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Abstract 38 

Current advances in sequencing technology have greatly increased the availability of 39 

sequence data from public genetic databases. With data from GenBank, we assemble and 40 

phylogenetically investigate a 19,740-taxon, five-locus supermatrix (i.e., atpB, rbcL, matK, 41 

matR, and ITS) for rosids, a large clade containing over 90,000 species, or approximately a 42 

quarter of all angiosperms (assuming an estimate of 400,000 angiosperm species). The 43 

topology and divergence times of the five-locus tree generally agree with previous estimates 44 

of rosid phylogeny, and we recover greater resolution and support in several areas along the 45 

rosid backbone, but with a few significant differences (e.g., the placement of the COM clade, 46 

as well as Myrtales, Vitales, and Zygophyllales). Our five-locus phylogeny is the most 47 

comprehensive DNA data set yet compiled for the rosid clade. Yet, even with 19,740 species, 48 

current sampling represents only 16-22% of all rosids, and we also find evidence of strong 49 

phylogenetic bias in the accumulation of GenBank data, highlighting continued challenges 50 

for species coverage. These limitations also exist in other major angiosperm clades (e.g., 51 

asterids, monocots) as well as other large, understudied branches of the Tree of Life, 52 

highlighting the need for broader molecular sampling. Nevertheless, the phylogeny presented 53 

here improves upon sampling by more than two-fold and will be an important resource for 54 

macroevolutionary studies of this pivotal clade. 55 

Keywords: Mega-phylogeny, rosids, dating, GenBank, sampling 56 
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I. Introduction 58 

Given their size, rosids (Rosidae; Cantino et al., 2007; Wang et al., 2009; APG IV, 59 

2016) have great potential for understanding the evolution and diversification of 60 

angiosperms. A clade of 90,000–120,000 species (estimated from the Open Tree of Life and 61 

Open Tree Taxonomy database (OTT); Hinchliff et al., 2015), the rosid clade represents more 62 

than a quarter of all angiosperms (based on an estimated 400,000  species of angiosperms; 63 

Govaerts, 2001). Rosids comprise two large subclades, fabids (i.e., eurosids I, Fabidae) and 64 

malvids (i.e., eurosids II, Malvidae) and are further divided into 17 orders and 135 families 65 

(APG IV, 2016). The clade originated in the Early to Late Cretaceous (115 to 93 Million 66 

years ago, Myr), followed by rapid diversification yielding the crown groups of fabids (112 to 67 

91 Myr) and malvids (109 to 83 Myr; Wang et al., 2009; Bell et al., 2010; Magallón et al., 68 

2015). The rosid clade diversified rapidly to form the two major lineages in perhaps as little 69 

as 4 to 5 million years (Wang et al., 2009; Bell et al., 2010). 70 

Most rosid families have high species diversity in the tropics, but many extend from 71 

the tropics to subtropical and temperate areas (e.g., Wang et al., 2009; Soltis et al., 2010). 72 

Most ecologically dominant forest trees are found within the clade, as well as diverse 73 

aquatics, parasites, arctic, alpine, and desert lineages; the clade also exhibits tremendous 74 

diversity in chemistry, reproductive strategy, and life history (Magallón et al., 1999; Wang et 75 

al., 2009; Stevens, 2001 onwards). Unique ecological traits are prevalent in the rosids, 76 

including nodular association with nitrogen-fixing bacteria (Soltis et al., 1995; Li et al., 77 

2015), chemical defense mechanisms including glucosinolate production in Brassicales 78 

(Rodman et al., 1998; Soltis et al., 2005; Edger et al., 2015), and independent origins of 79 

parasitism, sometimes associated with rampant horizontal gene transfer (e.g., Rafflesia; Davis 80 

& Wurdack, 2004; Xi et al., 2012). Many important crops are rosids, including cotton and 81 

cacao (Malvaceae), hops (Cannabaceae), legumes (Fabaceae), rubber (Euphorbiaceae), and 82 

numerous vegetable and fruit crops (Brassicaceae, Caricaceae, Cucurbitaceae, Rosaceae, 83 

Rutaceae, and Vitaceae). Some rosids have been selected as genetic models, including 84 

Arabidopsis thaliana (Arabidopsis Genome Initiative, 2000), Brassica rapa (Wang et al., 85 

2011), and various legumes (Sato et al., 2008; Schmutz et al., 2010, 2014; Varshney et al., 86 

2012, 2013; Young et al., 2011). 87 

The “rise of the rosids” yielded most angiosperm-dominated forests present today. 88 

Many other lineages of life radiated in the shadow of these rosid-dominated forests (e.g., 89 

ants: Moreau et al., 2006; Moreau & Bell, 2013; beetles: Farrell, 1998; Wilf et al., 2000; 90 
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amphibians: Roelants et al., 2007; mammals: Bininda-Emonds et al., 2007; fungi: Hibbett & 91 

Matheny, 2009; liverworts: Feldberg et al., 2014; ferns: Schneider et al., 2004; Watkins & 92 

Cardelús, 2012). The initial rise of the rosids and subsequent repeated cycles of radiations 93 

within the rosid clade (Soltis & Soltis, 2004; Soltis et al., 2004) have profoundly shaped 94 

much of current terrestrial biodiversity (Wang et al., 2009; Boyce et al., 2010). 95 

Although rosids have long been the focus of phylogenetic research (e.g., Wang et al., 96 

2009; Soltis et al., 2011; Zeng et al., 2017; and references therein), the enormous size of this 97 

clade has thus far precluded achieving the sampling required for macroevolutionary 98 

inferences (Ricklefs, 2007; Smith et al., 2011; Thomas et al., 2013; Folk et al., 2018). Hence, 99 

a robust, time-calibrated phylogeny with large-scale species-level sampling is needed for 100 

future diversity studies. Additionally, the rosid clade also provides an opportunity to evaluate 101 

the implications of taxon and gene sampling. Using data from GenBank, we constructed a 5-102 

locus phylogenetic tree having more than twice the taxon sampling used in earlier studies 103 

(e.g., the 4-locus study of Sun et al., 2016)—and compared this tree to all rosid names in the 104 

OpenTree of Life (Hinchliff et al., 2015) to quantify bias in DNA sampling across the clade. 105 

We hypothesized that (1) taxon sampling remains highly biased across the large rosid clade, 106 

and that (2) the use of more genes and increased taxon sampling impacts phylogenetic 107 

resolution and divergence time estimation. We tested these hypotheses via a series of 108 

comparisons across two trees: a previously published 4-locus, 8,855-taxon supermatrix (Sun 109 

et al, 2016) and the more densely sampled 5-locus, 19,740-taxon supermatrix generated here. 110 

We then quantified patterns of taxon sampling bias, phylogenetic resolution, and time 111 

calibration. 112 

II. Materials and Methods 113 

Data mining, alignment, and phylogeny reconstruction 114 

We mined GenBank (Release 214: June 15, 2016) for the chloroplast genes atpB, 115 

matK, and rbcL, the mitochondrial gene matR, and the nuclear ribosomal ITS (including ITS-116 

1, 5.8S, and ITS-2 regions) using the PHyLogeny Assembly With Databases pipeline 117 

(PHLAWD, version 3.4a, https://github.com/blackrim/phlawd; Smith et al., 2009). These 118 

genes represent those most commonly used in phylogenetic studies of plants and therefore the 119 

most numerous loci for plants deposited in GenBank; they also represent all three plant 120 

genomes. 121 

We employed PHLAWD data mining using three bait sequences of each target locus 122 
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that represent the phylogenetic diversity of the rosid clade (Hinchliff & Smith, 2014). The 123 

quality of sequence data from the five sampled loci was investigated by calculating the best-124 

hit scores from BLAST and plotting the distribution of identity scores ([0, 1]) against 125 

coverage scores ([0, 1]). Low-quality and outlier sequences were removed based on these 126 

scores (see Results). For all resulting alignments, we (1) validated the species names 127 

following The Plant List (TPL; http://www.theplantlist.org/), using the R package 128 

Taxonstand v2.0 (Cayuela et al., 2012), and then (2) pruned all taxa with “subsp.”, “var.”, 129 

“f.”, “cf.” and “aff.” designations in taxon names. Names for orders and families follow APG 130 

IV (2016), and those for major supra-ordinal clades follow Soltis et al. (2011) and Cantino et 131 

al. (2007).  132 

We curated the 5-locus data set iteratively by screening individual loci and 133 

concatenated matrices (below) for rogue taxon behavior through manual inspection of initial 134 

phylogenies for spurious taxon placement and through the RAxML dropsets algorithm 135 

(Pattengale et al., 2010a; Sun et al., 2016; Smith & Brown, 2018). The final 5-locus data set 136 

contained 19,740 ingroup species (135 families and 17 orders) and 20,294 species, including 137 

outgroup taxa (i.e., 554 outgroup species in 17 families and three orders) from Saxifragales, 138 

Proteales, and Trochodendrales.  139 

We also compared results from our 5-locus (atpB, rbcL, matK, matR, and ITS) data 140 

set with those from a previously published 4-locus rosid data set comprising chloroplast and 141 

mitochondrial loci (Sun et al., 2016; atpB, rbcL, matK, and matR). The 4-locus data set 142 

contained 8,855 ingroup taxa (9,300 taxa including outgroups; i.e., 445 outgroup species 143 

from the same three orders; Sun et al., 2016). Hereafter, all tree sampling statistics will only 144 

concern the ingroup. 145 

Taxon sampling analyses  146 

To evaluate sampling gaps among all taxonomically recorded rosid species and the 147 

species included in the 5-locus data set, we mapped the 19,740 validated rosid names in our 148 

phylogeny against all rosid species present in OTT v3.0 149 

(https://devtree.opentreeoflife.org/about/taxonomy-version/ott3.0; Hinchliff et al., 2015). 150 

Generic names of this complete list were also manually curated via an online tool, Index 151 

Nominum Genericorum (Farr & Zijlstra, 1996 onwards), and then invalid, rejected (nom. 152 

rej.), illegitimate, and synonymous generic names were all removed, as well as any taxon 153 

names with “sp.”, “subsp.”, “var.”, “x”, “cf.” and “aff.”, or other non-species designations 154 

(e.g., “spp.”, “clone”, “environmental sample”, “group”). 155 
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Additionally, to evaluate whether sampling in rosid DNA data from GenBank is 156 

phylogenetically biased, we scored DNA data presence and absence by mapping our 157 

phylogeny names to OpenTree (Smith & Brown, 2018) and then executing a λ test on this 158 

“trait” under an equal rates model (R packge geiger V.2.0.6.2; Pennell et al., 2014). 159 

Significance was assessed with a likelihood ratio test. 160 

Phylogenetics 161 

The edited and pruned alignments of each locus were concatenated into a single 162 

supermatrix using FASconCAT v.1.0 (Kück & Meusemann, 2010). We ran maximum 163 

likelihood (ML) analyses for each individual locus alignment and for the concatenated 164 

matrices using RAxML v.8.2.10 (Stamatakis, 2014) with 100 bootstrap (BS) replicates for 165 

topology examination, under an unpartitioned GTRCAT model. For the 5-locus concatenated 166 

matrix, the best ML tree was constructed with RAxML using the extended Majority Rule 167 

Criterion (autoMRE) as a bootstrap stopping rule (Pattengale et al., 2010b; reached at 352 168 

replicates). We visually examined potential topological conflicts by concatenating different 169 

data sets and evaluating strongly supported differences among trees at the family level 170 

inferred from the combined supermatrix and of each individual data set (i.e., ITS, matR, and 171 

the plastid genes; see Results and Discussion). Trees were manipulated for display using 172 

Newick utilities (Junier & Zdobnov, 2010), Dendroscope 3 (Huson & Scornavacca, 2012), 173 

MEGA (Tamura et al., 2013), and iTOL v3.0 (Letunic & Bork, 2016). 174 

Divergence Time Estimation 175 

Divergence time estimation was conducted using both the previously published 4-locus 176 

(Sun et al., 2016) phylogeny and newly constructed 5-locus phylogeny. In total, 59 177 

calibration points (covering 15/17 rosid orders) were used as time constraints, based on 178 

validated fossils frequently used as calibration points in previous molecular dating studies 179 

(Davis et al., 2005; Wang et al., 2009; Bell et al., 2010; Sauquet et al., 2012; Magallón et al., 180 

2015; Table S1). The root was constrained to a maximum age of 125 Myr following Wang et 181 

al. (2009). For both phylogenies, we used the penalized likelihood program treePL v.1.0 182 

(Smith & O’Meara, 2012) to generate a time-calibrated ultrametric tree. We initially 183 

conducted random cross-validation procedures with three options (“randomcv”, “thorough”, 184 

and “prime”) to determine the best smoothing value and optimization parameters for both the 185 

4-locus and 5-locus ML trees and then ran 200,000 annealing iterations (default = 5,000) for 186 

divergence time estimation. 187 
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To estimate variation in the timing of the rosid divergence, we also employed PATHd8 188 

v.1.0 (Britton et al., 2006) using the same 59 calibration points and root constraint as above. 189 

Unlike treePL, PATHd8 is a faster heuristic method that sequentially takes averages over 190 

path lengths from an internode to all its descending terminals, one pair of sister groups at a 191 

time (Ericson et al., 2006; Anderson, 2007). 192 

III. Results 193 

Limitations in Taxon and Locus Sampling 194 

For the commonly sequenced locus ITS, PHLAWD initially recovered 42,890 rosid 195 

sequences; after removing sequences with non-species designations (cf. Materials and 196 

Methods), 39,735 sequences remained. Removal of sequences with low identity and coverage 197 

scores (coverage score ≤ 0.1 and identity score ≤ 0.1 were considered low quality) and further 198 

duplicate removal and non-ortholog cleaning, 15,100 sequences remained in the single locus 199 

matrix; however, only 13,157 sequences were retained in the final combined supermatrix for 200 

phylogeny reconstruction, due to two reasons: 1) some ITS sequences still exhibiting 201 

characteristics of rogue taxa identified by initial RAxML analyses in primary 5-locus 202 

supermatrix (Pattengale et al., 2010; Sun et al., 2016); and 2) in this combined matrix, some 203 

species have only one fragment of either ITS1, 5.8S, or ITS2, and the other four genes are not 204 

available; therefore, these short single ITS fragments were removed from the combined 205 

matrix to avoid introducing large amounts of missing data. Updating the remaining loci 206 

(atpB, rbcL, matK, and matR) with new GenBank data resulted in 1,257, 6,960, 8,489, and 207 

721 sequences, respectively. The alignment lengths for atpB, rbcL, matK, matR, and ITS 208 

were, respectively, 1,500, 1,401, 1,815, 2,349, and 835 bp, with a concatenated length of 209 

7,900 bp, and 70.55% missing data. 210 

To better understand sampling patterns in our data sets, we matched our recovered 211 

phylogenetic tips (species) with those in the Open Tree of Life taxonomic database (OTT 212 

v3.0; Hinchliff et al., 2015), which includes rosid clades—e.g., Rutaceae, Francoaceae, and 213 

Kirkiaceae—yet to be integrated into the Open Tree topology itself. We sampled 135 families 214 

(100% coverage of the rosid families recognized in APG IV, 2016), 3,070 genera (matching 215 

66.34% of OTT), and 19,740 species (matching 16.25% of OTT). The unsampled genera and 216 

species mainly reflect absence of DNA data (Fig. 1 and Tables 1, S2), but some are due to 217 

taxonomic issues such as synonyms and invalid names. Among these mismatches are names 218 

in our 5-gene tree unaccounted for in OTT, comprising 1,134 species (5.74%) and 72 genera 219 
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(2.35%). Total coverage and taxon representation compared with the rosids present in OTL 220 

and OTT are summarized in Table 1, and Table S2, respectively (order and family 221 

circumscription adjusted to comply with APG IV [2016]; marked with asterisks in Table S2). 222 

Sampling coverage in our tree shows a strong phylogenetic bias (p-value for λ test, p 223 

≈ 0; Fig. 1 and Tables 1, S2). Overall, larger orders (> 10,000 species, e.g., Rosales and 224 

Myrtales) tend to be more poorly sampled with > 90% of the species unsampled (Table 1). 225 

Several large families (> 1,000 species) also have poor coverage; Polygalaceae, Rosaceae, 226 

Myrtaceae, Malvaceae, Rutaceae, and Phyllanthaceae have 3.14% to 15.27% sampling (Table 227 

S2). Geraniales, Crossosomatales, Brassicales, Cucurbitales, and Huerteales have better 228 

sampling, yet no order or family exceeds 50% coverage of known species richness. 229 

Phylogenetic Analyses 230 

The topology of our 5-locus rosid tree (Fig. S1) generally agrees with that of the 4-231 

locus tree inferred in a previous GenBank mining effort (Sun et al., 2016), but provides 232 

greater resolution and support in several areas along the backbone (Fig. S1) as well as greatly 233 

improved species-level sampling. The median BS value of the 5-locus rosid tree is lower than 234 

that obtained in the 4-locus, 8,855-taxon rosid phylogeny (Fig. 2a), but within 235 

methodological expectations (see Discussion). 236 

The topologies inferred from single locus partitions and the concatenated data set are 237 

generally consistent, with the exception of the following conflicting phylogenetic placements: 238 

(1) For the COM clade (Celastrales-Oxalidales-Malpighiales), we observed the same 239 

conflicting placements when trees from nuclear, plastid, and mitochondrial data are compared 240 

as observed in Sun et al. (2015, 2016). Nuclear and mtDNA data favor a placement of the 241 

COM clade with malvids, whereas plastid data indicate a placement with fabids. (2) The 242 

placement of Myrtales and Geraniales was unstable across locus partitions. In the chloroplast 243 

tree, Myrtales and Geraniales were sequential sisters to fabids with strong support, but in the 244 

matR tree and total evidence tree, Myrtales and Geraniales were sisters to the rest of the 245 

rosids (cf. Sun et al., 2015, 2016). The monophyly of Myrtales was not supported in the ITS 246 

tree. (3) The placement of Zygophyllales varied among locus partitions. In the matR tree, 247 

Zygophyllales were resolved as sister to malvids (cf. Sun et al., 2016; Zhao et al., 2016), a 248 

different result from the chloroplast and total evidence trees, where the clade was placed 249 

within fabids with low to moderate support. (4) The placement of Vitales with respect to the 250 

rest of the rosids and Saxifragales was unstable across analyses. In the matR and total 251 

evidence trees, the three groups were resolved as (rosids + Vitales) + Saxifragales (cf. Sun et 252 
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al., 2016), a topology that has also been recovered in most studies (Soltis et al., 2007, 2011; 253 

Worberg et al., 2007; Zhu et al., 2007; APG, 2009, 2016; Wang et al., 2009; Smith et al., 254 

2010; Barniske et al., 2012; Ruhfel et al., 2014). Our chloroplast data set, by contrast, 255 

recovers the relationship among these three clades as rosids + (Saxifragales + Vitales), a 256 

result also seen previously (cf. Moore et al., 2010; Ruhfel et al., 2014; Zhang et al., 2012, 257 

2016; Sun et al., 2016). (5) Non-monophyly of some families was occasionally seen within 258 

single-gene trees. Two families (Cannabaceae and Euphorbiaceae) are resolved as non-259 

monophyletic in the combined plastid tree, while they are recovered as monophyletic in the 260 

total evidence tree as expected; similarly, 12 families are non-monophyletic in the matR gene 261 

tree and 18 in the ITS tree (see Table S3).  262 

Dating Analyses 263 

The crown age of rosids is estimated as 117.93 Myr by treePL (89.80 Myr by PATHd8) 264 

using the 5-locus tree, and 122.62 Myr by treePL (104.20 Myr by PATHd8) for the 4-locus 265 

tree. The ages of other major rosid clades are reported in Table 2. Comparisons of crown ages 266 

obtained for all major rosid clades (17 orders and 135 families, sensu APG IV) are provided 267 

in Figs. 2b and 3, covering both treePL and PATHd8 and both 4-locus and 5-locus trees, as 268 

well as previous studies (Wikström et al., 2001; Wang et al., 2009; Bell et al., 2010; Zanne et 269 

al., 2014; Magallón et al., 2015; Zeng et al., 2017). The ages of major rosid lineages 270 

estimated using the two dating methods and the two trees largely overlap with uncertainty 271 

intervals reported in previous studies (Fig 3). However, we did find that some clade ages 272 

(e.g., Celastrales, Crossosomatales, and Picramniales; Fig. 3) estimated in our study are 273 

younger and outside of the range of uncertainty reported in previous studies (Wikström et al., 274 

2001; Wang et al., 2009; Bell et al., 2010; Zanne et al., 2014; Magallón et al., 2015), even 275 

though their placements agree with earlier studies (e.g., Wang et al., 2009; Magallón et al., 276 

2015; APG IV, 2016). This discrepancy is likely due to poor taxon sampling of smaller rosid 277 

orders in previous studies; particularly, inclusion of a single species (e.g., Picramniales in the 278 

dating analyses of Zanne et al. 2014; Magallón et al. 2015) only allows stem age estimation. 279 

The greatly increased rosid sampling in the present study compared to earlier investigations 280 

(e.g., Wang et al., 2009; Bell et al., 2010; Magallón et al., 2015) could impact age estimation. 281 

Hence, we favor the results from treePL (both 4- and 5-locus; Table 2, Fig 2b). Although 282 

differing in overall scaling, estimated divergence times for all nodes estimated from treePL 283 

and PATHd8 were highly correlated (R2 = 0.762). 284 
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IV. Discussion 285 

Our 5-locus supermatrix represents the most comprehensive DNA data set yet 286 

compiled for the rosid clade. However, even with 19,740 ingroup species (out of 114,477 287 

species estimated from OTT), our matrix is far from complete. Only 30,234 species of rosids 288 

(ca. 34% estimated from Hinchliff et al., 2015) have any type of DNA data in GenBank (see 289 

also Folk et al., 2018), and after a series of filtering steps, our topology represents only 290 

16.25% of all rosid species recorded in OTT (Table 1). This relative sampling level (less than 291 

20%) typifies most major clades of flowering plants (Eiserhardt et al., 2018; Folk et al., 292 

2018).  293 

Taxon sampling within rosids exhibits a strong phylogenetic bias (Fig. 1) in 294 

accumulation of molecular data (p ≈ 0). Among large families (> 1,000 species), the five with 295 

the poorest sampling (Polygalaceae, Myrtaceae, Rosaceae, Phyllanthaceae, and Malvaceae) 296 

have only 3.14% to 13.97% of species with at least one of the five loci sampled here in 297 

GenBank after matrix assembly and cleaning (cf. Table S2). For the five best-sampled 298 

families (Euphorbiaceae, Fabaceae, Passifloraceae, Brassicaceae, Cucurbitaceae), only 299 

21.95% to 40.56% of species have one of the five loci. Hence, no large (> 1,000 species) 300 

family of rosids exceeds 45% species coverage, and most are below 30% coverage (Table 301 

S2), consistent with molecular sampling patterns across the angiosperms (Eiserhardt et al. 302 

2018, Folk et al., 2018). 303 

Our 5-locus topology is generally in close agreement with previous work (Wang et 304 

al., 2009; Soltis et al., 2011; Ruhfel et al., 2014; Sun et al., 2016), but with better overall 305 

resolution and without any cases of non-monophyletic families in the total-evidence trees 306 

(Fig. S1). Although the overall support across our tree is lower than that obtained in a 307 

previously published GenBank mining effort (Sun et al., 2016; Fig 2a), this is not surprising 308 

because: (1) studies have shown that BS values tend globally to decrease as the number of 309 

taxa increases (e.g., Sanderson & Donoghue, 1996; Sanderson & Wojciechowski, 2000; 310 

Soltis & Soltis, 2003; here the 5-locus tree has ~ 2.2 fold the species sampling of the 4-locus 311 

tree); and (2) the standard phylogenetic bootstrap method (e.g., as implemented by RAxML) 312 

tends to yield particularly low support for deep branches with large sampling scales (Lemoine 313 

et al., 2018). 314 

While our ITS tree yielded low overall resolution for relationships within the rosids, 315 

adding ITS data improved the phylogenetic resolution within 14 families compared to that 316 

obtained in the 4-locus tree in Sun et al. (2016; Table S3). Additionally, some nodes remain 317 
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unresolved across data partitions (e.g., placement of Zygophyllales, Myrtales, and Vitales; 318 

Table S3), which likely reflect the rapid radiation of the rosid clade (Zhang et al., 2012, 2016; 319 

Zhao et al., 2016; Zeng et al., 2017; Green Plant Consortium, submitted). The divergence 320 

times here are generally consistent within methods and broadly congruent with the previous 321 

literature (Fig. 3). Between the two estimation methods, divergence times from PATHd8 322 

were younger than those from treePL (Figs. 2b and 3), but highly correlated. 323 

Despite the importance of the rosids to terrestrial landscapes, our knowledge of this 324 

clade remains limited (Folk et al., 2018), with species sampling gaps and bias that have 325 

likewise persisted across flowering plants and in many other major clades of life (Smith & 326 

Brown, 2018). Transparently assessing and quantifying data gaps is crucial for studies using 327 

large biodiversity data sets (Folk et al., 2018). Our exploration of phylogenetic sampling here 328 

highlights the essential role of taxonomic resources like Open Tree for assessing sampling 329 

gaps. We anticipate that similar analyses of cladewise sampling and explicit tests of 330 

phylogenetic bias will become standard approaches in large-scale studies as these become 331 

more numerous, and as discussion continues over their construction and use (e.g., Rabosky, 332 

2015; Beaulieu & O’Meara, 2018; Folk et al., 2018; Donoghue & Edwards, 2019). 333 

While limitations in sampling continue to hinder our understanding of angiosperm 334 

evolution, growth of sequence databases continues to be rapid, and our updated supermatrix 335 

effort has increased rosid species coverage by more than two-fold while recovering a 336 

backbone that is largely robust. Given the importance of deeply sampled global phylogenies 337 

for comparative biology (see Folk et al., 2018; Beaulieu & O’Meara, 2018; Smith & Brown, 338 

2018; Allen et al., 2019), the data set we have assembled here will be an important resource 339 

for macroevolutionary synthesis across a globally important clade. 340 
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Table 1. Ordinal-level summary sampling table for the 5-locus rosid supermatrix (“Matrix”) compared to the rosid clade of the Open 
Tree Taxonomy (“OTT”) database v. 3.0 (https://devtree.opentreeoflife.org/about/taxonomy-version/ott3.0; Hinchliff et al., 2015) and 
matching taxon names between these data sets. Orders follow APG IV (2016). A summary table at the family level is available in 
Table S2. 

Order 
Match (Matrix genera)/OTT 
genera 

Matched genus % 
Match (Matrix species)/OTT 
species Matched species % 

Brassicales 357(369)/502 71.12% 1693(1843)/5940 28.50% 
Celastrales 68(69)/111 61.26% 272(281)/1499 18.15% 
Crossosomatales 13(13)/14 92.86% 24(24)/82 29.27% 
Cucurbitales 117(125)/133 87.97% 823(863)/3094 26.60% 
Fabales 657(668)/864 76.04% 5311(5678)/24191 21.95% 
Fagales 36(38)/74 48.65% 496(540)/2263 21.92% 
Geraniales 15(18)/20 75.00% 295(305)/962 30.67% 
Huerteales 6(6)/6 100.00% 7(7)/30 23.33% 
Malpighiales 586(596)/891 65.77% 3703(3868)/21316 17.37% 
Malvales 255(257)/405 62.96% 1285(1349)/7771 16.54% 
Myrtales 257(263)/475 54.11% 1286(1373)/15529 8.28% 
Oxalidales 43(45)/69 62.32% 182(193)/2207 8.25% 
Picramniales 2(2)/3 66.67% 5(5)/57 8.77% 
Rosales 217(227)/359 60.45% 1694(1787)/20620 8.22% 
Sapindales 342(347)/551 62.07% 1361(1434)/7421 18.34% 
Vitales 9(9)/15 60.00% 110(119)/1155 9.52% 
Zygophyllales 18(18)/27 66.67% 60(71)/340 17.65% 

Total 2998(3070)/4519 66.34% 18607(19740)/114477 16.25% 
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Table 2. Summary table of ages estimated for rosid major clades by treePL and PATHd8 based on the tree inferred here (“5-locus”) 
and that inferred in Sun et al. 2016 (“4-locus”). The age unit is million years ago (Myr). 

Clade 
5-locus 4-locus 

Age treePL Age PATHd8 Age treePL Age PATHd8 

Fabids 117.03 89.80 121.11 94.95 

Fagales 95.60 83.50 100.83 83.50 

Betulaceae 60.64 59.80 59.80 59.80 
Casuarinaceae 27.57 46.63 27.06 41.62 
Fagaceae 66.27 61.12 67.04 69.46 
Juglandaceae 72.55 69.39 69.66 66.60 
Myricaceae 30.08 27.63 26.18 27.97 
Nothofagaceae 18.53 11.42 18.26 11.30 
Ticodendraceae 66.67 59.80 64.52 63.23 

Cucurbitales 111.95 65.06 113.39 53.48 

Anisophylleaceae 48.13 35.30 49.44 39.52 
Apodanthaceae 70.73 65.06 74.69 48.60 
Begoniaceae 52.11 35.40 23.74 20.39 
Cucurbitaceae 34.91 28.17 42.07 29.20 
Tetramelaceae 19.21 9.01 22.57 12.15 
Corynocarpaceae 6.95 3.62 6.96 2.86 
Coriariaceae 14.04 7.82 22.97 10.15 
Datiscaceae 8.47 4.54 9.54 5.24 

Rosales 107.52 89.80 111.03 89.80 

Cannabaceae 67.73 65.50 67.26 65.50 
Elaeagnaceae 27.41 20.06 28.70 27.79 
Moraceae 46.03 28.78 40.49 16.31 
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Rhamnaceae 74.55 48.60 80.11 61.70 
Rosaceae 89.80 89.80 89.80 89.80 
Ulmaceae 59.41 32.53 88.93 21.49 
Urticaceae 60.28 51.05 68.70 33.25 
Dirachmaceae 88.51 70.60 96.98 70.60 
Barbeyaceae 84.47 53.33 90.03 70.60 

Fabales 96.58 59.90 105.41 75.15 

Fabaceae 83.90 55.80 93.77 65.37 
Polygalaceae 60.89 55.80 72.51 13.46 
Surianaceae 47.39 15.50 53.52 21.96 
Quillajaceae 90.75 26.59 98.52 36.49 

Malpighiales 114.67 89.30 114.47 89.30 

Achariaceae 54.72 14.37 64.21 25.88 
Bonnetiaceae 70.08 58.52 71.27 58.67 
Calophyllaceae 55.73 21.85 47.53 17.35 
Caryocaraceae 20.12 5.20 22.18 8.73 
Centroplacaceae 74.12 15.13 77.14 23.34 
Chrysobalanaceae 22.13 10.69 27.61 16.17 
Clusiaceae 52.63 27.13 52.05 22.91 
Dichapetalaceae 17.65 5.96 22.97 10.87 
Elatinaceae 50.37 17.24 51.62 21.99 
Erythroxylaceae 46.31 17.55 55.76 26.26 
Euphorbiaceae 63.30 38.14 99.38 41.95 
Humiriaceae 33.90 33.90 33.90 33.90 
Hypericaceae 81.66 63.84 81.46 63.49 
Irvingiaceae 5.19 1.57 6.10 2.61 
Ixonanthaceae 23.76 8.15 31.28 13.56 
Lacistemataceae 7.82 2.19 9.54 3.73 
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Linaceae 58.84 25.10 60.48 37.36 
Malpighiaceae 53.17 33.00 47.75 33.00 
Ochnaceae 51.42 15.36 54.39 25.49 
Pandaceae 38.67 8.97 42.54 15.19 
Passifloraceae 63.15 33.74 83.25 3.24 
Peraceae 53.84 13.68 68.14 22.94 
Phyllanthaceae 68.83 28.13 101.43 50.67 
Picrodendraceae 35.15 12.86 44.13 21.99 
Podostemaceae 80.18 89.30 82.99 89.30 
Putranjivaceae 18.11 6.86 16.72 6.28 
Rafflesiaceae 81.48 41.45 70.24 41.13 
Rhizophoraceae 59.88 33.90 59.74 33.90 
Salicaceae 64.37 48.00 71.33 48.00 
Trigoniaceae 38.07 15.32 50.40 26.28 
Violaceae 57.17 27.34 68.43 47.89 
Balanopaceae 17.87 3.61 24.51 6.52 
Ctenolophonaceae 80.30 34.51 109.65 52.48 
Euphroniaceae 46.86 23.35 64.26 37.35 
Goupiaceae 75.00 32.02 87.00 54.34 
Lophopyxidaceae 60.81 19.39 77.63 31.51 

Celastrales 89.44 45.93 94.99 54.88 

Lepidobotryaceae 12.11 3.25 12.84 4.99 
Celastraceae 67.89 37.82 76.39 38.90 

Oxalidales 112.85 79.20 114.28 79.20 

Connaraceae 35.38 6.59 24.76 10.10 
Cunoniaceae 43.50 79.20 32.67 65.56 
Elaeocarpaceae 61.70 61.70 61.70 61.70 
Huaceae 14.23 4.30 16.56 6.62 
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Oxalidaceae 52.72 21.00 46.59 30.05 
Cephalotaceae 77.57 53.13 70.61 79.20 
Brunelliaceae 2.65 3.41 3.71 3.27 

Zygophyllales 96.67 42.02 96.95 74.54 

Zygophyllaceae 91.38 41.07 90.94 69.52 
Krameriaceae 31.36 8.25 18.16 7.87 

Malvids 116.49 89.30 120.33 91.47 

Brassicales 86.82 86.66 95.92 89.30 

Akaniaceae 4.10 1.86 3.07 1.19 
Brassicaceae 36.20 30.70 45.27 32.55 
Capparaceae 38.94 17.68 43.31 22.21 
Caricaceae 26.58 13.58 28.74 16.33 
Cleomaceae 38.58 24.01 47.85 29.53 
Gyrostemonaceae 6.80 3.34 9.87 5.39 
Limnanthaceae 13.78 8.26 11.54 7.52 
Resedaceae 53.78 44.91 58.24 43.56 
Salvadoraceae 26.97 14.59 40.37 24.73 
Tropaeolaceae 40.20 20.73 13.06 7.64 
Bataceae 32.77 20.86 36.62 24.73 
Emblingiaceae 52.88 24.59 61.28 25.27 
Koeberliniaceae 67.42 50.48 77.00 55.39 
Moringaceae 12.17 5.91 14.61 6.99 
Pentadiplandraceae 63.01 62.42 70.52 70.43 
Setchellanthaceae 78.46 79.01 87.32 89.30 
Tovariaceae 52.88 24.59 61.28 25.27 

Malvales 100.59 69.12 101.97 68.91 

Bixaceae 50.29 24.36 54.37 26.98 
Cistaceae 45.68 34.47 50.40 45.35 
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Cytinaceae 73.43 67.35 73.58 55.17 
Dipterocarpaceae 35.80 17.07 36.05 19.22 
Malvaceae 50.85 36.94 44.04 25.61 
Muntingiaceae 42.72 21.12 49.82 25.44 
Neuradaceae 10.59 5.59 11.18 5.71 
Sarcolaenaceae 12.94 6.04 13.37 6.31 
Sphaerosepalaceae 11.85 4.89 13.20 5.20 
Thymelaeaceae 48.55 40.20 47.79 12.59 

Picramniales/Picramniaceae 36.78 9.65 36.91 14.80 

Huerteales 61.57 37.20 67.93 37.20 

Dipentodontaceae 38.06 10.16 37.79 15.23 
Tapisciaceae 37.20 37.20 37.20 37.20 
Petenaeaceae 56.88 14.16 61.53 22.34 
Gerrardinaceae 56.88 14.16 61.53 22.34 

Sapindales 88.96 65.50 82.21 65.50 

Anacardiaceae 45.59 32.35 50.69 47.00 
Burseraceae 43.87 31.43 31.32 32.09 
Meliaceae 48.60 48.60 49.04 48.60 
Nitrariaceae 62.91 17.63 32.49 16.91 
Rutaceae 65.50 65.50 65.50 65.50 
Sapindaceae 64.76 55.80 60.52 55.80 
Simaroubaceae 46.19 12.04 47.98 21.83 
Kirkiaceae 3.46 0.92 3.97 1.49 
Biebersteiniaceae 19.11 5.12 17.58 7.59 

Crossosomatales 88.66 28.40 90.75 34.68 

Crossosomataceae 17.62 4.88 16.78 8.65 
Staphyleaceae 28.40 28.40 28.40 28.40 
Strasburgeriaceae 20.74 4.68 23.87 8.25 
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Aphloiaceae 75.92 15.79 78.94 27.26 
Geissolomataceae 46.62 9.63 56.37 17.05 
Guamatelaceae 40.90 6.30 31.80 10.86 
Stachyuraceae 2.84 0.63 3.67 1.01 

Geraniales + Myrtales 116.49 88.20 121.39 96.30 

Geraniales 107.69 47.69 117.77 81.03 

Geraniaceae 74.66 32.08 97.14 77.94 
Francoaceae 97.34 29.59 104.62 36.60 

Myrtales 95.00 88.20 95.00 88.20 

Combretaceae 51.58 16.24 42.78 12.45 
Crypteroniaceae 18.04 9.91 17.77 9.68 
Lythraceae 72.66 70.60 71.98 70.60 
Melastomataceae 49.25 51.74 47.35 60.23 
Myrtaceae 64.10 55.80 64.27 55.80 
Onagraceae 49.56 40.09 60.65 53.07 
Penaeaceae 34.38 17.22 26.29 21.19 
Vochysiaceae 39.18 26.95 36.65 27.24 
Alzateaceae 52.22 26.13 32.38 26.29 

Vitales/Vitaceae 75.77 66.00 78.27 66.37 

Rosids 117.93 89.80 122.62 104.20 
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Figure Legends: 

Fig. 1. The 5-locus rosid phylogeny showing sampling coverage of sequence data for the 

5 loci. This comparison shows substantial phylogenetic bias in each of the 5 loci sampled in 

the rosid matrix based on presence/absence heatmap layers. The five layers are labeled as 

matR, atpB, rbcL, matK, and ITS from inside toward the outer edge. Species with black tips 

at each layer mean sequence data are available for a specific locus. Each order is labeled and 

colored, so phylogenetic bias of DNA data can be viewed by the rough distribution of the 

black and gray tips within and/or among each order (cf. Tables 1, S2 for further percentage 

details). 

 
Fig. 2. Comparison of phylogenetic resolution (a) and divergence time estimation (b) 

between the 4-locus, 8,855-taxon rosid phylogeny and the 5-locus, 19,740-taxon rosid 

phylogeny. BS stands for bootstrap. Orange denotes the treePL method, and blue denotes the 

PATHd8 method in panel (b). 

 
Fig. 3. Comparison of crown ages for major rosid clades reported in this study, 

Wikström et al. (2001), Wang et al. (2009), Bell et al. (2010), Zanne et al. (2014), and 

Magallón et al. (2015). Error bars represent age ranges reported for the given node. Red 

hollow circles and diamonds stand for ages estimated from the 4-locus tree; solid symbols are 

estimated from the 5-locus tree; the color bars at the bottom of the plot correspond to the 

orders in Fig. 1. In several previous studies, only a single species was sampled for small 

clades such as Picramniales, preventing the estimation of crown ages; in these cases only the 

stem age is given here. 
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Supporting Information 
 
Fig. S1 The best ML tree obtained from the RAxML analysis. 
 

Table S1. Information on the 59 rosid calibration constraints used in this study. 

Table S2. Family-level summary sampling table for the 5-locus supermatrix (“Matrix”) 

compared to the rosid clade of the Open Tree Taxonomy (“OTT”) database v.3.0 

(https://devtree.opentreeoflife.org/about/taxonomy-version/ott3.0; Hinchliff et al., 2015) and 

matched taxon names between these data sets. 

Table S3. List of non-monophyletic families in the matR and ITS locus trees. 
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