bioRxiv preprint doi: https://doi.org/10.1101/695007; this version posted July 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1	Expression	of extracellular	multiheme	cvtochromes	discovered in a
1		or environmental	maivinvinv	cy coefficience	

2 betaproteobacterium during Mn(III) reduction

- 3 Nadia Szeinbaum^{1,2,5*}, Brook L. Nunn³, Amanda R. Cavazos², Sean A. Crowe³, Frank J.
- 4 Stewart¹, Thomas J. DiChristina¹, Christopher T. Reinhard^{2,5}, and Jennifer B. Glass^{2,5}*
- 5
- ⁶ ¹School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- ⁷ ²School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- ³Department of Genome Sciences, University of Washington, Seattle, WA, USA
- ⁹ ⁴Department of Microbiology & Immunology and Department of Earth, Ocean, & Atmospheric
- 10 Sciences, University of British Columbia, Vancouver, Canada
- ⁵NASA Astrobiology Institute, Alternative Earths Team, Mountain View, CA
- 12
- 13 *Corresponding author: jennifer.glass@eas.gatech.edu
- 14 **Running title:** Novel undecaheme in Betaproteobacteria

15

16 Abstract: Soluble ligand-bound Mn(III) can support anaerobic microbial respiration in diverse 17 aquatic environments. Thus far, Mn(III) reduction has only been associated with certain 18 Gammaproteobacteria. Here, we characterized microbial communities enriched from Mn-replete 19 sediments of Lake Matano, Indonesia. Our results provide the first evidence for biological 20 reduction of soluble Mn(III) outside of the Gammaproteobacteria. Metagenome assembly and 21 binning revealed a novel betaproteobacterium, which we designate "Candidatus Dechloromonas 22 occultata." This organism dominated the enrichment and expressed a novel cytochrome c-rich 23 protein cluster (Occ), including an undecaheme putatively involved in extracellular electron 24 transfer during Mn(III) reduction. The occ gene cluster was detected in diverse aquatic bacteria, 25 including uncultivated *Betaproteobacteria* from the deep subsurface. These observations provide 26 new insight into the taxonomic and functional diversity of microbially-driven Mn(III) reduction 27 in natural environments.

28

29 **Main text:** Manganese(III) is the most recently discovered player in the manganese cycle (10). 30 Ligand-bound Mn(III) is often the most abundant Mn species in aquatic ecosystems (18), yet 31 knowledge about microbes cycling Mn(III) remains fragmentary. To date, only *Shewanella* spp. 32 (Gammaproteobacteria) are known to respire soluble Mn(III) using the Mtr pathway (17, 22, 33 23). The Mtr pathway forms a porin-cytochrome (PCC) conduit that transports electrons across 34 the periplasm (11) for extracellular respiration of Mn(III/IV), Fe(III), and other metals (20, 23). 35 Another PCC is Mto used by freshwater *Betaproteobacteria* for extracellular Fe(II) oxidation (7, 36 12, 16). Environmental omics suggests that metal reduction by *Betaproteobacteria* may be 37 widespread in the deep subsurface (1, 13). However, only a few Fe(III)-reducing 38 Betaproteobacteria isolates have been characterized (5, 8). This study presents the first evidence for biological reduction of soluble Mn(III) by a bacterium outside of the *Gammaproteobacteria*class.

41	We explored microbial Mn(III) reduction in enrichments inoculated with sediment from
42	Lake Matano, Indonesia, which has active microbial Mn and methane (CH ₄) cycles (15).
43	Manganese reduction coupled to CH ₄ oxidation is a thermodynamically favorable metabolism,
44	and its natural occurrence is supported by biological evidence (2) and geochemical evidence (4,
45	19). We designed an enrichment strategy to select for microbes capable of anaerobic CH_4
46	oxidation coupled to soluble Mn(III) reduction incubating anoxic Lake Matano with soluble
47	Mn(III)-pyrophosphate as the electron acceptor (with 2% O_2 in a subset of bottles), and CH ₄ as
48	the sole electron donor and carbon source (see Supplemental Material for enrichment details).
49	Cultures were transferred into fresh media after Mn(III) was completely reduced to Mn(II) for a
50	total of five transfers over 395 days. By the fourth transfer, cultures with CH ₄ headspace (with or
51	without 2% O_2) reduced ~80% of soluble Mn(III) compared to ~30% with N_2 headspace (Fig. 1).
52	16S rRNA gene sequences were dominated by Betaproteobacteria (Rhodocyclales) and
53	<i>Deltaproteobacteria</i> (<i>Desulfuromonadales</i>), and ${}^{13}CH_4$ oxidation to ${}^{13}CO_2$ was undetectable
54	(Figs. S1, S2).

Samples for metagenomic and metaproteomic analysis were harvested from the fifth
transfer (Fig. 1; Fig. S1). Out of 2,952 proteins identified in the proteome, 90% were assigned to *Betaproteobacteria*; of those, 72% mapped to a 99.53% metagenome-assembled genome (MAG; *Rhodocyclales* bacterium GT-UBC; NCBI accession QXPY01000000) with 81-82% average
nucleotide identity (ANI) and phylogenetic affiliation to *Dechloromonas* spp. (Table S1; Fig.
S3). This MAG is named here "*Candidatus* Dechloromonas occultata" sp. nov.; etymology:
occultata; (L. fem. adj. 'hidden'). The remaining 10% of proteins mapped to

62	Deltaproteobacteria; of those, 70% mapped to a nearly complete MAG (Desulfuromonadales
63	bacterium GT-UBC; NCBI accession RHLS01000000) with 80% ANI to Geobacter
64	sulfurreducens. This MAG is named here "Candidatus Geobacter occultata".
65	Cytochromes containing multiple <i>c</i> -type hemes are key for electron transport during
66	microbial metal transformations, and therefore might also be expected to play a role in Mn(III)
67	reduction. Numerous mono-, di-, and multi (>3)-heme cytochromes (MHCs) were expressed by
68	"Ca. D. occultata" in Mn(III)-reducing cultures. Nine out of 15 MHCs encoded by the "Ca. D.
69	occultata" MAG were expressed, including two decahemes similar to MtoA in Fe(II)-oxidizing
70	Betaproteobacteria (Tables 1, S2, S3; Figs. 2A, S4). Several highly expressed MHCs were
71	encoded on a previously unreported 19-gene cluster with 10 cytochrome- c proteins, hereafter
72	occA-S (Table 1; Figs. 2B, S5, S6). OccP was an undecaheme, which are known to be involved
73	in metal reduction (6, 21). "Ca. Dechloromonas occultata" may reduce Mn(III) using the novel
74	extracellular undecaheme OccP as the terminal Mn(III) reductase, although the function of the
75	putative Occ complex has yet to be experimentally verified.
76	We investigated the taxonomic distribution of genes encoding occP, mtoA, and key
77	denitrification complexes expressed by "Ca. D. occultata". We discovered occP homologs (40-
78	60% identity) in diverse Betaproteobacteria from diverse freshwaters and deep subsurface
79	groundwaters, as well as several Gammaproteobacteria and one alphaproteobacterium (Fig. 2D;
80	Table S3). Most occP-containing bacteria also possessed mtoA and denitrification (Fig. 2D)
81	genes. For more discussion of denitrification, see Supplemental Text and Figs. S7 and S8.
82	While the specific role of CH_4 in Mn(III) reduction remains unknown (see Supplemental
83	Text), CH_4 significantly stimulated expression of many cytochrome c proteins, including
84	OccABGJK, MtoD-2, and cytochrome-c4 and -c5 proteins associated with anaerobic respiration

85	(p < 0.05; Table 1; Fig. 2C). Methane also led to increased expression of several " <i>Ca.</i> D.
86	occultata" proteins involved in outer membrane structure and composition, including an
87	extracellular DUF4214 protein located next to an S-layer protein similar to those involved in
88	manganese binding and deposition (24), a serine protease possibly involved in Fe(III) particle
89	attachment (3), an extracellular PEP-CTERM sorting protein for protein export (9), and a Tol-Pa
90	system for outer membrane integrity (Table 1). A type IV pilin protein (87% identity to
91	Geobacter pickeringii (14)) was significantly more highly expressed with CH ₄ vs. N ₂ in the "Ca.
92	G. occultata" proteome (p=0.02; Table 1). The possible involvement of <i>Geobacter</i> e-pilins in
93	Mn(III) reduction remains an open question. For additional discussion of other features of "Ca.
94	D. occultata" and "Ca. G. occultata" genomes and proteomes, see Supplemental Text, Table
95	S4 , Figs. S9 , S10 , and S11 .
96	
97	Acknowledgements. This research was funded by NASA Exobiology grant NNX14AJ87G.
98	Support was also provided by a Center for Dark Energy Biosphere Investigations (NSF-CDEBI
99	OCE-0939564) small research grant and supported by the NASA Astrobiology Institute
100	(NNA15BB03A) and a NASA Astrobiology Postdoctoral Fellowship to NS. SAC was supported
101	through NSERC CRC, CFI, and Discovery grants. We thank Marcus Bray, Andrew Burns, Caleb
102	Easterly, Pratik Jagtap, Cory Padilla, Angela Peña, Johnny Striepen, and Rowan Wolschleger for
103	technical assistance. We thank Emily Weinert for helpful discussions.
104	
105	Competing Interests: The authors declare no competing interests.
106	

107 **References**

Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ *et al* (2016). Thousands
 of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. *Nat Commun* 7: 13219.

- Beal EJ, House CH, Orphan VJ (2009). Manganese- and iron-dependent marine methane
 oxidation. *Science* 325: 184-187.
- Burns JL, Ginn BR, Bates DJ, Dublin SN, Taylor JV, Apkarian RP *et al* (2009). Outer
 membrane-associated serine protease involved in adhesion of Shewanella oneidensis to Fe (III) oxides.
 Environmental science & technology 44: 68-73.
- 116 4 Crowe SA, Katsev S, Leslie K, Sturm A, Magen C, Nomosatryo S *et al* (2011). The methane 117 cycle in ferruginous Lake Matano. *Geobiology* **9**: 61-78.
- Cummings DE, Caccavo F, Spring S, Rosenzweig RF (1999). Ferribacterium limneticum, gen.
 nov., sp. nov., an Fe(III)-reducing microorganism isolated from mining-impacted freshwater lake
 sediments. *Archives of Microbiology* **171:** 183-188.
- Edwards MJ, Hall A, Shi L, Fredrickson JK, Zachara JM, Butt JN *et al* (2012). The crystal
 structure of the extracellular 11-heme cytochrome UndA reveals a conserved 10-heme motif and defined
 binding site for soluble iron chelates. *Structure* 20: 1275-1284.
- 124 7 Emerson D, Field EK, Chertkov O, Davenport KW, Goodwin L, Munk C *et al* (2013).
 125 Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and
 126 systematics. *Front Microbiol* 4: 254.
- Finneran KT, Johnsen CV, Lovley DR (2003). Rhodoferax ferrireducens sp. nov., a
 psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III). *International Journal of Systematic and Evolutionary Microbiology* 53: 669-673.
- Haft DH, Paulsen IT, Ward N, Selengut JD (2006). Exopolysaccharide-associated protein sorting
 in environmental organisms: the PEP-CTERM/EpsH system. Application of a novel phylogenetic
 profiling heuristic. *BMC Biol* 4: 29.
- 133 10 Hansel C (2017). Small but mighty: how minor components drive major biogeochemical cycles.
 134 Environmental microbiology reports 9: 8-10.
- 135 11 Hartshorne RS, Reardon CL, Ross D, Nuester J, Clarke TA, Gates AJ *et al* (2009).
- Characterization of an electron conduit between bacteria and the extracellular environment. *Proc Natl Acad Sci U S A* 106: 22169-22174.
- 12 He S, Barco RA, Emerson D, Roden EE (2017). Comparative Genomic Analysis of Neutrophilic
 Iron (II) Oxidizer Genomes for Candidate Genes in Extracellular Electron Transfer. *Frontiers in Microbiology* 8: 1584.
- 141 13 Hernsdorf AW, Amano Y, Miyakawa K, Ise K, Suzuki Y, Anantharaman K *et al* (2017).
 142 Potential for microbial H2 and metal transformations associated with novel bacteria and archaea in deep 143 terrestrial subsurface sediments. *The Isme Journal* 11: 1915.
- Holmes DE, Dang Y, Walker DJ, Lovley DR (2016). The electrically conductive pili of
 Geobacter species are a recently evolved feature for extracellular electron transfer. *Microbial Genomics* 2.

- 146 15 Jones C, Crowe SA, Sturm A, Leslie KL, MacLean LCW, Katsev S *et al* (2011).
- 147 Biogeochemistry of manganese in ferruginous Lake Matano, Indonesia. *Biogeosciences* 8: 2977-2991.
- 16 Kato S, Ohkuma M, Powell DH, Krepski ST, Oshima K, Hattori M *et al* (2015). Comparative
 genomic insights into ecophysiology of neutrophilic, microaerophilic iron oxidizing bacteria. *Frontiers in Microbiology* 6: 1265.
- 151 17 Kostka JE, Luther III GW, Nealson KH (1995). Chemical and biological reduction of Mn (III) pyrophosphate complexes: potential importance of dissolved Mn (III) as an environmental oxidant.
 152 Complexing at Comparison Acts 50: 295–204
- 153 *Geochimica et Cosmochimica Acta* **59:** 885-894.
- 154 18 Oldham VE, Siebecker MG, Jones MR, Mucci A, Tebo BM, Luther GW (2019). The Speciation
 155 and Mobility of Mn and Fe in Estuarine Sediments. *Aquatic Geochemistry*.
- Riedinger N, Formolo MJ, Lyons TW, Henkel S, Beck A, Kasten S (2014). An inorganic
 geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine
 sediments. *Geobiology* 12: 172-181.
- Shi L, Dong H, Reguera G, Beyenal H, Lu A, Liu J *et al* (2016). Extracellular electron transfer
 mechanisms between microorganisms and minerals. *Nature Reviews Microbiology* 14: 651.
- Smith JA, Lovley DR, Tremblay PL (2013). Outer cell surface components essential for Fe(III)
 oxide reduction by Geobacter metallireducens. *Appl Environ Microbiol* **79**: 901-907.
- Szeinbaum N, Burns JL, DiChristina TJ (2014). Electron transport and protein secretion pathways
 involved in Mn (III) reduction by *Shewanella oneidensis*. *Environmental Microbiology Reports* 6: 490 500.
- Szeinbaum N, Lin H, Brandes JA, Taillefert M, Glass JB, DiChristina TJ (2017). Microbial
 manganese(III) reduction fuelled by anaerobic acetate oxidation. *Environ Microbiol* 19: 3475-3486.
- Wang X, Schröder HC, Schloßmacher U, Müller WE (2009). Organized bacterial assemblies in
 manganese nodules: evidence for a role of S-layers in metal deposition. *Geo-Marine Letters* 29: 85-91.
- 170
- 171

172 **Table and Figure Captions**

173

174

175	Table 1. Expression levels for "Ca. D. occultata" proteins in the presence of CH4 and N2.
176	Peptide counts are normalized to total "Ca. D. occultata" proteins x 10,000. Blank cells indicate
177	proteins with <2 normalized peptide counts. Gray boxes indicate membrane proteins with that
178	may be underrepresented by mass spectrometry-based metaproteomic analyses, which inherently
179	favor soluble over insoluble membrane-bound or hydrophobic proteins. SP: signal peptide
180	(Y:present/N:absent); TMH: numbers of transmembrane helices; # CxxCH: number of heme-
181	binding motifs; P-sort: predicted cellular location. Bold proteins indicate proteins that were
182	significantly more expressed with CH ₄ than N ₂ (CH ₄ /N ₂ >1; p<0.05). MCP: methyl-accepting
183	chemotaxis protein; PPIase: Peptidyl-proline isomerase; P: periplasm, C: cytoplasm; OM: outer
184	membrane; IM: inner membrane, E: extracellular; U: unknown. MtoX and MtoY were predicted
185	to be an inner membrane cytochrome-b protein and a methyl-accepting chemotaxis protein,
186	respectively.

187

188 Figure 1. Consumption of Mn(III) in Lake Matano enrichments in the presence and

absence of methane. Sediment-free cultures (transfer 4) from 335 days after the initial

190 enrichment were incubated for 45 days with 1 mM Mn(III) pyrophosphate as the sole electron

191 acceptor. Initial bottle headspace contained 50% CH₄+ 50% N₂ (black circles), 50% CH₄+48%

192 N₂+2% O₂ (gray circles), 100% N₂ (white circles), and 50% CH₄+50% N₂ heat killed controls

(black triangles). Error bars are standard deviations from duplicate experiments. Color changefrom red to clear indicates Mn(III) reduction.

195

196	Figure 2. Gene arrangement, predicted protein locations, and taxonomic distribution of
197	major expressed respiratory complexes in "Ca. D. occultata". A: MtoDAB(Y)X porin-
198	cytochrome c electron conduit; B: OccA-S; C: denitrification complexes (Nap, Nir, Nor and
199	cNos); D: Occurrence of key marker genes in Betaproteobacteria and Gammaproteobacteria
200	with >95% complete genomes that encode OccP. Red fill around genes and proteins indicate
201	cytochrome- c proteins. Black outlines around blue circles in D indicate type I nitrous oxide
202	reductase to distinguish from blue dots (type II/cytochrome-nitrous oxide reductase). Gray-
203	shaded genes on the occ gene cluster indicate 6-NHL repeat proteins. Protein locations shown
204	are based on P-sort predictions. Numbers above genes indicate number of CxxCH motifs
205	predicted to bind cytochrome c . IM: inner membrane; OM: outer membrane. For more details,
206	see Table 1 and Table S3.

bioRxiv preprint doi: https://doi.org/10.1101/695007; this version posted July 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Enzyme	Function		р тмн	н СххСн	P-sort	NCBI ID	Normalized peptide counts			unts	CH4/N2		
		SP					CH_4	SD	N ₂	SD	ave	SD	P value
	Ca.	Dech	lorom	ionas oc	cultata	1							
	MtoX-1 (cyt-b)	Ν	5	0	IM	RIX49676							
	MtoY-1 (MCP)	Ν	2	1	IM	RIX49677	2.7	0.5	3.6	0.2	0.8	0.2	0.2
Mto-1	MtoB-1 (porin)	Y	0	0	OM	RIX49678	10	2	15	2	0.6	0.1	0.004
	MtoA-1	Y	1	10	Р	RIX49874	5	1	2.5	0.1	1.9	0.4	0.1
	MtoD-1	Ν	0	1	Р	RIX49875							
	MtoX-2 (cyt-b)	N	4	0	IM	RIX48942							
Mto-2	MtoB-2 (porin)	Y	0	0	OM	RIX48943	8	1	16	0.2	0.5	0.1	0.04
	MtoA-2	Y V	1	10	P	RIX48944	7.3	0.8	4	2	2.1	1.3	0.2
		v	1	3	D	RIX40545	2.0	0.5	0.7	0.5	4.0	5.7	0.003
	OCCB	v	0	3	г 11	RIX49689	41	4	19	2	2.2	0.0	0.01
	OccC	N	0	1	U	RIX49877				-		0.0	0.00
	OccD	N	0	3	U	RIX49878							
	OccE (6-NHL)	Ν	1	0	U	RIX49690	22	2.1	20.5	0.2	1.1	0.1	0.2
	OccF	Y	2	4	E	RIX49691	13	0.7	10.1	0.1	1.3	0.1	0.06
	OccG (PPlase)	Ν	0	0	U	RIX49692	14	1	3.3	0.5	4.2	0.3	0.01
	OccH	Ν	0	0	OM/E	RIX49693	6.0	0.2	7.7	0.6	0.8	0.1	0.10
	Occl	Ν	1	3	U	RIX49694	7	2.5	2.3	0.0	2.9	1.1	0.1
Occ	OccJ	Y	0	4	U	RIX49879	44	0.2	19	3	2.4	0.4	0.03
	OccK	N	0	0	С	RIX49880	39	6	13	1	3.0	0.2	0.04
	OccL	N	1	3	U 	RIX49695							
		N	0	3	0	RIX49881		0.0	c	4		0.4	0.0
		IN N	2	0	U	RIX49696	5.7	0.3	6	1	0.9	0.1	0.2
		N	0	11	U F	RIX49602	1.2	0.0	4.2	2	0.5	0.2	0.03
		v	4	0		RIX49698	14	2	12	3	1.2	0.5	0.4
	OccR	N	8	0	IM	RIX49883							
	OccS	N	12	0	IM	RIX49699							
	Cyt c5	N	1	1	U	RIX47670	27	2	9	3	3.2	0.8	0.01
	Cyt c5	Y	1	2	Р	RIX40984	19	2	6	1	3.3	1.0	0.06
	Cyt c' /C_2	Y	1	1	Р	RIX44710	17	5	3.6	0.8	4.8	2.3	0.09
Cytic	Cyt c' /C_2	Y	1	1	Р	RIX49630	7	1	1.2	0.9	8.2	6.6	0.07
Cyrc	Cyt c551/c552	Y	0	1	Р	RIX49087	13	3	2.8	0.0	4.8	1.1	0.06
	Cyt c4	Y	0	2	Р	RIX48804	16	0.8	9.8	0.8	1.6	0.2	0.06
	Cyt c4	Y	0	2	Р	RIX44782	4	2	1.7	0.7	2.6	0.1	0.08
	Cyt c4	Y	0	2	Р	RIX45018	7	0.6	2.2	0.2	3.0	0.0	0.02
New	NapA	Y	0	0	P	RIX41011	76	2	67	3	1.1	0.1	0.1
Nар	NapB	Y	1	2	P	RIX41010	15	1	12	2	3.2	0.9	0.02
	Nape	N	1	4	D	RIX41009	50	3	13	1	1.0	0.2	0.1
	NirB	v	1	2	P	RIX44713	14	2	10	2	1.5	0.2	0.1
Nir	NirC	N	0	1	P	RIX44788	14	5	10	-	1.5	0.0	0.2
	NirF	Y	1	0	P or C	RIX44721	2	1	7	1	0.3	0.1	0.02
	NorC	Ν	1	1	IM	RIX45182	3.5	0.7	3.2	0.7	1.1	0.0	0.1
Nor	NorB	N	12	1	IM	RIX45183							
	cNosZ	Y	0	0	Р	RIX42539	77	17	66	8	1.2	0.3	0.2
	cNosC1	Y	1	1	Р	RIX42538	16	2	4	2	5	3	0.08
	cNosC2	Y	1	2	Р	RIX42537	10	0.1	3.9	0.3	2.6	0.1	0.02
cNos	cNosB	Ν	6	0	IM	RIX42536							
	cNosD	Ν	0	0	P	RIX42535							
	CNOSG	N	1	0	С	RIX42534							
	CNOSH	N	4	0	IM	RIX42533							
0.07		N	9	0	CIVI	RIX41976							
QCI	QCIB	IN N	9	0	CIVI	RIX41977							
	Serine protease	N	0	0	P	RIX49468	27	2	10	03	29	10	0.02
Proteases	Carboxyl-terminal protease (S41)	N	1	0	см	RIX48818	18.5	0.8	8.0	0.9	2.3	0.1	0.0002
	DUF4214 protein	N	0	0	OM/E	RIX44180	146	25	43	0.6	3.4	0.5	0.05
	S-layer protein	N	0	0	U	RIX44181	8	0.5	10	0.6	0.8	0.1	0.14
Annah /-	PEP-CTERM sorting	Y	1	0	E	RIX45463	68	6	33	10	2.1	0.5	0.03
Membrane/	Tol-Pal system protein TolB	Y	0	0	Р	RIX44015	20	2	12	1	1.67	0.05	0.03
AUDUCITUID	Peptidoglycan-associated lipoprotein (Pal)	Ν	0	0	ом	RIX44016	27.3	0.2	10	3	3	1	0.04
	Tol-Pal system protein YbgF	Y	0	0	U	RIX44017	10.8	0.4	4	2	4	2	0.06
	Pilus assembly protein	Ν	0	0	U	RIX46961	54	5	30	5	1.8	0.1	0.001
	PQQ-dependent dehydrogenase	Y	0	0	Р	RIX45050	37	4	17	1	2.2	0.1	0.03
CUL	Phasin family granule-associated protein	N	0	0	U	RIX40682	49	2	22	1	2.2	0.2	0.03
Other	Phasin family granule-associated protein	Y	0	0	U	RIX40683	34	4	16	1	2.1	0.0	0.03
	High potential iron-sulfur protein	Y	0	0		KIX49681	10.79	0.01	6.5	0.4	1.7	0.1	0.02
	Electron transfer flavoprotein (FixA)				L Itata	KIX43544	16	3	10	2	1./	0.0	0.04
Epilus	Type IV pilin PilA	<i>u.</i> G			F	RNC67634	02	2	10	2	-	1	0.02
L-pilus	Libbe in hum burn	114	<u> </u>	0	-	11100/051	33	3	10	3	2	<u> </u>	0.02