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Abstract 
RNA sequencing using the latest single-molecule sequencing instruments produces reads that 

are thousands of nucleotides long. The ability to assemble these long reads can greatly improve 

the sensitivity of long-read analyses. Here we present StringTie2, a reference-guided 

transcriptome assembler that works with both short and long reads. StringTie2 includes new 

computational methods to handle the high error rate of long-read sequencing technology, which 

previous assemblers could not tolerate. It also offers the ability to work with full-length super-

reads assembled from short reads, which further improves the quality of assemblies. On 33 

short-read datasets from humans and two plant species, StringTie2 is 47.3% more precise and 

3.9% more sensitive than Scallop. On multiple long read datasets, StringTie2 on average 

correctly assembles 8.3 and 2.6 times as many transcripts as FLAIR and Traphlor, respectively, 

with substantially higher precision. StringTie2 is also faster and has a smaller memory footprint 

than all comparable tools. 

 
Introduction 
 

Measuring the abundances of transcripts in an RNA-sequencing (RNA-seq) dataset is a 

powerful way to understand the workings of a cell. Simply aligning reads to a reference genome 

can provide rough estimates of the average expression of genes and hint at differential use of 

splice sites (Li and Dewey 2011), but to create an accurate picture of gene activity, one must 

assemble collections of reads into transcripts. Alternative splicing is very common in 
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eukaryotes, with an estimated 90% of human multi-exon protein-coding genes and 30% of non-

coding RNA (ncRNA) genes having multiple isoforms (Wang, Sandberg et al. 2008, Cabili, 

Trapnell et al. 2011). While the number of annotated human protein coding genes has remained 

more or less constant over the last decade, the number of ncRNA genes and protein coding 

isoforms has continued to increase (Pertea, Shumate et al. 2018). 

Second-generation sequencers, such as those from Illumina, can produce hundreds of 

millions of short (~100bp) RNA-seq reads. Reads of this length usually span no more than one 

intron, except in rare cases of very small exons. By assembling the short reads, we can 

reconstruct full-length transcripts and identify novel genes and gene isoforms. There are two 

main approaches to transcriptome assembly: de novo and reference-guided. De novo 

transcriptome assemblers such as Trinity (Grabherr, Haas et al. 2011) and Oases (Schulz, 

Zerbino et al. 2012) find overlaps between reads and attempt to chain them together into full 

transcripts. This is complicated by the presence of paralogous genes and transcripts with many 

isoforms that largely overlap one another, and as a result this approach produces highly 

fragmented and error-prone transcriptomes. Reference-guided assemblers such as Cufflinks 

(Trapnell, Williams et al. 2010), Bayesembler (Maretty, Sibbesen et al. 2014), StringTie (Pertea, 

Pertea et al. 2015), TransComb (Liu, Yu et al. 2016), and Scallop (Shao and Kingsford 2017) 

take advantage of an existing genome to which the RNA-seq reads are first aligned using a 

spliced aligner such as HISAT (Kim, Langmead et al. 2015) or STAR (Dobin, Davis et al. 2013). 

These assemblers can then build splice graphs (or other data structures) based on the 

alignments, and then use those graphs to construct individual transcripts. Some reference-

guided assemblers can also use the exon-intron annotation of known transcripts as an optional 

guide, allowing them to favor known genes where possible. A recent study (Voshall and 

Moriyama 2018) found that StringTie outperforms both Cufflinks and Bayesembler, by 

assembling more correctly transcripts and at a higher precision, while the original Scallop study 
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(Shao and Kingsford 2017) showed that on some datasets, Scallop can achieve higher 

sensitivity and precision than StringTie (version 1.3) and TransComb. 

StringTie and other transcriptome assemblers estimate transcript abundance based on 

the number of aligned reads assigned to each transcript. More recently, alternative methods 

such as Sailfish (Patro et al. 2014), Salmon (Patro, Duggal et al. 2017) and Kallisto (Bray, 

Pimentel et al. 2016) demonstrated that one can estimate abundances by assigning reads to 

known transcripts based on exact k-mer matching, which produces dramatic gains in speed by 

dropping the requirement for precise base-level read alignment.  However, these alignment-free 

methods are not able to detect novel genes or isoforms, and they show poorer performance in 

quantifying low-abundance and small RNAs compared to alignment-based pipelines (Wu, Yao 

et al. 2018). 

The first release of StringTie proposed a method to use a limited version of de novo 

transcriptome assembly via the construction of super-reads, which were originally developed for 

whole-genome assembly (Zimin, Marcais et al. 2013). Conceptually, super-reads are 

constructed by extending each end of a short read as long as there is a unique extension based 

on a k-mer lookup table. This creates a collection of synthetic long reads with the low error rate 

of short reads. Because they are longer, they are more likely to align uniquely to the genome, 

which in turn might simplify the splice graph of a gene. Super-reads were used in a limited 

capacity in StringTie 1.0, only filling in the gap between paired-end reads. In that limited 

implementation, a super-read was used to replace a pair of reads, allowing it to be treated like a 

single, unpaired read. One difficulty in using super-reads is that the algorithm used to create 

them for genome assembly includes an error correction step, which in the context of RNA-seq 

assembly could over-write k-mers from low-abundance transcripts. Another complication is that 

a full super-read may contain many short reads, and thus it cannot be counted as a single read 

during the quantification step. We have therefore developed an expectation-maximization (EM) 

algorithm to distribute read coverage between super-reads. 
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While second-generation sequencers produce very large numbers of reads, their read 

lengths are typically quite short, in the range of 75-125 bp for most RNA-seq experiments. 

These short reads often align to more than one location, and we designate such reads as "multi-

mapping". Short reads also suffer the limitation that they rarely span more than two exons, 

making the splice graph difficult and sometimes impossible to traverse accurately for genes with 

multiple exons and many diverse isoforms, no matter how deeply they are sequenced. These 

issues can be alleviated by third-generation sequencing technologies such as those from Pacific 

Biosciences (PacBio) and Oxford Nanopore Technologies (ONT). These long-read 

technologies, which can produce read lengths in excess of 10,000 bp, have dramatically 

improved whole-genome assemblies (Zimin, Puiu et al. 2017), and when used for RNA-seq 

experiments, they offer the potential for large gains in the accuracy of isoform identification and 

discovery (Au, Sebastiano et al. 2013, Tilgner, Grubert et al. 2014, Kuosmanen, Norri et al. 

2018). While some reads produced by third-generation sequencers cover the full length of RNA 

transcripts, many will inevitably capture only partial transcripts. This happens for a variety of 

reasons; e.g., (1) RNA degrades quickly and may be shorter than full length by the time it is 

captured for sequencing; (2) long molecules can break during library preparation; or (3) in cDNA 

sequencing, the reverse transcription step may fail to capture the full RNA molecule. Thus 

computational tools that only consider reads which fully cover a transcript will be forced to 

discard many reads, possibly causing a substantial reduction in sensitivity. To date, though, 

long reads have not been widely adopted for transcriptome assembly, in part because they have 

a much higher error rate (typically 8-10% or higher), making alignment difficult (Roberts, 

Carneiro et al. 2013, Jain, Fiddes et al. 2015), and also because long-read sequencers have 

much lower throughput, which makes quantification of all but the highest-expressed genes 

impossible.  

Various tools have recently been developed to correct errors and/or extract full-length 

transcripts from genome alignments of long RNA-seq reads. TranscriptClean (Wyman and 
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Mortazavi 2019) corrects mismatches, indels, and non-canonical splice-sites in long-read 

alignments, but does not attempt to identify full-length transcripts. FLAIR (Tang et al. 2018) 

corrects splice-sites based on a known annotation and outputs transcripts from the annotation 

that are fully covered by “high-confidence” reads. An alternative to these approaches, which rely 

solely on known transcripts, one can assemble long-read fragments using the same methods 

used for short-read transcriptome assembly. In addition to finding novel transcripts, the 

assembly approach can more readily handle fragments that match multiple isoforms, and it can 

correct alignment errors by forming a consensus from multiple reads. Traphlor (Kuosmanen et 

al. 2016) is the only previously system designed to assemble high-error long reads, although we 

show it performs very poorly on both simulated and real data. 

Here we present StringTie2, a major new release of the StringTie transcript assembler, 

which is capable of assembling both short and long reads, as well as full-length super-reads. 

Our results on 33 Illumina RNA-seq datasets demonstrate that StringTie2 is more accurate than 

Scallop, the next-best performing transcriptome assembler of those currently available. The use 

of super-reads also consistently improves both the sensitivity and precision of StringTie2 

assemblies. When applied to long reads, StringTie2 assembles the reads substantially more 

accurately, faster, and using less memory than FLAIR, the next-best performing tool for long-

read analysis. As opposed to FLAIR, StringTie2 can also identify novel transcripts from the long-

read data, even when no reference annotation is provided.  

 
 
Results 
 
Transcriptome assembly of short RNA-seq reads 

We first used simulated data to compare the sensitivity and precision of StringTie2, with 

and without super-reads, to that of Scallop (Fig. 1). We define sensitivity as the percent of 

expressed transcripts that match a transcript predicted by each tool, and precision as the 
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percent of predicted transcripts that match an expressed transcript. (Note that precision is 

equivalently called positive predictive value.) We say two transcripts match if they have identical 

intron chains and their first and last exons begin and end within 100bp of each other. We tuned 

the default parameters of StringTie2 to have approximately the same precision as StringTie 

(version 1.3) on this simulated data. StringTie2, with default parameters, is more sensitive and 

precise than Scallop on simulated data, and the use of super-reads increases both the 

sensitivity and precision of StringTie2 compared to using short-read alignments alone. We also 

computed the Spearman correlation coefficients of the expression levels predicted by each tool 

compared to the true expression levels on simulated data (Table 1). StringTie2 has a higher 

correlation than Scallop over all predicted and expressed transcripts, and the use of super-

reads improves this correlation further. 

 We next evaluated performance on real short-read data, which is considerably more 

complex than simulations. For this data, we cannot know with certainty which transcripts were 

expressed in each dataset, nor can we know their precise expression levels. However, it is 

generally safe to assume that an assembler is more sensitive if it assembles more transcripts 

matching known annotations (i.e., transcripts from a published database of known genes), and 

that it is more precise if the known transcripts represent a higher proportion of all the transcripts 

that are output by the assembler. Therefore we define sensitivity and precision using the union 

of all annotated transcripts correctly predicted by each tool on a given sample as our set of 

“expressed” transcripts for that sample (also see Methods).  

We ran StringTie2 and Scallop on 23 short-read datasets from human, five from 

Arabidopsis thaliana, and five from Zea mays (see Methods). On all datasets, StringTie2 was 

more accurate than Scallop (Supplementary Table S1). Figure 2 shows that StringTie2 

improved on both sensitivity and precision when compared to Scallop, with an average increase 

of 3.9% and 47.3% in sensitivity and precision respectively. StringTie2 outperformed Scallop on 

both metrics on all but one plant dataset. Scallop had a slightly higher precision than Stringtie2 
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(17.4% vs 16.3%, respectively) on one Z. mays dataset (ERR986144), however even on that 

sample, StringTie2 still obtained a 24% relative increase in sensitivity (see Fig. 2).  

After inspecting the read alignments of the Z. mays datasets in IGV (Robinson et al. 

2011), we noticed that many of the expressed transcripts appeared to be fragmented, because 

the read alignments did not cover the full length of the transcripts; i.e., there were gaps in 

coverage.  Although StringTie2 assembled those fragments correctly, its precision was hurt 

because its output did not contain full-length transcripts. Both StringTie2 and Scallop have a 

parameter that allows changing the maximum allowed gap between two read alignments that 

the tools considers to be part of the same transcript. We increased this parameter from the 

default 50bp to 200bp for both tools. We also disabled trimming of the transcripts assembled by 

StringTie2; this is triggered when the read coverage drops below a given threshold at the 5’ or 3’ 

ends of a transcripts. When this occurs, StringTie2 doesn’t extend the transcripts past the drops 

in coverage. We could not find a similar parameter in Scallop. With these parameter changes, 

StringTie2 has both substantially higher sensitivity and precision than Scallop on all Z. mays 

datasets, including ERR986144 (Supplementary Table. S2). Additionally, StringTie2’s sensitivity 

and precision are substantially increased after this parameter adjustment, compared to the runs 

with default parameters.  

StringTie2 is not only more accurate than Scallop, but also more time and memory 

efficient. Averaging over all real short-read datasets, StringTie2 runs 1.8 times faster than 

Scallop and uses 17 times less memory (Supplementary Table S3).  

The use of super-reads increases both the sensitivity and precision of StringTie2 on all 

human datasets and all but three plant datasets (Fig. 3). Of the latter three, StringTie2 had an 

increase in precision but no change in sensitivity on one Z. mays dataset, and an increase in 

sensitivity but no change in precision on two Arabidopsis datasets.  

 

Transcriptome assembly of third-generation RNA-seq long-reads 
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We next compared StringTie2’s performance on long-reads with that of FLAIR and 

Traphlor, the only other systems that can process long-read RNA sequencing data. Because we 

cannot know the true transcript in real RNA-seq data sets, we first used simulated data to 

assess the accuracy of all tested tools. We obtained five simulated datasets generated by 

Krizanovic et al. (2017), who used the DNA simulator PBSIM (Ono et al. 2013) tuned to mimic 

the statistics of either PacBio or ONT RNA-seq data. These datasets consist of a 

Saccharomyces cerevisiae PacBio run, two Drosophila melanogaster runs (one PacBio, one 

ONT), and two human chromosome 19 runs (one PacBio, one ONT). We ran StringTie2, FLAIR, 

and Traphlor on these simulated datasets and computed sensitivity and precision as before 

(Fig. 5). FLAIR requires gene annotation as a guide to alignment, so we also ran StringTie2 with 

the same guide annotation in order to make a direct comparison. 

Traphlor had lower sensitivity and precision than StringTie2 and FLAIR on all datasets 

except for the S. cerevisiae PacBio data, where it outperformed FLAIR on both metrics (Fig 5a). 

StringTie2 with a guide annotation outperformed FLAIR on all datasets, and in some cases 

StringTie2 without a guide annotation performed equally well. Because this was simulated data, 

the guide annotation included all transcripts that were present in the sample, even if not all of 

them were expressed. Real datasets are likely to contain unannotated transcripts and may lack 

many known, annotated genes entirely.  

To demonstrate the performance of each tool when transcripts are missing from the 

guide annotation, we ran StringTie2 and FLAIR on the human chromosome 19 ONT data using 

random samples of the chromosome 19 annotation, which we varied to contain from 1% to 

100% of the transcripts. Results are shown in Figure 5. The sensitivity and precision of FLAIR 

decreases rapidly as the amount of annotation is reduced; e.g., when only 20% of the 

annotation is provided, FLAIR’s sensitivity and precision dropped to 30% and 50% respectively. 

In contrast, with that same amount of annotation, Stringtie2’s results were far better, 74% and 
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80%. This result demonstrates FLAIR’s strong reliance on the guide annotation and StringTie2’s 

contrasting ability to assembly transcripts that are not present in the annotation. 

We next ran StringTie2, FLAIR, and Traphlor on eight real human long-read datasets: 

three PacBio datasets enriched for full-length transcripts (PacBioFL), three PacBio datasets 

containing transcript fragments (PacBioNFL), one nanopore cDNA dataset (NPcDNA), and one 

nanopore direct RNA-seq dataset (NPDirect). Traphlor failed to produce any transcripts on the 

NPcDNA dataset, and had drastically worse precision and sensitivity compared to StringTie2 on 

all other datasets (Supplementary Table S4). Averaging across all datasets on which Traphlor 

was able to run, StringTie2 correctly assembled 9564 transcripts, 2.6 times more than 

Traphlor’s 3708 correct assemblies. Compared to FLAIR, StringTie2 with guide annotation 

correctly identified 16,000 more transcripts on average, with precision that ranged from about 

three to six times higher (Fig. 6, Supplementary Table S4). FLAIR performed the best on the 

nanopore direct RNA-seq dataset where it correctly identified 4,442 from the annotation. By 

comparison, StringTie2 correctly assembled 29,744 transcripts, 6.7 times more than FLAIR. 

Even without using guide annotation, StringTie2 substantially outperformed FLAIR on all of the 

real datasets (Supplementary Table S4). StringTie2 with annotation is 68 times faster than 

FLAIR and uses 9 times less memory, averaged over all real long-read datasets. Without 

annotation, StringTie2 is 93 times faster than FLAIR and uses 27 times less memory 

(Supplementary Table S5). 	

 
Discussion 
 Our results show that StringTie2 is more accurate than Scallop on both real and 

simulated data sets. On all short-read data sets evaluated here, StringTie2 obtained better 

sensitivity, higher quantification accuracy, faster runtime, and lower memory usage than 

Scallop. Close inspection of the only sample where StringTie2 did not have higher precision 

(ERR986114, Fig. 2) showed that there were many gaps between the read alignments within 
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individual transcripts, possibly due to the repetitive nature of the Zea mays genome. Scallop 

obtains a slightly higher precision on that data, but assembles many fewer transcripts than 

StringTie2. After making a small parameter adjustment as described above, StringTie2 

outperformed Scallop on all metrics on all Zea mays data sets (Supplementary Table S1). This 

demonstrates how default parameters may not be optimal for all datasets, and that more careful 

parameter selection can improve assembly regardless of the tool used. The same point was 

recently demonstrated specifically for Scallop and StringTie by DeBlasio and Kingsford (2018). 

The use of super-reads introduces partial de novo assembly into StringTie2, which we 

have shown improves sensitivity, precision, and abundance estimation on real and simulated 

data.  

The high error rates of long reads generated by third-generation sequencers present 

distinct challenges that make identifying the exact exon-structure of a transcript difficult. 

Alignments of high-error long reads generated from the same locus usually disagree with one 

another, particularly surrounding splice sites (Supplementary Figures S1, and S2). They also 

often disagree about the presence or absence of particular exons, especially if the exons are 

small (Supplementary Figures S2, and S3). The results shown here demonstrate that StringTie2 

is the most accurate method for assembly of transcripts from long, high-error rate reads. This 

has the potential to greatly improve the sensitivity of analyses using long-read RNA-seq data, 

which in the past has relied primarily on reads that span transcripts end-to-end. The built-in 

consensus calling in StringTie2 should also lessen the need for a separate error correction step 

from tools such as TranscriptClean (Wyman and Mortazavi 2019). In addition to its fast runtime 

and small memory footprint, StringTie2 requires no dependencies and can be easily run as a 

single command, unlike tools such as FLAIR which consist of a series of scripts that can each 

fail independently. It is also multi-threaded, which allows it to be run in parallel on multi-

processor computers and can significantly reduce the “wall clock” time of assembly.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/694554doi: bioRxiv preprint 

https://doi.org/10.1101/694554
http://creativecommons.org/licenses/by/4.0/


	

	

 Further development of long-read RNA-seq technologies will increase the usefulness of 

StringTie2. In the case of ONT reads, improvements to basecalling will improve alignment 

quality, which will further improve StringTie2’s assembly. As third-generation sequencers 

increase their throughput, researchers will also be able to use long-read RNA-seq for accurate 

transcript-level quantification, which currently requires the higher throughput of short read (i.e., 

Illumina) sequencers. ONT direct RNA sequencing has additional unique capabilities which are 

only beginning to be explored, such as the ability to identify RNA base modifications and 

secondary structure from the raw signal (Workman, Tang et al. 2018). Better transcriptome 

assemblies will aid these efforts because these read-level features can then be associated with 

the full transcripts. 

 

 
Methods 
 
RNA-seq real data sets.  

Ten of the short-read RNA-seq datasets used here were also used by Shao and Kingsford in 

their evaluation of Scallop (Shao and Kingsford 2017): SRR307903, SRR315323, SRR315334, 

SRR534307, SRR545723, SRR307911, SRR387661, SRR534291, SRR534319, and 

SRR545695. Three of these ten–SRR534291, SRR534319, and SRR545695–were used in the 

original StringTie study (Pertea, Pertea et al. 2015), which described StringTie1. We also 

examined 13 short-read samples randomly selected from the GEUVADIS dataset (Lappalainen, 

Sammeth et al. 2013): ERR188021, ERR188022, ERR188041, ERR188060, ERR188063, 

ERR188073, ERR188107, ERR188311, ERR188341, ERR188462, ERR204883, ERR204926, 

and ERR204965. Five Arabidopsis datasets were obtained from (James, Syed et al. 2012): 

ERR1886195, ERR1886317, ERR1886341, ERR1886384, and ERR1886412. Five Z. mays 

datasets were obtained from (Wang, Tseng et al. 2016): ERR986085, ERR986103, 

ERR986106, ERR986108, and ERR986114. The “full length” and “not full length” PacBio 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/694554doi: bioRxiv preprint 

https://doi.org/10.1101/694554
http://creativecommons.org/licenses/by/4.0/


	

	

datasets were downloaded from http://datasets.pacb.com.s3.amazonaws.com/2014/Iso-

seq_Human_Tissues/list.html. The ONT direct RNA-seq and cDNA datasets are from the 

NA12878 RNA sequencing consortium (Workman, Tang et al. 2018). 

 

Reference Genomes and Annotations 

All human RNA-seq reads were mapped to the main chromosomes of hg38, i.e. not including 

the “alternate” and “random” scaffolds. The annotation used to compute the accuracy of 

transcriptome assemblies and to create the human short-read simulated data and the 

annotation guided assemblies contains all full-length protein and long non-coding RNA 

transcripts from RefSeq, release GRCh38.p8. The A. thaliana RNA-seq reads were aligned to 

the TAIR10 assembly, and the full corresponding annotation was used for determining accuracy 

(Lamesch et al. 2011). The Z. mays reads were aligned to the B73 RefGen assembly, and the 

full corresponding annotation was obtained from MaizeGDB (Portwood et al. 2018). 

 

Simulated Data  

A short-read RNA-seq dataset containing 150 million 75-bp paired-end reads was generated 

using Flux Simulator (Griebel, Zacher et al. 2012) with all protein coding and lncRNA transcripts 

on the main chromosomes of hg38. The parameters for the simulation were the ones 

recommended for H.sapiens in Supplementary Table S3 from Griebel, Zacher et al. 2012. Long 

read simulated data for Saccharomyces cerevisiae S288 (baker’s yeast), Drosophila 

melanogaster r6 (fruit fly), and Homo Sapiens GRCh38.p7 (human) was obtained from 

Krizanovic et al. (2017). The long reads were simulated using either PacBio (one dataset for 

yeast, fruit fly, and human each) or MinION ONT profiles (one data set for fruit fly and one for 

human). 

 

Alignment and assembly parameters  
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All short read datasets were aligned using HISAT2 with default parameters. The PacBio and 

ONT datasets were aligned with minimap2 using the “-splice” option, which enables spliced 

alignment of noisy long reads. Super-reads were aligned using GMAP because their error 

profile more closely resembles that of EST sequences, which aligners like minimap2 are not 

designed for.  

 

The Z. mays samples in Supplementary Table S2 were run with the “-t -g 200” options in 

StringTie2 and the “--min_bundle_gap 200” option in Scallop. StringTie2 was run using the “-L” 

parameter for all long-read datasets. Three FLAIR sub-commands were run in sequence to 

obtain the GTF of covered transcripts: “align”, “correct”, “collapse”, using the human reference 

genome and annotation described above where required. All other assemblies were run using 

default parameters. 

 

Accuracy metrics  

Similar to Voshall and Moriyama 2018, we used the following metrics to report the accuracy of 

the transcriptome assemblies: 

Sensitivity = TP/(TP+FN) 

Precision = TP/(TP+FP) 

where TP (or true positives) are correctly assembled transcripts, FP (or false positives) are 

transcripts that are assembled with errors, and FN (or false negatives) are transcripts in the 

reference annotation that are missing from the assembly. Sensitivity and precision were 

determined by running gffcompare (Pertea et al. 2016).  

Relative percent change in sensitivity (𝑆") and precision (𝑃") of StringTie2 versus another 

method was computed as 𝑆" = 100 × ()*(+	
(+	

, and 𝑃" = 100 × -)*-+	
-+	

, where 𝑆. and 𝑃1	are the 

sensitivity and precision of StringTie2, and 𝑆2 and 𝑃2 and the sensitivity and precision of the 
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method which we compare it to (e.g. Scallop or FLAIR). For example, a 10% absolute increase 

in sensitivity from 𝑆/ = 20% to 𝑆. = 30% would be reported as a relative increase of 50%. 

For real datasets, we have no way to determine exactly what transcripts were truly 

present in the sample. Therefore, for the purpose of comparison, we defined the set of 

reference or “true” transcripts to be the union of all annotated transcripts correctly predicted by 

each tool on a given sample. This metric will overestimate the absolute sensitivity if there are 

transcripts that no tool predicts, but the relative sensitivity comparison will be accurate because 

the denominator is the same between samples and therefore cancels out. 

 

New data structures in StringTie2 compared to StringTie1  

StringTie2 builds on our previously developed StringTie1 system, which introduced several key 

innovations, notably (1) a novel network flow algorithm to reconstruct transcripts and quantitate 

them simultaneously; and (2) an assembly method to merge read pairs into full fragments in the 

initial phase (Pertea, Pertea et al. 2015). StringTie2 maintains the same general framework for 

the assembly and quantification of transcripts but implements much more efficient data 

structures that overall lead to faster run times and much lower memory usage (see Results). It 

includes additional techniques designed to handle very long reads, including high error-rate 

reads produced by the third-generation sequencers, as well as the longer reads that result from 

the pre-assembly of short reads. 

There are three main differences in the way StringTie2 stores aligned reads compared to 

StringTie1. The first difference is that instead of storing every read individually, StringTie2 

collapses reads aligned to the identical location on the genome and keeps a count of how many 

alignments were collapsed. This simple change has a big impact on the memory required to 

store input data, because very highly expressed transcripts can sometimes reach a coverage of 

hundreds of thousands of reads per base. (See for instance Supplementary Figure S4, which 

illustrates the very high level of expression for the COL1A1 gene in sample SRR534291 that 
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was collected from fetal lung fibroblasts.) However, implementing this change was quite 

complex, because it also required us to create a different method for storing the pairings 

between reads, as reads aligned at the same place do not necessarily have their "mates" (the 

second read in each pair) sharing the same alignments. Previously, for each read StringTie1 

stored a pointer to its pair. StringTie2 must instead store an array of pointers to all paired read 

alignments that are present in the data.  

StringTie2 also differs from StringTie1 in its more aggressive strategy for identifying and 

removing spurious spliced alignments. If a spliced read is aligned with more than 1% 

mismatches, keeping in mind that Illumina sequencers have an error rate <0.5%, then 

StringTie2 requires 25% more reads than usual (the default is 1 read per bp) to support that 

particular spliced alignment. In addition, if a spliced read spans a very long intron (more than 

100,000bp), StringTie2 accepts that alignment (and the intron) only if a larger anchor of 25 bp 

(10bp is the default) is present on both sides of the splice site. Here the term "anchor" refers to 

the portion of the read aligned within the exon beginning at the exon-intron boundary.  

Another improvement in StringTie2 is in its internal representation of its splice graph and 

of the reads aligned to that graph. Both the assembly of reads into transcripts, as well as the 

quantification of the resulting transcripts require determining the compatibility between the reads 

(or fragments) and a path in the splice graph (Pertea, Pertea et al. 2015), which requires many 

searches of the overlaps between reads and the splice graph. In order to maximize the 

efficiency of such searches, StringTie1 uses a bit-vector representation of the splice graph, 

where bits 0 to n-1 correspond to all nodes in the splice, and bit n*i+j corresponds to a possible 

edge between nodes i and j in the splice graph, where n is the number of nodes in the graph 

and i<j (Supplementary Figure S5). A read or a paired read will therefore be represented by a 

vector of bits where only the bits that represent the nodes or edges spanned by the read and its 

pair are set to 1. Because in general many of the nodes in the splice graph are not connected 

by edges, most bits in this bit-vector representation will be 0; therefore StringTie2 replaces it 
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with a sparse bit-vector data structure, where the bits can only correspond to a node or an edge 

appearing in the splice graph. Building more efficient data structures in StringTie2 greatly 

reduced the memory footprint of the StringTie system. On the three datasets from this study that 

were also examined in the original StringTie release, memory usage was reduced on average 

by a factor of 40 (Supplementary Figure S6).   

 

Assembly of long RNA-seq reads  

Third-generation sequencing technologies (i.e., from PacBio and Oxford Nanopore sequencing 

instruments) have an error profile that consists mostly of insertion and deletions, as opposed to 

second-generation errors that are mostly substitutions. Insertion and deletions are harder to 

correct than substitutions, and the accuracy of methods for correcting them is generally low 

(Allam, Kalnis et al. 2015). Further complicating matters, aligning long reads correctly around 

splice sites is challenging, and mis-alignments lead to spurious edges in the splice graph, which 

in turn leads to incorrect transcript predictions (Kuosmanen, Norri et al. 2018).  

To handle the high error rates in the long reads, we implemented two new techniques in 

StringTie2. First, we correct potentially wrong splice sites by checking all the splice sites present 

in the alignment of a read with a high-error alignment rate. If a splice site is not supported by 

any low-error alignment reads then we try to find a nearby splice site (within 10bp, by default) 

that is supported by the most alignments among all nearby splice sites. If we can find such a 

splice site, then we adjust the read alignment to match it. While this technique greatly reduces 

the false alignments around the splice sites, it does not eliminate the presence of spurious false 

exons introduced by random sequencing insertions. Pruning edges that are not supported by a 

minimum number of spliced reads, as described in the previous Methods section, eliminates 

some of the false positive edges. However, in regions of very high within-transcript sequence 

coverage, there may still be too many spurious nodes and edges in the splicing graph, which in 

turn may can cause StringTie1 to hang indefinitely. To improve StringTie2’s efficiency in such 
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cases, we designed and implemented a pruning algorithm that reduces the size of the splicing 

graph to a more realistic size (see Algorithm S1 in Supplemental Material). This algorithm 

removes edges in the graph starting from the edge least supported by reads to the most 

supported edge, until the number of nodes in the splicing graph falls under a given threshold (by 

default 1000 nodes). Pruning edges in the splicing graph will also change the internal 

representation of the long reads affected by the pruning. For instance a long read that spans a 

node that is no longer part of the splicing graph might be represented as an interrupted read 

instead of a one continuous read, similar to how two paired reads are represented (see 

Supplementary Figure S3.b). 

 
 
Super-Read Construction and Quantification  

Super-reads were constructed using code adapted from the MaSuRCA assembler (Zimin, 

Marcais et al. 2013). MaSuRCA builds a k-mer lookup table out of every k-mer in the input 

reads. It uses this to create “k-unitigs”, which are defined as sequences of maximal lengths such 

that every k-mer except the first and last have a unique preceding and following k-mer. Super-

reads are then constructed by matching each k-mer at the ends of each short read to a unique 

k-unitig, effectively extending the short read as far as there is a unique extension. Note that it is 

possible for a super-read to contain multiple short reads, and for a short read to be contained in 

multiple super-reads. Not all short reads are assigned to a super-read, so both super-reads and 

unassigned short reads are used for assembly. 

 Prior to the construction of the k-mer lookup table, MaSuRCA uses QuorUM (Marcais, 

Yorke et al. 2015) to correct errors in the short reads. The built-in parameters that it uses for 

genome assembly are not optimal for transcriptome assembly. For example, these parameters 

include a minimum number of times a k-mer must appear to be considered high-quality, which is 

appropriate for genome assembly where all sequences should be covered uniformly, but not for 

transcriptome assembly, where some transcripts may have coverage as low as a single read. 
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Therefore we modified these routines to remove the minimum k-mer count thresholds used for 

error correction. There are also certain cases where the first and/or last k-1 bases of a super-

read can extend into alternatively spliced exons, which could mislead the assembly process. To 

alleviate this problem, StringTie2 ignores the first and last k-1 bases of aligned super-reads. 

 Because many reads may be collapsed into a single super-read, StringTie2 needs a 

coverage estimate with every super-read in order to calculate the expression level of any 

transcript with super-reads aligned to it. To estimate coverage, we first find every super-read 

containing each short read by matching the k-unitigs. A read is assigned to a super-read if its k-

unitigs are contained in the super-read in the same continuous order (or reverse order for the 

opposite strand), which happens if and only if the read (or its reverse complement) is an exact 

substring of the super-read. During this step, we only consider super-reads that have been 

aligned to the reference genome. After read assignment, we use an expectation-maximization 

algorithm to estimate coverage for each super-read. The initial estimate sums the coverage of 

each read or fragment uniquely assigned to one super-read. Each iteration then recomputes 

coverage for every super-read by distributing coverage from each read proportionally to the 

previous super-read coverage estimate. This is analogous to how StringTie2 distributes 

coverage between transcripts. We report the computed coverage for each super-read using a 

special tag in the SAM output file, which is then merged with an aligned short-read SAM file 

which can be input to StringTie2, which uses the super-reads to weight the paths that they 

match in the splice graph. 

	
Availability		

StringTie2 is implemented in C++ and is freely available as open source software at 

https://github.com/mpertea/stringtie2. 
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Figures 

 
Figure 1. Sensitivity and precision of Scallop, StringTie2, and StringTie2 with super-
reads (StringTie2+SR) on simulated human short-read data, containing 150 million 75-
bp paired-end reads. Only those transcripts that were completely covered by input 
reads are considered. 
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Figure 2. Relative change in sensitivity and precision of StringTie2 vs. Scallop on real 
short-read data from humans, Arabidopsis thaliana, and Zea mays. 
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Figure 3. Relative change in percent sensitivity and precision when using super-reads 
with real short-read data.	  
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Figure 4. Sensitivity and precision of StringTie2 (with and without guide annotation), FLAIR, and 
Traphlor on long read simulated data from A) PacBio Saccharomyces cerevisiae, B) PacBio 
Drosophila melanogaster, C) PacBio Homo sapiens, D) ONT D. melanogaster, and E) ONT H. 
sapiens.  
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Figure 5. Sensitivity and precision of StringTie2 and FLAIR running on ONT human 
chromosome 19 simulated data using random samples of different sizes of the human 
chromosome 19 annotation as a guide.	  
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Figure 6. Number of correctly assembled transcripts correctly and precision of 
StringTie2 and FLAIR on real PacBio (FL = full length, NFL = not full length) and ONT 
(NP direct RNA and cDNA) human data. For both plots, any transcripts assembled by 
either tool were considered correct if they exactly matched all introns from a known, 
annotated transcript.	  
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￼ 
 Spearman 

All 
Spearman 
Predicted 

Scallop 0.726 0.828 

StringTie2 0.781 0.925 

StringTie2+SR 0.788 0.930 
Table 1. Spearman correlation coefficients for the simulated short-read assemblies. 
“Spearmen Predicted” only includes transcripts that each tool assembled. For non-
assembled transcripts in “Spearman all” the predicted expression was set to zero.	  
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