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Abstract 
Animal behaviour is dynamic, evolving over multiple timescales from milliseconds to days and even 

across a lifetime. To understand the mechanisms governing these dynamics, it is necessary to capture 

multi-timescale structure from behavioural data. Here, we develop computational tools and study the 

behaviour of hundreds of larval zebrafish tracked continuously across multiple 24-hour day/night 

cycles. We extracted millions of movements and pauses, termed bouts, and used unsupervised 

learning to reduce each larva’s behaviour to an alternating sequence of active and inactive bout types, 

termed modules. Through hierarchical compression, we identified recurrent behavioural patterns, 

termed motifs. Module and motif usage varied across the day/night cycle, revealing structure at sub-

second to day-long timescales. We further demonstrate that module and motif analysis can uncover 

novel pharmacological and genetic mutant phenotypes. Overall, our work reveals the organisation of 

larval zebrafish behaviour at multiple timescales and provides tools to identify structure from large-

scale behavioural datasets. 
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Introduction  1 

To survive, animals must coordinate patterns of action and inaction in response to their environment. 2 

These actions and inactions, which together we will define as behaviour, result from some function 3 

incorporating internal (e.g. transcriptional, hormonal or neuronal activity) and external (e.g. time of 4 

day or temperature) state. Thus, behavioural descriptions provide insight into the underlying 5 

mechanisms that control behaviour and are a necessary step in understanding these systems 6 

(Krakauer et al., 2017).  7 

 8 

Animal behaviour, however, typically has many degrees of freedom and evolves over multiple 9 

timescales from milliseconds (Wiltschko et al., 2015) to days (Fulcher and Jones, 2017) and even across 10 

an animal’s entire lifespan (Jordan et al., 2013; Stern et al., 2017). As such, quantitatively describing 11 

behaviour remains both conceptually and technically challenging (Berman, 2018; Brown and de Bivort, 12 

2018). Inspired by early ideas from ethology (Lashley, 1951; Tinbergen, 1963), one approach is to 13 

describe behaviour in terms of simple modules that are arranged into more complex motifs. 14 

Behavioural modules are often defined from postural data as stereotyped movements, such as 15 

walking in Drosophila (Berman et al., 2014; Vogelstein et al., 2014; Robie et al., 2017) and mice 16 

(Wiltschko et al., 2015), while behavioural motifs are defined as sequences of modules, which capture 17 

the patterns inherent to animal behaviour, such as grooming in Drosophila (Berman et al., 2014).  18 

 19 

Zebrafish larvae have emerged as a powerful model organism in neuroscience, owing to their genetic 20 

tractability (Howe et al., 2013), translucency (Vanwalleghem et al., 2018) and amenability to 21 

pharmacological screening (Rihel and Ghosh, 2015). In terms of behaviour larvae exhibit an alternating 22 

sequence of movements and pauses, termed bouts. This structure is particularly suited to modular 23 

description as individual bouts can be easily segmented and it is relatively easy to acquire many 24 

examples from even a single animal due to the high frequency of their movement (Kim et al., 2017). 25 

Leveraging these advantages, recent work used unsupervised learning to uncover a locomotor 26 

repertoire of 13 swim types in larval zebrafish, including slow forward swims and faster escape swims 27 

(Marques et al., 2018). However, the inactive periods between swim bouts, were not considered, 28 

despite reflecting behavioural states such as passivity in the face of adversity (Mu et al., 2019) or even 29 

sleep (Prober et al., 2006).   30 

 31 

To explore an animal’s full behavioural repertoire, from fast movements to sleep it is necessary to 32 

study behaviour over long timescales. To date, however, module and motif descriptions of behaviour 33 

have been developed from videos fifteen minutes (Vogelstein et al., 2014; Wiltschko et al., 2015; 34 

Robie et al., 2017) to two hours (Marques et al., 2018) in length. Consequently, most identified 35 
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behavioural structure has been on the order of milliseconds and the existence of longer-timescale 36 

structure, on the order of minutes to hours has remained unexplored. The development of methods 37 

to extract multi-timescale structure from long-timescale recordings would open avenues to explore 38 

questions including how behaviour varies across the day/night cycle and develops across an animal’s 39 

lifespan. Furthermore, as pharmacologically or genetically induced behavioural phenotypes can differ 40 

at different times of the day/night cycle in zebrafish larvae (Rihel et al., 2010; Hoffman et al., 2016), a 41 

long-timescale approach would provide valuable phenotyping information.   42 

 43 

Currently, the limiting factor in scaling these methods is the volume of data, owing to the high-44 

framerates and -dimensionality required to estimate animal posture. To overcome this challenge and 45 

scale current approaches, we present a fundamentally different approach by building a module and 46 

motif description of larval zebrafish behaviour from a one-dimensional behavioural parameter 47 

recorded over time.  Specifically, we used a high-throughput behavioural set-up (Rihel et al., 2010) to 48 

continuously monitor the activity of hundreds of zebrafish larvae across multiple days and nights. To 49 

identify multi-timescale behavioural structure, we developed a three-step computational approach. 50 

Firstly, we used unsupervised learning to identify a set of 10 behavioural modules that describe both 51 

active and inactive bout structure. Secondly, we applied a compression algorithm (Nevill-Manning and 52 

Witten, 2000) to our module data to compile a library of almost 50,000 motifs, revealing behavioural 53 

patterns organised across sub-second to minute timescales. Finally, we used a supervised learning 54 

algorithm (Peng et al., 2005) to identify motifs from the library, used at particular times of the 55 

day/night cycle. To test the ability of our approach to detect biologically relevant phenotypes, we also 56 

studied the behaviour of larvae exposed to the seizure-inducing drug, pentylenetetrazol (PTZ) 57 

(Baraban et al., 2005), the sedating drug, melatonin (Zhdanova et al., 2001), and hypocretin receptor 58 

(hcrtr) mutant larva (Yokogawa et al., 2007), loss of which is associated with narcolepsy in humans (Lin 59 

et al., 1999) and altered bout structure in zebrafish (Yokogawa et al., 2007; Elbaz et al., 2012). We 60 

found that our computational approach could readily detect both compound dose and mutant specific 61 

differences in module and motif usage, demonstrating the biological relevance of our behavioural 62 

description.   63 

 64 

Ultimately, our work reveals the organisation of larval zebrafish behaviour at sub-second to day-long 65 

timescales and provides new computational tools to identify structure from large-scale behavioural 66 

datasets.     67 

 68 

 69 
 70 
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Results  71 

Behaviour at Scale  72 

Larval zebrafish behaviour consists of an alternating sequence of movements and pauses, termed 73 

bouts, that are organised at sub-second timescales. To capture this structure from high-throughput, 74 

long-timescale experiments, we used a 96-well plate set-up with a single larva housed in each well 75 

(Supplementary Figure 1a) and as a proxy for movement recorded the number of pixels that changed 76 

intensity within each well between successive pairs of frames, a metric we term Δ pixels. We built on 77 

previous work using this set-up (reviewed in: Barlow and Rihel, 2017; Oikonomou and Prober, 2017) 78 

by analysing Δ pixels data at 25Hz, rather than in one-minute bins. When recorded in this way, Δ pixels 79 

data is an alternating sequence of positive values representing movement magnitude and zeros 80 

representing periods of inactivity (Figure 1a, Supplementary video 1). We defined active bouts as any 81 

single or consecutive frames with non-zero Δ pixels values and described each bout using several 82 

features including the mean and standard deviation of Δ pixels values across the bout (Figure 1a). We 83 

defined inactive bouts as any single or consecutive frames with zero Δ pixels values, and described 84 

each inactive bout using its length (Figure 1a).  85 

 86 

Using this approach, we first assessed the behaviour of wild-type larvae across a 14hr/10hr day/night 87 

cycle (Supplementary Figure 2a). During the day, wild-type larvae had many more bouts than the night 88 

(Figure 1b) and tended to use short, sub-second long inactive bouts (Figure 1c). Longer inactive bouts, 89 

on the order of seconds to minutes, were generally reserved for the night (Figure 1c). Together these 90 

differences in active and inactive bout usage resulted in a diurnal pattern of activity (Figure 1d). These 91 

results are broadly consistent with those from analysis of binned Δ pixels data (Barlow and Rihel, 2017; 92 

Oikonomou and Prober, 2017), with the addition of sub-second resolution and an increase in accuracy, 93 

as determined by intra-fish comparisons between the methods (Supplementary Figure 1b-c).    94 

 95 

Next, we extended our approach to examine the behavioural effects of pharmacological and genetic 96 

manipulations. Melatonin, which is strongly hypnotic in zebrafish (Rihel et al., 2010), dose 97 

dependently decreased larval activity (Figure 1e) by decreasing the number, magnitude, and length of 98 

active bouts and by inducing longer inactive bouts (Supplementary Figure 2b). The epileptogenic drug 99 

PTZ (Supplementary Figure 1d) altered both active and inactive bout parameters (Supplementary 100 

Figure 2c), eliciting on average longer, lower amplitude active bouts and longer inactive bouts during 101 

the day.  Finally, homozygous hcrtr-/- mutants had only subtle differences in active bout structure, with 102 

shorter mean active bout length and lower active bout total and standard deviation, compared to both 103 

wild-type hcrtr+/+ and heterozygous hcrtr-/+ siblings, which did not differ from one another by any 104 

metrics (Supplementary Figure 2d). 105 
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Collectively, these results quantitatively demonstrate the advantages of assessing Δ pixels data on a 106 

frame by frame basis and provide insight into the behaviour of wild-type zebrafish larvae across the 107 

day/night cycle as well as those subject to pharmacological or genetic manipulations. 108 

 109 

 110 

Module Usage Varies with Behavioural Context 111 

Recent work has demonstrated that larval activity can be classified using unsupervised learning into 112 

13 distinct bout types that represent different swimming movements (Marques et al., 2018). A full 113 

description of larval behaviour, however, requires quantification of both the movements and pauses 114 

that they execute. Thus, we sought to determine if distinct active or inactive bout types, which we 115 

termed modules, were identifiable from our data, and if module usage depended upon behavioural 116 

context. 117 

 118 

To address these questions, we separately clustered the active and inactive bouts (combined across 119 

experiments a total of 30,900,018 active and 30,900,418 inactive bouts) using an evidence 120 

accumulation-based clustering algorithm (see Materials & Methods). In brief, 200 Gaussian Mixture 121 

Models were built from each data set, then the results of these models were combined to generate 122 

aggregate solutions. This clustering method identified 5 active and 5 inactive modules (Figure 2a-b, 123 

Supplementary Figure 3), which we separately labelled from 1-5 from the shortest to longest mean 124 

bout length. The active modules corresponded to different shapes of Δ pixel changes in terms of 125 

amplitude and length (Figure 2a and Supplementary Figure 4a), while the inactive modules consisted 126 

of different lengths of inactivity (Figure 2b and Supplementary Figure 4a). The shortest inactive 127 

module (module 1) had a mean length of 0.06s and ranged from a minimum of 0.04s (our sampling 128 

limit) to a maximum of 0.12s. In contrast, the longest inactive module (module 5) had a mean length 129 

of 96s and covered a huge range of values from a minimum of 20s to a maximum of 8.8hours.  130 

 131 

To examine how module usage varied across time, we represented each larvae’s behaviour as an 132 

alternating sequence of active and inactive modules (Figure 2c, Supplementary video 2). In the wild-133 

type data, module usage varied with both time of day and development (Figure 2d). For example, the 134 

probability of observing inactive module 2, which consists of typical day pause lengths (0.16 – 1.16s), 135 

was on average 0.6 during the day and only 0.24 during the night, when inactive modules 1, 4 and 5 136 

became more likely (Figure 2d). To reveal finer-grain temporal dynamics, we also examined each 137 

module’s mean frequency over time (Figure 2e). In general, both the active and the short inactive 138 

modules had high frequencies during the day, peaking at the light/dark transition as the larvae 139 

responded to the sudden change in illumination. In contrast, the only module with a peak in frequency 140 
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at the dark-to-light transition was inactive module 4 (3.72 – 20s), which also had an increased 141 

frequency approaching the light-to-dark transition. Together these results reveal that zebrafish 142 

employ different bout types in a time of day/night dependent manner.  143 

 144 

Next, we examined the impact of pharmacological and genetic manipulations upon bout type usage.   145 

Larvae dosed with melatonin showed a shift towards using shorter active modules and longer inactive 146 

modules (Supplemental Figure 4b). In PTZ dosed larvae, there were also shifts in active module 147 

probability. Particularly notable was the complete exclusion of active module 1 in 27 of the 28 (96.4%) 148 

PTZ dosed larvae, while control larvae used this module with 0.12 probability during the day and 0.22 149 

during the night (Supplementary Figure 4c). These shifts likely reflect the chaotic, seizure-like 150 

swimming observed in PTZ-treated larvae (Baraban et al., 2005), although no single active module 151 

clearly captured these behavioural seizures. PTZ also increased the probability of the shortest inactive 152 

(module 1) as well as the two longest inactive modules (modules 4 and 5), the latter of which are likely 153 

to correspond to the inter-ictal bouts of inactivity associated with seizures (Supplementary Figure 4c). 154 

Conversely, hcrtr mutants exhibited no differences in either active or inactive module probabilities 155 

compared to their wild-type siblings (Supplementary Figure 4d), demonstrating that bout type usage 156 

is similar between these mutants and wild-type animals across the day/night cycle. 157 

 158 

Collectively, these results reveal that zebrafish behaviour in this assay can be described by 5 types of 159 

active and 5 types of inactive modules, the usage of which varies with behavioural context. 160 

Interestingly, in many contexts, both active and inactive module probabilities were shifted, suggesting 161 

that these module types may co-vary, perhaps by being arranged into recurrent sequences. 162 

 163 

 164 

Hierarchical Compression Reveals Structure in Zebrafish Behaviour  165 

From a set of behavioural modules, an animal could structure their behaviour in a range of ways. At 166 

one end of this spectrum, successive modules could be organised completely randomly, such that 167 

prior modules exert no influence on future module selection. At the other end, module selection could 168 

be fully deterministic with a particular module always following another. Rather than being fixed, 169 

however, it is likely that animals adapt their behavioural structure in response to changing internal or 170 

external states. We sought to map the structure of zebrafish behaviour in different contexts by 171 

examining the presence and organisation of module sequences, which could provide insight into the 172 

mechanisms governing behaviour. To do this, we used a compression algorithm (Nevill-Manning and 173 

Witten, 2000) as Gomez-Marin and colleagues (2016) used to discover structure in C. elegans postural 174 

data. When applied to our dataset (Figure 3a), this algorithm iteratively identified motifs from each 175 
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larva’s modular sequence and returned two outputs -- compressibility, a measure of each larva’s 176 

behavioural structure, and a library of identified recurrent module sequences, termed motifs.  177 

 178 

To quantify the structure of zebrafish behaviour, we first compressed every animal’s full modular 179 

sequence, which in wild type animals were on average 236,636 modules long across 70 hours. To 180 

determine if the resultant compression values indicated more structure than would be expected based 181 

on either the distribution or the transition structure of the active-to-inactive modules, we compared 182 

each larva’s compressibility to that of 10 sets of paired shuffled data. All wild-type larvae were more 183 

compressive than their paired shuffled data, demonstrating that their behaviour is more structured 184 

than expected from modular probabilities alone (Supplementary Figure 5a). Compressibility, however, 185 

varies non-linearly with input sequence length, as longer sequences will be more likely to contain 186 

motifs (Supplementary Figure 5b). Thus, to enable comparisons between samples with different 187 

numbers of modules, we compressed non-overlapping 500 module blocks of sequence per larva. This 188 

approach revealed that compressibility was higher during the day than the night (Figure 3b) and 189 

increased with developmental age. To determine if these differences were primarily due to the 190 

presence of behavioural motifs or instead were a consequence of differences in module distribution, 191 

we also compared the difference in compressibility (Δ compressibility) between each animal’s real and 192 

shuffled data. This approach revealed that the compressibility difference between the day and the 193 

night is predominantly due to differences in module selection (Supplementary Figure 5d). To reveal 194 

finer-grain temporal changes in compressibility, we plotted Δ compressibility across time 195 

(Supplementary Figure 5e). This approach revealed peaks at the light-to-dark transitions in the 196 

evenings, consistent with this stimulus eliciting stereotyped behavioural sequences (Burgess and 197 

Granato, 2007; Emran et al., 2010).  198 

 199 

Next, we used compressibility to assess how our pharmacological and genetic manipulations altered 200 

the structure of larval behaviour. We found that melatonin decreased day compressibility to night-201 

time levels (Figure 3b). In contrast, PTZ increased compressibility to a constant day/night value (Figure 202 

3b). PTZ, however, reduced Δ compressibility (Supplementary Figure 5d), indicating that changes in 203 

module distribution, rather than motif usage, are the dominant driver of PTZ-induced behavioural 204 

changes. Importantly, these drug-induced changes in compressibility do not simply reflect overall 205 

activity levels. For example, PTZ exposed larvae are less active than controls during the day and more 206 

active during the night (Supplementary Figure 1d) but have consistently higher compressibility (Figure 207 

3b). Finally, in hcrtr mutants we found no differences in either compressibility or Δ compressibility, 208 

suggesting that hcrtr mutant behaviour is structured similarly to wild-type animals (Figure 3b).  209 
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To gain insight into the behavioural sequence’s larvae deploy, we then studied the motifs identified 210 

by the compression algorithm. Compression of the real modular sequences identified a mean of 1901 211 

motifs per animal (Supplementary Figure 5c). Interestingly, compression of the real data almost always 212 

identified slightly fewer motifs than the shuffled data (Supplementary Figure 5c). This suggests that 213 

the motifs identified from the real data were used more frequently than those in the shuffled data 214 

and therefore likely reflect enriched behavioural sequences. Merging the motifs identified across all 215 

animals generated a library of 46,554 unique behavioural motifs (Figure 3c). In terms of raw Δ pixels 216 

data, each motif represented an approximately repeated pattern of movements and pauses of varying 217 

length (Figure 3d). Motifs in the library ranged from 2-20 modules long with a median length of 8 218 

modules and spanned timescales from approximately 0.1s-11.3 minutes with a median length of 3.84s. 219 

Motifs of different module lengths used distinct sub-sets of modules (Figure 3c). For example, motifs 220 

comprised of longer module sequences had a lower probability of using long inactive modules. 221 

Together, these results reveal the varied timescales at which zebrafish larvae organise their behaviour 222 

and suggest the presence of structure governing the arrangement of modules into motifs.    223 

 224 

 225 

Behavioural Motif Usage is Time Dependent  226 

The large number of motifs in our library led us to hypothesise that each may be used in specific 227 

behavioural contexts. To test this hypothesis, we counted the number of times each larva used each 228 

motif within each time frame (e.g. day or night) and then normalised these counts by calculating 229 

whether each motif was observed more or less frequently than in the paired shuffled data, a metric 230 

we termed enrichment/constraint. Overall, we found that enrichment/constraint scores from our real 231 

data were more prone to extreme positive (enriched) and negative (constrained) values than the 232 

shuffled data (Figure 4a), suggesting that a minority of behavioural motifs were used more or less 233 

frequently than would be expected by chance.     234 

 235 

To test if these extremes occurred in particular contexts, we first compared motif usage between the 236 

day and the night in wild-type larvae by generating a matrix of enrichment/constraint scores (Figure 237 

4b). To distil the most salient motifs from this and other contextual matrices, we used the minimal-238 

redundancy-maximal-relevance criterion (mRMR) algorithm (Peng et al., 2005) to select a subset of 239 

motifs that best classify the data into the correct context. To determine how accurately these motif 240 

subsets could distinguish between behavioural contexts, we compared each classifier’s performance 241 

to that of a majority class classifier, which stringently performed as well as the ratio of samples 242 

between the two contexts. For example, in the day vs. night classification, a majority class classifier 243 
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would have an error rate of 50% (± standard error of proportion), as each larva contributes an equal 244 

number of days and nights to the enrichment/constraint matrix.     245 

 246 

Applying this algorithm to wild-type data revealed changes in motif usage across multiple timescales 247 

(Supplementary Figure 6b). We found that only 15 motifs were required to classify day- and night-248 

specific behaviour with only a 0.2% (±0.63% Std) classification error, compared to a majority class 249 

classifier with 50% error (Figure 4c, Supplementary Table 1). The day enriched motifs consisted of high 250 

amplitude movements interspersed with short pauses, while the night enriched motifs contained low 251 

amplitude movements and long pauses (Figure 4c). Next, we examined how motif usage changed over 252 

development by comparing consecutive days and nights (5-6dpf). In both day 5 vs. day 6 and night 5 253 

vs. night 6 comparisons, the classifiers achieved roughly 20% error using 93 and 85 motifs, respectively 254 

(Supplementary Table 1). Thus, motif usage shifted over just 24 hours of development, though these 255 

changes were far less prominent than those between the day and night. To study whether motif usage 256 

varied at finer timescales, we first divided the day into morning/evening and the night into early/late 257 

periods. In each case the mRMR algorithm performed better than the majority class classifiers 258 

(morning/evening: 33%, early/late night: 36%) though the relatively high classification errors suggest 259 

that motif selection did not vary strongly across each day or night (Supplementary Table 1). Consistent 260 

with this conclusion, classifiers attempting to delineate each hour from every other mostly failed to 261 

outperform their majority class classifiers (Supplementary Table 1). The two notable exceptions were 262 

the hour following each lighting transition, where this approach identified motifs with startle-like 263 

patterns (Figure 4d) and achieved good classification performance (Supplementary Table 1). Together 264 

these results demonstrate that motif usage varied between the day and the night, but aside from the 265 

lighting transitions, was relatively consistent within these periods.  266 

 267 

 268 

Dose-Dependent and Dose-Specific Behavioural Motifs  269 

Finally, we hypothesised that behavioural motif usage would vary dose-dependently across 270 

concentrations of melatonin and PTZ, providing insight into the mechanisms by which these 271 

compounds exert their behavioural effects. Motif dose-dependency would suggest a continuously 272 

modulated underlying process, which might arise if the fraction of bound receptors relates to neuronal 273 

activity modulation. Alternatively, motifs enriched at only specific doses, would suggest discrete 274 

effects upon neuronal circuitry, for example the binding of low affinity receptors.  275 

 276 

Applying the mRMR algorithm to our pharmacological data revealed both dose-dependent and dose-277 

specific modulation of motif usage. We found that each melatonin dose could be separated from the 278 
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others using 40 to 250 motifs with only 0-2.78% classification error (Figure 5a, Supplementary Table 279 

2). Focussing on just the best motif for each comparison, we observed both dose-dependency as well 280 

as dose-specificity. For example, comparing controls to all melatonin-dosed larvae identified a dose-281 

dependent motif that consisted of large magnitude movements and short pauses, whose 282 

enrichment/constraint score decreased with increasing melatonin concentration (Figure 5a). 283 

Conversely, the best 10µM motif, two long pauses broken by a small active bout sequence, showed 284 

dose-specificity being enriched at only 3µM and 10µM doses (Figure 5a). When applied to the PTZ 285 

data, our approach performed even more accurately, achieving perfect classification (0% error) 286 

between all conditions (Figure 5b and Appendix Table 2). Furthermore, in PTZ-dosed larvae we 287 

observed enrichment for motifs highly constrained in wild-type larvae, highlighting the usage of motifs 288 

beyond the normal wild-type repertoire, such as those corresponding to behavioural seizures (Figure 289 

5b).   290 

 291 

Next, we tested whether our motif subset approach could detect hcrtr mutant phenotypes that were 292 

not easily captured by other methods. For example, based upon human and rodent literature, where 293 

loss of hypocretin is associated with narcolepsy (Lin et al., 1999) and prior zebrafish literature (Elbaz 294 

et al., 2012), we expected abnormal transitions between active and inactive bouts. We found 295 

reasonable performance when discriminating between hcrtr+/+ and hcrtr-/- during both the day (16.67 296 

± 7.5% error with 195 motifs) and night (12.82 ± 9.6% error with 53 motifs) but weaker performance 297 

when distinguishing between hcrtr+/+ and hcrtr-/+, as expected for a haplosufficient gene 298 

(Supplementary Figure 6c and Supplementary Table 2). Thus, homozygous loss of hcrtr impacts motif 299 

usage enough to allow for successful classification of hcrtr-/- mutants, though no single hcrtr-/- motifs 300 

with large differences in enrichment/constraint scores compared to wild type siblings were 301 

particularly evident.  302 

 303 

Collectively, these results demonstrate that behavioural motifs are used context dependently and 304 

reveal how motif subsets can parse subtle differences in motif usage between behavioural contexts. 305 

However, does motif analysis provide additional discriminatory power over module selection, which 306 

also varies between behavioural contexts? To assess this, we compared the performance of each motif 307 

classifier to paired module classifiers built from matrices of module probabilities. All of the motif 308 

classifiers achieved better performance than their module pairs (Figure 5c), demonstrating both the 309 

phenotyping value of the motifs and their importance in the structure of larval behaviour.  310 

 311 

  312 
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Discussion  313 

Here, we developed and applied computational tools to describe high-throughput, long-timescale 314 

behavioural data in terms of stereotyped behaviours (modules), and sequences of modules (motifs) 315 

organised across sub-second to day-long timescales.  316 

 317 

 318 

Low-Dimensional Representations of Behaviour  319 

Low dimensional representations of behaviour, such as the Δ pixels metric employed here, result in a 320 

loss of information, for example direction of movement or posture. Such metrics do however facilitate 321 

screening approaches and/or long-timescale tracking and in these contexts have provided biological 322 

insight into the molecular targets of small molecules (Rihel et al., 2010) and genetics of ageing (Churgin 323 

et al., 2017). Our work builds on previous long-timescale studies of behaviour by assessing sub-second 324 

resolution Δ pixels data across multiple days and nights. This improved resolution enabled the 325 

segmentation and parameterisation of individual active and inactive bouts from our data, revealing 326 

how larvae adapt their behaviour across the day/night cycle and how behaviour is impacted by small 327 

molecules.   328 

 329 

Future work should aim to extend our assay by recording more detailed behavioural measures. 330 

Indeed, a recent study using centroid tracking in 96 well plates revealed that larvae show a day/night 331 

location preference within the well, and furthermore uncovered a mutant with a difference in this 332 

metric (Thyme et al., 2019), demonstrating that even within the confined space of a 96-well plate, 333 

location is an informative metric to record. It is likely that even more detailed behavioural measures, 334 

like eye and tail angles, will yield additional insights, for example enabling the exploration of rapid-335 

eye-movement sleep in zebrafish larvae (Shein-Idelson et al., 2016). Such metrics could be extracted 336 

by skeletonization or even through the use of an autoencoder applied to the raw video frames from 337 

each well (Johnson et al., 2016). 338 

 339 

 340 

Modular Descriptions of Behaviour  341 

A key idea in ethology is that behaviour consists of stereotyped modules arranged into motifs (Lashley, 342 

1951; Tinbergen, 1963). While early studies described behaviour in this manner through manual 343 

observations (Richard and Dawkins, 1976), recent advances in machine vision and learning have 344 

automated these processes (Todd et al., 2017). For example, in zebrafish larvae, recent work used 345 

unsupervised learning to uncover a locomotor repertoire of 13 swim types including slow forward 346 

swims and faster escape swims (Marques et al., 2018), although inactive bouts were not considered. 347 

From our dataset, we identified 5 active and 5 inactive modules, which respectively describe swim 348 
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bouts of different amplitudes (Figure 2a) and periods of inactivity of varied length (Figure 2b). 349 

Interestingly, all modules were used with reasonably high and similar probability by all wild-type 350 

animals (Figure 2d), demonstrating that these modules represent a set of common larval behaviours. 351 

Furthermore, the temporal (Figure 2e) and pharmacological (Supplementary Figure 4b-c) shifts in 352 

these probabilities illustrates that module usage can be flexibly re-organised depending upon 353 

behavioural context (Wiltschko et al., 2015).  354 

 355 

To discretize our bouts into modules, we first extracted hand-engineered features from each bout 356 

(Figure 1a) and then applied an evidence accumulation based clustering algorithm (Fred and Jain, 357 

2002, 2005). While our results demonstrate the relevance and utility of these modules in describing 358 

larval behaviour, it is possible that our approach missed rare bout types. For example, given the 359 

appearance of clearly visible PTZ-induced seizures in zebrafish (Baraban et al., 2005), we may have 360 

expected a distinct seizure module. Consequently, future work should build upon our bout 361 

classification by exploring the benefits of including additional features, the use of alternative 362 

clustering algorithms and our assumption of stereotypy, i.e. that all bouts can be fit into a module 363 

(Berman, 2018). An alternative direction would be to produce a mapping between our active modules 364 

and those identified from analysis of larval posture (Marques et al., 2018). Bridging this gap could 365 

facilitate behavioural screening approaches, for example by using data from our set-up to prioritise 366 

pharmacological compounds or mutants for postural analysis.  367 

 368 

 369 

Quantifying Structure in Behaviour   370 

In some contexts, it is beneficial for animals to execute coordinated patterns of behaviour. For 371 

example, to efficiently search an environment zebrafish larvae will execute organised sequences of 372 

left and right turns (Dunn et al., 2016). In other contexts, more random behaviour will be 373 

advantageous, such as when escaping from a predator (Maye et al., 2007). Quantifying structure in 374 

behaviour thus provides insight into the overarching strategy being employed in particular contexts. 375 

Alterations in behavioural structure can also manifest clinically, for example in Autism Spectrum 376 

Disorder, a defining feature of which is increased behavioural stereotypy (American Psychiatric 377 

Association, 2013). Consequently, compression would be a relevant and likely informative metric to 378 

record in animal models or even human cases for such conditions.  379 

 380 

To quantify structure in larval zebrafish behaviour in different contexts, we inputted each larva’s 381 

modular sequence to a compression algorithm. We found that wild-type behaviour was more 382 

compressive during the day than the night (Figure 3b). This echoes recent work in Drosophila that 383 
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revealed higher temporal predictability during the day than the night as well as in females (Fulcher 384 

and Jones, 2017). A likely explanation for these findings comes from work in C. elegans (Gomez-Marin 385 

et al., 2016) that demonstrated that animals who transition slowly between modules, as both 386 

zebrafish (Figure 1b) and Drosophila do at night (Geissmann et al., 2019), tend to be less compressive. 387 

This may suggest that the underlying mechanisms controlling longer-timescale behaviours are less 388 

precise than those controlling fast behavioural sequences.  389 

 390 

For future efforts applying compression to behavioural data, there are two avenues left to explore —391 

what compression heuristic to use and how to compress data from multiple animals. Following the 392 

work of Gomez-Marin and colleagues (2016), we defined the best motif at any iteration as the most 393 

compressive, which represents a balance between the motif’s length and frequency. While this metric 394 

generally leads to the best compression (Nevill-Manning and Witten, 2000), alternative measures, 395 

such as frequency or length may capture other aspects of behaviour. The second avenue relates to 396 

comparisons between animals. Here, each animal was compressed individually, identifying motifs, 397 

which were later grouped into a common library. Whilst computationally tractable, this approach 398 

prevents certain comparisons across animals, for example identifying the most compressive motif 399 

across all larvae. This issue could be solved by compressing a single sequence containing all of the 400 

animal’s modular sequences joined end to end, with spacers to prevent inter-animal motifs. 401 

Compressing this long sequence would, however, be computationally demanding. 402 

 403 

Compressing and merging the identified motifs across all animals generated a library of 46,554 unique 404 

motifs (Figure 3c), each of which described an alternating sequence of movements and pauses (Figure 405 

3d). Motifs ranged from 0.1s to 11.3 minutes in length, revealing the range of timescales at which 406 

larval behaviour is organised. We cannot, however, rule out the existence of longer timescale motifs 407 

in larval behaviour as computational demands limited our search to motifs 10 modules long (though 408 

the algorithm’s hierarchical approach enabled the identification of motifs up to 20 modules long). 409 

Thus, future work should aim to extend our approach to explore the full range of timescales at which 410 

larval behaviour is organised by systematically varying this parameter.  411 

 412 

 413 

Contextual Behavioural Motifs  414 

Finally, by distilling salient subsets of motifs from our library, we demonstrated that motif usage was 415 

context dependent and highlighted the discriminatory power of motif subsets, which were capable of 416 

distinguishing between day/night behaviour and even between small changes in compound dose. 417 

Comparing motif usage across the day/night cycle identified a set of highly night specific motifs (Figure 418 
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4c), which may represent sleep behaviours. One way in which future studies could address this 419 

possibility would be to deprive larvae of these motifs throughout the night, for example by using a 420 

closed-loop paradigm (Geissmann et al., 2019), and observing the impact on larval behaviour the 421 

following day. In relation to the PTZ data, comparing seizure motifs across epileptogenic compounds 422 

and mutants with spontaneous seizures could suggest clues as to their underlying mechanism (Kokel 423 

et al., 2010; Rihel et al., 2010). For example, seizures with similar motif usage patterns may originate 424 

in the same brain area or impact awareness in the same manner. This hypothesis could be tested by 425 

generating whole-brain activity maps (Randlett et al., 2015) across conditions, with the aim of 426 

identifying common and unique neuronal correlates.  427 

 428 

Given the amenability of larval zebrafish to high-throughput behavioural screening (Rihel and Ghosh, 429 

2015) future work should leverage our approach to large-scale genetic (Thyme et al., 2019) or 430 

pharmacological datasets (Rihel et al., 2010). Individually, these datasets would provide information 431 

on the genetic and molecular basis of behaviour across multiple timescales, encompassing processes 432 

from sleep to ageing. In combination, by identifying mutant and drug-induced phenotypes that cancel 433 

each other out (Lamb et al., 2006; Hoffman et al., 2016), these datasets could be used to identify 434 

phenotypic suppressors in genetic disease models, an outcome with potential clinical relevance.  435 

 436 

 437 

 438 

 439 

 440 

 441 

 442 

 443 

 444 

 445 

 446 
 447 

 448 

 449 

 450 

 451 

 452 

 453 
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Materials and Methods  454 

Animal Husbandry 455 

Adult zebrafish were reared by UCL Fish Facility on a 14hr/10hr light/dark cycle (lights on: 09:00 a.m. 456 

to 23:00 p.m.). To obtain embryos, pairs of adult males and females were isolated overnight with a 457 

divider that was removed at 09:00 a.m. the following morning. After a few hours, fertile embryos were 458 

collected and sorted under a bright-field microscope into groups of 50 embryos per 10 cm petri dish 459 

filled with fresh fish water (0.3g/L Instant Ocean). Plates were kept in an incubator at 28.5°C on a 460 

14hr/10hr light/dark cycle. Using a Pasteur pipet under a bright-field microscope, debris was removed 461 

from the plates and the fish water replaced each day. All work was in accordance with the UK Animal 462 

Experimental Procedures Act (1986) under Home Office Project Licence 70/7612 awarded to JR. 463 

 464 

Behavioural Setup  465 

For all behavioural experiments a Pasteur pipet was used to transfer single zebrafish larvae (aged 4-5 466 

days post fertilisation) into the individual wells of a clear 96-square well plate (7701-1651; Whatman, 467 

New Jersey, USA); then each well was filled with 650µl of fish water. For experiments longer than 24 468 

hours, larvae were plated at 4 days post fertilisation (dpf) and tracking was started the same day. For 469 

the duration of these experiments, evaporated fish water was replaced each morning between 09:00-470 

09:30 a.m. For the wild-type experiments, each plate was covered with a plastic lid (4311971; Applied 471 

Biosystems, Massachusetts, USA) to prevent evaporation and to negate the need to replenish the fish 472 

water. For the 24-hour small molecule experiments (melatonin and PTZ), larvae were plated at 5dpf 473 

and the plates were left overnight in a 28.5°C 14hr/10hr light/dark incubator. The following morning 474 

each plate was transferred to a behaviour setup where larvae were dosed, between 09:00 and 10:00 475 

a.m., immediately after which behavioural recordings were started and run for 24 hours.  476 

 477 

To record each animal’s behaviour, each plate was placed into a Zebrabox (ViewPoint Life Sciences, 478 

Civrieux, France) running quantization mode with the following settings: detection sensitivity -- 15, 479 

burst -- 50 and freezing -- 4. All experiments were conducted on a 14hr/10hr light/dark cycle (lights 480 

on at 09:00 a.m. to 23:00 p.m.) with constant infrared illumination. All experiments were recorded at 481 

25Hz. Larvae were tracked continuously for 24-73 hours, after which all larvae unresponsive to touch 482 

with a 10µl pipette tip were presumed sick or dead and excluded from subsequent analysis. Following 483 

this, larvae were euthanised with an overdose of 2-Phenoxyethanol (Acros Organics, New Jersey, 484 

USA). 485 

 486 

 487 

 488 
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Fish Lines 489 

The term “wild-type” refers to the AB x TUP LF zebrafish strain. This line was used for the wild-type 490 

experiments, as well as the melatonin and PTZ dose response curves. hcrtr (ZFIN ID: hu2098 491 

(Yokogawa et al., 2007). Identified from an ethylnitrosourea-mutagenized screen. UCL Line 2114.) 492 

experiments were carried out on embryos collected from heterozygous in-crosses, with larvae 493 

genotyped using KASP primers (LGC Genomics, Hoddesdon, UK) post-tracking. KASP results were 494 

validated by comparison to PCR-based genotyping of samples from each KASP classified genotype.  495 

 496 

hcrtr Genotyping   497 

DNA Extraction  498 

Following each hcrtr experiment each larva was euthanised in its well (as above) and DNA was 499 

extracted using HotSHOT DNA preparation (Truett et al., 2000). Larval samples were transferred to 500 

the individual wells of a 96-well PCR plate. Excess liquid was pipetted from each well before applying 501 

50µl of 1x base solution (1.25M KOH, 10mM EDTA in water). Plates were heat sealed and incubated 502 

at 95°C for 30 minutes then cooled to room temperature before the addition of 50µl of 1x 503 

neutralisation solution (2M Tris-HCL in water).    504 

 505 

PCR 506 

The following reaction mixture per sample was prepared on ice in a 96-well PCR plate: 18.3µl PCR mix 507 

(2mM MgCl2, 14mM pH 8.4 Tris-HCl, 68mM KCl, 0.14% Gelatin in water, autoclaved for 20 minutes, 508 

cooled to room temperature, chilled on ice, then we added: 1.8% 100mg/ml BSA and 0.14% 100mM 509 

d [A, C, G, T ] TP), 0.5µl of forward and reverse primers (20 µM), 5.5µl water, 0.2µl of Taq polymerase 510 

and 3.0µl of DNA. Next, each plate was heat sealed and placed into a thermocycler, set with the 511 

following program: 95°C -- 5 minutes, 44 cycles: 95°C -- 30 seconds, 57°C -- 30 seconds and 72°C -- 45 512 

seconds, then 72°C -- 10 minutes and 10°C until collection. Finally, samples were mixed with 6x loading 513 

buffer (Colourless buffer: Ficoll-400 - 12.5g, Tris-HCl (1M, pH 7.4) – 5ml, EDTA (0.5M) – 10mL, to 50ml 514 

in pure water; heated to 65°C to dissolve, per 10ml of colourless buffer 25mg of both xylene cyanol 515 

and orange G were added, then diluted to 6x) and run on agarose gels (1-2%) with 4% GelRed (Biotium, 516 

California, USA). 517 

 518 

hcrtr Forward Primer: 5’ CCACCCGCTAAAATTCAAAAGCACTGCTAAC 3’  519 

hcrtr Reverse Primer: 5’ CATCACAGACGGTGAACAGG 3’  520 

 521 

PCR Information: PCR products were digested with Ddel at 37°C to produce a 170bp band in the wild 522 

type animals and in hcrtr mutants 140 and 30bp bands. 523 
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KASP 524 

KASP genotyping was carried out in white, low profile PCR plates on ice with six wells allocated 50:50 525 

for positive and negative controls. The following reaction mixture was prepared per sample: 3.89µl of 526 

2x KASP reaction mix, 0.11µl KASP primers, 1.0µl water and 3.0µl DNA. Plates were then heat sealed 527 

and placed into a thermocycler with the following thermal cycling program: 94°C -- 15 minutes, 10 528 

cycles: 94°C -- 20 seconds, 61-53°C (dropping 0.8°C per cycle) -- 60 seconds. 26 cycles: 94°C --20 529 

seconds, 53°C -- 60 seconds, then 10°C until collection.  530 

 531 

Following thermal cycling we used a fluorescence reader (Bio-Rad CFX96 Real-Time System) and Bio-532 

Rad CFX Manager software (version 3.1) to automatically determine each samples genotype from a 533 

2d scatter plot of fluorescence in each channel. From this scatter plot outlying samples of unclear 534 

genotype were manually excluded from subsequent analysis.  535 

 536 

KASP Assay ID: 554-0090.1  537 

KASP Flanking Sequence (alternative allele shown in square brackets, with a forward slash indicating 538 

a deletion in the alternative allele):  539 

5’ ACCGCTGGTATGCGATCTGCCACCCGCTAAAATTCAAAAGCACTGCTAAA[A/T]GAGCCCGCAAGAGCATC 540 

GTGCTGATCTGGCTGGTGTCCTGCATCATGATG 3’ 541 

 542 

Pharmacology 543 

0.15M melatonin and 1M pentylenetetrazole (M5250 and P6500; Sigma, Missouri, USA) stock 544 

solutions were made in DMSO and sterile water, respectively. Behavioural testing concentrations for 545 

each compound were selected based upon (Rihel et al., 2010). For behaviour experiments each animal 546 

in a well with 650µl of fish water was dosed with 1.3µl of either vehicle control or compound at 500x 547 

concentration, resulting in a 1 in 500 dilution and thus the desired testing concentration.  548 

 549 

 550 

 551 

 552 

 553 

 554 

 555 

 556 

 557 

 558 

 559 
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Computing  560 

Hardware  561 

A desktop computer with 16GB of RAM was used for most data analysis, figure production and writing. 562 

For two-time intensive steps -- hierarchical compression of full module sequences 563 

(Batch_Compress.m) and normalising the behavioural motif counts (Batch_Grammar_Freq.m) -- data 564 

was run in parallel, with a worker for every animal, on the UCL Legion Cluster (Research Computing 565 

Services, UCL).  566 

 567 

Software 568 

All software used for data handling, analysis and the production of figures is available at 569 

https://github.com/ghoshm/Structure_Paper.   570 

 571 

Processing Behavioural Data  572 

See Supplemental Figure 7 for a flow diagram describing behavioural data acquisition and analysis. All 573 

custom behavioural analysis software was written and run in MATLAB 2016b-2018a (MathWorks, 574 

Massachusetts, USA). The suffixes .m and .mat denote MATLAB code and MATLAB data files, 575 

respectively.  576 

 577 

Behavioural data was recorded by subtracting subsequent pairs of frames from each other and 578 

determining the number of pixels that changed intensity within each well between each pair of 579 

frames, termed Δ pixels. To acquire behaviour data, each Zebrabox was setup using ViewPoint’s 580 

ZEBRALAB software (version 3.22), which outputs a .xls and a .raw file (ViewPoint specific format) per 581 

experiment. Each behaviour .xls file was reorganised into a .txt file using the function 582 

perl_batch_192.m (Jason Rihel). For each experiment a .txt metadata file assigning each animal to an 583 

experimental group, for example genotype, was manually produced. To replicate the previous analysis 584 

methodology, as in Supplemental Figure 1c, behaviour and metadata .txt files were input to the 585 

function sleep_analysis2.m (Jason Rihel).  586 

 587 

To assess data on a frame by frame basis, each experiment’s .raw file which was output from 588 

ViewPoint’s Zebrabox, was exported within the ZEBRALAB software to thousands of .xls files. Each .xls 589 

file contained 50,000 rows and 21 columns, with data from any given well listed approximately every 590 

192 rows, as the setup always assumes recordings are from two 96-well plates. This formatting is, 591 

however, only approximate as infrequently the well order is erroneously non-sequential; these rows 592 

were termed ordering errors. Each .xls file is formatted with 21 columns, of which 3 contain useful 593 
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data: type – notes when ViewPoint defined data acquisition errors occurred; location -- denotes which 594 

well the data came from; and data1 – records the Δ pixel value from that well for that time point.  595 

The function Vp_Extract.m was used to reformat the .xls files from each experiment to single frame 596 

by fish matrices, from which each animal’s behaviour was quantified. Vp_Extract.m requires three 597 

inputs to be selected: a folder containing the .xls files; a .txt behaviour file output from 598 

perl_batch_192.m; and a .txt metadata file. To ensure that each animal has the same number of 599 

frames, frames with ViewPoint defined errors or ordering errors (which are automatically detected by 600 

Vp_Extract.m) are discarded. A maximum Δ pixels value can be set and active bouts containing even a 601 

single frame with a higher Δ pixels value than this are set to zero for the entire duration of the bout. 602 

Here a maximum Δ pixels threshold of 200 was set. This value was determined from manual inspection 603 

of the dataset as well as by comparisons of this data to data recorded from plates with no animals in. 604 

Time periods during which water is being replenished are automatically detected and set to a Δ pixels 605 

value of zero. These time periods are noted and excluded from later analysis. The function outputs 606 

.mat files for subsequent analysis. Either single or multiple .mat files output from Vp_Extract.m were 607 

input to Vp_Analyse.m and Bout_Clustering.m.  608 

 609 

Vp_Analyse.m was used to compare general activity levels and bout features across time and between 610 

groups. The function has two options. The first allows for specific days and nights of interest to be 611 

cropped from the data. The second determines how experimental repeats are handled, treating the 612 

data as either a single merged dataset or as separate datasets. In the latter case, each experimental 613 

repeat is plotted with the same colour scheme as the first experiment, with progressive shading for 614 

each repeat. Additionally, the N-way ANOVA comparisons include a repeat factor, which can be used 615 

to determine if results are consistent across experimental repeats. Vp_Analyse.m outputs two 616 

statistics results structures: twa -- N-way ANOVA comparison results, and kw -- Two-sample 617 

Kolmogorov-Smirnov test results. Vp_Analyse.m outputs figures showing each group’s activity (e.g. 618 

Figure 1d-e) and bout features (e.g. Supplemental Figure 2) over time.  619 

 620 

The script Bout_Clustering.m was used to cluster all active and inactive bouts into behavioural 621 

modules, as well as to compare the resultant modules. To cluster the data an evidence accumulation 622 

approach is used (Fred and Jain, 2002, 2005) implemented by the custom MATLAB function 623 

gmm_sample_ea.m. Bout_Clustering.m produces figures (e.g. Supplementary Figure 3) and 624 

statistically compares the modules. The MATLAB workspace output from Bout_Clustering.m can be 625 

input to either Bout_Transitions.m or Bout_Transitions_Hours.m.  626 

 627 
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The function gmm_sample_ea.m clusters data using an evidence accumulation approach (Fred and 628 

Jain, 2002, 2005) through which the results of multiple Gaussian Mixture Models are combined to 629 

generate an aggregate solution. This process is executed through the following six steps. Firstly, a 630 

sample of ‘probe points’ are randomly sampled from the data. The number of probe points to sample 631 

is user defined. Secondly, values of K and sample sizes are uniformly sampled from user set ranges. 632 

The values of K are used to set the number of mixture components for each mixture model. The 633 

sample sizes determine the number of points, randomly sampled from the data that each mixture 634 

model is fit to. Thirdly, a Gaussian Mixture Model is iteratively fit to the sampled data with K 635 

components. Each probe point is assigned to the component with the highest corresponding posterior 636 

probability and evidence is accumulated on the probe points; evidence is defined as pairwise co-637 

occurrences in the same component. Fourthly, the evidence accumulation matrix is hierarchically 638 

clustered, and the final number of clusters is determined by using the maximum differentiated linkage 639 

distance to cut the resultant dendrogram. The linkage metric used is a user-defined option. Fifthly, the 640 

clusters are normalised for size by randomly sampling the number of points in the smallest cluster, 641 

from each cluster. Finally, all data points are assigned to these final size normalized clusters using the 642 

mode cluster assignment of the k-nearest neighbours, with k being user defined.  643 

 644 

The script Bout_Transitions.m takes the MATLAB workspace output from Bout_Clustering.m as an 645 

input and compresses each animal’s full module sequence to generate a library of behavioural motifs. 646 

The number of occurrences of each motif are counted and normalised by comparison to paired 647 

shuffled data. Finally, a supervised learning algorithm is applied to identify context specific 648 

behavioural motifs. For two-time intensive steps -- hierarchical compression of full module sequences 649 

(Batch_Compress.m) and normalising the behavioural motif counts (Batch_Grammar_Freq.m) -- data 650 

was manually copied (via MobaXterm, Personal Edition v10.5) to UCL Legion Cluster (Research 651 

Computing Services, UCL) and processed in parallel with a worker for every fish. MATLAB code for 652 

hierarchical compression is described in Gomez-Marin et al., (2016). MATLAB code for submitting 653 

these jobs to Legion, analysing data and retrieving results is available at 654 

https://github.com/ghoshm/Legion_Code. Ultimately, Bout_Transitions.m outputs a library of 655 

behavioural motifs and motif related figures (e.g. Figure 3). 656 

 657 

The script Bout_Transitions_Hours.m compresses blocks of 500 modules for statistical comparisons, 658 

uses the motif library from Bout_Transitions.m to count the occurrence of each motif every hour, 659 

normalises these counts to paired shuffled data and finally uses supervised learning to identify hour 660 

specific behavioural motifs. As with Bout_Transitions.m behavioural motifs are normalised, via 661 
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Batch_Grammar_Freq.m, using UCL Legion Cluster. Bout_Transitions_Hours.m outputs figures (e.g. 662 

Figure 4d) and statistics.  663 

 664 

Behavioural Data Analysis  665 

Δ Pixels  666 

At the acquisition stage, Δ pixels data was filtered by the software (ViewPoint) such that each frame 667 

for a given well was scored as either zero or higher. In the absence of movement within a well, and 668 

hence no pixels changing intensity, Δ pixels values of zero were recorded. These periods were termed 669 

inactive bouts and were defined as any single or consecutive frames with Δ pixels values equal to zero. 670 

The length of each inactive bout was used as a descriptive feature. When there was movement within 671 

a well, Δ pixels values greater than zero were recorded. These periods were termed active bouts and 672 

were defined as any single or consecutive frames with Δ pixels values greater than zero. Six features 673 

were used to describe each active bout: length, mean, standard deviation, total, minimum and 674 

maximum. These features, as well as the number of active bouts, percentage of time spent active and 675 

total Δ pixels activity, were compared between conditions, e.g. day and night and dose of drug, in two 676 

ways using the function Vp_Analyse.m. 677 

 678 

To compare the distribution of values for each feature between conditions, a probability density 679 

function (pdf) was fit to each animal’s data and the mean shape of each condition’s pdf was compared 680 

using a Two-sample Kolmogorov-Smirnov test (e.g. Supplementary Figure 2a). To compare each 681 

feature’s average values between conditions, mean values were taken from each animal, and N-way 682 

analysis of variance was computed. The following factors, when relevant, were included and full 683 

interaction terms were calculated: condition -- e.g. mutant and wild-type; time -- e.g. day and night; 684 

development -- defined as a consecutive day and night; and experimental repeat -- i.e. which 685 

experimental repeat a datapoint came from. For experiments with multiple repeats, the lack of an 686 

interaction effect between the comparison of interest and experimental repeat factor was considered 687 

as evidence of a consistent result. 688 

 689 

Clustering  690 

To cluster the bouts, the script Bout_Clustering.m was used. First, matrices of bouts by features were 691 

constructed (Active matrix -- 30,900,018 x 6; Inactive matrix -- 30,900,418 x 1). To prepare the active 692 

data for clustering each animal’s data was individually normalised by calculating z-scores using 693 

equation 1, which illustrates how every bout (i) from each animal (f) was normalised by first 694 

subtracting the mean of this animal’s bout features (�̅�𝑓)  from the bout and then dividing by the 695 

standard deviation of each bout feature for this animal σf.  696 
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Equation 1:  697 

𝑍𝑖 =  
𝑥𝑖 − �̅�𝑓

σf
 698 

 699 

Active bout features across all animals were then centred by subtracting each feature’s mean value 700 

from every bout, and principal component analysis (PCA) was used to reduce the data to 3 dimensions, 701 

the knee point of the scree plot, which together explain 97.5% of the variance (Supplementary Figure 702 

3a).  703 

 704 

Next, the active and inactive bouts were separately clustered using an evidence accumulation-based 705 

approach (Fred and Jain, 2002, 2005) implemented by the function gmm_sample_ea.m. Firstly, 40,000 706 

probe points were randomly sampled from the data. Next, for 200 iterations, another group of points 707 

were randomly sampled and fit with a Gaussian mixture model with a random number of clusters. For 708 

each iteration, these two parameters varied uniformly in the following ranges: the number of points 709 

sampled -- 40,000 to 100,000; the number of clusters fit -- 2 to 20. Each mixture model was fit using 710 

MATLAB’s fitgmdist function (MATLAB, Statistics and Machine Learning Toolbox) with full, regularized, 711 

independent covariance matrices and initialised using the k-means++ algorithm (Arthur and 712 

Vassilvitskii, 2007). Each mixture model was fit 5 times and the one with the largest log-likelihood was 713 

retained. Once each model had been fit, each probe point was assigned to the component with the 714 

largest posterior probability, and evidence in the form of pairwise occurrence in the same cluster was 715 

accumulated on the probe points. Once the 200 mixture models had been fit, average link clustering 716 

was applied to the evidence accumulation matrix and the final number of clusters determined based 717 

on maximum cluster lifetime. Next, the resultant clusters were normalised for size by randomly 718 

selecting the number of points in the smallest cluster from each cluster (5,983 active, 614 inactive 719 

bouts). Finally, all points were assigned to the size normalised clusters using the mode cluster 720 

assignment of the 50 nearest neighbours for every point.  721 

 722 

Hierarchical Compression  723 

Clustering reduced each animal’s behaviour to a non-repetitive sequence of active and inactive bouts, 724 

termed modules. On average this reduced each wild-type sequence length by 96%, from 6,308,514 725 

frames to 236,636 modules, easing the computational demands of compressing these sequences.  726 

 727 

To compress modular sequences, an offline compressive heuristic (Nevill-Manning and Witten, 2000) 728 

was used (equation 2). At each iteration (i) of the algorithm, the most compressive motif was defined 729 

as the motif which made the most savings, a balance between the length of the motif (W) and the 730 
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number of times it occurred in the sequence (N), which also considered the combined cost of adding 731 

a new motif to the dictionary (W + 1) and of introducing a new symbol into the sequence (+N) at every 732 

occurrence of this motif in the sequence.  733 

 734 

Equation 2:  735 

𝑆𝑎𝑣𝑖𝑛𝑔𝑠𝑖 = 𝑊𝑁 − (𝑊 + 1 + 𝑁) 736 

 737 

The overall compressibility of a given input sequence was calculated by summing these savings across 738 

all iterations and dividing this total by the length of the original input sequence (in modules). This 739 

process resulted in a compressibility metric that ranged from 0-1 (low-high compressibility). To reduce 740 

computational time, motifs of a maximum of 10 modules long were sought, although the hierarchical 741 

nature of the algorithm enabled the identification of longer motifs through nesting. To generate the 742 

common motif library, the motifs obtained from compression of every animal’s full module sequence 743 

(Batch_Compress.m) were merged, and then all unique motifs were kept (Bout_Transitions.m). To 744 

generate sets of paired control sequences for every animal, each animal’s module sequence was 745 

divided into sequential day and night or hourly segments and the modules within each of these 746 

windows was shuffled 10 times, maintaining the active/inactive transition structure 747 

(Bout_Transitions.m). As compressibility varies non-linearly with uncompressed sequence length 748 

(Supplementary Figure 5b), to enable comparisons between samples with different numbers of 749 

modules, non-overlapping blocks 500 modules long were compressed (Bout_Transitions_Hours.m). 750 

 751 

Supervised Motif Selection  752 

To identify both which and how many motifs were required to distinguish between behavioural 753 

contexts (e.g. day and night), the following approach was executed by the function 754 

Batch_Grammar_Freq.m. Firstly, the number of occurrences of every motif from the common motif 755 

library was counted in every real and shuffled modular sequence. Next, to calculate 756 

enrichment/constraint scores for every motif, the deviation of the real from shuffled counts, as well 757 

as the deviation of each shuffle from the other shuffles, was calculated (equation 3). For a given animal 758 

and time window, i.e. day or night, the mean number of times motif (i) was counted in the shuffled 759 

data (�̅�𝑖), was subtracted from the real number of counts (𝑥𝑖) and divided by the standard deviation 760 

of the shuffled counts (𝜎𝑠𝑖).  761 

 762 

Equation 3:  763 

𝑍𝑖 =  
𝑥𝑖 −  �̅�𝑖

𝜎𝑠𝑖
 764 
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When comparing the shuffled data to itself, each shuffle (now 𝑥𝑖) was excluded from �̅�𝑖 and 𝜎𝑠𝑖. Infinite 765 

values occurred when there was no standard deviation in the 𝜎𝑠𝑖 counts and thus 𝜎𝑠𝑖 equalled zero. 766 

For subsequent working, infinite values were replaced with a constant value of ± 3.32. This value was 767 

chosen as equation 3 will always output this value when there is no standard deviation in the shuffled 768 

counts and 𝑥𝑖 is included in the calculation of 𝜎𝑠𝑖. Note that in the real data, infinite values constituted 769 

only 2.2% of all enrichment/ constraint scores.  770 

 771 

For any given comparison, motif library enrichment/constraint scores for the relevant animals were 772 

formatted into a matrix of samples by motifs (e.g. Figure 4b). Scores for each motif (column) were 773 

normalised by subtracting each column’s mean score and dividing by each column’s standard 774 

deviation. A supervised feature selection algorithm (Peng et al., 2005) was applied to these matrices 775 

to select the top 250 maximally relevant and minimally redundant (mRMR) motifs. To determine how 776 

many of these motifs were necessary for accurate classification, linear discriminant analysis classifiers 777 

were trained on this data using 10-fold cross validation as sequential mRMR motifs were added, and 778 

classification error mean and standard deviation were calculated. The MATLAB function fitcdiscr 779 

(Statistics and Machine Learning Toolbox) was used to implement these steps. Finally, to determine 780 

how many motifs were necessary for a given comparison, classification error curves were smoothed 781 

with a running average 3 motifs wide and the number of motifs at which the minimum classification 782 

error occurred was identified (Supplementary Figure 6a). To evaluate classifier performance, the 783 

results of each classifier were compared to a majority class classifier whose performance depended 784 

upon the ratio of samples of each class. For example, in a dataset with two labels at a ratio of 0.1 : 0.9, 785 

the majority class classifier would consistently assign the latter label and achieve a classification error 786 

of 10% (± standard error of proportion). 787 

 788 

 789 

 790 

 791 

 792 

 793 

 794 

 795 
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Supplementary Information  796 

Supplementary video 1. High-throughput Behavioural Tracking  797 

A video of 96, 6dpf zebrafish larvae swimming in our rig. The last 1 second of each larva’s Δ pixels data 798 

is plotted over each well. This video was filmed at 25Hz and is played back in real time.  799 

Supplementary video 2. Behavioural Modules  800 

A video of 96, 6dpf zebrafish larvae swimming in our rig. The last 1 second of each larva’s Δ pixels data 801 

is plotted over each well, with each active and inactive bout coloured according to its module 802 

assignment. This video was filmed at 25Hz and is played back in real time. 803 
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Figure Legends  1001 

Figure 1. Behaviour at Scale   1002 

a. Top panel: five consecutive frames from an individual well of a 96-well plate as a 6dpf zebrafish 1003 

larva performs a swim bout. Blue highlights pixels that change intensity between frames (Δ pixels). 1004 

Lower panel: a Δ pixels time series from the larva above. Highlighted are the features that describe 1005 

each active and inactive bout.  1006 

b. The mean number of bouts recorded from individual larvae at 5 and 6dpf during the day (light 1007 

blue) and the night (dark blue). Each dot is 1 of 124 wild-type larvae. The orange crosses mark the 1008 

population means.  1009 

c. The probability of observing different lengths of inactivity during the day (light blue) or the night 1010 

(dark blue) at 5 and 6dpf. Each larva’s data was fit by a probability density function (pdf). Shown 1011 

is a mean pdf (bold line) and standard deviation (shaded surround) with a log scale on the x-axis 1012 

cropped to 10 seconds. Insert: the total probability of inactive bout lengths longer than 10 1013 

seconds, per animal.  1014 

d. The mean activity of 124 wild-type larvae from 4-7dpf, on a 14hr/10 hr light/dark cycle. Data for 1015 

each larva was summed into seconds and then smoothed with a 15-minute running average. 1016 

Shown is a summed and smoothed mean Δ pixels trace (bold line) and standard error of the mean 1017 

(shaded surround).  1018 

e. Average activity across one day (white background) and night (dark background) for larvae dosed 1019 

with either DMSO (control) or a range of melatonin doses immediately prior to tracking at 6dpf. 1020 

Data was summed and smoothed as in d. The number of animals per condition is denoted as n= . 1021 

 1022 

 1023 

 1024 

 1025 

 1026 

 1027 

 1028 

 1029 
 1030 
 1031 

 1032 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 7, 2019. ; https://doi.org/10.1101/694471doi: bioRxiv preprint 

https://doi.org/10.1101/694471
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1 . 

a

b

d

e

c

M
el

at
on

in

4dpf 5dpf 7dpf6dpf

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 7, 2019. ; https://doi.org/10.1101/694471doi: bioRxiv preprint 

https://doi.org/10.1101/694471
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 
 

Figure 2. Unsupervised Learning Identifies Contextual Behavioural Modules 1033 

a. Average Δ pixels changes for each active module. Shown is the mean (bold line) and standard error 1034 

of the mean (shaded surround) of 100 bouts randomly sampled from each module from one 1035 

representative larva. Modules are numbered and coloured by average module length across all 1036 

animals, from shortest (1) to longest (5).  1037 

b. Probability density curves showing the distribution of inactive bout lengths in seconds, on a log x-1038 

axis cropped to 60s, within each inactive module. Modules are numbered and coloured from 1039 

shortest (1) to longest (5) mean length (see legend).  1040 

c. Matrices showing the active (left) or inactive (right) module assignment of every frame (x-axis)  for 1041 

each of 124 wild-type larvae (y-axis) across the 14-hour days (light blue underlines) and 10-hour 1042 

nights (dark blue underlines) from 5-6 dpf. Larvae were sorted by total number of active modules 1043 

from highest (top) to lowest (bottom). Modules are coloured according to the adjacent colormaps.  1044 

d. Average active (upper) and inactive (lower) module probability during day (light blue) and night 1045 

(dark blue) 5 and 6 of development. Each of 124 wild-type animals is shown as a dot and orange 1046 

crosses mark the population means. Active modules are sorted by mean day probability from 1047 

highest to lowest (left to right). Inactive modules are sorted by mean length from shortest to 1048 

longest (left to right). The blobs correspond to the colour used for each module in other figures.  1049 

e. The mean frequency of each active (left) and inactive (right) module across days 5 and 6 of 1050 

development. Shown is a mean smoothed with a 15-minute running average, rescaled to 0-1. Days 1051 

are shown with a white background, nights with a dark background. Modules are sorted from 1052 

shortest to longest (lower to upper panels). 1053 
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Figure 3. Hierarchical Compression Reveals Structure in Zebrafish Behaviour   1063 

a. Compression explained using fictive data. Top to bottom: from Δ pixels data (black trace) we 1064 

classified both active and inactive behaviours into modules (coloured circles). From modular 1065 

behavioural sequences, we identified motifs (sequences of modules) using a compression 1066 

algorithm. Compression iteratively identifies motifs (shown as boxes) by replacing them with new 1067 

symbols until no more motifs can be identified and the sequence is maximally compressed. 1068 

b. Each panel shows how compressibility, calculated from 500 module blocks, varies in different 1069 

behavioural contexts. Each pale line shows an individual fish’s mean compressibility during the 1070 

day and the night. The darker overlay shows a population day and night mean ± standard 1071 

deviation. In the wild-type data, compressibility is higher during the day than the night (p < 10-158) 1072 

and increases from day/night 5 to 6 (p < 10-4), findings consistent across triplicate experiments. 1073 

Melatonin decreases (p < 10-10), while PTZ increases compressibility (p < 10-8). There is no effect 1074 

of hcrtr genotype on compressibility. Statistics are two or four-way ANOVA. 1075 

c. All 46,554 unique motifs (y-axis) identified by compressing data from all animals. Each motif’s 1076 

module sequence is shown, with the modules coloured according to the colormap on the right. 1077 

Motifs are sorted by length and then sequentially by module. Motifs range in length from 2-20 1078 

modules long. Insert: for each motif length, the probability of observing each inactive or active 1079 

module.  1080 

d. Each motif in the library consists of an alternating sequence of Δ pixels changes and pauses (active 1081 

and inactive modules). A representative motif of each module length is shown with each module 1082 

coloured according to the colormap in c. Representative motifs were chosen by determining every 1083 

motif’s distribution of modules and then for each observed module length, selecting the motif 1084 

closest to the average module distribution (see c, insert). 1085 
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Figure 4. Supervised Learning Identifies Contextual Behavioural Motifs    1096 

a. Probability density functions (pdfs) showing the probability of observing motifs at different 1097 

enrichment/constraint scores rounded to whole numbers and summed at values above or below 1098 

± 4 for ease of visualisation. Each wild type animal is depicted by a single pale blue (real data) and 1099 

10 black (shuffled data) lines; overlaid in bold are mean pdfs. The insert shows that the kurtosis 1100 

of the real data is higher than the shuffled data (p < 10-271; two-way ANOVA, real vs shuffled data, 1101 

no significant interaction with experimental repeat factor). Each larva is shown as a pale line; 1102 

overlaid is a population mean and standard deviation.  1103 

b. Enrichment/constraint scores for all 46,554 motifs (x-axis) for each fish during day/night 5 and 6 1104 

of development (y-axis). To emphasise structure, motifs are sorted in both axes, first by their 1105 

average day night difference (from day to night enriched left to right), then separately day and 1106 

night by larva. Finally, each motif’s enrichment/constraint score is Z-scored to aid visualisation.  1107 

c. Left: the 15 day/night mRMR motifs module sequences are shown numbered by the order in which 1108 

they were selected by the algorithm. Motifs are sorted by day minus night enrichment/constraint 1109 

score (middle). The long pauses at the end of motifs 5 and 14 are cropped at 10s (arrows). Middle: 1110 

for each selected motif (y-axis), ordered as in the left panel, each wild-type animal’s (124 in total) 1111 

day minus night enrichment/constraint score (x-axis) is shown as a dot. Values above zero are 1112 

coloured light blue; below zero are dark blue. Overlaid is a population mean and standard 1113 

deviation per motif. Right: a tSNE embedding of the 15-dimensional motif data (middle) into a 2-1114 

dimensional space. Each circle represents a single day (light blue) or night (dark blue) sample. 1115 

d. Representative motif temporal dynamics; shown are motifs 1 (day) and 2 (night) from c, as well as 1116 

a startle-like motif. Left: each motif’s module sequence. Right: each motif’s mean 1117 

enrichment/constraint score each hour, rescaled to 0-1.  1118 
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Figure 5. Pharmacological Behavioural Motifs    1128 

a. Left: module sequences for the single best motif for each melatonin comparison. Modules are 1129 

coloured as elsewhere. Middle: for each dose’s single best motif, see left panel y-axis for dose, 1130 

enrichment/constraint scores are shown for every dose on a log x-axis. Each animal is shown as a 1131 

dot, with a mean ± std overlaid per dose. Right: a 2-dimensional tSNE embedding from a space of 1132 

912 unique motifs. Each animal is shown as a single dot underlaid by a shaded boundary 1133 

encompassing all animals in each condition.  1134 

b. Left: module sequences for the single best motif for each PTZ comparison. To highlight a seizure 1135 

specific motif, the control motif and corresponding enrichment/constraint score shown is mRMR 1136 

motif 2, not 1, for this comparison. Modules are coloured as elsewhere. Middle: for each dose’s 1137 

single best motif, enrichment/constraint scores are shown for every dose on a linear x-axis. Each 1138 

animal is shown as a dot, with a mean and standard deviation overlaid per dose. Right: a 2-1139 

dimensional tSNE embedding from a space of 338 unique motifs. Each animal is shown as a single 1140 

dot underlaid by a shaded boundary encompassing all animals in each condition.  1141 

c. Each classifier’s classification error (%) is shown in terms of modules (x-axis) and motifs (y-axis). 1142 

Data is shown as mean and standard deviation from 10-fold cross validation. Classifiers are 1143 

coloured by experimental dataset (see Legend). For reference, y = x is shown as a broken black 1144 

line. Data below this line demonstrates superior performance of the motif classifiers.  1145 
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Supplementary Figure 1. Behavioural Set-up and Analysis  1159 

a. Schematic of our behavioural set-up. Note that aside from the computer, the set-up is fully 1160 

enclosed. Not shown to scale. IR - infra-red, LED - light emitting diode. 1161 

b. A fictive illustration of zebrafish behaviour (blue line). Two minutes of data are shown divided by 1162 

a black dashed vertical line. A 1min binning approach would score both minutes as 20 seconds of 1163 

activity and miss the 60 second period of inactivity in between. This latter loss leads to a 1164 

discrepancy in the number of periods ≥ 60s between the 1-minute bin and 25Hz methods (see c).  1165 

c. The number of inactive periods ≥ 60s for each of 124 wild type animals is shown, as determined 1166 

by both a 1-minute bin and 25Hz approach. Data is from each animal’s entire recording period (4-1167 

7dpf). Data for each animal is shown as a pale blue line overlaid with a bold line showing the 1168 

population mean and standard deviation. Insert: the percentage of the 25Hz counts detected by 1169 

the 1minute bin method per animal. Each animal’s data is shown by a circle. An orange cross marks 1170 

the population mean. 1171 

d. Average activity across one day (white background) and night (dark background) for larvae 1172 

exposed to either H2O (control) or a range of PTZ doses immediately prior to tracking at 6dpf. Data 1173 

for each larva was summed into seconds and then smoothed with a 15-minute running average. 1174 

Shown is a mean summed and smoothed trace (bold line) and standard error of the mean (shaded 1175 

surround). n denotes the number of animals per condition.  1176 
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Supplementary Figure 2. Bout Features  1193 

a. Bout feature distributions during the day (light blue) and the night (dark blue). For the probability 1194 

curves, each animal’s data was fit with a probability density function (pdf). Shown is a mean pdf 1195 

(bold line) and standard deviation (shaded surround) with a log scale on the x-axis. For the scatter 1196 

plots, each larva’s mean value across the days or nights (5-6dpf) is shown as a light blue (day) or 1197 

dark blue circle (night). An orange cross marks each population’s mean. Of the pdfs, only the mean 1198 

day and night active bout total and inactive bout length pdfs were consistently significantly 1199 

different across three independent experiments (p < 0.01; Two-sample Kolmogorov-Smirnov test). 1200 

n = 124 wild-type larvae. 1201 

b. Melatonin bout feature means. A mean was taken per animal per feature, and day or night (6dpf). 1202 

Shown is a population mean and standard error of the mean during the day (white background) 1203 

and the night (grey background). Control - DMSO. n = 24 controls then n = 12 per dose. 1204 

c. PTZ bout feature means, as in b. Control -  H2O. n = 24 controls then n = 10 (2.5mM), n = 9 (5mM) 1205 

and n = 9 (7.5mM).  1206 

d. hcrtr bout feature means as in b, for days (white background) and nights (grey background) 5 to 6 1207 

post fertilisation. hcrtr-/- mutants had significantly lower mean values compared to both hcrtr+/+ 1208 

and hcrtr-/+ for the following active bout features: length, standard deviation and total (p < 0.05 1209 

for all comparisons, Dunn-Sidak corrected four-way ANOVA, adjusted for the following factors: 1210 

day/night, development and experimental repeat). No features differed significantly between 1211 

hcrtr-/+ and hcrtr+/+. n = 39, 102 and 39, for WT - hcrtr+/+, Het – hcrtr-/+, Hom – hcrtr-/- respectively.  1212 
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Supplementary Figure 3. Evidence-accumulation Based Clustering  1224 

a. Left: scree plot showing the percentage of variance explained by each principal component from 1225 

the active bout data. The first 3 principal components, the knee point of the curve, were kept for 1226 

subsequent analysis. The colours of these points refer to the right panel. Right: each of the 3 1227 

retained component’s coefficients for the different active bout parameters is shown.  1228 

b. The active bouts within each module were fit by Gaussian distributions. Each active bout is shown 1229 

in a 3D space of PC1, PC2, and probability. Each bout is numbered and coloured by its module 1230 

assignment.  1231 

c. Evidence accumulation (E.A.) matrix for the 40,000 active probe points (matrix dimensions are 1232 

thus 40,000 by 40,000). A higher E.A. index indicates a higher frequency of pairwise occurrences 1233 

in the same cluster across 200 Gaussian Mixture Models. This matrix was clustered hierarchically, 1234 

and a maximum lifetime cut was made to determine the final number of modules. The 1235 

dendrogram above shows all 40,000 leaves and is coloured by mean module length from shortest 1236 

(lightest) to longest (darkest) as in other figures. 1237 

d. Evidence accumulation matrix for the inactive bouts. 1238 

 1239 

 1240 

 1241 
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Supplementary Figure 4. Behavioural Modules 1254 

a. Probability density functions for each bout feature by module. All features are shown on a log x-1255 

axis. The legend panel indicates each module’s colour. 1256 

b. Melatonin module probabilities during 6dpf day (upper panels) and night (lower panels) for both 1257 

the active (left) and inactive (right) modules. Shown is a mean and standard error of the mean for 1258 

each group, coloured according to the legend. Active modules are sorted from highest to lowest 1259 

by average wild type day probability, based upon wild type data in Figure 2d. Inactive modules are 1260 

sorted by increasing mean length. Control - DMSO. n = 24 controls then n = 12 per dose. 1261 

c. PTZ data as in b, with H2O (control). n = 24 controls then n = 10 (2.5mM), n = 9 (5mM) and n = 9 1262 

(7.5mM). 1263 

d. hcrtr data as in b, with mean values across 5 and 6dpf. No module probabilities differed 1264 

significantly among genotypes (full four-way ANOVA, with the following factors: genotype, 1265 

day/night, development, and experimental repeat). n = 39, 102 and 39, for WT - hcrtr+/+, Het – 1266 

hcrtr-/+, Hom – hcrtr-/- respectively.  1267 
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Supplementary Figure 5. Hierarchical Compression Metrics   1284 

a. The compressibility (y-axis) of the real wild-type data is higher than the paired shuffled data (p < 1285 

10-15, two-way ANOVA, real vs shuffled data, no significant interaction with experimental repeat 1286 

factor). Each animal’s data is shown as a pale blue line. Overlaid is a mean and standard deviation. 1287 

Insert: the mean difference in compressibility between each larva’s real and shuffled data. Each 1288 

larva is shown by a circle, and the orange cross marks the mean.  1289 

b. The compressibility (y-axis) of the real wild type data varies non-linearly with uncompressed 1290 

sequence length. Each larva (of 124) is shown as a dot.  1291 

c. The number of motifs (y-axis) identified from compressing each wild-type animal’s real and paired 1292 

shuffled data. Each animal’s data is shown as a pale blue line. Overlaid is a mean and standard 1293 

deviation. Insert: the mean intra-fish difference in the number of identified motifs. Each larva is 1294 

shown by a circle, and the orange cross marks the mean.   1295 

d. Each panel shows how Δ compressibility varies in different behavioural contexts. Each pale line 1296 

shows an individual larva’s average Δ compressibility during the day and the night. The darker 1297 

overlay shows a population day and night mean and standard deviation.  1298 

e. Δ Compressibility of 500 module blocks for each wild-type larva, averaged into 1-hour time points. 1299 

Each pale blue line shows 1 of 124 larvae. Line breaks occur when a larva had less than 500 1300 

modules within a given hour. The darker blue overlay shows the mean and standard deviation of 1301 

this data every hour. Shown are days (white background) and nights (dark background) 5 and 6 of 1302 

development.  1303 
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Supplementary Figure 6. Motif Classifier Performance 1317 

a. Classification error (%) from linear classifiers separating wild-type day and night behaviour using 1318 

motif enrichment/constraint scores as sequential mRMR motifs from 1-250 are added (x-axis). The 1319 

average error is shown in light blue. Overlaid in darker blue is a running average 3 motifs wide. 1320 

The broken black lines show the minimum of the smoothed data to be at 15 motifs, where the 1321 

classification error is 0.2%. 1322 

b. Wild-type temporal classifier performance. Real classifiers (colour) are shown as a mean and 1323 

standard deviation from 10-fold cross validation. Majority class classifiers (grey) are shown as 1324 

value and standard error of proportion. Each classifiers data is listed on the x-axis. D - day, N - 1325 

night, M/E - morning/evening, E/LN - early/late night. The number of motifs chosen for each 1326 

classification and exact values for each classifier are detailed in Supplementary Table 1.  1327 

c. hcrtr, Melatonin and PTZ classifier performance. Real classifiers (colour) are shown as a mean and 1328 

standard deviation from 10-fold cross validation. Majority class classifiers (grey) are shown as 1329 

value and standard error of proportion. Each classifier’s data is listed on the x-axis. For hcrtr 1330 

comparisons, grouped classifiers as well as separate day (light blue underline) and night (dark blue 1331 

underline) classifiers are shown. For melatonin and PTZ, only day data was compared. Classifier 1332 

details can be found in Supplementary Table 2. 1333 
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Supplementary Figure 7. Analysis Framework  1351 

Flow diagram depicting the steps of our analysis framework. Data is output from our behavioural set-1352 

up (ViewPoint) in the form of a .xls file. perl_batch_192.m organises this data to a .txt format. 1353 

Experiment metadata (e.g. animal genotypes) is supplied in the form of a .txt file. The 1min bin method 1354 

uses sleep_analysis2.m to produce figures and statistics from these two .txt files. The 25Hz method 1355 

exports .raw data from ViewPoint to produce .xls files. Vp_Extract.m reorganises these, using .txt data, 1356 

to a .mat file which can be input to either Vp_Analyse.m or Bout_Clustering.m. Vp_Analyse.m 1357 

produces figures and statistics. Bout_Clustering.m uses the clustering function gmm_sample_ea.m to 1358 

assign data to modules, produce figures and calculate statistics, Bout_Clustering.m’s output can be 1359 

input to Bout_Transitions.m, which compresses full modular sequences by calling Batch_Compress.m 1360 

and Batch_Grammar_Freq.m. The motifs identified from this approach can be input to 1361 

Batch_Transitions_Hours.m which compresses 500 module chunks and uses Batch_Grammar_Freq.m 1362 

to count motif occurrences per hour. With the exception of the 1min bin method (sleep_analysis2.m), 1363 

two example figures are shown for each figure producing step. All code can be run locally, though for 1364 

speed several steps (indicated in green) are best run on a cluster computer. 1365 
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Table 1. Wild-type Motif Classifier Performance  1386 

A table showing the performance of each wild-type motif classifier. Each classifier sought to separate 1387 

the data shown in the comparison column, e.g. Day/Night. For the hourly comparisons, each hour was 1388 

compared to data from all other hours grouped together. For each comparison 250 motifs were 1389 

chosen by mRMR, then a smaller number were retained (see Motifs column) based on classification 1390 

error curves (see Supplementary Figure 6a). Cv – 10-fold cross validated. Std – standard deviation 1391 

across the 10 folds. Mc – majority class classifier. 1392 

 1393 

Table 2. hcrtr and Pharmacological Classifier Performance 1394 

A table showing the performance of each classifier. Each classifier sought to separate the data shown 1395 

in the comparison column, e.g. hcrtr+/+ (WT) and hcrtr-/+ (Het). For the pharmacological comparisons 1396 

each condition was compared to the rest of the conditions grouped together, aside from the control 1397 

data which was excluded. For each comparison 250 motifs were chosen by mRMR, then a smaller 1398 

number were retained (see Motifs column) based on classification error curves (see Supplementary 1399 

figure 6a). Cv – 10-fold cross validated. Std – standard deviation across the 10 folds. Mc – majority 1400 

class classifier. WT - hcrtr+/+, Het – hcrtr-/+, Hom – hcrtr-/-.  1401 

 1402 

Table 3. Module Classifier Performance  1403 

A table showing the performance of each module classifier. Each classifier sought to separate the data 1404 

shown in the comparison column, e.g. Wild Type, Day/Night. For each comparison all 10 modules were 1405 

sequentially chosen by the mRMR algorithm, then a smaller subset was retained (see Module column) 1406 

based on classification error curves. Cv – 10-fold cross validated. Std – standard deviation across the 1407 

10 folds. Mc – majority class classifier. 1408 
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Table 1 .

 

 

Comparison Motifs 
(Number) 

Cv  
Error (%)  

Cv Error 
Std (%) 

Mc  
Error (%) 

Mc Error of 
Proportion 

(%) 
Wild Type      
Day/Night 15 0.20 0.63 50.0 2.25 
Day 5/Day 6 93 20.16 9.60 50.0 3.18 
Night 5/Night 6 85 19.76 8.09 50.0 3.18 
Day Hours      

• 09-10 102 6.39 1.23 7.14 0.44 
• 10-11 1 7.37 0.31 7.14 0.44 
• 11-12 5 7.20 0.23 7.14 0.44 
• 12-13 9 7.06 0.34 7.14 0.44 
• 13-14 1 7.14 0.12 7.14 0.44 
• 14-15 1 7.14 0.12 7.14 0.44 
• 15-16 1 7.11 0.14 7.14 0.44 
• 16-17 1 7.09 0.15 7.14 0.44 
• 17-18 1 7.14 0.12 7.14 0.44 
• 18-19 1 7.14 0.12 7.14 0.44 
• 19-20 1 7.14 0.12 7.14 0.44 
• 20-21 3 7.11 0.27 7.14 0.44 
• 21-22 1 7.14 0.12 7.14 0.44 
• 22-23 1 7.14 0.12 7.14 0.44 

Night Hours      
• 23-24 23 0.69 0.47 10.0 0.60 
• 24-01 177 9.84 1.83 10.0 0.60 
• 01-02 5 9.92 0.51 10.0 0.60 
• 02-03 88 9.72 1.18 10.0 0.60 
• 03-04 1 10.00 0.17 10.0 0.60 
• 04-05 22 9.92 0.47 10.0 0.60 
• 05-06 1 10.00 0.17 10.0 0.60 
• 06-07 1 10.00 0.17 10.0 0.60 
• 07-08 3 9.84 0.34 10.0 0.60 
• 08-09 1 10.00 0.17 10.0 0.60 

Morning/Evening 229 33.21 2.32 50.0 0.85 
Early/Late Night 26 36.37 2.18 50.0 1.00 
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Table 2 .

 

 

Comparison 
Motifs 

(Number) 
Cv  

Error (%)  
Cv Error 

Std 
Mc 

Error (%) 

Mc Error of 
Proportion 

(%) 
hcrtr      
Day and Night      

• WT/Het 173 25.53 6.77 27.66 1.88 
• WT/Hom 83 24.68 6.07 50.00 2.83 
• Het/Hom 235 24.65 3.76 27.66 1.88 

Day      
• WT/Het 80 19.50 9.60 27.66 2.66 
• WT/Hom 195 16.67 7.50 50.00 4.00 
• Het/Hom 55 22.70 7.02 27.66 2.66 

Night      
• WT/Het 79 16.31 6.38 27.66 2.66 
• WT/Hom 53 12.82 9.58 50.00 4.00 
• Het/Hom 76 15.96 7.27 27.66 2.66 

Melatonin (Day)      
• Control 40 0.0 0.0 25.00 4.42 
• 0.01μM 89 1.39 4.52 16.67 4.39 
• 0.1μM 192 1.39 4.52 16.67 4.39 
• 1μM 132 2.78 6.02 16.67 4.39 
• 3μM 97 0.0 0.0 16.67 4.39 
• 10μM 250 2.78 6.02 16.67 4.39 
• 30μM 133 0.0 0.0 16.67 4.39 

PTZ (Day)      
• Control 26 0.0 0.0 46.15 6.91 
• 2.5mM 55 0.0 0.0 35.71 9.06 
• 5mM 162 0.0 0.0 32.14 8.83 
• 7.5mM 104 0.0 0.0 32.14 8.83 
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Table 3 .

 

 

Comparison 
Modules 
(Number) 

Cv  
Error (%)  

Cv Error 
Std 

Mc 
Error (%) 

Mc Error of 
Proportion 

(%) 
Wild Type      

• Day/Night 10 1.61 1.29 50.0 2.25 
• Day 5/Day 6 8 20.97 6.53 50.0 3.18 
• Night 5/Night 6 1 35.48 9.71 50.0 3.18 

hcrtr      
Day and Night      

• WT/Het 1 27.66 0.77 27.66 1.88 
• WT/Hom 10 45.83 10.92 50.00 2.83 
• Het/Hom 8 27.48 1.12 27.66 1.88 

Day      
• WT/Het 1 27.66 1.46 27.66 2.66 
• WT/Hom 1 40.38 12.54 50.00 4.00 
• Het/Hom 3 27.31 2.35 27.66 2.66 

Night      
• WT/Het 1 27.66 1.46 27.66 2.66 
• WT/Hom 1 47.44 10.92 50.00 4.00 
• Het/Hom 10 26.95 1.72 27.66 2.66 

Melatonin (Day)      
• Control 3 8.33 8.69 25.00 4.42 
• 0.01μM 10 2.78 6.02 16.67 4.39 
• 0.1μM 2 16.67 4.52 16.67 4.39 
• 1μM 1 18.06 7.74 16.67 4.39 
• 3μM 1 16.67 8.67 16.67 4.39 
• 10μM 1 16.67 4.52 16.67 4.39 
• 30μM 1 16.67 4.52 16.67 4.39 

PTZ (Day)      
• Control 1 1.92 5.27 46.15 6.91 
• 2.5mM 1 17.86 17.57 35.71 9.06 
• 5mM 1 28.57 22.29 32.14 8.83 
• 7.5mM 10 20.00 26.06 32.14 8.83 
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