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ABSTRACT 28 

It remains unclear how and to what extent non-human animals make demanding on-the-29 

fly predictions during pursuit. We studied this problem in a novel laboratory pursuit task that 30 

incentivizes prediction of future prey positions. We trained three macaques to perform joystick-31 

controlled pursuit of prey that followed intelligent escape algorithms. Subjects reliably aimed 32 

towards the prey’s likely future positions, indicating that they generate internal predictions and 33 

use those predictions to guide behavior. We then developed a generative model that explains 34 

real-time pursuit trajectories and showed that our subjects use prey position, velocity, and 35 

acceleration to make predictions. We identified neurons in the dorsal anterior cingulate cortex 36 

(dACC) whose responses track these three variables. These neurons multiplexed prediction-37 

related variables with a distinct and explicit representation of the prey’s future position. Our 38 

results provide a clear demonstration that the brain can explicitly represent future predictions and 39 

highlight the critical role of anterior cingulate cortex for future-oriented cognition. 40 
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INTRODUCTION 41 

Many foragers pursue fleeing prey. The ability to effectively pursue prey is thus a critical 42 

element in our behavioral repertoires 1,2. To pursue effectively, a forager needs to perform a 43 

series of computations: it must maintain a representation of its current position relative to that of 44 

the prey, then compute a best path to capture the prey, then execute that path. Because the ability 45 

to perform such computations can determine foraging success, pursuit has likely been an 46 

important driver of our cognition and its underlying brain systems 3–6. 47 

One way to improve pursuit effectiveness is to predict the future position of the prey and 48 

head towards the predicted position 7. Estimating future positions can be done using the prey’s 49 

basic Newtonian variables (most importantly, its current position, velocity, and acceleration) and 50 

can be improved using additional (potentially even recursive) variables, such as predictions 51 

about the likely evasive strategy of the prey in response to the predator’s own future path. By 52 

using such information, the forager may be able to formulate a representation of the predicted 53 

future position of the prey. The ability of non-human animals to actively predict positions of prey 54 

during pursit is poorly understood. Nonetheless, predictive pursuit is an important part of the 55 

repertoire of many species.  56 

Prediction is important for many cognitive and behavioral processes, not just foraging. 57 

These include motor control, economic decision-making, and abstract long-term planning 8–14. 58 

There is some evidence that foraging animals can predict the long-term future - that is, they may 59 

be able to travel mentally in time and see themselves in the future 15,16. However, observations 60 

about animal prediction tend to be limited to a small number of highly adapted species in unique 61 

contexts. And, while future planning of movements is relatively well-studied, the ability to 62 

predict future positions of prey during dynamic behavior with rapidly changing goals – which 63 
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feed into but are distinct from motor plans – is not. In the context of pursuit, a critical question is 64 

whether future-predicting foragers maintain a specific representation of potential future prey 65 

positions and whether those representations (assuming they exist) make use of specialized 66 

processes. 67 

Although the neural bases of predictive pursuit remain unclear, we can draw some 68 

inferences about its likely neuroanatomy. In particular, the dorsal anterior cingulate cortex 69 

(dACC) has been implicated in prediction, prospection, and related processes 17–20. For example, 70 

neuroimaging studies indicate that human dACC is a key region for economic prediction 21, for 71 

prospective reasoning 11 and for more open-ended prospective processes 21,22. The dACC is well-72 

positioned for this role: it receives broad inputs from limbic and cognitive systems, integrates 73 

these, and generates high-level control signals that regulate behavior in an abstract and high-level 74 

way 19,22–24. 75 

Here, we examined the future predicting abilities of rhesus macaques using a novel 76 

virtual pursuit task. Subjects used a joystick to move an avatar in an open two-dimensional field 77 

displayed on a computer screen. Subjects, controlling the avatar, pursued a fleeing prey item that 78 

used an artificially intelligent (AI) algorithm to avoid predation. By examining the properties of 79 

a generative model fit to our data, we found that our subjects moved towards extrapolated future 80 

positions of prey rather than just pointing towards the preys’ present positions. Our subjects’ 81 

made their predictions based on three Newtonian variables associated with the current state, but 82 

not other factors that could further improve predictions (such as the effect of the subject’s 83 

movements on the future position of the prey). We also found that neurons in dACC were 84 

selective for those three Newtonian variables (and not others), indicating that responses in this 85 

region provide sufficient information to generate the types of predictions our subjects made. 86 
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Finally, we found that dACC neurons used a spatial code to explicitly represent the predicted 87 

future position of the prey, and that this future representation is multiplexed with the 88 

representation of current Newtonian variables.   89 
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RESULTS 90 

Behavioral results 91 

Three macaques (Macaca mulatta, subjects K, H, and C) used a joystick to control the 92 

position of an avatar (a yellow or purple circle) moving continuously and smoothly in a 93 

rectangular field on a computer screen (Figure 1 and Methods). On each trial, subjects had up to 94 

20 seconds to capture a prey item (a fleeing colored square) to obtain a juice reward. Prey 95 

avoided the avatar with a deterministic strategy that combined repulsion from the subject’s 96 

current position with repulsion from the walls of the field. The prey item was drawn randomly 97 

from a set of five, identified by color, that differed in maximum velocity and associated reward 98 

size. 99 

All subjects showed stable behavior within twelve 2-hour training sessions that followed 100 

a longer training period on joystick use (Figure S1 and Figure S2). All data presented here were 101 

collected after the training sessions (number of trials, K: 3229; H: 3890; C: 2512). Subjects 102 

successfully captured the prey in over 95% of trials and, on successful trials, did so in an average 103 

of 5.04 seconds (K: 4.26 sec, H: 5.32 sec, C: 5.54 sec) and median of 3.62 seconds (K: 3.36sec, 104 

H: 3.73 sec, C: 3.93 sec). Subjects’ performance varied lawfully with prey type, indicating 105 

sensitivity to manipulation of reward and/or difficulty (Figure S1). 106 

  107 

Behavioral evidence of future state prediction 108 

For analysis purposes, we split all data into one-second segments (Figure S3). Within 109 

each segment, we calculated the error (sum of squares) between the model (see below) and the 110 

behavior at each frame (i.e., each 16.67 ms). For each segment, we computed the minimum point 111 
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on a 201x201 matrix of intensities for each parameter pair (force by time, Figure 2, see below). 112 

We then averaged over all segments and all trials, separately for the three subjects.  113 

We developed a generative model of behavior (see Methods). We used the variable τ 114 

(tau) to refer to the prediction parameter for each subject. The variable τ comes from the model 115 

and refers to a fit scalar variable, which is multiplied by future position (see the equations in 116 

Methods section “Behavioral Model”). In practice, it can be interpreted as the distance into the 117 

future that the subject prospects to guide his behavior (Figure 2A). The variable τ can have 118 

positive, negative, or zero values. A positive value for τ indicates that the subject points towards 119 

the expected future position of the prey - that is, the strategy reflects prediction. A zero τ 120 

indicates that the subject points the joystick directly at the current position of the prey. A 121 

negative value for τ indicates that the subject points the joystick towards where the prey was in 122 

the recent past. Note that all of these strategies (within limits) are capable of eventually catching 123 

all prey, since the subject’s avatar is, by design, faster than the prey. The scalar parameter κ 124 

(kappa) reflects the amount of force applied toward the direction of the predicted position. Thus, 125 

a negative value indicates that force is exerted away from (180 degrees opposite) the prey’s 126 

position, whereas a positive value indicates that force is exerted towards it.  127 

We also added an inertia term to the model. Specifically, we computed an inertially 128 

biased path for each 16.67 ms frame. The biased path is a vector sum of the computed best 129 

predicted direction and the previous direction (Psubject(t) – Psubject(t-1)). In our implementation, 130 

these two terms have equal weighting. Note that in practice, their relative weighting may 131 

nonetheless vary because the force term (κ, which is fit in the model), affects the weight of the 132 

new direction relative to the past direction. This approach for implementing inertia is designed to 133 

align intuitively with how inertia works (see Methods, Figure S2, and S4). 134 
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We called our first model the physics variable based prediction model (PVBP). It 135 

assumes that subjects' prediction derives from the the prey’s current position, velocity (i.e. both 136 

speed and direction), and acceleration (which includes both direction and magnitude of 137 

acceleration), as well as further derivatives, see Figure S5). For all three subjects, the best fitting 138 

τ is positive, indicating that they point the joystick towards the prey's future position. For ease of 139 

interpretation, we translated τ into time units by calculating the distance between the current 140 

position and estimated position, then divided that quantity by the average velocity of the prey 141 

across the session. The results of this calculation indicate that subjects K, H and C pointed the 142 

joystick towards the position that the prey would occupy in an average of 800 ms, 767 ms, and 143 

733 ms in the future, respectively. In the context of the task, these numbers are substantial: they 144 

reflect 18.78%, 14.42%, and 13.23% of the average trial duration for K, H, and C, respectively.  145 

To determine whether the positive prediction parameter τ is significantly greater than 146 

zero, we performed a bootstrap (randomization test making use of resampling with replacement) 147 

of heatmap slices from each segment (individual heatmap from 500 segments). This resampling 148 

was performed 500 times and resulting heatmaps were added. Then the τ and κ that best explain 149 

each segment (that is, the one resulting in the lowest cost) was selected in each resampling. We 150 

confirmed that the estimated value τ and κ are both greater than zero more than 99% of the time 151 

(i.e., p<0.01). 152 

The distance into the future that our subjects predicted did not detectably depend on the 153 

the speed of the prey (linear regression between reward/speed and mean τ, K: β=3.0316, 154 

p=0.1110; H: β=4.5798, p=0.1791; C: β=7.1007, p=0.0957; the term β refers to the regression 155 

coefficient for speed against neural activity). We next asked whether taking more complex paths 156 

(ones with more turns vs. more straight paths) affected prediction span. Prey path complexity (as 157 
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measured by path curvature estimated by average angle method) affected prediction. 158 

Specifically, subjects predicted less far into the future when the prey path had more curves (K: 159 

β=-0.0687; H: β=-0.0567; C: β=-0.0898, p<0.0001 for each). Thus, subjects had the ability to 160 

dynamically adjust their own prediction in light of changing circumstances. 161 

  162 

Alternative models do not predict trajectories as well as physics-based prediction 163 

We next compared the physics-based model to two other models implementing different 164 

prediction algorithms (Figure 2B). First, the veridical prediction (VP) model assumes that the 165 

subjects will make perfect predictions that incorporate all game dynamics, including preys’ 166 

repulsion from the walls and the subject’s avatar. This means that a subject that makes a 167 

veridical prediction takes into account the effect his own movements will have on the prey’s 168 

strategy. Second, the cost contour map prediction (CCMP) model is the same as VP but excludes 169 

repulsion from the avatar, meaning that the subject’s prediction model for the prey would not 170 

take into account their own motion. We compared the performance of each model by computing 171 

the sum of squares error between the prediction trajectory and the observed trajectories over all 172 

time bins.  173 

Using the Akaike Information Criterion (AIC), we found that the PVBP fit better than the 174 

other two models in our well-trained subjects (K: 7.529x106, for subject K, second best was VP: 175 

7.542x106; H, PVBP: 8.923x106; for subject H, second best was CMPP: 8.950x106, Figure 2D). 176 

We fit each segment with distinct τ and κ parameters, and we fit these same two parameters for 177 

each of our three models. As a consequence, the comparison of models can be done directly 178 

without concern of potential bias toward any specific model. In other words, by fitting each of 179 

the three models subject to identical constraints, we ensured a fair comparison across models. 180 
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For the less well-trained subject, C, the CCMP model explained trajectories most accurately 181 

(7.955x106).  182 

We speculated that one factor that may influence strategy is the speed of the prey. Indeed, 183 

we found that all three subjects used PVBP more frequently when the speed of the prey was 184 

faster (Figure S6). Note that this observed link between speed and the fit of the PVBP occurs 185 

even in our third (less fully trained) subject (p < 0.001, logistic regression, Figure S6). In any 186 

case, our model’s classification of strategies appears to be robust: the same results were obtained 187 

using a different method. Specifically, we fit all individual segments to the best model and 188 

computed the model that fit the most overall number of segments (Figure 2D and Methods).  189 

Doing the fitting this way may seem excessively flexible. That is, using two times the 190 

number of segments might allow us to fit only noise. (Consider, for example, the case of fitting 9 191 

data points with 9th-order polynomial curve). On the other hand, the extra freedom may allow us 192 

to better fit signal - or, of course, it may fit both noise and signal. The key question, then, is 193 

whether using a large number of parameters makes the fit better despite the possibility of fitting 194 

noise. To answer this question, we directly compared the two approaches (Figure S3). 195 

Specifically, we compared a model assigning two parameters globally versus one applying two 196 

parameters for each one-second segment (i.e., Monkey K: 28,164; Monkey H: 35,308; Monkey 197 

C: 20,720 parameters, Figure S3). We then used AIC to compare models. We found that the 198 

second-by-second fitting resulted in lower AIC values, implying a better fit, than the 2-parameter 199 

counterpart. Specifically, in this figure, for all individual subjects, the change in AIC (AIC for 200 

global parameter model minus AIC for second-by-second model) was positive - implying the 201 

model fit by second-by-second model explains the data better than the counterpart -  for the best 202 

physics-based model explaining the subject’s behavior. 203 
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Overall, the model comparison results showed that subjects predict the upcoming position 204 

of the prey using Newtonian physics but ignore the walls and their own influence on the prey. 205 

That is, subjects use a simplified approximation of the structure of the game to make future 206 

predictions; presumably this simplified one is sufficient to generate good predictions with lower 207 

mental effort costs. Indeed, the correlation between speed of prey and subjects’ reliance on 208 

physics based prediction (a result confirmed with two different analytical approaches) suggests 209 

that prediction might have a computational cost. 210 

  211 

Prediction-related information encoded in dorsal anterior cingulate cortex 212 

Based on its role as a nexus for motivational, cognitive, and motor information 18,23, and 213 

its demonstrated role in human prospection 11,25, we hypothesized that dACC would be critical 214 

for predictive pursuit (Figure 3A). We fit a statistically unbiased Linear-Nonlinear Generalized 215 

Linear model (GLM 26–28) to responses of 150 well-isolated dACC neurons (K: n=31; H: n=119). 216 

For this analysis, we focused on the entire trial period rather than pre-selecting epochs. 217 

Position, velocity, and acceleration of the prey were all encoded by significant 218 

proportions of neurons (Figure 3; position: 62.00%, n=93/150; speed: 35.33%, n=53/150; 219 

36.67%; direction: n=55/150, acceleration: 24.67%, n=37/150, p<0.01 in all cases, two-way 220 

binomial test). The model fit shown in magenta is the shape of reconstructed filter (examples, 221 

Figure 3C, D). According to the GLM, jerk, the derivative of acceleration, is not encoded (see 222 

Figure S5). Jerk also did not measurably affect the subject’s neural responses (it only modulated 223 

2.00% of cells, n=3/150, p=0.1288). Together, these results indicate that dACC ensembles carry 224 

the major raw ingredients that our subjects use to predict prey positions.  225 
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We wondered whether ostensible coding for prey variables could be the byproduct of 226 

coding for self-position, since self-position and prey position do tend to be somewhat correlated. 227 

We therefore repeated our GLM analyses but included self-position, self-direction, and self-228 

speed as explanatory factors and considered variance explained by prey parameters only after 229 

accounting for these variables. Doing this, the proportion of neurons selective for the prey’s 230 

position information remained significant (position: 65.45%; p < 0.01, two-way binomial test), 231 

as did neurons selective for prey speed (18.56%; p<0.01), and direction (10.78%, p=0.021). 232 

 233 

Neurons in dACC encode future position  234 

We next asked whether dACC neurons encode the future position of the prey. For each 235 

neuron, we refit the GLM using an additional parameter, the position of the prey at time t in the 236 

future. We selected the time t (t=833ms) that was most similar to the value of τ resulting from 237 

our generative model, that is, the one indicating the most likely time span of prediction (733, 238 

766, and 800 for the three subjects, respectively) subject to the additional constraint of being a 239 

multiple of 166.67 (i.e. 10 frames). Note that although this value was chosen in advance, it aligns 240 

with the empirically derived measure of peak future position coding (Figure 4D, see below). 241 

Our analysis approach deals with the problem of correlation between the set of current 242 

Newtonian variables (including current position) and future position by assigning all explanatory 243 

power to the set of current variables first, and only counting as significant any additional 244 

variance explained by future position (see Methods). Despite this conservative criterion, we 245 

found that responses of 24.67% of dACC neurons are selective for the prey’s future position at 246 

time t (n=37/150).  247 
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Visual inspection of the neurons’ filters shows that their selectivity is complex (examples 248 

are shown in Figure 4C). That is, they are positionally tuned, but, unlike place cells, have non-249 

point-like shapes. They contain multiple peaks. They do not appear to be smooth gradients. 250 

Instead, they appeared to be heterogeneously spatially tuned. In this manner, they resemble 251 

recently identified non-grid-like space-selective cells in entorhinal cortex 26. Notably, 252 

conventional methods for detecting place/grid-like cells will greatly underestimate the proportion 253 

of such tuning. 254 

We next asked how strongly dACC neurons encode the future position of the prey. We 255 

calculated the proportion of log likelihood increase (LLi) between the current position model and 256 

the current plus future model (Figure 4A). Our neurons showed a wide range in marginal 257 

variance explained. On average, adding the future position term improved variance explained by 258 

6.89% (the mean of this proportion is significantly different from zero, p<0.001, Wilcoxon sign-259 

rank test, Figure 4A inset).  260 

We then asked whether these newly discovered future position cells constitute a separate 261 

class of neurons from the cells that tracked the current position of the prey. To do this, we 262 

computed the explanatory variance accounted for by future position (variance explained by the 263 

combined model minus variance explained by current position) and current position, as defined 264 

by log likelihood improvement (LLi) in fitting. We found a positive correlation between these 265 

variables (Figure 4B), indicating current and future position were multiplexed in the same 266 

population of cells (r = 0.7394, p < 0.001, cf. 29). 267 

To quantify the difference between current and future position coding, we fit separate 268 

models: one incorporated current position plus current Newtonian variables; the other was the 269 

same but used future position (assuming t=833 ms) instead of current position. For the 36 270 
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neurons with significant tuning for both current and future position, we calculated the similarity 271 

between the filters, using a technique known as spatial efficiency, SPAEF 30 (Figure 4C). A zero 272 

SPAEF indicates orthogonal filters; positive SPAEF indicates similar filters; negative SPAEF 273 

indicates anticorrelated filters. Although the mean of the spatial efficency for our neurons was 274 

positive, it was not significantly so, and spanned a large range of values from negative to positive 275 

(mean of population spatial efficiency=0.0440, Wilcoxon sign-rank test, p=0.3790). 276 

Finally, we assessed future encoding by examining the accuracy of model fitting to each 277 

of several possible future times, ranging from 0 to 1333 ms in the future. We ran a type of sliding 278 

window analysis that involved sampling one frame (16.67 ms) every ten frames (166.67 ms) and 279 

ignoring the intervening nine frames. We found that the value of 833 ms fit the largest number of 280 

neurons. (Values around it fit many neurons too). Specifically, the plurality, 24.67% of neurons, 281 

were tuned for prey position at 833 ms (Figure 4D). The roughly equivalent value of the neural 282 

and the behaviorally fit prospective distance (733 and 800 ms for those two subjects) suggests 283 

that these neurons encode the future position of prey on the same approximate timescale as the 284 

subject actively predicts.  285 

We considered the possibility that this peak at 833 ms was due to some unanticipated 286 

correlation between positions in the future and at the present. If this were so, then the average 287 

distance of the self and/or prey would show a local minimum at a point in the future 288 

corresponding to the peak. However, we did not see this. On the contrary, we found that the 289 

distance increases monotonically for both subjects (Figure 4E). 290 

 291 

State information is not confounded with gaze information 292 
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Activity in dACC is selective for saccadic direction, and may therefore also correlate 293 

with gaze direction (although this has not, to our knowledge, been shown 31). Consequently, it is 294 

possible that our spatial kernels may reflect not task state but gaze information. Specifically, 295 

what appears to be tuning for future position may instead be attributable to the fact that monkeys 296 

looked towards the predicted future prey position. We tested this possibility by calculating the 297 

Euclidean distance between eye position and prey position in a range from -80 to +80 frames 298 

(Figure 5A). The distance between eye and prey position was the closest at -5 frames (77.09 299 

pixels), indicating that eye position lagged prey position. Thus, if gaze direction were a major 300 

confound, it would show up as increased selectivity for past positions, not prediction of future 301 

positions. Likewise, the chance that prey velocity encoding is a by-product of eye velocity 302 

encoding was belied by the stark differences between gaze speed and prey speed (p <0.001, 303 

Wilcoxon sign rank test, but also clear from visual inspection of Figure 5B). Finally, we 304 

repeated our GLM analyses (see above) but included eye position (only for the one subject from 305 

which we collected gaze data). We found that that the number of tuned neurons for the prey did 306 

not substantially change; that is, that adding in gaze position as a regressor did not qualitatively 307 

change our results (Figure 5C).      308 

 309 

Encoding of reward and reward proximity in dACC  310 

Research based on conventional choice tasks indicates that dACC neurons track values of 311 

potential rewards 32. We next asked how dACC encodes anticipated rewards in our more 312 

complex task. We found that, averaging over all other variables, the value of the pursued reward 313 

modulates activity of 8.67% of neurons (using a simple linear regression of firing rate against 314 

value; this proportion is greater than chance, p=0.038, one-way binomial test). Note that this 315 
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analysis ignores the potential encoding of prey speed, which is perfectly correlated with static 316 

reward in our task design. We hypothesized that reward/speed would be encoded in a modulatory 317 

manner 33, that is, that the pursued reward/speed would alter the shape of the tuning for other 318 

task variables, rather than be multiplexed (Figure 6A). To test this hypothesis, we split our 319 

dataset by reward size and, as a control, split it randomly. We found that for several variables 320 

(prey position, prey direction, and prey speed), value splits produced greater differences than 321 

random ones (purple bar, p = 0.0221 for prey speed, and p < 0.001 for other prey variables, 322 

Figure 6B). This result indicates that the reward information encoded in dACC interacts 323 

mathematically with encoding of other variables. In other words, selectivity is mixed. 324 

A good deal of research suggests that dACC neurons also signal the approach in time of 325 

impending rewards 34–36 , even in continuous tasks 37,38. We thus asked whether it does so here. 326 

We repeated our GLM, including relative (self-to-prey) distance as an explanatory variable. We 327 

found that 38.67% of neurons (n=58/150) were tuned for self-prey distance. Interestingly, this 328 

relationship is heterogeneous - of these 58 neurons, 31.03% (n=18/58) showed a positive slope 329 

and 18.97 % (n=11/58) showed a negative slope. This bias is not itself significant (p=0.2649 for 330 

rise and fall bias, n = 18/29; p = 1.000 for monotonic bias, n = 29/59, binomial test in all cases). 331 

This result indicates that while dACC neurons do track the approach to reward, they do not show 332 

an overall rise or fall in activity as they do so.   333 
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DISCUSSION 334 

Pursuit is an important element of the behavioral repertoire of many foragers 2,6. The 335 

algorithmic bases of pursuit have recently attracted the interest of scholars in ecology, 336 

engineering, psychology and other disciplines 4,7,39–44. Nonetheless, we know very little about 337 

how pursuit decisions occur in real time, and we know even less about their neuronal 338 

underpinnings. Here, we examined how macaques pursue virtual prey in a continuous, time-339 

varying task. We developed a generative model based on a large dataset. The result from this 340 

model suggests that our subjects follow a predictive strategy. That is, instead of pointing towards 341 

the position of the prey, they extrapolate the future positions of prey and use this prediction to 342 

adjust their heading. This strategy is more efficient (yields more reward per unit time) but may 343 

be more computationally demanding than a simpler one that would involve pointing at and 344 

tracking the current position of the prey. These results demonstrate that pursuing animals can 345 

adopt complex future-predicting strategies that improve performance. 346 

We found that dACC neurons track the elemental physical variables our subjects use to 347 

predict the future and explicitly encode the prediction. Specifically, we found that firing rate 348 

responses of neurons in dACC encode three Newtonian variables (position, velocity, and 349 

acceleration) that our subjects used to track the prey and predict future prey positions. The same 350 

neurons carry an additional representation of the future position of the prey that is multiplexed 351 

with the Newtonian variables rather than maintained in a separate pool of specialized neurons. 352 

Both representations make use of a two-dimensional response field, akin to place fields in 353 

hippocampus, but not localized to a single position. Specifically, spatial representation in dACC 354 

is qualitatively similar to place representations of non-grid cells in entorhinal cortex 26. It is 355 

notable that dACC uses partially distinct spatial tuning functions to track the present and future 356 
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positions of the prey, thus in principle allowing unambiguous decoding for a given population 357 

response. 358 

Our work is directly inspired by important studies identifying mechanisms underlying 359 

pursuit in other animals 39,40,45. Our work goes beyond these studies by developing a generative 360 

model, that is, a model that seeks to understand how the data are generated 46. One benefit of the 361 

generative model is that it lets us probe how the decision is made at every time step and make 362 

guesses about the underlying mental process leading to decision. The generative model in turn is 363 

vital for extending our understanding of mechanism to the neuronal level. 364 

This model allows us to generate results that provide novel insight into the role of dACC 365 

in cognition. First, our results emphasize the core role of dACC in prediction, a role that is 366 

central to other theories, albeit not ones that directly involve pursuit 11,17,20,21,47,48.  One recent 367 

study is particularly relevant to these results 20. The authors examined hemodynamic activity in 368 

human dACC during a complex decision-making task in which subjects had to track previous 369 

rewards and use a reinforcement learning-like mechanism to formulate a future prediction and 370 

make the best choice. They found that dACC tracks multiple variables, but was particularly 371 

selective for long-term estimates of expected prediction errors. These results highlight the key 372 

role of dACC in prediction in general and suggest its role is conserved across species (see also 373 

17). Second, our findings highlight the importance of dACC to navigation. While studies of 374 

navigation typically focus on the medial temporal lobe, a growing body of work has begun to 375 

explore the role of cingulate cortex, which receives direct projections from medial temporal 376 

regions 25,49. 377 

There are several important limitations to the present work. First, and most obviously, our 378 

subjects were not performing a truly naturalistic task; they were performing a laboratory task that 379 
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required specialized training. Future studies will be needed to ascertain whether these results 380 

relate to natural pursuit contexts that are ostensibly similar, such as pursuit of insects in the 381 

peripersonal space 50,51. Second, and relatedly, the task space we used was greatly constrained - 382 

both agents were restricted to a small rectangular space and had strict speed limits. Subjects had 383 

full information about the position of the prey at all times. To understand prediction more fully, 384 

it will be critical to extend to contexts in which some information is hidden. 385 

Traditional laboratory tasks that study topics of interest to cognitive neuroscience - 386 

decision-making and executive control - have discrete steps and force the brain to adjust to that 387 

structure 52,53. One reason we developed the prey pursuit task is that it embeds those cognitive 388 

processes in a continuous time-varying task. Doing so allows us to study one of the brain’s 389 

greatest strengths - its ability to adjust and change its mind on the fly as new evidence comes in 390 

53–57, and to incorporate that into future plans.  391 
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Supplementary Material 567 

Material and Methods 568 

Subjects. All animal procedures were approved by the University Committee on Animal 569 

Resources at the University of Rochester and/or the University of Minnesota and were designed 570 

and conducted in compliance with the Public Health Service’s Guide for the Care and Use of 571 

Animals. Three male rhesus macaques (Macaca mulatta) served as subjects for the behavior; two 572 

of them also served as subjects for the physiology. Subjects had never previously been exposed 573 

to decision-making tasks in which they could use a joystick to pursue a moving prey. Previous 574 

training history for these subjects included two types of foraging tasks 37, 57 , intertemporal 575 

choice tasks 59, several types of gambling tasks 60–62, attentional tasks (similar to those in ref 63), 576 

and two types of reward-based decision tasks 64,65. 577 

Experimental Apparatus. The joystick was a modified version of commercially 578 

available joysticks with a built-in potentiometer (Logitech Extreme Pro 3D). The control bar was 579 

removed and replaced with a control stick (a 15 cm plastic dowel) topped with a 3 cm diameter 580 

plastic sphere designed to be easy for macaques to manipulate. The joystick position was read 581 

out by a custom coded program in Matlab running on the stimulus-control computer. The 582 

joystick was controlled by an algorithm that detected the positional change of the joystick and 583 

limited the maximum pixel movement to within 23 pixels in 16.67 ms. 584 

Task Design. At the beginning of each trial, two shapes appeared on a gray computer 585 

monitor placed directly in front of the subject. The yellow (subject K) or purple (subjects H and 586 

C) circle (15-pixel diameter) represented the subject. Subject position was determined by the 587 

joystick and was limited by the screen boundaries. A square shape (30 pixel length) represented 588 

the prey. The movement of the prey was determined by a simple AI (see below). Each trial ended 589 
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with either the successful capture of the prey or after 20 seconds, whichever came first. 590 

Successful capture was defined as any spatial overlap between the avatar circle and the prey 591 

square. Capture resulted in immediate juice reward; juice amount corresponded to prey color: 592 

orange (0.3 mL), blue (0.4 mL), green (0.5 mL), violet (0.6 mL), and cyan (0.7 mL). 593 

     The path of the prey was generated interactively using A-star pathfounding methods, 594 

which are commonly used in video gaming 66. For every frame (16.67 ms), we computed the cost 595 

of 15 possible future positions the prey could move to in the next time-step. These 15 positions 596 

were spaced equally on the circumference of a circle centered on the prey’s current position, with 597 

radius equal to the maximum distance the prey could travel within one time-step. The cost in turn 598 

was based on two factors: the position in the field and the position of the subject’s avatar. The 599 

field that the prey moved in had a built-in bias for cost, which made the prey more likely to move 600 

towards the center (Figure 1B). The cost due to distance from the subject’s avatar was 601 

transformed using a sigmoidal function: the cost became zero beyond a certain distance so that 602 

the prey did not move, and it became greater as distance from the subject’s avatar decreased. 603 

Eventually, the costs from these 15 positions were calculated and the position with the lowest 604 

cost was selected for the next movement. If the next movement was beyond the screen range 605 

(1920x1080 resolution), then the position with the second lowest cost was selected, and so on. 606 

The maximum speed of the subject was 23 pixels per frame (and each frame was 16.67 ms). The 607 

maximum and minimum speeds of the prey varied across subjects and were set by the 608 

experimenter to obtain a large number of trials (Figure 1). Specifically, speeds were selected so 609 

that subjects could capture prey on <85% of trials; these values were modified using a staircase 610 

method. If subjects missed the prey three times consecutively, then the speed of the prey was 611 

reduced. Once the subject intercepted the prey in a trial where the staircase method was used, 612 
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then the selection of prey speed was randomized again. To ensure sufficient time of pursuit, the 613 

minimum distance between the initial position of each subject avatar and prey was 400 pixels. 614 

Training Level Estimation. Three subjects were trained for the same amount of time (8 615 

weeks). As training progressed, each subject was exposed to a progressively more difficult 616 

(faster) suite of prey, up to a fixed maximum. Subject K and subject H reached a similar range 617 

for maximum speed of prey during the training period (K:15 pixels per frame; H: 14 pixel per 618 

frame). However, subject C only attained a maximum speed of 8 pixels per frame (Figure S6). It 619 

is for this reason we refer to him as the less well-trained subject. 620 

Behavioral Model. To fit each subject’s movement, each trial was divided into 1 second-621 

long segments. Each segment included 61 data points (because we used 16.67 ms resolution). 622 

We modeled these trajectories using a single prediction and a single force parameter for the 623 

entire trial, as a simplifying assumption. Nonetheless, it is reasonable to assume that throughout 624 

a long, 20-second period, there would be active adjustment of prediction and force. Actual 625 

comparison by AIC supported our intuition, and we used segment as the unit of analysis 626 

throughout (values of ‘AIC of segment/AIC of trial’ was 0.9328, 0.9214, 0.9227, for subjects K, 627 

H, and C (or whatever) respectively.  628 

Overall, the position of the subject was generated according to the following: 629 

���������� � 1� � �	 
������������ � �   630 

where Psubject(t) is position of the subject at time t, m is the inertia of subject as calculated from 631 

the joystick, and κ is the force parameter. The vector �f(Psubject(t)) was then summed with the 632 

inertia m that was defined as following: 633 

� � �����������  ����������  1�  634 
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Pprey(t) indicates the position of the prey at time t. The function with respect to subject position at 635 

time t was defined as: 636 

	 
������������ � ��	�
�� � 1�  ����������� 

Then the position of the prey at time t+1 was: 637 

��	�
�� � 1� � ��	�
 ��� � � ∑ ���������

���
�
���   638 

Where the n indicates the order of derivation with respect to the time. Thus, n=1 indicates 639 

velocity, and n = 2 indicates acceleration. 640 

 The Physics Variable-Based Prediction (PVBP) model incorporates one previous time 641 

step to predict the prey’s next position. This approach is similar to a Kalman filter 67. The other 642 

two models we tested do not utilize any past information. The model assuming prediction using 643 

the cost contour map (CCMP model) considers only the lowest cost location at the next time 644 

step. The model assuming veridical prediction (VP) automatically finds the exact position of the 645 

prey at the next time step. Once the prey’s position on the next time step is predicted, the model 646 

computes how far this predicted position is from the agent’s current position. A prediction value 647 

of 1 indicates that the future position will be as far as from the agent’s current position as the 648 

prey’s current position. The best-fitting parameter pairs were determined by performing a grid 649 

search across the ranges of both parameters. 650 

During this search, we tested the range of the prediction parameter between -400 to 400 651 

subjects H and C, and -200 to 200 for subject K. (Units for this range correspond to the distance 652 

the prey moved in the previous timestep). Subjects H and C had a larger range, because over 5% 653 

of their trajectories resulted either in -200 or 200 in prediction parameter value. Representative 654 

parameters for explaining each segment were selected based on the value of the sum of squared 655 

error between the actual segment and the segment generated by the model. 656 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/694604doi: bioRxiv preprint 

https://doi.org/10.1101/694604


29 

Significance Testing. To determine whether the positive prediction parameter was 657 

significantly greater than zero, we performed a bootstrap of heatmap slices from each segment. 658 

This resampling was performed 500 times, and selected heatmaps were added. Then, the 659 

parameter set resulting in the lowest cost was selected in each resampling. 660 

Model Evaluation. To evaluate model performance and compare among models, we 661 

computed the Akaike Information Criteria (AIC) using the likelihood of each model (Figure 2, 662 

and Figures S4 and S5). We first calculated the mean and variance of all the sum-of-squared 663 

errors across trajectories. Then we estimated the likelihood assuming a normal distribution 664 

centered on the mean of the sum-of-squared errors with a variance equivalent to the variance of 665 

the sum-of-squared errors across all trajectories. To validate whether subjects used a single 666 

prediction and force across the all the trials or adaptively changed their prediction method, we 667 

compared the AIC value between cases where the parameter pair varied across all trajectories, 668 

using only the single best parameter pair.  669 

Electrophysiological recording. One subject (H) was implanted with multiple floating 670 

microelectrode arrays (FMAs, Microprobes for Life Sciences, Gaithersburg, MD) in the dorsal 671 

anterior cingulate cortex (dACC). This is the region that we define as Area 24 18 and that 672 

corresponds to dACC in most other primate studies, including those from our lab 37,60,68. Each 673 

FMA had 32 electrodes (impedance 0.5 MOhm, 70% Pt, 30% Ir) of various lengths to reach 674 

multiple layers within dACC. Neurons from subject K were recorded with laminar V-probes 675 

(Plexon, Inc, Dallas, TX) that had 24 contact points with 150 μm inter-contact distance. 676 

Continuous, wideband neural signals were amplified, digitized at 40 kHz and stored using the 677 

Grapevine Data Acquisition System (Ripple, Inc., Salt Lake City, UT). Spike sorting was done 678 
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manually offline (Plexon Offline Sorter). Spike sorting was performed blind to any experimental 679 

conditions to avoid bias. 680 

Details of LN model. To test the selectivity of neurons for various experimental 681 

variables, we constructed Generalized Linear Models with navigational variables (GLM 26,28). 682 

The GLM models estimated the spike rate (ri) of one neuron during time bin t as an exponential 683 

function of the weighted sum of the relevant value of each variable at time t, which the weights 684 

are determined by set of coefficients (wi). The estimated firing rates from the GLM models can 685 

be expressed as: 686 

��

r = exp( X
i

T
w

i
)/dt

i

∑    687 

Where r denotes a vector of firing rates for one neuron over T time points across the session, and 688 

i indexes the variables of interest, e.g. position of avatar on screen. The vector of firing rates over 689 

T time points  provides the benefit for modeling the neural activity without specific time-locking 690 

to behavioral event. Xi is a matrix in which each column represents a set of “state variables” of 691 

the animal (e.g. one of twelve speeds, determined by post-hoc binning) obtained from binning 692 

the continuous variable so that all the columns for a particular row are 0, except for one column. 693 

Unlike conventional tuning curve analysis, GLM analysis does not assume the parametric shape 694 

of the tuning curve a priori. Instead, the weights, which define the shape of tuning for each 695 

neuron, were optimized by maximizing the Poisson log-likelihood of the observed spike train 696 

given the model-expected spike number, with additional regularization for the smoothness of 697 

parameters in a continuous variable, and a lasso regularization for parameters in a discrete 698 

variable. Position parameters were smoothed across rows and columns separately. The 699 

regularization hyperparameter was chosen by maximizing the cross-validation log-likelihood 700 

based on several randomly selected neurons. The unconstrianed optimization with gradient and 701 
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Hessian was performed (MATLAB fminunc function). Model performance of each neuron was 702 

quantified by the log-likelihood of held out data under the model. This cross-validation 703 

procedure was repeated 10 times (10-fold cross-validation), and overfitting was penalized. 704 

Through multiple levels of penalties, we can compare performance of models with varying 705 

complexity. 706 

Forward model selection. Model selection was based on the cross-validated log-707 

likelihood value for each model. We first fit n models with a single variable, where n is the total 708 

number of variables. The best single model was determined by the largest increase in spike-709 

normalized log-likelihood from the null model (i.e., the model with a single parameter 710 

representing the mean firing rate). Then, additional variables (n-1 in total) were added to the best 711 

single variable model. The best two-variable model was preferred over the single variable model 712 

only if it significantly improved the cross-validation log-likelihood (Wilcoxon Signed Rank Test, 713 

α = 0.05). Likewise, the procedure was continued for the three-variable model and beyond if 714 

adding more variables significantly improved model performance, and the best, simplest model 715 

was selected. The cell was categorized as not tuned to any of the variables considered if the log-716 

likelihood increase was not significantly higher than baseline, which was mean firing rate of 717 

fitted neurons across the session. 718 

Future position models. We examined effect of future position by fitting a GLM having 719 

‘future position’ and ‘current position’ together as the input variable. Then we compared to the 720 

GLM model with only current position. Difference between the two models was evidence that 721 

additional variance was explained by including future position. 722 

Comparison between current and future position filters. For this purpose, we 723 

constructed two GLMs: one with current position and current Newtonian variables (velocity and 724 
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acceleration), and another with future position and current Newtonian variables. Then we 725 

selected the neurons that showed significant tuning for both models. To compare the similarity 726 

between two positional filters, we used the SPAtial EFficiency metric (SPAEF) that prior 727 

literature suggests to be more robust than the 2D spatial correlation 30. It quantifies the similarity 728 

between two maps: 729 

��
SPAEF =1− (A−1)2 +(B −1)2 −(C −1)2              730 

A is the Pearson correlation between two maps, B is the ratio between the coefficients of 731 

variation for each map, and C is the activity similarity measured by histogram profiles. Values 732 

near -1 indicate anticorrelated maps (one tends to be high when the other is low); 0 indicates 733 

uncorrelated maps; 1 indicates perfect matching between the two. 734 

Velocity Dependent Physics Variable-Based Model (PVMP) Prediction Bias. We 735 

examined whether PVBP is preferred when the velocity of prey is high (Figure S6). We first 736 

obtained the average velocity of the prey at each segment, and then categorized each segment as 737 

belonging to either the physics or non-physics variable-based prediction based on which fit result 738 

was best. With the prey velocity and segment category, we performed logistic regression with 739 

velocity as a predictor and category as the dependent variable (glmfit in MATLAB). 740 

Data availability. The datasets generated during the current study are available on the 741 

Hayden lab website, http://www.haydenlab.com/, or from the authors on reasonable request. The 742 

code generated to perform the analyses for the current study is available from the corresponding 743 

author.  744 
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Figure Captions 745 
 746 
Figure 1. Experimental paradigm and behavioral results. (A) Cartoon of virtual pursuit task. 747 
Subject uses a joystick to control an avatar (circle) and pursue prey (square) on a computer 748 
screen. (B) Raincloud plot showing each subject’s capture times in an example session (limit was 749 
20 seconds). The box plot indicates 2nd and 3rd quartile of the data; midline indicates the 750 
median of the data (K: 3.36 sec, H: 3.73 sec, C: 3.93 sec). The dots under the probability density 751 
functions indicate individual data points. (C) Avatar and prey trajectories on example trials. 752 
Grey: path of avatar; red/blue: path of prey. Color gradient indicates the time progression 753 
through the trial. 754 
 755 
Figure 2. Model description and fitting results. (A) Cartoon of model for generating future 756 
position based on prediction. Solid black arrow indicates movement from previous time frame to 757 
the current one. Subjects are assumed to aim at a point that leads (red solid arrow) or lags (cyan 758 
solid arrow) the prey. The resulting movement (red/blue dashed arrow) vectors are constrained to 759 
a maximum speed and inertia (black dashed arrow). (B) Fitting results: Akaike Information 760 
Criterion (AIC, left) across all the trajectories and percentage of trials best explained by each 761 
model (right). For calculating the AIC, we summed the log-likelihood across the whole data set 762 
from each subject individually and used the quantity (2 x number of the segments) as the number 763 
of free parameters. This quantity was: subject K, 28,164; subject H, 35,308; subject C, 20,720 764 
parameters. Predictive models provide better fits than zero prediction ones. (C) Example 765 
trajectories and corresponding fit trajectories generated by predictive and non-predictive models. 766 
(D) Heatmap plots of model performance explaining subject’s pursuit segment across parameter 767 
space from a single subject (Subject K) for physics based model (left), cost model (center), and 768 
veridical (right). The small gray circle at the peak indicates the best parameter combination 769 
explaining that subject’s behavior, that is, the one that generates the smallest distance between 770 
the actual segment and model-predicted segment. 771 
 772 
Figure 3. Basic neural results. (A) Cartoon showing location of recorded brain areas in dACC; 773 
sagittal and coronal views. (B) Filters (tuning surfaces) of two example neurons showing 774 
selectivity for current position of the prey. (C) Example neuron showing tuning for speed (black 775 
line) and the corresponding model fit (magenta line). (D) Example neuron showing tuning for 776 
prey direction (black line) and the corresponding model fit (blue line). (E) Preponderance of 777 
tuning for the Newtonian physics variables tested. Tuning for future position is counted only if 778 
the neuron is selectively tuned for future position above and beyond current position. 779 
 780 
Figure 4. Properties of future position selectivity. (A) Proportion of variance explained by 781 
including future position in each neuron (only neurons that are selective for current position are 782 
shown). Neurons are sorted according to amount of additional variance explained by future 783 
position. (B) Log likelihood increase (LLi, a measure of explanatory power) for current and 784 
future position are correlated on a cell-by-cell basis. Red solid line indicates the linear regression 785 
line. (C) Example filters from neurons that are significantly tuned for both current and future 786 
prey position. Spatial efficiency (SPAEF), a measure of the similarity of two-dimensional 787 
filters29, is show on the y-axis of the central plot. A more positive SPAEF indicates that the 788 
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matrices are more similar to each other; low values indicate orthogonality. Only significant 789 
neurons are shown; cells are sorted by spatial efficiency. (D) Sliding window analysis for future 790 
position encoding strength. Plot shows proportion of neurons significantly selective for future 791 
position at several possible future delays. This curve peaks at around 700-800 ms, which 792 
corresponds to the average prediction distance for all three subjects. (E) The distance between 793 
current prey position and future prey position at time t rises roughly linearly with time. This 794 
finding indicates that the peaks found in panel D are not likely to be an artifact of some 795 
unforeseen periodicity in the relative paths of the subject and prey. 796 
 797 
Figure 5. Analyses that control for potential gaze confounds. (A) The Euclidean distance 798 
between the eye position at t=0 and prey position (orange solid line) / self position (blue solid 799 
line). Error bar = SEM, and is the width of the lines shown. (B) Speed distribution of prey 800 
movement and smooth eye pursuit. (C) Proportion of neurons tuned for three key variables using 801 
the standard GLM described above and another version that assigns variance to eye position first. 802 
All three variables are still significant in the population when including gaze position. 803 
 804 
Figure 6. Modulatory effect of reward size on tuning for prey variables. (A) Responses of an 805 
example neuron selective for the angle between self and prey; changes in the reward size of prey 806 
(divided into three bins) appear to change the gain and not the offset of the neurons; that is, 807 
reward interacts multiplicatively with angle. (B) This pattern is also observed in the population. 808 
The proportion of neurons significantly tuned for prey variables (prey position, prey direction, 809 
and prey speed) when splitting data randomly (grey bar) or according to value of pursued prey 810 
(purple bar). The difference of value split was significant (p = 0.0221 for prey speed, and p < 811 
0.001 for other prey variables).  812 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 24, 2019. ; https://doi.org/10.1101/694604doi: bioRxiv preprint 

https://doi.org/10.1101/694604


35 

Supplementary Figure Captions 813 

 814 
Figure S1. Subjects’ behavior varies according to prey speed/reward. (A) Mean prey 815 
velocity in each segment plotted separately for each subject. Pursuit result differs according to 816 
color (equivalent to maximum speed) of prey. The maximum speed of prey increases from 817 
orange (slowest with smallest reward) to cyan (fastest with largest reward). As maximum speed 818 
increases, the mean capturing time (B) and percent of failed trials increases (C). However, 819 
reward rate also increases, since the amount of reward is larger for faster prey (D).  Errorbars are 820 
the standard error of the mean, obtained by bootstrapping (1000 bootstraps).  821 
 822 
Figure S2. Different prediction strategies and influence of different amounts of inserted 823 
force. (A) The strategic difference between physics variable based prediction (PVBP, red lines) 824 
and veridical prediction (VP, blue lines). This generates different predictive points. (B) Effect of 825 
inserted force, shown between small (pink) and large (purple) forces. Vector-summation with 826 
inertia yields different outcomes for different force conditions. 827 
 828 
Figure S3. Dynamic changes of parameter sets at each segment explain each subject’s 829 
segments better than identical single parameter set across all the trajectories. AIC 830 
comparison between the case of the single parameter set across all the sessions (case 1) or 831 
adaptively changing parameter set at each segment (case 2). Delta AIC indicates the difference 832 
between the cases (case 1 - case 2), and a positive value indicates adaptively changing the 833 
strategy explains subject’s segment better, even if there is a penalty for having more parameters. 834 
Each column shows an individual subject’s result. 835 
 836 
Figure S4. Including an inertia term improves model performance. (A) Model segment 837 
comparison between models with and without inertia. (B) Histogram results suggest that 838 
incorporating an inertia component to the model leads to a better fit of the data (mean of sum-of-839 
squared error difference below zero at x-axis). 95% of data fall to the right of the black, dashed 840 
line. Bootstrapping of difference in performance between the model with and without inertia was 841 
performed in randomly sampled trajectories (number of resamples: 1000; randomly selected 842 
trajectories: 2000). 843 

 844 
Figure S5. Additional terms after acceleration don’t improve model performance. (A) Each 845 
heatmap indicates the addition of more physical derivatives of position. The black circle 846 
indicates the best parameter set for the model. (B) Summary bar graph. Physics include within-847 
physics prediction model comparison (from velocity to pop, the 6th derivative). 848 

849 
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  850 
Figure S6. Prey velocity dependent strategy selection. All the subjects consistently show 851 
biases using PVBP when the prey velocity is faster. Logistic regression was performed between 852 
prey velocity and a categorical dependent variable (0: non-PVBP, 1: PVBP). The p-values of all 853 
logistic coefficients were significant (p < 0.001). 854 
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