±15 N
m

s
 and we tested their predictive force compensation on channel trials. Out of these, 

three participants were not analyzed due to technical difficulties, and two more participants were 

excluded because standardized post-experimental questioning indicated that they failed to follow 

instructions. It was critical in this experiment for participants to follow instructions because we sought 

to test if they could intentionally control part of the adaptive response to the force field. This required 

them to implement the correct intention on the respective channel trial. Responses that led to 

exclusion included indicating that they “still pushed” on “No Push“ trials (see below) or that they 

“pushed hard straight ahead” (i.e. towards the target) on Push trials.  

We introduced two new types of channel trials in addition to the standard Catch channel: On 

these trials, participants were provided with an onscreen message prior to the reach (see figure 1A for 

experiment 2 methods, which are similar), reminding them of an instruction given approximately 10 

trials before the force field was introduced: One message read, “No Push”. For this message, 

participants were instructed to “act as in trials where the robot doesn’t push you off path and just 

move towards the target”. We thus aimed to probe their ability to voluntarily disengage a hypothetical 

explicit strategy. The other message read “Push”, reminding participants of the instruction to “expect 

the robot to push you off and act as on those trials”. We included this “Push” trial type as a control to 

ensure that any force modulation would be attributable to the associated instruction rather than other 

factors, such as delays introduced by the messages allowing a labile component of implicit memory to 

decay (Miyamoto et al. 2014; Zhou et al. 2017). Standard Catch channel trials were not preceded by a 

message. The full, scripted instructions (of experiment 2) are provided in supplementary text 1. 

The protocol was an A-B-Clamp paradigm (Smith et al. 2006; McDougle et al. 2015), consisting 

of 40 trials familiarization, 60 trials baseline, 450 trials field A practice, 45 trials field B practice and 50 

trials clamp. In the familiarization phase participants moved from start to target in a null field to get 

acquainted to the task and the time criterion. Baseline was also in a null field, but contained six Catch 

channels to establish a baseline, with one channel per block of ten trials and an additional constraint 

that channels could not be the first or last trial of a block, ensuring there were at least two non-channel 
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trials between any two channels. In field A practice, a force field was introduced, with the sign 

counterbalanced across participants. Each block of ten trials contained one channel, as before (i.e. 10% 

channels), but now, metablocks of three blocks contained each of the three channel types (Catch, No 

Push, Push) once, in a random order. Field A practice thus contained 15 channels per type. Field B 

practice exposed participants to a force field of opposite polarity than field A. This phase contained 

one channel per block of five trials (i.e. 20% channels), with all other constraints as in field A. The final 

clamp phase consisted of only channel trials. This block no longer had screen messages, but 

participants were verbally instructed to consider all trials No Push trials from the beginning of the 

clamp phase until the end of the experiment to reveal behavior in the absence of potential explicit 

strategies (McDougle et al. 2015). We used the same randomization sequence for all of our participants 

in experiment 1 and 2.  

 

Figure 1: Schematic methods. A) Experiment 2 (experiment 1 is similar): On field trials, participants saw 

a fixation cross after the robot had guided them back to the start location. When the cross disappeared 

and the target appeared, their task was to “shoot through” the target in a single, fast movement, 

experiencing the force field (or null field in baseline). The red arrows schematically illustrate (potential) 

robot-generated forces. Note that the movement path on field trials could deviate substantially from 

the straight line illustrated. On channel trials (Scheidt et al. 2000), the robot constrained movements to 

the line connecting start and target. Catch channels were preceded by the fixation cross, making them 

indistinguishable, a priori, from field trials. On instructed channels, instead of the fixation cross, 
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learners would see a keyword prompting them to either expect the robot not to push them off their 

path or to do so, and act accordingly. B) Experiment 3: Participants practiced closed-loop target reaches 

in the field with their right hand and were tested on right hand (Catch) and left hand channels. On left 

hand channels, the Mimic group was instructed to mimic their right hand forces. The control group 

received no such instruction. 

Experiment 2 

Experiment 2 was designed to test whether behavior on No Push channels would match 

behavior on a more commonly used, longer error clamp period with the instruction that the 

perturbation was removed. We therefore omitted field B practice and instead had participants proceed 

directly into the final clamp phase, which was 95 trials long. Furthermore, the experiment served as a 

replication of the main effect between channel types in experiment 1. 

We tested 22 participants (mean age: 21, range: 18-28 years, 16 female) on this experiment 

and excluded five because post-experimental questioning indicated that they did not follow the 

instruction on the Push or No Push channels. (As in experiment 1, the potential success of the 

experiment was critically dependent on participants following the instructions.)  

The procedures were the same as experiment 1 with the following exceptions: we suspected 

that, in experiment 1, the instructive message tended to startle participants into moving prematurely 

(resulting in the trial being repeated), because it occurred around the time where they expected the 

target to appear. To avoid this problem, we now showed participants either the white text message or 

a white fixation cross (on null, field and Catch trials) after they were in the start for 200 ms and had 

the text/cross disappear and the target appear after another interval uniformly randomized between 

600 and 1000 ms (figure 1A). We considered using another message instead of the fixation cross to 

match the channel messages in luminance and area, but decided against it as we feared participants 

may become too accustomed to viewing a message and could potentially ignore it. 

Experiment 3 

Experiment 3 aimed to test if participants could mimic their right hand force compensation 

with their left hand and thereby express their explicit knowledge about the force field in a dimension 

more suitable to this complex perturbation than directional landmarks (Taylor et al. 2014; McDougle 

et al. 2015). Participants adapted to a force field by closed-loop movements to a target 100 mm in 

front of the central start location. Field exposure was interspersed by right hand Catch channels and 

additional left-hand “Mimic” channels, where they moved with their left instead of their right hand. 

The Mimic group (N=20, mean age: 21, range: 19-24 years, 17 female, 1 excluded for technical issues) 

was instructed to “mimic the forces” they were applying with their right hand with the left hand, 

whereas the control group (N=20, mean age: 22, range: 18-34 years, 11 female, 3 excluded for 

technical issues) received no such instruction concerning left hand trials. To ensure that all participants 
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could sense the force field, and to more closely match a previous experiment (McDougle et al. 2015), 

we increased the field constant to 𝑏 = ±40 N
m

s
. Like experiment 1, the protocol was a field A - field B 

- Clamp paradigm, now consisting of 100 trials baseline (80 null, 10 right and 10 left hand channel), 

200 trials field A practice (158 field, 21 right, 21 left hand channels), 20 trials practice of an opposing 

field B (18 field, 1 right, 1 left channel) and 100 clamp trials (90 right hand, 10 left hand channels). Field 

direction was counterbalanced across participants.   

Data analysis 

The data were processed in Matlab (RRID: SCR_001622) and analyzed in R (RRID: SCR_001905) 

and JASP (RRID: SCR_015823) for visualizations and statistics.  

For experiment 1 and 2, we defined movement start as the instance when movement speed 

first exceeded 3 
𝑐𝑚

𝑠
 and movement end when the radial distance to start of the hand first exceeded 

that of the target’s center. In experiment 3, we used a different criterion of 5 
𝑐𝑚

𝑠
 for at least 100 ms, 

as we noticed the lower criterion included some premature movements whose occurrence we 

attribute to the different movement types (open vs. closed loop). Movement end in experiment 3 was 

defined as the hand being within the target circle with a speed of less than 2.5 
𝑐𝑚

𝑠
. We then truncated 

force and position data of each movement to the section between these events. We calculated axial 

velocities using a Savitsky-Golay filter and additional time frames at the start and end of the reach to 

avoid ramping effects. Data of participants experiencing the CW field in the A-phase were flipped about 

the y-axis before further processing.  

To quantify force compensation on channel trials, we calculated participants’ forces in the 

channels relative to the ideal force profile that would have perfectly compensated field A, given 

participants’ velocity along the channel, using zero-offset regression and expressed the slope as 

percent force compensation. For open-loop movements (experiment 1 and 2), we did this on the 

complete data from start to end, whereas for closed-loop movements (experiment 3), we used a 

window of 400 ms prior and posterior to peak speed, or start/end, respectively, if this window 

exceeded the actual event. These data were aligned to peak speed and padded with NaNs to produce 

mean trajectories for plotting.  

Experiment 3 also measured the degree to which force expression was composed of position 

and velocity components for the left and right hands. To compute this, we fit perpendicular channel 

force profiles using a zero-offset linear model of position along the channel, velocity along the channel, 

or a linear combination of the two, respectively (Sing et al. 2009). We used adjusted R² (as returned by 

R’s summary.lm function) to quantify variance accounted for, and we averaged across participants by 

transforming its square root to Fisher-Z-scores (Bortz and Schuster 2010), calculating their mean, and 
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retransforming to R². We did this for 1000 bootstrap samples of individuals in this group, and estimated 

95% confidence intervals. 

In all experiments, we computed RT on field trials as the time from target display to movement 

start, and removed RTs exceeding three standard deviations of participants’ individual means 

(experiment 1: 97 trials, 1 %; experiment 2: 114 trials, 1 %; experiment 3: 154 trials, 1.7 %). We then 

calculated individual medians over the following blocks: late baseline, early field A practice, late field 

A practice, field B practice (where applicable) and early clamp, using 36 (experiment 1 and 2) or 18 

(experiment 3) field trials per block, and averaged across participants. For experiment 1 and 2, late 

baseline excluded the last 10 trials of baseline as RTs there were distorted by instructions sometimes 

being given during the RT interval. 

Statistical analysis 

We used mixed ANOVAs with group as between-subject factor, and channel type, hand and/or 

block as within-subject factors. We checked for unequal variances between groups by Levene’s tests. 

Where Mauchly’s test indicated significant non-sphericity, we report Greenhouse-Geisser-corrected p-

values, as discernible from floating point instead of integer degrees of freedom. For effect sizes, we 

report generalized eta-squared. To follow up on significant effects, we used one-way ANOVAs and t-

tests, reporting Bonferroni-Holm corrected p-values for the latter. For comparing dependent 

correlations, we used a test described in (Bortz and Schuster 2010, p. 167-8). 

Results 

Experiment 1 

Experiment 1 tested if predictive force compensation in channels is fully implicit, or if it 

contains an explicit component which learners can voluntarily modulate. Participants practiced open-

loop shooting movements and were exposed to two velocity-dependent force fields, where they 

experienced an initial long block of field A, followed by a short block of an opposing field B, and a clamp 

block (Smith et al. 2006; McDougle et al. 2015). Channel trials tested participants’ predictive force 

compensation (Smith et al. 2006) on a fraction of trials. Whereas all baseline channels and one third 

of channels during practice were standard, unannounced Catch channels, the other two thirds were 

preceded by an on-screen message instructing participants about the upcoming trial (figure 1A). One 

message type said “No Push!”, for which our instructions asked participants to “act as in trials where 

the robot doesn’t push you off path and just move towards the target”. We reasoned that if predictive 

compensation is fully implicit, participants would express the same amount of force on these trials as 

they did on Catch trials. On the other hand, if participants could spontaneously downregulate their 

force in response to the instruction, this would indicate that an explicit component was contributing 

to Catch channel behavior. The other message type said “Push!”, asking participants to expect the 
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robot to push them off and act accordingly. The B-field was followed by a clamp block of all channel 

trials (Smith et al. 2006; McDougle et al. 2015), for which we instructed participants that they should 

treat all of them as “No Push!” trials, even in the absence of messages.  

 

Figure 2: Results of experiment 1. A) Group mean force compensation (±standard error of mean; SEM) 

across trials. B) Group mean force profiles (±SEM) obtained by averaging individual force profiles 

aligned to peak speed. Dashed lines are hypothetical, ideal field A compensatory forces calculated from 

velocity and used as reference. X-Labels reference position in the protocol, with A2 being the 2nd trial in 

field A, C5 the 5th trial in the clamp phase, etc. Multiple lines per panel are from channels of the different 

types, respectively. Grey lines and brackets between panels indicate regions represented in this way.  

Figure 2A shows the force compensation index across trials for each type of instructed channel. 

During field A practice, participants expressed less force on No Push compared to Catch channels, 

revealing an ability to voluntarily eliminate a component of predictive force compensation in response 

to the instruction. Conversely, channels with the instruction to Push voluntarily show compensation 

that is not smaller, but even larger than on Catch channels, suggesting that behavior on No Push 

channels was under volitional control rather than just a general effect of the instruction. Figure 2B 

visualizes across participant average force profiles on selected channel trials.  

To statistically analyze these data, we averaged the first, middle and last three channels of 

each type from field A-practice into blocks and performed an ANOVA with the within participant 

factors channel type and block. This revealed a significant main effect of channel type (F2,36=25.4, 

p<.001, η2
gen=.27), no significant main effect of block (F1.3,22.7=.17, p=.74, η2

gen=.002), and a significant 

interaction (F2.0,36.8=4.7, p=.002, η2
gen=.05). Simple main effects indicated that the effect of channel 

type was present at all three levels of block (early: F2,36=25.3, p<.001, , η2
gen=.34; middle: F1.4,25.8=15.2, 

p<.001, , η2
gen=.31; late: F1.3,23.5=8.9, p<.001, η2

gen=.22) and post-hoc t-tests at these levels indicated 
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significant differences between all pairs of channel types (all p<.02 after Bonferroni-Holm correction), 

except for the No Push versus Catch channels in the early block (p=.21) and for Push versus Catch 

channels in the late block (p=.13). Whereas we might have expected an effect of block, reflecting 

learning, the time courses of Catch channels (figure 2A) indicate that learning may have been too quick 

to be captured by the relatively infrequent channel trials. Such quick learning may be explained by the 

use of a single target, and by increased requirement for predictive compensation imposed by open-

loop movements. Regardless, the main effect of channel type suggests that the degree to which 

participants express learning is under volitional control, which would be consistent with the use of a 

strategy.  

The observation that compensation on the Push channels did not only match, but exceeded 

Catch channel behavior was unexpected. We assume that the instruction prompted participants to 

more voluntarily compensate the force than when just expecting a standard field trial, and this could 

explain the excess force applied. If such a direct effect of the manipulation occurs on Push trials, could 

it also explain performance on No Push trials? That is, could decreased expression be explained by 

participants voluntarily pushing in the other direction - which, notably, would still imply them 

consciously applying force - rather than just stopping to apply an explicit strategy? The time course of 

behavior when switching to field B does not support this possibility. Specifically, if participants were 

applying counterforces in direct response to the instruction, we would expect these to remain of 

approximately the same magnitude in the B-phase, albeit potentially with a sign switch. Whereas this 

may be seen in the Push channels, behavior on No Push channels appears to follow a time course that 

is much more independent from that on Catch channels (figure 2A).  

Overall, the time courses of the three channel types during field B are consistent with previous 

findings in this paradigm (McDougle et al. 2015): when participants expect the robot to apply force 

(Push and Catch channels), predictive compensation quickly changes sign upon exposure to field B, 

while compensation when they do not expect the robot to apply force (No Push channels) decreases 

more gradually with practice, so that not only the sign of each individual channel, but also the relation 

between the three channel types is inverted by the end of the B-phase. This was confirmed by a 

repeated measures ANOVA on the individual differences between the last channel of field A and field 

B, respectively, which indicated a significant difference (F1.5,28.2=12.6, p<.001, η2
gen=.40) with post hoc-

tests showing a significant difference between No Push and both Catch (t=-5.2, p<.001) and ”Push” 

trials (t=-4.1, p=.001), but not between Catch and Push trials (t=1.4, p=.18). This means that the change 

from field A to field B was significantly smaller on No Push than Push or Catch trials. Considering the 

short timeframe in focus, this is in line with the implicit No Push trials capturing a slow component of 
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learning, while an additional fast explicit process is represented in Push and Catch trials (Keisler and 

Shadmehr 2010; McDougle et al. 2015).  

In the final clamp phase consisting of only No Push channels, behavior rebounded. This 

observation would be difficult to explain by the No Push instruction directly eliciting volitional forces, 

and is more consistent with behavior seen in implicit learning of force fields and cursor rotations in 

this paradigm, where it has been explained by a fast, explicit component that is adapted to field B 

being quickly diminished by instruction or decay, revealing a slow component that is still adapted to 

field A (Smith et al. 2006; McDougle et al. 2015).  

Experiment 2 

Experiment 1 supported our hypothesis that learners can voluntarily disengage a component 

of channel force compensation when instructed to do so right before the trial. Here, we wanted to 

verify that this is not just an idiosyncrasy of the single-trial instructions. In experiment 2, we therefore 

tested if behavior on a more standard, post-experimental clamp phase with the No Push instruction 

administered only at phase onset, would indeed reflect similar behavior as the interspersed trials and 

further display the hallmark behavior of gradually decaying memory. We therefore replicated 

experiment 1, but removed field B practice.  

Figure 3 shows that the instruction modulated force compensation on channel trials as before. 

Accordingly, like for experiment 1, an ANOVA on field A practice with factors block and channel type 

indicated a significant main effect of channel type (F2,34=, p<.001, η2
gen=.16) but not of block 

(F1.4,23.4=1.3, p=.28) and no interaction (F2.1,35.4=.94, p=.46). Averaging over blocks and comparing 

channel types by post-hoc t-tests revealed differences between all pairs of channel types (all p<.02 

after Bonferroni-Holm correction). Thus, experiment 2 replicates the main effect of channel type 

observed in experiment 1. 
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Figure 3: Results of experiment 2.  A) Group average force compensation measures across trials. 

B) Group mean force profiles (±SEM) on selected trials. X-Labels reference position in the experiment, 

with A2 being the 2nd trial in field A, C25 the 25th trial in the clamp phase, etc.  

When going directly from field A into the clamp phase, with the instruction not to push 

voluntarily, behavior on clamp appeared to pick up on the most recent interspersed No Push channel 

and to decay smoothly from there. When correlating individual participants’ performance on the first 

channel of the final phase and on the last interspersed channel of each instruction type, this correlation 

was significantly stronger for the No Push channel than for the Catch (z = 3.5, p < .001) or Push channel 

(z = 2.9, p = .003), and the regression line was close to unity (figure 4). We therefore take this result to 

indicate that the behavior in the final clamp phase reflects the same implicit processes exposed by the 

No Push channels interspersed during learning. 

 

Figure 4: A) Scatterplot with least squares regression lines: last channel of field A practice for the 

different types against the first clamp channel. Black, dotted line is identity. B)  Histograms of individual 
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means of force compensation index across field A practice (joint data from experiment 1 and 2). 

Dashed, vertical lines mark group means. Panel 4 shows individual differences between No Push and 

Catch channels. 

How is the difference between the channel types reflected in individual participants? Figure 

4B shows the histograms of individual average force compensation during field A practice on Catch 

and No Push channels and the individual differences between the channel types for participants of 

experiment 1 and 2. It is clear that some participants responded strongly to the instruction whereas 

others show no force modulation. One explanation for this could be that participants differed in how 

they understood and followed our instructions. We excluded cases where standardized post-

experimental questioning made it clear that participants misunderstood the instructions and either 

consciously compensated on No Push or did not compensate on “push” channels (see Methods). 

However, some responses were ambiguous so we kept those participants in the analysis to avoid 

potential selection bias.  

Another possibility is that some participants indeed learned more explicitly/less implicitly than 

others. Large variation between individuals is common in cursor adaptation experiments (Schween 

and Hegele 2017), and studies have determined that perturbation magnitude relative to baseline 

movement variability (Oh and Schweighofer 2018; Gaffin-Cahn et al. 2019), as well as participants’ age 

and specific cognitive abilities (Heuer and Hegele 2008; Anguera et al. 2010, 2011; Hegele and Heuer 

2013; Vandevoorde and Orban de Xivry 2018; Wong et al. 2019) are important factors determining if 

participants become aware of a perturbation, and can develop and apply explicit strategies to 

counteract it.  

In summary, we take results of our manipulation in experiments 1 and 2 to show that predictive 

compensation of a force field expressed on standard Catch channels was not purely implicit. If learning 

is truly implicit, we would expect participants to have no volitional control over its expression. 

Conversely, participants in our experiment were able to modulate predictive expression based on 

verbal instruction in line with an explicit component contributing to learning.  

 Experiment 3 

Experiments 1 and 2 show that force compensation performance can be modified based on 

verbal instruction, thus displaying a key characteristic of explicit learning. In experiment 3, we sought 

to complement this finding by testing whether participants can express their knowledge about the 

force field in a task-relevant dimension. In a previous experiment, we presented participants with a 

circular array of landmarks and asked where they would have to aim their movement to compensate 

for the perturbation (McDougle et al. 2015). Whereas this reporting method is well suited to cursor 
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rotation experiments, where an angular change in aiming is sufficient to compensate a rotation and 

the report can therefore be considered to lie on the same scale as actual movement performance, it is 

potentially not ideal for velocity-dependent force fields. To address this issue, we asked participants 

to express the movement strategies they were consciously using to compensate for the force field, by 

mimicking them with their left hand. Based on the finding that true implicit inter-manual transfer of 

force compensation is limited (Wang and Sainburg 2003; Malfait and Ostry 2004; Joiner et al. 2013), 

we reasoned that forces expressed with the left hand could thus serve as a proxy of explicit knowledge, 

which participants had acquired about the force field with their right hand, on a more suitable scale 

than reporting aiming directions. 

We tested two groups of participants on an experiment where the test channels interspersed 

between closed-loop reaches in a force field were alternatively conducted with the left or right hand 

by each participant. We asked participants in the Mimic group to “mimic the forces” they experienced 

on right hand trials with their left hand, whereas the control group was just told to move to the target. 

Figure 5A & B show the force compensation index and force profiles of both groups by hand. 

Both groups compensated the force field about equally with their right hand. As for the left hand, the 

control group expressed very little force adaptation, confirming our expectation of limited intermanual 

transfer based on prior results (Wang and Sainburg 2003; Malfait and Ostry 2004; Joiner et al. 2013). 

For the Mimic group, we noted that different participants appeared to generate forces in different 

directions (see figure 5B). We interpret this as participants mimicking the force in different reference 

frames, i.e. in an extrinsic and an intrinsic reference frame. Whereas it has been shown that force 

compensation can be learned in different and mixed coordinate systems (Berniker et al. 2014; Franklin 

et al. 2016), it is not clear why implicit acquisition would yield the seemingly categorical differences 

we observed. If, on the other hand, we assume left hand performance to express participants’ explicit 

knowledge, the different reference frames are easily explained by differing interpretations of the task 

instructions: as the instruction did not specify a reference frame, participants chose the one they 

considered appropriate. We therefore aligned left hand forces in the Mimic group to an extrinsic 

reference frame by sign-inverting left hand forces of participants whose median reports in field A 

matched an intrinsic reference frame (8 participants in Mimic group, 4 in control group). With this, left 

hand force compensation in the Mimic group on average trailed that of the right hand, albeit still with 

higher variability (figure 5A). 
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Figure 5: Experiment 3. A) Across participant mean force compensation indices (±SEM) of left and right 
hand force channel trials for the control group with no instruction and the Mimic group instructed to 
mimic the forces with their left hand. To average left hand performance, the signs of left hand forces 
were flipped for 8 out of 19 participants in the Mimic group and 4 out of 17 in the control group, as 
they appeared to report in an inverted reference frame. B) Mean force profiles (±SEM) at the beginning, 
middle and end of field A practice, with separate means for participants displaying a more external or 
more internal reference frame. C) Variance in perpendicular channel force accounted for by along-
channel position, velocity, or a linear combination of the two. Shaded areas are bootstrapped 95% 
confidence intervals.  

The group difference was supported by a mixed ANOVA with factors group (control vs. Mimic), 

block (early, middle, late field A practice) and hand (right, left). This yielded a significant main effect of 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 7, 2019. ; https://doi.org/10.1101/694430doi: bioRxiv preprint 

https://doi.org/10.1101/694430
http://creativecommons.org/licenses/by/4.0/


17 
 

group (F1,34 = 6.6, p = .015, η²gen = .16) and block (F1.4,48.0 = 6.3, p = .009, η²gen = .15), a tendency for a 

hand-effect (F1,34 = 4.1, p = .051, η²gen = .09) and a significant interaction between group and hand (F1,34 

= 5.6, p = .023, η²gen = .13), but no other significant two- or three-fold interactions (all p > .29). Following 

up on the group-by-hand interaction, simple main effects indicated a significant difference between 

left and right hand in the control (F = 103.8, p < .001), but not in the Mimic group (F = .04, p = .85).  

The brevity of the field B phase only allowed us to test one channel per hand in its center. 

These data were highly variable; for example, the Mimic group had right-hand mean: -5 %, SEM: 101 

%, median: 21 %, and left-hand mean: -36 %, SEM: 134 %, median: 5 %). Closer inspection revealed 

that this was not due to few outliers but indeed reflected the group being spread out between 

maintaining compensation, switching the sign of their compensation, or even increasing. Accordingly, 

neither t-test (t18=.6, p=.55), nor sign-test (S=7, p=.18) indicated a significant difference between left 

and right hand for differences between the last field A channel and the field B channel. We speculate 

that this is reflective of some learners adopting a new strategy that is appropriate to the sign-switched 

force field, while others did not, potentially because they chose to mimic in a single reference frame. 

We therefore refrain from overinterpreting the field B or clamp phase in this experiment and note that 

the method would need to be improved to allow inferences on field switches or rebound.  

Representation of force compensation 

Field A practice data afforded us the opportunity to determine if force compensation reflected 

separable components of learning. If the brain learns an internal model of a velocity-dependent force 

field, we may expect that the model’s output, i.e. compensatory force, should reflect such a velocity-

dependence (Conditt and Mussa-Ivaldi 1999). Indeed, it has been found that the compensatory 

response to a force field is determined by hand velocity and to a lesser extent by hand position (Sing 

et al. 2009). The position-dependent component has subsequently been attributed to a different, 

model-free learning mechanism (Haith et al. 2011). Considering that recent studies have found 

proposed model-free reinforcement learning to depend on explicit strategies (Shmuelof et al. 2012; 

Codol et al. 2018; Holland et al. 2018), this can be taken to suggest that the strategic component of 

learning should depend on position and, in this respect, resemble off-target aiming typical of cursor 

rotation experiments (Benson et al. 2011; Taylor et al. 2014; Bond and Taylor 2017). Alternatively, 

strategies could also depend on velocity. Different from previous approaches (McDougle et al. 2015), 

experiment 3 offered learners a way to express a strategy in exactly the dimension of the field, allowing 

us to infer the nature of strategy representation. Figure 4D displays the proportion of variance 

accounted for on all of the field A channels in experiment 3 when fitting channel-perpendicular force 

by position, velocity, or a linear combination of the two. For the right hand, the proportion of variance 

accounted for by velocity is larger than that accounted for by position and increases with practice, in 
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line with learning an internal model of the velocity-dependent force field (Sing et al. 2009; Haith et al. 

2011). For the left hand, position and velocity accounted for more equal portions of variance 

throughout practice. Thus, the putative explicit strategy did not appear to capture the velocity-

dependent nature of the force field as adequately as right-hand learning, even when the two were 

assessed by the same method. This supports our interpretation that the explicit component expressed 

by the left hand is qualitatively different from adaptation of an internal model, and suggests that the 

complexity of explicit learning may be limited to simple, position-dependent strategies, as are typically 

observed in cursor rotation experiments. 

 

Figure 6: Across participant mean reaction times (±SEM) from selected blocks of 36 (experiment 1 and 

2) or 18 (experiment 3) trials representing late baseline, early and late field A practice, complete field 

B practice, and early clamp, respectively. Grey bars are field trials, green bars are No Push trials for 

experiment 1 and 2 and right hand channel trials for experiment 3.  

Experiments 1 to 3 – reaction times (RTs) 

Reaction time (RT) has been shown to sharply increase at the onset of learning in visuomotor rotation 

tasks (Hinder et al. 2008; Shabbott et al. 2010; McDougle et al. 2015), and if RT is constrained, 

performance is significantly impaired (Fernandez-Ruiz et al. 2011; Haith et al. 2015) suggestive of 

strategy use. Figure 6 shows RTs from all experiments, summarized over 36 (18 for experiment 3) 

consecutive field trials (or channel trials for clamp) for selected blocks. In all experiments, RTs 

increased with the introduction of the force field: Across-block ANOVAs indicated significant 

differences for experiment 1 (F2.5,47.1=13.9, p<.001, η2
gen=.42), and experiment 2 (F2.2,35.4=5.1, p=.009, 

η2
gen=.24) and post-hoc t-tests confirmed significant differences from baseline to early field A 

(experiment 1: t=-4.1, p=.004; experiment 2: t=-3.1, p=.03). For experiment 3, ANOVA indicated a 

significant effect of block (F3.3,110.5=18.6, p<.001, η²gen=.35), but not of group (F1,34=.04, p=.85, 

η²gen=.001), and post-hoc t-tests showed a significant increase from baseline to early field A (t=-4.6, 

p<.001). By the end of field A practice, RTs were decreased relative to early field A in experiment 1 

(t=5.5, p<.001), and 3 (t=7.2, p<.001), though this difference was not significant in experiment 2 (t=1.1, 

p=.6). RTs no longer differed significantly from baseline at the end of field A training (experiment 1: t=-
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1.4, p=.36; experiment 2: t=-1.4, p=.6; experiment 3: t=1.3, p=1.0). The introduction of field B caused 

another increase in RT in experiment 1 (compared to late field A: t=-3.3, p=.02), but not experiment 3 

(t=.2, p=1.0). The latter fact may indicate that the highly variable behavior in experiment 3’s B-phase 

was truly reflective of learners not adopting a new strategy in response to field B, though this remains 

speculative.  

Critically, a purely implicit learning mechanism would not predict any measurable modulation 

of RTs upon the imposition of a perturbation. RT, however, is a reliable reflection of action 

selection/decision-making processes; thus, the observed RT increases likely reflect planning behaviors. 

After many trials of training, RTs are reduced, perhaps reflecting the “caching” of reinforced actions 

(McDougle and Taylor 2019), or habituation (Huberdeau et al. 2017; Hardwick et al. 2018). Importantly, 

whereas our interventions only tested for an explicit component on channel trials, the RT results 

suggest that this component also contributed on the standard force field learning trials. 

Discussion 

We set out to test if an explicit learning component contributes to force field adaptation, 

similar to the way aiming strategies contribute to adaptation to cursor rotations (Heuer and Hegele 

2008; Taylor et al. 2014). Our data support this notion in three ways. First, in experiment 1 and 2, 

instructing participants to not expect the force field on an upcoming (channel) trial reduced force 

expression compared to unannounced Catch channels. Conversely, instructing them to expect the 

force field caused no such reduction, showing that this was not just a stereotyped response to changes 

in trial conditions, but truly reflects the semantic content of the instruction. Despite the problems 

surrounding verbalization as a necessary criterion, responsiveness to the content of verbal instruction 

is a hallmark of explicit learning, whereas implicit adaptation is believed to be immune to this content 

(Mazzoni and Krakauer 2006; Heuer and Hegele 2008; Taylor and Ivry 2011; Schween et al. 2014). 

Second, in experiment 3, participants were able to express a learned pattern of compensatory forces 

with their left hand in response to a field learned with their right hand. This shows that they were both 

explicitly aware of the force field experienced with their right hand, and were able to intentionally 

utilize that knowledge to shape the motor response of their left hand. In addition to its intentional 

expression, our inference that left hand reports were qualitatively different from implicit adaptation 

is supported by the fact that participants appeared to report in different reference frames, which can 

be explained by differing interpretations of the instruction to “mimic the force”. Furthermore, right 

hand channel force displayed velocity dependence that increased with practice, whereas left hand 

force depended equally on position and velocity components. Velocity-dependence is a hallmark of 

adapting putative internal models to viscous force fields, and its reduced presence in the left-hand 

reports supports our interpretation that these reflect a qualitatively different component of learning. 
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Third, across all experiments, introduction of the force field led to a transient increase in RT, in line 

with predictive compensation on normal field trials initially requiring some degree of cognitive 

processing, and subsequently becoming more proceduralized over time (Huberdeau et al. 2017; 

Hardwick et al. 2018; Leow et al. 2019; McDougle and Taylor 2019). Conversely, the introduction of 

the final clamp phase led to a reduction in RT, consistent with strategies being abandoned. 

We take our results to show that some fraction of force field adaptation likely qualifies as 

volitional compensation. We find signs of this component contributing to predictive compensation on 

Catch channels, as well as to compensation on field trials. This raises one important question: Under 

which specific circumstances does explicit compensation operate, and how would this affect 

conventional interpretations of results from force field studies? We note that our experimental 

conditions were specifically designed to facilitate strategy formation and expression. Specifically, we 

instructed participants about the potential use of strategies. We considered this necessary as we 

suspected that reducing clarity in our instructions to test more “natural” behavior would have come 

at the risk of masking an explicit component through misinterpretation of instructions, particularly 

given the limited quality of explicit knowledge outlined above. For the same reasons, all of our 

experiments used only a single target direction, as this reduces the participants’ experience of the 

force field to mainly the horizontal component. Furthermore, we used rather large field constants in 

experiment 3; lower field constants would likely spur less explicit learning, similar to the way smaller 

or gradually introduced cursor rotations do (Malfait and Ostry 2004; Kagerer et al. 2006; Werner et al. 

2014; Gaffin-Cahn et al. 2019). It therefore seems likely that the explicit component plays less of a role 

in force field paradigms that use small field constants, multiple targets, and deliberately instruct their 

participants to “not think about the task” (Morehead et al. 2017). In addition, velocity criteria that 

participants are frequently required to match may further draw attention away from strategic 

compensation and incentivize incidental learning (Lee et al. 2018b), as meeting them is relatively 

unrelated to reaching the target in a closed-loop movement.  

Nevertheless, force field studies tend to vary in the magnitude of force applied, in the number 

of targets, and reaching characteristics, which, in turn, may vary the degree to which strategies are 

useful in compensating for the force. This may explain a number of mixed findings, such as savings, 

consolidation, and interference from declarative memory. The fact that we found signs of explicit 

learning across open- and closed-loop experiments and small and large field constants, respectively, 

indicates that the contribution of this volitional component is worth considering across experimental 

designs, particularly in situations where standard implicit adaptation may be insufficient.  

A key issue here are situations where participants have to switch between different force 

environments. For example, when exposure alternates between two opposing force fields there is 
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interference, leading to no learning on average (Gandolfo et al. 1996). Studies have identified 

contextual cues that allow learners to overcome this interference (Osu et al. 2004; Hirashima and 

Nozaki 2012; Howard et al. 2012, 2013, 2015; Nozaki et al. 2016; Sheahan et al. 2016; Heald et al. 2018; 

Proud et al. 2019). The relevant implication of our results here is that learners may in principle be able 

to learn such opposing force fields explicitly. Therefore, dual adaptation in many of these scenarios 

may reflect the formation of separate instances in declarative memory that support alternating 

compensation strategies (Gershman et al. 2014), rather than, or possibly prior to, the formation and 

adaptation of separate internal models (Wolpert and Kawato 1998). This might, for example, explain 

conflicting findings on the role of color cues in supporting dual adaptation (Gandolfo et al. 1996; Osu 

et al. 2004; Howard et al. 2013): their effect may be restricted to a strategic component whose 

contribution to solving the task at hand depends on certain experimental conditions. On a related note, 

switching between explicit strategies for a perturbed and a null condition using errors as a contextual 

cue has been suggested to explain savings in cursor rotation paradigms (Morehead et al. 2015). Our 

results imply that this explanation may also pertain to savings in force field adaptation.  

As such, we propose that studies involving adaptation to force fields should be designed with 

the possibility of alternative learning mechanisms in mind, such as the explicit component described 

here. Notably, one may be tempted to consider explicit contributions an undesirable confound that 

should be eliminated; but it may also be true that they reflect an important stage in the learning of 

novel skills (Fitts and Posner 1967; Willingham 1998; Taylor and Ivry 2012; Stanley and Krakauer 2013). 

Thus, while it may be appropriate to limit explicit components in experimental manipulations where 

they would confound inferences about implicit learning, it may also be appropriate to embrace their 

existence, measure them, and further investigate their contribution to motor learning and control. 

The notion that the explicit component may become particularly relevant upon switching 

between different perturbations also extends to the widely acknowledged idea that multiple 

timescales contribute to adaptation, which was originally inferred from behavioral phenomena that 

occur upon such switching (Smith et al. 2006). We have argued previously that “the fast timescale” of 

force field adaptation may be equivalent to an explicit learning component (McDougle et al. 2015). 

Whereas B-phase data in experiment 3 were too variable to provide further insight, experiment 1 is 

generally in line with this interpretation: Push and Catch channels, which include the explicit 

component, showed rapid adaptation to field B upon its introduction, whereas No Push channels, 

which exclude it, adapted considerably more slowly. Nevertheless, we note that not all aspects of the 

behavior we observed can be explained by a two-state model with one fast and one slow component. 

Crucial in this respect is that rebound occurs gradually. Since we instruct our participants to abandon 

the strategy at the beginning of the clamp phase, the two-state model would expect the explicit state 
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to become disengaged and for behavior to abruptly switch to reflect only the implicit state, which 

should be in field A-direction and decay from there. Thus, whereas No Push channels during initial 

clamp not being at the same level as No Push channels in late field B can be explained by generalization 

of implicit learning being locally tied to the explicit movement plan (Hirashima and Nozaki 2012; Day 

et al. 2016; Sheahan et al. 2016; McDougle et al. 2017; Schween et al. 2018), the gradual drift that we 

observe at the beginning of the clamp phase indicates additional properties of underlying learning, 

such as a combination of two implicit and one explicit timescale (Miyamoto et al. 2014), or a gradual 

attenuation of strategic aiming rather than an immediate one.  

In this manuscript, we have tended to contrast adaptation of internal models with explicit 

strategies. While we indeed believe that explicit strategies are qualitatively distinct from canonical 

adaptation of internal models and rely on different neural substrates (Anguera et al. 2010, 2012; 

Werner et al. 2014; Thürer et al. 2016), we would like to emphasize that this does not mean that explicit 

strategies do not rely on internal models or the cerebellum (Butcher et al. 2017). Internal models may 

serve various purposes, such as simulating potential outcomes to support (explicit) action selection 

(Barsalou 1999) and further research is needed to understand these relations.  

In conclusion, our results show that a component of force field learning shares important 

properties with explicit aiming strategies in visual perturbation paradigms. It seems likely that the 

amount they contribute depends on specific experimental conditions, and more research is needed to 

clarify under which conditions these strategies are used and if they provide relevant alternatives to 

current explanations for behavioral observations. As a step to facilitate this clarification, we suggest 

that researchers should take care to report detailed information on instructions and other 

experimental conditions that may influence the generation and use of strategies.  
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Supplementary text 1: Scripted instructions of experiment 2 (experiment 1 was similar). As a general 

rule, we use this script as a guideline, but administer instructions in free speech with individual 

variations and answer questions asked by the participants within certain limits. While just reading the 

scripted instructions out loud or having participants read them may seem like better standardization, 

we consider our method more suited to achieve similar understanding on the side of participants rather 

than just giving them the same input.  

General task instructions (Instruct and demonstrate): 

Welcome to our experiment. Today, we investigate how you learn to reach towards a target.  

We will ask you to sit down in front of this robotic arm, grasp its handle and look into the screen below 

your eyelevel.  

On each trial, the robot will guide your hand to a start location. Once your hand is in the start location, 

you will see a Plus-sign which I ask you to fixate with your view. After a short interval, the sign will 

disappear and a white target dot will appear. You don’t need to fixate on the Plus after it has 

disappeared. 

Your task is to “shoot” through the target with the cursor in a swift, accurate movement. If you hit the 

target, it will turn green and you will hear a tone. If you miss it, neither of the two will happen. 

Independent of hit or miss, you may see a “Too Slow!” warning after the movement indicating that 

you should move faster. Your goal is to achieve the hit (i.e. target turning green and tone) without too 

slow warning as often as possible.  

Note that the interval of target appearance is randomized – we do that so that you really have to react 

to the visual stimuli and cannot just fall into a rhythm. If you move before the target has appeared, the 

robot will resist your movement and bring you back towards the start location. 

We will find you a comfortable position now. Please keep this position and take particular care not to 

move the chair. 

Instruct at Trial 90 (close to end of baseline): 

After a few trials, the robot is going to push you off your path while you are moving towards the target. 

Please try to successfully hit the target in time as often as possible despite being pushed off! 

Before some trials you will see a message instead of the Plus-Sign. If the message says “Push!” please 

expect the robot to push you off and act as on those trials. Note that you will not feel the robot push 

you on the trials with the “Push!” message but we nevertheless ask you to act as if it was going to! If 

the message says “No Push!” we would like you to act as in trials where the robot doesn’t push you off 

path and just move towards the target. 

To sum up, please try to hit the target in time and stay alert to the messages. The important things for 

you to remember are that you treat “Push!” message trials as if the robot was going to push you even 

though you will not feel it, and that on “No push!” trials, act as if it was not going to push you. 

Note that it is a hard task, so don’t be frustrated if you don’t immediately manage to hit. Try your best 

and see if you can get better. 

After trail 550 (before Error Clamp):  

Starting now, for the remainder of the experiment, we would like you to not push deliberately or apply 

any aiming strategies you may have developed. Just move towards the target. This is the same as on 

“No push!” trials, but you won’t be seeing any more messages. 
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