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Abstract: Soluble ligand-bound Mn(III) can support anaerobic microbial respiration in diverse 16 

aquatic environments. Thus far, Mn(III) reduction has only been associated with certain 17 

Gammaproteobacteria. Here, we characterized microbial communities enriched from Mn-replete 18 

sediments of Lake Matano, Indonesia. Our results provide the first evidence for biological 19 

reduction of soluble Mn(III) outside of the Gammaproteobacteria. Metagenome assembly and 20 

binning revealed a novel betaproteobacterium, which we designate “Candidatus Dechloromonas 21 

occultata.” This organism dominated the enrichment and expressed a novel cytochrome c-rich 22 

protein cluster (Occ), including an undecaheme putatively involved in extracellular electron 23 

transfer during Mn(III) reduction. The occ gene cluster was detected in diverse aquatic bacteria, 24 

including uncultivated Betaproteobacteria from the deep subsurface. These observations provide 25 

new insight into the taxonomic and functional diversity of microbially-driven Mn(III) reduction 26 

in natural environments. 27 

 28 

Main text: Manganese(III) is the most recently discovered player in the manganese cycle (10). 29 

Ligand-bound Mn(III) is often the most abundant Mn species in aquatic ecosystems (18), yet 30 

knowledge about microbes cycling Mn(III) remains fragmentary. To date, only Shewanella spp. 31 

(Gammaproteobacteria) are known to respire soluble Mn(III) using the Mtr pathway (17, 22, 32 

23). The Mtr pathway forms a porin-cytochrome (PCC) conduit that transports electrons across 33 

the periplasm (11) for extracellular respiration of Mn(III/IV), Fe(III), and other metals (20, 23). 34 

Another PCC is Mto used by freshwater Betaproteobacteria for extracellular Fe(II) oxidation (7, 35 

12, 16). Environmental omics suggests that metal reduction by Betaproteobacteria may be 36 

widespread in the deep subsurface (1, 13). However, only a few Fe(III)-reducing 37 

Betaproteobacteria isolates have been characterized (5, 8). This study presents the first evidence 38 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/695007doi: bioRxiv preprint 

https://doi.org/10.1101/695007


 3

for biological reduction of soluble Mn(III) by a bacterium outside of the Gammaproteobacteria 39 

class. 40 

We explored microbial Mn(III) reduction in enrichments inoculated with sediment from 41 

Lake Matano, Indonesia, which has active microbial Mn and methane (CH4) cycles (15). 42 

Manganese reduction coupled to CH4 oxidation is a thermodynamically favorable metabolism, 43 

and its natural occurrence is supported by biological evidence (2) and geochemical evidence (4, 44 

19). We designed an enrichment strategy to select for microbes capable of anaerobic CH4 45 

oxidation coupled to soluble Mn(III) reduction incubating anoxic Lake Matano with soluble 46 

Mn(III)-pyrophosphate as the electron acceptor (with 2% O2 in a subset of bottles), and CH4 as 47 

the sole electron donor and carbon source (see Supplemental Material for enrichment details). 48 

Cultures were transferred into fresh media after Mn(III) was completely reduced to Mn(II) for a 49 

total of five transfers over 395 days. By the fourth transfer, cultures with CH4 headspace (with or 50 

without 2% O2) reduced ~80% of soluble Mn(III) compared to ~30% with N2 headspace (Fig. 1). 51 

16S rRNA gene sequences were dominated by Betaproteobacteria (Rhodocyclales) and 52 

Deltaproteobacteria (Desulfuromonadales), and 13CH4 oxidation to 13CO2 was undetectable 53 

(Figs. S1, S2).  54 

Samples for metagenomic and metaproteomic analysis were harvested from the fifth 55 

transfer (Fig. 1; Fig. S1). Out of 2,952 proteins identified in the proteome, 90% were assigned to 56 

Betaproteobacteria; of those, 72% mapped to a 99.53% metagenome-assembled genome (MAG; 57 

Rhodocyclales bacterium GT-UBC; NCBI accession QXPY01000000) with 81-82% average 58 

nucleotide identity (ANI) and phylogenetic affiliation to Dechloromonas spp. (Table S1; Fig. 59 

S3). This MAG is named here “Candidatus Dechloromonas occultata” sp. nov.; etymology: 60 

occultata; (L. fem. adj. ‘hidden’). The remaining 10% of proteins mapped to 61 
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Deltaproteobacteria; of those, 70% mapped to a nearly complete MAG (Desulfuromonadales 62 

bacterium GT-UBC; NCBI accession RHLS01000000) with 80% ANI to Geobacter 63 

sulfurreducens. This MAG is named here “Candidatus Geobacter occultata”. 64 

Cytochromes containing multiple c-type hemes are key for electron transport during 65 

microbial metal transformations, and therefore might also be expected to play a role in Mn(III) 66 

reduction. Numerous mono-, di-, and multi (>3)-heme cytochromes (MHCs) were expressed by 67 

“Ca. D. occultata” in Mn(III)-reducing cultures. Nine out of 15 MHCs encoded by the “Ca. D. 68 

occultata” MAG were expressed, including two decahemes similar to MtoA in Fe(II)-oxidizing 69 

Betaproteobacteria (Tables 1, S2, S3; Figs. 2A, S4). Several highly expressed MHCs were 70 

encoded on a previously unreported 19-gene cluster with 10 cytochrome-c proteins, hereafter 71 

occA-S (Table 1; Figs. 2B, S5, S6). OccP was an undecaheme, which are known to be involved 72 

in metal reduction (6, 21). “Ca. Dechloromonas occultata” may reduce Mn(III) using the novel 73 

extracellular undecaheme OccP as the terminal Mn(III) reductase, although the function of the 74 

putative Occ complex has yet to be experimentally verified. 75 

We investigated the taxonomic distribution of genes encoding occP, mtoA, and key 76 

denitrification complexes expressed by “Ca. D. occultata”. We discovered occP homologs (40-77 

60% identity) in diverse Betaproteobacteria from diverse freshwaters and deep subsurface 78 

groundwaters, as well as several Gammaproteobacteria and one alphaproteobacterium (Fig. 2D; 79 

Table S3). Most occP-containing bacteria also possessed mtoA and denitrification (Fig. 2D) 80 

genes. For more discussion of denitrification, see Supplemental Text and Figs. S7 and S8.  81 

While the specific role of CH4 in Mn(III) reduction remains unknown (see Supplemental 82 

Text), CH4 significantly stimulated expression of many cytochrome c proteins, including 83 

OccABGJK, MtoD-2, and cytochrome-c4 and -c5 proteins associated with anaerobic respiration 84 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/695007doi: bioRxiv preprint 

https://doi.org/10.1101/695007


 5

(p < 0.05; Table 1; Fig. 2C). Methane also led to increased expression of several “Ca. D. 85 

occultata” proteins involved in outer membrane structure and composition, including an 86 

extracellular DUF4214 protein located next to an S-layer protein similar to those involved in 87 

manganese binding and deposition (24), a serine protease possibly involved in Fe(III) particle 88 

attachment (3), an extracellular PEP-CTERM sorting protein for protein export (9), and a Tol-Pal 89 

system for outer membrane integrity (Table 1). A type IV pilin protein (87% identity to 90 

Geobacter pickeringii (14)) was significantly more highly expressed with CH4 vs. N2 in the “Ca. 91 

G. occultata” proteome (p=0.02; Table 1). The possible involvement of Geobacter e-pilins in 92 

Mn(III) reduction remains an open question. For additional discussion of other features of “Ca. 93 

D. occultata” and “Ca. G. occultata” genomes and proteomes, see Supplemental Text, Table 94 

S4, Figs. S9, S10, and S11.  95 
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Table and Figure Captions 172 
 173 
 174 
Table 1. Expression levels for “Ca. D. occultata” proteins in the presence of CH4 and N2. 175 

Peptide counts are normalized to total “Ca. D. occultata” proteins x 10,000. Blank cells indicate 176 

proteins with <2 normalized peptide counts. Gray boxes indicate membrane proteins with that 177 

may be underrepresented by mass spectrometry-based metaproteomic analyses, which inherently 178 

favor soluble over insoluble membrane-bound or hydrophobic proteins. SP: signal peptide 179 

(Y:present/N:absent); TMH: numbers of transmembrane helices; # CxxCH: number of heme-180 

binding motifs; P-sort: predicted cellular location. Bold proteins indicate proteins that were 181 

significantly more expressed with CH4 than N2 (CH4/N2>1; p<0.05). MCP: methyl-accepting 182 

chemotaxis protein; PPIase: Peptidyl-proline isomerase; P: periplasm, C: cytoplasm; OM: outer 183 

membrane; IM: inner membrane, E: extracellular; U: unknown. MtoX and MtoY were predicted 184 

to be an inner membrane cytochrome-b protein and a methyl-accepting chemotaxis protein, 185 

respectively.  186 

 187 

Figure 1. Consumption of Mn(III) in Lake Matano enrichments in the presence and 188 

absence of methane. Sediment-free cultures (transfer 4) from 335 days after the initial 189 

enrichment were incubated for 45 days with 1 mM Mn(III) pyrophosphate as the sole electron 190 

acceptor. Initial bottle headspace contained 50% CH4 + 50% N2 (black circles), 50% CH4+48% 191 

N2+2% O2 (gray circles), 100% N2 (white circles), and 50% CH4+50% N2 heat killed controls 192 

(black triangles). Error bars are standard deviations from duplicate experiments. Color change 193 

from red to clear indicates Mn(III) reduction. 194 

 195 
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Figure 2. Gene arrangement, predicted protein locations, and taxonomic distribution of 196 

major expressed respiratory complexes in “Ca. D. occultata”. A: MtoDAB(Y)X porin-197 

cytochrome c electron conduit; B: OccA-S; C: denitrification complexes (Nap, Nir, Nor and 198 

cNos); D: Occurrence of key marker genes in Betaproteobacteria and Gammaproteobacteria 199 

with >95% complete genomes that encode OccP. Red fill around genes and proteins indicate 200 

cytochrome-c proteins. Black outlines around blue circles in D indicate type I nitrous oxide 201 

reductase to distinguish from blue dots (type II/cytochrome-nitrous oxide reductase). Gray-202 

shaded genes on the occ gene cluster indicate 6-NHL repeat proteins. Protein locations shown 203 

are based on P-sort predictions. Numbers above genes indicate number of CxxCH motifs 204 

predicted to bind cytochrome c. IM: inner membrane; OM: outer membrane. For more details, 205 

see Table 1 and Table S3.   206 
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CH4 SD N2 SD  ave SD

MtoX-1 (cyt-b) N 5 0 IM RIX49676
MtoY-1 (MCP) N 2 1 IM RIX49677 2.7 0.5 3.6 0.2 0.8 0.2 0.2
MtoB-1 (porin) Y 0 0 OM RIX49678 10 2 15 2 0.6 0.1 0.004
MtoA-1 Y 1 10 P RIX49874 5 1 2.5 0.1 1.9 0.4 0.1
MtoD-1 N 0 1 P RIX49875
MtoX-2 (cyt-b) N 4 0 IM RIX48942
MtoB-2 (porin) Y 0 0 OM RIX48943 8 1 16 0.2 0.5 0.1 0.04
MtoA-2 Y 1 10 P RIX48944 7.3 0.8 4 2 2.1 1.3 0.2
MtoD-2 Y 1 1 U RIX48945 2.6 0.3 0.7 0.3 4.0 1.4 0.003
OccA Y 1 3 P RIX49688 4 0.5 0.7 0.6 7.8 5.7 0.01
OccB Y 0 3 U RIX49689 41 4 19 2 2.2 0.0 0.03
OccC N 0 1 U RIX49877
OccD N 0 3 U RIX49878
OccE (6-NHL) N 1 0 U RIX49690 22 2.1 20.5 0.2 1.1 0.1 0.2
OccF Y 2 4 E RIX49691 13 0.7 10.1 0.1 1.3 0.1 0.06
OccG (PPIase) N 0 0 U RIX49692 14 1 3.3 0.5 4.2 0.3 0.01
OccH N 0 0 OM/E RIX49693 6.0 0.2 7.7 0.6 0.8 0.1 0.10
OccI N 1 3 U RIX49694 7 2.5 2.3 0.0 2.9 1.1 0.1
OccJ Y 0 4 U RIX49879 44 0.2 19 3 2.4 0.4 0.03
OccK N 0 0 C RIX49880 39 6 13 1 3.0 0.2 0.04
OccL N 1 3 U RIX49695
OccM N 0 3 U RIX49881
OccN (6 NHL) N 2 0 U RIX49696 5.7 0.3 6 1 0.9 0.1 0.2
OccO (6 NHL) N 0 0 U RIX49882 1.2 0.8 4.2 0.4 0.3 0.2 0.03
OccP N 0 11 E RIX49697 14 2 12 3 1.2 0.5 0.4
OccQ Y 4 0 IM RIX49698
OccR N 8 0 IM RIX49883
OccS N 12 0 IM RIX49699
Cyt c5 N 1 1 U RIX47670 27 2 9 3 3.2 0.8 0.01
Cyt c5 Y 1 2 P RIX40984 19 2 6 1 3.3 1.0 0.06
Cyt c' /C_2 Y 1 1 P RIX44710 17 5 3.6 0.8 4.8 2.3 0.09
Cyt c' /C_2 Y 1 1 P RIX49630 7 1 1.2 0.9 8.2 6.6 0.07
Cyt c551/c552 Y 0 1 P RIX49087 13 3 2.8 0.0 4.8 1.1 0.06
Cyt c4 Y 0 2 P RIX48804 16 0.8 9.8 0.8 1.6 0.2 0.06
Cyt c4 Y 0 2 P RIX44782 4 2 1.7 0.7 2.6 0.1 0.08
Cyt c4 Y 0 2 P RIX45018 7 0.6 2.2 0.2 3.0 0.0 0.02
NapA Y 0 0 P RIX41011 76 2 67 3 1.1 0.1 0.1
NapB Y 1 2 P RIX41010 15 1 5 2 3.2 0.9 0.02
NapC N 1 4 IM RIX41009 12 3 13 1 1.0 0.2 0.1
NirS Y 0 1 P RIX44719 58 2 44 4 1.3 0.2 0.1
NirB Y 1 2 P RIX44720 14 3 10 2 1.5 0.6 0.2
NirC N 0 1 P RIX44788
NirF Y 1 0 P or C RIX44721 2 1 7 1 0.3 0.1 0.02
NorC N 1 1 IM RIX45182 3.5 0.7 3.2 0.7 1.1 0.0 0.1
NorB N 12 1 IM RIX45183
cNosZ Y 0 0 P RIX42539 77 17 66 8 1.2 0.3 0.2
cNosC1 Y 1 1 P RIX42538 16 2 4 2 5 3 0.08
cNosC2 Y 1 2 P RIX42537 10 0.1 3.9 0.3 2.6 0.1 0.02
cNosB N 6 0 IM RIX42536
cNosD N 0 0 P RIX42535
cNosG N 1 0 C RIX42534
cNosH N 4 0 IM RIX42533
QcrA N 9 0 CM RIX41976
QcrB N 9 0 CM RIX41977
QcrC N 1 0 CM RIX41978
Serine protease N 0 0 P RIX49468 27 2 1.0 0.3 29 10 0.02
Carboxyl-terminal protease (S41) N 1 0 CM RIX48818 18.5 0.8 8.0 0.9 2.3 0.1 0.0002
DUF4214 protein N 0 0 OM/E RIX44180 146 25 43 0.6 3.4 0.5 0.05
S-layer protein N 0 0 U RIX44181 8 0.5 10 0.6 0.8 0.1 0.14
PEP-CTERM sorting Y 1 0 E RIX45463 68 6 33 10 2.1 0.5 0.03
Tol-Pal system protein TolB Y 0 0 P RIX44015 20 2 12 1 1.67 0.05 0.03
Peptidoglycan-associated lipoprotein (Pal) N 0 0 OM RIX44016 27.3 0.2 10 3 3 1 0.04
Tol-Pal system protein YbgF Y 0 0 U RIX44017 10.8 0.4 4 2 4 2 0.06
Pilus assembly protein N 0 0 U RIX46961 54 5 30 5 1.8 0.1 0.001
PQQ-dependent dehydrogenase Y 0 0 P RIX45050 37 4 17 1 2.2 0.1 0.03
Phasin family granule-associated protein N 0 0 U RIX40682 49 2 22 1 2.2 0.2 0.03
Phasin family granule-associated protein Y 0 0 U RIX40683 34 4 16 1 2.1 0.0 0.03
High potential iron-sulfur protein Y 0 0 U RIX49681 10.79 0.01 6.5 0.4 1.7 0.1 0.02
Electron transfer flavoprotein (FixA) N 0 0 C RIX43544 16 3 10 2 1.7 0.0 0.04

E-pilus Type IV pilin PilA N 1 0 E RNC67631 93 3 18 3 5 1 0.02
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NCBI ID
Normalized peptide counts CH4/N2

P valueEnzyme Function SP TMH CxxCH P-sort 

Ca.  Dechloromonas occultata

Mto-1

Mto-2

Occ

Cyt c

Other

Ca.  Geobacter occultata

Nir

Nor

cNos

Qcr

Proteases

Membrane/E
xtracellular

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/695007doi: bioRxiv preprint 

https://doi.org/10.1101/695007

