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Abstract 21 

High-throughput reporter assays, such as self-transcribing active regulatory region sequencing 22 

(STARR-seq), allow for unbiased and quantitative assessment of enhancers at a genome-wide 23 

level. Recent advances in STARR-seq technology have employed progressively more complex 24 

genomic libraries and increased sequencing depths, to assay larger sized regions, up to the entire 25 

human genome. These advances necessitate a reliable processing pipeline and peak-calling 26 

algorithm. Most STARR-seq studies have relied on chromatin immunoprecipitation sequencing 27 

(ChIP-seq) processing pipeline to identify peaks. However, there are key differences in STARR-28 

seq versus ChIP-seq data: STARR-seq uses transcribed RNA to measure enhancer activity, 29 

making determining the basal transcription rate important. Furthermore, STARR-seq coverage is 30 

non-uniform, overdispersed, and often confounded by sequencing biases such as GC content and 31 

mappability. Moreover, here, we observed a clear correlation between RNA thermodynamic 32 

stability and STARR-seq readout, suggesting that STARR-seq might be sensitive to RNA 33 

secondary structure and stability. Considering these findings, we developed STARRPeaker: a 34 

negative binomial regression framework for uniformly processing STARR-seq data. We applied 35 

STARRPeaker to two whole human genome STARR-seq experiments; HepG2 and K562. Our 36 

method identifies highly reproducible and epigenetically active enhancers across replicates. 37 

Moreover, STARRPeaker outperforms other peak callers in terms of identifying known 38 

enhancers. Thus, our framework optimized for processing STARR-seq data accurately 39 

characterizes cell-type-specific enhancers, while addressing potential confounders. 40 

 41 

Keywords: STARR-seq, peak caller, enhancer, non-coding 42 
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Introduction 44 

The transcription of eukaryotic genes is precisely coordinated by an interplay between cis-45 

regulatory elements. For example, enhancers and promoters serve as platforms for transcription 46 

factors (TF) to bind and interact with each other, and their interactions are often required to 47 

initiate transcription1,2. Enhancers, which are often located distantly from the transcribed gene 48 

body itself, play critical roles in the upregulation of gene transcription. Enhancers are cell-type 49 

specific and can be epigenetically activated or silenced to modulate transcriptional dynamics 50 

over the course of development. Enhancers can be found upstream or downstream of genes, or 51 

even within introns3–5. They function independent from their orientation, do not necessarily 52 

regulate the closest genes, and sometimes regulate multiple genes at once6,7. In addition, several 53 

recent studies have demonstrated that some promoters – termed E-promoters – may act as 54 

enhancers of distal genes8,9. 55 

 56 

Unlike protein-coding genes, enhancers do not yet have a well-characterized consensus sequence. 57 

Therefore, identifying enhancers in an unbiased fashion is challenging. The non-coding territory 58 

occupies over 98% of the genome landscape, making the search space very broad. Moreover, the 59 

activity of enhancers depends on the physiological condition and epigenetic landscape of the 60 

cellular environment, complicating the fair assessment of enhancer function. 61 

 62 

Previously, putative regulatory elements were computationally predicted, indirectly, by profiling 63 

DNA accessibility (using DNase-seq, FAIRE-seq, and ATAC-seq) as well as histone 64 

modifications (ChIP-seq) that are linked to regulatory functions10–12. More recently, researchers 65 

have developed high-throughput episomal (exogenous) reporter assays to directly measure 66 
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enhancer activity across the whole genome, specifically massively parallel reporter assays 67 

(MPRA)13,14 and self-transcribing active regulatory region sequencing (STARR-seq)15,16. These 68 

assays allow for quantitative assessment of enhancer activity in a high-throughput fashion. 69 

 70 

In STARR-seq, candidate DNA fragments are cloned downstream of a reporter gene into the 3′ 71 

untranslated region (UTR). After transfecting the plasmid pool into host cells, one can measure 72 

the regulatory potential by high-throughput sequencing of the 3′ UTR of the expressed reporter 73 

gene mRNA. These exogenous reporters enable accurate and unbiased assessment of enhancer 74 

activity at the whole genome level, independent of chromatin context. Unlike MPRA – which 75 

utilizes barcodes – STARR-seq produces self-transcribed RNA fragments that can be directly 76 

mapped onto the genome. The activities of enhancers are measured by comparing the amount of 77 

RNA produced from the input DNA library. STARR-seq has several technical advantages over 78 

MPRA. Library construction is relatively simple because barcodes are not needed. In addition, 79 

candidate enhancers are cloned instead of synthesized, allowing the assay to test extended 80 

sequence contexts (>500 bp) for enhancer activity, which studies have shown to be critical for 81 

functional activity17. Importantly, STARR-seq can be scaled to the whole genome level for 82 

unbiased scanning for functional elements. However, scaling STARR-seq to the human genome 83 

is still very challenging, primarily due to its massive size. A more complex genomic DNA 84 

library, a higher sequencing depth, and increased transfection efficiency are required to cover the 85 

whole human genome16, which could ultimately introduce biases. 86 

 87 

Processing of STARR-seq is somewhat similar to chromatin immunoprecipitation sequencing 88 

(ChIP-seq), where protein-crosslinked DNA is immunoprecipitated and sequenced. A typical 89 
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ChIP-seq processing pipeline identifies genomic regions over-represented by sequencing tags in 90 

a ChIP sample compared to a control sample. STARR-seq data is compatible with most ChIP-91 

seq peak callers. Hence, previous studies on STARR-seq have largely relied on peak calling 92 

software developed for ChIP-seq such as MACS216,18,19. However, one must be cautious using 93 

ChIP-seq peak callers, at least without re-tuning default parameters optimized for processing 94 

transcription factor ChIP-seq20. 95 

 96 

In this paper, we describe key differences in the processing of STARR-seq versus ChIP-seq data. 97 

Due to increased complexity of the genomic screening library and sequencing depth 98 

requirements, STARR-seq coverage is highly non-uniform. This leads to a lower signal-to-noise 99 

ratio than a typical ChIP-seq experiment and makes estimating the background model more 100 

challenging, which could ultimately lead to false positives peaks. In addition, STARR-seq 101 

measures more of a continuous activity similar to quantification in RNA-seq than a discrete 102 

binding event. Therefore, STARR-seq peaks should be further evaluated using a notion of 103 

activity score. These differences necessitate a unique approach to processing STARR-seq data. 104 

 105 

We propose an algorithm optimized for processing and identifying functionally active enhancers 106 

from STARR-seq data, which we call STARRPeaker. This approach statistically models the 107 

basal level of transcription, accounting for potential confounding factors, and accurately 108 

identifies reproducible enhancers. We applied our method to two whole human STARR-seq 109 

datasets and evaluated its performance against previous methods. We also compared an R 110 

package, BasicSTARRseq, developed to process peaks from the first STARR-seq data15, which 111 

models enrichment using a binomial distribution. We benchmarked our peak calls against known 112 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 20, 2019. ; https://doi.org/10.1101/694869doi: bioRxiv preprint 

https://doi.org/10.1101/694869
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6

human enhancers. Thus, our findings support that STARRPeaker will be a useful tool for 113 

uniformly processing STARR-seq data. 114 

 115 

Materials and Methods 116 

 117 

Precise measurement of STARR-seq coverage 118 

We binned the genome using a sliding window of length, l, and step size, s. Based on the average 119 

size of the STARR-seq library, we defined a 500 bp window length with a 100 bp step size to be 120 

the default parameter. Based on generated genomic bins, we calculated the coverage of both 121 

STARR-seq input and output mapped to each bin. For calculating the sequence coverage, other 122 

peak callers and many visualization tools commonly use the start position of the read15,21,22. 123 

However, given that the average sizes of the fragments inserted in STARR-seq libraries were 124 

approximately 500 bp, we expected that the read coverage using the start position of read may 125 

shift the estimate of the summit of signal and dilute the enrichment. Some peak callers have used 126 

read densities of forward and reverse strand separately to overcome this issue23,24. To precisely 127 

measure the coverage of STARR-seq input and output, we first inferred the size of the fragment 128 

insert from paired-end reads and used the center of the fragment insert, instead of start position 129 

of the read, to calculate coverage. For inferring the size of fragment insert, we first strictly 130 

filtered out reads that were not properly paired and chimeric. Chimeric alignments are reads that 131 

cannot be linearly aligned to a reference genome, implying a potential discrepancy between the 132 

sequenced genome and the reference genome and indicative of structural variation25. We also 133 

filtered out read pairs that had a fragment insert size less than ݈௠௔௫ and greater than ݈௠௜௡. By 134 

default, we filtered out fragment insert sizes less than 100 bp and greater than 1,000 bp. After 135 
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filtering out spurious read-pairs, we estimated the center of the fragment insert and counted the 136 

fragment depth for each genomic bin. We compared the coverage calculated using the start of 137 

read against the center of fragment insert and observed both a shift in the location of enrichment 138 

summit and a difference in enrichment level (Figure 1). 139 

 140 

Controlling for potential systemic bias in sequencing and STARR-seq library preparation 141 

STARR-seq measures the ratio of transcribed RNA to DNA for a given test region and 142 

determines whether the test region can facilitate transcription at a higher rate than the basal level.  143 

This is based on the assumption that the basal transcriptional level stays relatively constant 144 

across the genome and the transcriptional rate is a reflection of the regulatory activity of a test 145 

region. However, this may not always be true, and one needs to consider potential systemic 146 

biases when analyzing the result. Unlike ChIP-seq where both the experiment and input controls 147 

are from the same DNA origin, STARR-seq experiments measure the regulatory potential from 148 

the abundance of transcribed RNA, which adds a layer of complexity. For example, RNA 149 

structure and co-transcriptional folding might potentially influence the readout of STARR-seq 150 

experiments26. Single-stranded RNA starts to fold upon transcription and the resulting RNA 151 

structure might influence the measurement of regulatory activity. Previously, researchers 152 

suggested a potential linkage between RNA secondary structure and transcriptional regulation27. 153 

In addition, the resulting transcribed RNA undergoes a series of post-transcriptional regulation, 154 

and RNA stability might play a critical role. Moreover, previous reports have shown that the 155 

degradation rates vary significantly across the genome and RNA degradation rates are the main 156 

determinant of cellular RNA levels28. Furthermore, RNA stability correlates with 157 

functionality29,30. 158 
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 159 

There are also intrinsic sequencing biases in library preparation. A genome-wide reporter library 160 

is made from randomly sheared genomic DNA, but DNA fragmentation is often non-random31. 161 

Studies have also suggested that epigenetic mechanisms and CpG methylation may influence 162 

fragmentation32. Furthermore, the isolated polyadenylated RNAs are reverse transcribed and 163 

PCR is amplified before sequenced, and this process can further confound the sequenced 164 

candidate fragments. 165 

 166 

To unbiasedly test for the regulatory activity, a model needs to control for these potential 167 

systemic biases inherent to generating STARR-seq data. As we expected, we observed that 168 

STARR-seq coverage for both input and output are confounded by potential sequencing bias 169 

(Figure 2). Notably, STARR-seq coverage significantly correlated with GC content (PCC 0.61; 170 

P-val 1E-299), mappability (PCC 0.45; P-val 2.9E-148), and RNA thermodynamic stability 171 

(PCC -0.55; P-val 0). Hence, to unbiasedly identify the activity peaks from STARR-seq, we 172 

developed a model that accounts for variability of tested candidate fragments. 173 

 174 

Accurate modelling of STARR-seq coverage using negative binomial regression 175 

To model the fragment coverage data from STARR-seq using discrete probability distribution, 176 

we assumed that each genomic bin is independent and identically distributed, as specified in 177 

Bernoulli trials33. That is, each test fragment can only map to a single fixed-length bin. Therefore, 178 

we only considered a non-overlapping subset of bins for modeling and fitting the distribution. 179 

We also excluded bins not covered by any genomic input or normalized input coverage was less 180 

than a minimum quantile ݐ௠௜௡, since these regions do not have sufficient power to detect 181 
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enrichment. We simulated and fitted various discrete probability distributions to STARR-seq 182 

coverage. We observed that the STARR-seq coverage data was overdispersed and fitted the best 183 

with negative binomial distribution (Figure 3A). We also noticed a slight negative enrichment, 184 

indicating that some candidate fragments can silence the basal transcriptional activity. A Q-Q 185 

plot of simulated coverage further demonstrated that the negative binomial model provides the 186 

best fit for the data (Figure 3B). 187 

 188 

Peak caller 189 

To accurately model the ratio of STARR-seq sequence coverage (RNA) to input sequence 190 

coverage (DNA) while controlling for potential confounding factors, we applied a negative 191 

binomial regression. The overview of our model is outlined in Figure 4. Our model starts by 192 

fitting an analytical distribution to the observed fragment coverage across each genomic bin. In 193 

doing so, we use covariates to model expected counts in the form of multiple regression. Once 194 

regression coefficients are estimated from a set of data, we can evaluate the likelihood of 195 

observing the fragment count for each bin and assign p-values. Ultimately, bins with significant 196 

enrichments are selected based on an adjusted p-values threshold, and they are fine-tuned to the 197 

summit of the peak fragment enrichment. 198 

 199 

Let Y be a vector of STARR-seq output (RNA) coverage, then ݕ௜ for 1 ≤ ݅	 ≤ ݊ denotes the 200 

number of RNA fragments from STARR-seq experiment mapped to the ݅-th bin from the total of 201 ݊ genomic bins. Let ݐ௜ be the number of input library (DNA) mapped to the ݅-th bin. We define 202 ܺ be the matrix of covariates where ݔపሬሬሬԦ is the vector of covariates corresponding to the ݅-th bin, 203 

and ݔ௜௝ is the ݆-th covariate for the ݅-th bin. 204 
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 205 

Negative binomial distribution 206 

A negative binomial distribution, which arises from a Gamma-Poisson mixture, can be 207 

parametrized as follows34–36 (see Supplementary Methods for derivation). 208 

 209 

௒݂(ݕ௜|ߤ௜, (ߠ = 	 Γ(ݕ௜ + ௜ݕ)Γ(ߠ + 1) ∙ Γ(ߠ) ∙ ൬ ߠߠ + ௜൰ఏߤ ∙ ൬ ߠ௜ߤ +  ௜൰௬೔ߤ
 210 

A negative binomial is a generalization of a Poisson regression that allows the variance to be 211 

different from the mean, shaped by the dispersion parameter ߠ. The variance for the NB2 model 212 

is given as 213 

 214 

ଶߪ = ߤ + ߠଶߤ  

 215 

We assume that the majority of genomic bins will have a basal level of transcription, and the 216 

count of RNA fragments at each ݅-th bin follows the traditional negative binomial (NB2) 217 

distribution. The expected fragment counts, ܧ(ݕ௜), represents the mean incidence, ߤ௜. 218 

,௜ߤ)ܤܰ	~௜ݕ 219  (௜ݕ)ܧ (ߠ =  ௜ߤ
 220 

Negative binomial regression model 221 
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The regression term for the expected RNA fragment count can be expressed in terms of a linear 222 

combination of explanatory variables, a set of ݉ covariates (ݔԦ). We use the input library variable 223 ݐ௜ as one covariate. For simplicity, we denote ݐ௜ as ݔ଴௜ hereafter. 224 

 225 ln ௜ߤ = ଴௜ݔ଴ߚ + ଵ௜ݔଵߚ + ⋯+ ௜ߤ ௠௜ݔ௠ߚ = exp(ߚ଴ݔ଴௜ + ଵ௜ݔଵߚ + ⋯+ ௜ߤ (௠௜ݔ௠ߚ = exp൫ݔపሬሬሬԦ⊺ߚ൯ 
 226 

Alternatively, instead of using the input library variable ݐ௜ as one covariate, we can directly use it 227 

as an offset variable. One advantage of using the input variable as an “exposure” to the RNA 228 

output coverage is that it allows us to directly model the basal transcription rate (the ratio of 229 

RNA to DNA) as a rate response variable. More details on this alternative parametrization are 230 

described in the Supplementary Methods. 231 

 232 

Maximum-likelihood estimation 233 

We fit the model and estimate regression coefficients using the maximum likelihood method, 234 

where log-likelihood function is shown as follows. 235 

 236 

ℒே஻(ݕ|ߤ, (ߠ = 	෍ݕ௜ ln ൬ ߠ௜ߤ + ௜൰ߤ + ߠ ln ൬ ߠߠ + ௜൰ߤ + ln ൬ Γ(ݕ௜ + ௜ݕ)Γ(ߠ + 1) ∙ Γ(ߠ)൰௡
௜ୀଵ  

 237 

Substituting ߤ௜ with the regression term, the log-likelihood function can be parametrized in terms 238 

of regression coefficients, 239 .ߚ 
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 240 

ℒே஻(ݕ|ߚ, (ߠ = 	෍ݕ௜ ln ൭ e௫ഢሬሬሬԦ⊺ఉߠ + e௫ഢሬሬሬԦ⊺ఉ൱ + ߠ ln ൬ ߠߠ + e௫ഢሬሬሬԦ⊺ఉ൰ + ln ൬ Γ(ݕ௜ + ௜ݕ)Γ(ߠ + 1) ∙ Γ(ߠ)൰௡
௜ୀଵ  

 241 

We can determine the maximum likelihood estimates of the model parameters by setting the first 242 

derivative of the log-likelihood with respect to β, the gradient, to zero, and there is no analytical 243 

solution for ߚመ . Numerically, we iteratively solve for the regression coefficients β and the 244 

dispersion parameter ߠ, alternatively, until both parameters converge. 245 

 246 

Estimation of P-value 247 

Finally, we calculate a P-value based on the fitted value of the ݅-th bin from the cumulative 248 

distribution function of negative binomial distribution, and we assign false discovery rate using 249 

Benjamini & Hochberg method37. 250 

݁ݑ݈ܽݒ–ܲ 251  = 	Pr(ݔ ≥ (௜ݕ = 1 − ݔ)ܨܦܥ = ௜ݕ − 1)
= 1 − ෍ ൬ݕො௜ + ߠ − ො௜ݕ1 ൰ ߠߠ + ො௜௬ො೔ݕ (1 − ߠߠ + ො௜)ఏ௬ො೔ିଵݕ

௜ୀ଴  

 252 

Source code and data availability 253 

We implemented the method described in this article as a Python software package called 254 

STARRPeaker. The software package can be downloaded, installed, and readily used to call 255 

peaks from any STARR-seq dataset. The STARRPeaker package, as well as source code and 256 
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documentation, is freely available at: http://github.com/gersteinlab/starrpeaker. Data used in the 257 

analysis will be made available from the Gene Expression Omnibus for public use.  258 

DNase-seq and ChIP-seq data used for the analysis is publicly available from the ENCODE 259 

portal (https://www.encodeproject.org/). The specific accession codes used for the analysis are 260 

listed in Supplementary Table S3. GC content was downloaded from the UCSC Genome 261 

Browser (http://hgdownload.cse.ucsc.edu/gbdb/hg38/bbi/gc5BaseBw/), and the mappability 262 

track was created using gem-library software38 with a k-mer size of 100 bp and the reference 263 

human genome build hg38. 264 

 265 

Results 266 

We applied our peak calling algorithm to two whole human genome STARR-seq experiments, 267 

K562 and HepG2, utilizing origin of replication-based (ORI) plasmids. Using this dataset, we 268 

evaluated the quality and characteristics of identified enhancers as well as the performance of the 269 

peak caller by comparing to external enhancer datasets. 270 

 271 

Accurate identification of highly reproducible enhancers 272 

To evaluate the quality of enhancers identified from STARRPeaker, we uniformly called peaks 273 

from the whole human genome STARR-seq dataset using methods previously used to identify 274 

enhancers from STARR-seq data, namely BasicSTARRseq and MACS2, using recommended 275 

settings. We first compared the level of epigenetic profile enrichment around the peaks. We 276 

observed higher enrichment of DNase hypersensitive sites, as well as more distinct double-peak 277 

patterns of H3K27ac and H3K4me1, using STARR-seq versus BasicSTARRseq or MACS2 278 

(Figure 5). We also aggregated the transcription factor binding sites assayed by ChIP-seq around 279 
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peaks, and we observed significant enrichment of transcription factor binding events compared 280 

to peaks identified by other methods. Furthermore, we compared STARRPeaker peaks and 281 

others to previously characterized enhancers by CAGE39, MPRA17,40, and STARR-seq19 in 282 

HepG2 or K562 cell line (Figure 6). We observed a higher fraction of STARRPeaker peaks 283 

overlap with external datasets. 284 

 285 

Discussion 286 

We developed a statistically rigorous analysis pipeline for STARR-seq data in a software 287 

package named STARRPeaker. STARRPeaker has several key improvements over previous 288 

peak identification methods including (1) accurate quantification of STARR-seq coverage based 289 

on inferred fragment size from paired-end reads; (2) use of a negative binomial distribution to 290 

account for overdispersion in bin counts; and (3) modeling of STARR-seq coverage as a function 291 

of input and potential confounding variables in STARR-seq signal. We applied our method to 292 

two whole human genome ORI-STARR-seq datasets and demonstrated that it can unbiasedly 293 

identify a set of STARR-seq-positive regions better than previous methods. The STARR-seq 294 

peaks were enriched with epigenetic marks relevant to enhancers and overlapped better with 295 

previously known enhancers than previous methods. 296 

 297 

To completely understand how noncoding regulatory elements can modulate transcriptional 298 

programs in human, STARR-seq active regions must be further characterized and validated 299 

within the cellular context. Currently, CRISPR-based screens are limited to a small number of 300 

selected targets. Our method can aid in prioritize candidate regions in unbiased fashion to 301 

maximize the functional characterization efforts. 302 
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Supplementary Methods 409 

Cell culture  410 

We cultured K562 cells (ATCC) in IMDM (Gibco #12440) supplemented with 10% fetal bovine 411 

serum (FBS) and 1% pen/strep and maintained in a humidified chamber at 37°C with 5% CO2. 412 

We cultured HepG2 cells (ATCC) in EMEM (ATCC #30-2003) supplemented with 10% FBS 413 

and 1% pen/strep, maintained in a humidified chamber at 37°C with 5% CO2. 414 

 415 

Generating an ORI-STARR-seq input plasmid library 416 

We sonicated human male genomic DNA (Promega #G1471) using a Covaris S220 sonicator 417 

(duty factor – 5%; cycle per burst – 200; 40 sec) and ran it on a 0.8% agarose gel to size-select 418 

500 bp fragments. After gel purification using a MinElute Gel Extraction kit (Qiagen), we end-419 

repaired, ligated custom adaptors, and PCR-amplified DNA fragments using Q5 Hot Start High-420 

Fidelity DNA polymerase (NEB) (98°C for 30 sec; 10 cycles of 98°C for 10 sec, 65°C for 30 sec, 421 

and 72°C for 30 sec; 72°C for 2 min) to add homology arms for Gibson assembly cloning.  422 

We used AgeI-HF (NEB) and SalI-HF (NEB) to linearize the hSTARR-seq_ORI plasmid (gift 423 

from Alexander Stark; Addgene plasmid #99296) and cloned the PCR products into the vector 424 

using Gibson Assembly Master Mix (NEB); we set up 60 replicate reactions to maintain 425 

complexity. We purified the assembly reactions using SPRI beads (Beckman Coulter), dialyzed 426 

them using Slide-A-Lyzer MINI dialysis devices (ThermoScientific), and concentrated them 427 

using an Amicon Ultra-0.5 device (Amicon). We transformed the reaction into MegaX 428 

DH10BTM T1 electrocompetent cells (Thermo Fisher Scientific) (with 25 replicate 429 

transformations to maintain complexity) and let them grow in 12.5L LB-Amp medium until they 430 

reached an optical density of ~1.0. We extracted the plasmids using a Plasmid Gigaprep Kit 431 
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(Qiagen) and dialyzed the plasmid prep using Slide-A-Lyzer MINI dialysis devices before 432 

electroporation.  433 

 434 

Electroporation-mediated transfection of ORI-STARR-seq input plasmid library into K562 and 435 

HepG2 cell lines 436 

We electroporated the ORI-STARR-seq library using an AgilePulse Max (Harvard Apparatus) 437 

and generated two biological replicate for each cell line. For K562 cells, we electroporated 5.6 438 

mg of input plasmid library into 700 million cells per biological replicate by delivering three 500 439 

V pulses (1 ms duration with a 20 ms interval). For HepG2 cells, we electroporated 8 mg of input 440 

plasmid library into one billion cells in one replicate, and 5.6 mg into 700 million cells in another 441 

replicate by delivering three 300 V pulses (5 ms duration with a 20 ms interval). 442 

 443 

Generation of an Illumina sequencing library 444 

Output RNA library: We harvested cells 24 hr after electroporation, and extracted total RNA 445 

using an RNeasy Maxi kit (Qiagen). We further isolated polyA-plus mRNA using Dynabeads® 446 

Oligo (dT) kit (ThermoFisher Scientific), treated it with TURBO DNase (Invitrogen), and 447 

purified the reaction using an RNeasy MinElute Kit (Qiagen). We synthesized cDNA using 448 

SuperScript III (ThermoFisher Scientific) with a custom primer that specifically recognizes 449 

mRNAs that had been transcribed from the ORI-STARR-seq library. After reverse transcription, 450 

we treated the reactions with a cocktail of RNase A and RNase T1 (ThermoFisher Scientific). 451 

We split cDNA samples into 160 replicate sub-reactions, and PCR-amplified each sub-reaction 452 

with a primer with a unique index (helping to identify PCR duplicates) using Q5 Hot Start High-453 

Fidelity DNA polymerase (NEB) with the following program: 98°C for 30 s; cycles of 98°C for 454 
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10 s, 65°C for 30 s, 72°C for 30 s (until they reached mid-log amplification phase; we cycled 18 455 

cycles for K562 Rep.1; 16 cycles for K562 Rep. 2; 18 cycles for HepG2 Rep. 1; and 15 cycles 456 

for HepG2 Rep2); 72°C for 2 min). After PCR, we re-combined all sub-reactions into one and 457 

purified it with Agencourt Beads. We generated 100 bp paired-end reads for each biological 458 

replicate on an Illumina Hiseq4000 at the University of Chicago Genome Facility. 459 

Input DNA library: We PCR-amplified a total of 200 ng of input plasmid library (in 16 replicate 460 

reactions) using Q5 Hot Start High-Fidelity DNA polymerase (NEB) with the following 461 

program: 98°C for 30 s; 4 cycles of 98°C for 10 s, 65°C for 30 s, and 72°C for 20 s; 8 cycles of 462 

98°C for 10 s and 72°C for 50 s; 72°C for 2 min). After PCR, we combined all products into one 463 

and purified it with Agencourt Beads. We generated 100 bp paired-end reads on an Illumina 464 

Hiseq4000 at the University of Chicago Genome Facility. 465 

 466 

Sequencing and preprocessing 467 

For each of 160 replicates, paired-end sequencing reads were aligned to the human reference 468 

genome hg38 using BWA-mem (v0.7.17). Alignments were filtered against unmapped, 469 

secondary alignments, mapping quality score less than 30, and PCR duplicates using SAMtools 470 

(v1.5) and Picard (v2.9.0). All of replicates were pooled and sorted for downstream analysis. 471 

 472 

Negative binomial distribution 473 

A negative binomial distribution, which arises from Gamma-Poisson mixture, can be 474 

parametrized for y>=0 as follows. 475 

 476 

ܻ)ݎܲ = ,௜ߤ|௜ݕ (ߠ = ௒݂(ݕ௜; ,௜ߤ (ߠ = 	 Γ(ݕ௜ + ௜ݕ)Γ(ߠ + 1) ∙ Γ(ߠ) ∙ ൬ ߠߠ + ௜൰ఏߤ ∙ ൬ ߠ௜ߤ +  ௜൰௬೔ߤ
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 477 

Rearranging gives: 478 

 479 

௒݂(ݕ௜; ,௜ߤ (ߠ = 	 Γ(ݕ௜ + ௜ݕ)Γ(ߠ + 1) ∙ Γ(ߠ) ∙ ቌ 11 + ቍߠ௜ߤ
ఏ ∙ ቌ 1ߠ௜ߤ + ߠ௜ߤ ቍ

௬೔
 

௒݂(ݕ௜; ,ߠ (௜ߤ = 	 Γ(ݕ௜ + ௜ݕ)Γ(ߠ + 1) ∙ Γ(ߠ) ∙ ቀߤ௜ߠ ቁ௬೔ ቌ 11 + ቍߠ௜ߤ
ఏା௬೔

 

௒݂(ݕ௜; ,ߠ (௜ߤ = 	 Γ(ݕ௜ + ௜ݕ)Γ(ߠ + 1) ∙ Γ(ߠ) ∙ ቀߤ௜ߠ ቁ௬೔ ൬ ߠߠ +  ௜൰ఏା௬೔ߤ
௒݂(ݕ௜; ,ߠ (௜ߤ = 	 Γ(ݕ௜ + ௜ݕ)Γ(ߠ + 1) ∙ Γ(ߠ) ∙ ߠ)ఏߠ௜௬೔ߤ +  ௜)ఏା௬೔ߤ

 480 

Alternative parametrization of negative binomial regression using a rate model 481 

Alternative parametrization allows STARR-seq data to be modelled as a rate model. In contrast 482 

to using input coverage as one of the covariates, we can consider it as “exposure” to output 483 

coverage. This “trick” allows us to directly model the basal transcription rate (the ratio of RNA 484 

to DNA) as a rate response variable. We defined the transcription rate (RNA to DNA ratio) as a 485 

new variable, ߨ௜. 486 

௜ݐ௜ݕ 487  =  ௜ߨ
 488 
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If we assume the majority of genomic bins will have the basal transcription rate, we can model 489 

the transcription rate at each ݅-th bin following the traditional negative binomial (NB2) 490 

distribution. 491 

 492 

ܤܰ	~	௜ߨ ൬ߤ௜ݐ௜ ,  ൰ߠ

 493 

The expected basal transcription, ܧ(ߨ௜), becomes the mean incidence rate of ݕ௜ per unit of 494 

exposure, ݐ௜. 495 

 496 

ܧ ൬ݕ௜ݐ௜ ൰ = ௜ݐ௜ߤ  
 497 

By normalizing ߤ௜ by ݐ௜, we are modeling a rate instead of a discrete count using the negative 498 

binomial distribution. The regression term for the expected transcription rate can be expressed in 499 

terms of a linear combination of explanatory variables, ݆ covariates (ݔԦ). 500 

 501 ln ௜ݐ௜ߤ = ௜ଵݔଵߚ + ௜ଶݔଶߚ + ⋯+  ௜௝ݔ௝ߚ
 502 

Rearranging in terms of the expected value of ݕ, or ߤ, gives 503 

 504 ln ௜ߤ − ln ௜ݐ = ௜ଵݔଵߚ + ௜ଶݔଶߚ + ⋯+ ௜௝ lnݔ௝ߚ ௜ߤ = ln ௜ݐ + ௜ଵݔଵߚ + ௜ଶݔଶߚ + ⋯+ ௜ߤ ௜௝ݔ௝ߚ = exp൫ln ௜ݐ + ௜ଵݔଵߚ + ௜ଶݔଶߚ + ⋯+  ௜௝൯ݔ௝ߚ
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 505 

The natural log of ݐ௜ on the RHS ensures ߤ௜ is normalized in the model, acting as an offset 506 

variable. In STARRPeaker software, we allow users to optionally choose this alternative rate 507 

model (implemented as “mode 2”) instead of the default covariate model described in the main 508 

text.  509 

 510 

BasicSTARRseq 511 

We used BasicSTARRseq R package version 1.10.0 downloaded from Bioconductor 512 

(https://bioconductor.org/packages/release/bioc/html/BasicSTARRseq.html). We used default 513 

setting as described in the software manual (minQuantile = 0.9, peakWidth = 500, maxPval = 514 

0.001, deduplicate = TRUE, model = 1) to call peaks.  515 

 516 

MACS2 517 

We used MACS2 version 2.1.1 23 at the recommended default setting, except for allowing 518 

duplicates in read (--keep-dup all), since our STARR-seq dataset was multiplexed. We called 519 

peaks with an FDR cutoff of 0.01, as recommended by the author of the software. 520 

 521 
Supplementary Tables 522 

Table S1 contains significant peaks called by STARRPeaker. 523 

Table S2 contains various statistics from comparing STARRPeaker peaks to peaks called by 524 

BasicSTARRseq and MACS2. 525 

Table S3 contains list of data sources and accession number used for the analysis. 526 

  527 
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Figures 528 

 529 

Figure 1 Comparison of STARR-seq coverage calculated using fragment center to 530 
using read start position. (A)-(D) shows examples drawn from K562 STARR-seq data. 531 
Triangle indicates the summit of coverage. Read depth was normalized, since 2 paired 532 
reads correspond to 1 fragment. 533 
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 535 

Figure 2 Confounding factors in the STARR-seq assay. STARR-seq output and input 536 
coverages are significantly correlated with (A) input coverage (B) GC-content (C) 537 
mappability, and (D) RNA structure folding. PCC: Pearson Correlation Coefficient. Plots 538 
were from a sampling of 5,000 random genomic bins. 539 
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 541 

Figure 3 STARR-seq coverage is fitted against simulated coverage using three 542 
distribution models; negative binomial, binomial, and Poisson. (A) Density histogram of 543 
simulated distribution against STARR-seq coverage. (B) Q-Q plot of simulated 544 
distribution against STARR-seq coverage. The red solid line represents where the 545 
observed count equals the expected count. 546 
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 548 

Figure 4 Overview of STARRPeaker peak-calling scheme. (A) In contrast to using read depth 549 
(grey), fragment depth (red) offers more precise and sharper STARR-seq coverage. Fragment 550 
inserts are directly inferred from properly paired-reads. (B)  Workflow of STARRPeaker 551 
describing how coverage is calculated for each genomic bin and modelled using negative 552 
binomial regression model. The analysis pipeline can largely be divided into four steps: (1) 553 
Binning the genome (2) Calculating coverage and computing covariate matrix (3) Fitting the 554 
STARR-seq data to the NB regression model (4) Peak calling, multiple hypothesis testing 555 
correction, and adjustment of the center of peaks 556 

 557 
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 558 

Figure 5 Enrichment of epigenetic signals around peaks. All peaks were centered at the summit, 559 
uniformly thresholded using P-value < 0.001, and 10,000 peaks were randomly selected. 560 
Aggregated read depth at 2000 bp upstream and downstream were plotted for (A) DNase-seq (B) 561 
H3K27ac (C) H3K4me1 (D) Aggregated TF ChIP-seq profile. For TF ChIP-seq, high 562 
enrichment indicates TF binding hotspots 563 
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 565 

Figure 6 Comparison of peaks using external dataset. Peaks identified from STARRPeaker as 566 
well as BasicSTARRseq and MACS2 were compared against published dataset. For a fair 567 
comparison, 100,000 peaks were randomly drawn from peaks identified by each peak caller 568 
using the recommended settings, and the fraction of overlap was computed for each replicate. 569 
We considered it as an overlap when at least 50% of peaks intersected each other. 570 
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