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Abstract 14 

Cassava is widely cultivated due to its high drought tolerance and high carbohydrate-containing 15 

storage roots.  The lack of uniformity and irregular shape of storage roots within and between 16 

genotypes poses significant constraints on harvesting and post-harvest processing. Routine 17 

assessment of storage root size and shape in breeding plots relies on visual scores. 18 

Here, we phenotyped the Genetic gain and offspring (C1) populations from the International 19 

Institute of Tropical Agriculture (IITA) breeding program for root shape and size-related traits 20 

using image analysis of storage root photographs taken in the field. 21 

In our study, using univariate genome-wide association analysis, we detected for most shape 22 

and size related traits, significant QTL regions located on chromosomes 1 and 12. The QTL 23 

region on chromosome 12 has been previously associated, using IITA breeding populations, to 24 

cassava mosaic disease (CMD) resistance. 25 

Because the uniformity in size and shape of cassava roots is an important breeding goal, we 26 

calculated the standard deviation of individual root measurements per clone. The use of 27 

standard deviation measurements allowed the identification of new significant QTL for 28 

Perimeter, Feret and Aspect Ratio on chromosomes 6, 9 and 16. Using genomic prediction 29 

cross validation, the accuracies of root size and shape-related traits were lower than those 30 

previously reported for dry matter content (DM) and cassava mosaic virus resistance (CMD). 31 

Predictive accuracies of the mean values of root size and shape image-extracted traits were 32 

mostly higher than yield trait prediction accuracies in the C1 population. This study aimed to 33 

evaluate the feasibility of the image phenotyping protocol and to assess the use of genome-34 
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wide analyses for size and shape image-extracted traits. The methodology described here and 35 

the results obtained in this study are promising and open up the opportunity to apply high-36 

throughput methods in cassava. 37 

 38 

 39 

Introduction 40 

Cassava (Manihot esculenta Crantz), a tropical root crop with origins in Latin America, ranks 41 

as the 3rd most important crop in the tropics after rice and maize (Guira et al., 2017). In Africa, 42 

more than 800 million people rely on cassava as a primary source of calories (Howeler et al., 43 

2013). Cassava is widely cultivated due to its high drought tolerance and high carbohydrate-44 

containing storage roots, and although most of the production is for human consumption, its 45 

use extends to animal feed and industrially processed products (Hahn, Reynolds and Egbunike, 46 

1992; Howeler et al., 2013; Lukuyu et al., 2014). In addition to the edible, high-starch storage 47 

roots, cassava plants produce thin fibrous roots, which function to absorb water and nutrients 48 

from the soil (Alves, 2002). The development and differentiation of fibrous roots, as well as 49 

the mechanism that triggers root storage formation in cassava, are poorly understood.  50 

Cassava storage roots are morphologically diverse, the lack of uniformity and irregular shape 51 

between and within genotypes poses significant constraints on harvesting and post-harvest 52 

processing. The irregularity of root shape results in considerable losses of valuable root yield 53 

(Hahn, Reynolds and Egbunike, 1992). The waste of tuber flesh and the inefficiency of hand 54 

peeling could be avoided by peeling mechanization. However, breeding for root characteristics 55 

that facilitate this process requires a thorough understanding of the genetic basis of cassava 56 

root morphology. Several studies have attempted to characterize cassava root shape to support 57 

the development of peeling mechanization (Onwueme, 1978; Ejovo N. Ohwovoriole et al., 58 

1988).The root characteristics that were evaluated in those studies include root diameter, 59 

weight, length and peel thickness.  60 

 61 

Routine assessment of storage root size and shape in breeding plots relies on visual scores 62 

(www.cassavabase.org/search/traits). The categorical scores for root size are 3, 5 and 7 for 63 

small, medium and large roots, respectively. A single categorical score is given to a harvested 64 

plot based on the most frequent size in that plot. The visual rating of shape is 1 (conical), 2 65 

(conical-cylindrical), 3 (cylindrical), 4 (fusiform), 5 (Irregular), and 6 (Combination of shapes). 66 

Similar to root size, the shape scoring is based on the most common observation in a plot. These 67 

categorical scores suffer from person to person subjectivity and inability to describe the 68 
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variation in size and shape within a plot. Thus, image analysis of roots offers a more objective 69 

means of obtaining unbiased quantitative data on important root traits. 70 

 71 

Image analysis software tools for high-throughput phenotyping have gained increased 72 

relevance due to the need in crop improvement to keep up with the advances in genotyping 73 

technologies (Furbank and Tester, 2011; Hartmann et al., 2011; Fahlgren, Gehan and Baxter, 74 

2015). In Maize, imaging under controlled illumination followed by automatic image-analysis 75 

has been successfully used to study root system architecture traits (Colombi et al., 2015). In 76 

cereals, grain shape is an important target for genetic improvement, because it is usually related 77 

to quality, consumer appeal or the intended end usage (Lestrel, 2011). For rice grain shape 78 

description, SHAPE, a program based on Elliptical Fourier Descriptor (EFDs) has been used 79 

to derive shape-related phenotypes for genome-wide association and genomic prediction (Iwata 80 

et al., 2015b, 2015a). 81 

 82 

Genomic selection (GS) is a method first introduced in animal breeding to select candidates for 83 

crossing in the breeding program using only genomic information. GS is particularly relevant 84 

for the improvement of polygenic traits (Heffner, Sorrells and Jannink, 2009) because its 85 

implementation can lead to a reduction in cost and time compared to traditional plant breeding 86 

programs (Jannink, Lorenz and Iwata, 2010). Because cassava is an outcrossing species mostly 87 

propagated by stem cuttings, conventional breeding methods can take more than five years to 88 

produce superior performing clones (www.nextgencassava.org). Genome-wide association 89 

studies (GWAS) are complementary to GS as they have proven effective for the identification 90 

of QTL regions associated with several traits that are critical for cassava breeding, including 91 

cassava mosaic disease resistance (CMD) (Wolfe et al., 2016), cassava brown streak disease 92 

resistance (CBSD) (Kayondo et al., 2018), and beta-carotene content and dry matter content 93 

(Rabbi et al., 2017). 94 

 95 

In this study, size and shape related traits describing cassava roots were obtained through 96 

automated image analysis. We first estimated their heritability and conducted a genome-wide 97 

association study to explore the genetic architecture of cassava roots shape characteristics; then 98 

we compared the genomic prediction accuracy of image size and shape traits to those of root 99 

yield. Our research contributes to a better understanding of cassava root shape and explores the 100 

possibility of high-throughput phenotyping that would allow breeders to use GS to select 101 

varieties for quantitative root characteristics. 102 
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Materials and methods 103 

Germplasm 104 

We processed and analyzed cassava roots images taken from several field trials conducted by 105 

the International Institute for tropical agriculture (IITA) as part of their genomic selection 106 

breeding program. The cassava germplasm collections that we analyzed are known as Genetic 107 

Gain (GG) and the progeny of the first genomic selection event (C1), which are thus progeny 108 

of a subset of the GG population. The GG constitutes a large collection of important landraces, 109 

breeding lines and released improved varieties of cassava developed by IITA over the last four 110 

decades. More detail about the origins and constituency of these populations is available in 111 

several published studies (Wolfe et al., 2016;Wolfe et al., 2017). 112 

 113 

A summary of the trials used in the present study is presented in Table 1. The first set of trial 114 

was the GG trial which comprised 805 plots planted in the summer of 2014 in Ubiaja, Nigeria 115 

using an augmented design with two checks planted in each incomplete block. The trial 116 

comprised of 758 unique clones. Each plot consisted of 10 stands in a single row with spacing 117 

of 1 m between rows and 0.8 m within rows. The second set of trials consisted of 88 clones 118 

selected from the GG population and planted as preliminary yield trial (PYT) across four 119 

locations (Ibadan, Ikenne, Ubiaja and Mokwa) using a randomized complete block design with 120 

two replicates. Plot size was similar to that of the GG trial. It is important to note here that 121 

these clones were used as parents for the GS cycle 1 population. The third set of trials involved 122 

GS cycle 1 clones that were split into three sets and planted separately in three locations: 123 

Ibadan, Ikenne and Mokwa. Each set was planted as a clonal evaluation trial (CET) using an 124 

incomplete block design with common checks in each block. All trials had at least 10 clones in 125 

common. Plants were harvested after 12 months in all trials.  126 

 127 

Table 1. Summary of trials used in the present study including the trial names, design, 128 

locations, number of plots and number of unique clones in each trial.  129 

Trial Design* Location Plots Unique 
entries 

Plot size 

GG.C0.UBJ CET, augmented Ubiaja 805 738 10 plants, 
single row 

GS.C1.EC.IBA CET, augmented Ibadan 293 265 20 plants 
(4 x 5) 

GS.C1.EC.IKN CET, augmented Ikenne 331 307 20 plants 
(4x5) 
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GS.C1.EC.MOK CET, augmented Mokwa 329 278 20 plants 
(4x5) 

Crossing 
block.C0_C1.UBJ 

CET augmented Ubiaja 243 218  

      
* CET = clonal evaluation trial 130 

 131 

Image acquisition 132 

The roots from four plants per plot were spread across a green board (160 cm by 120 cm). It 133 

was important that the roots were not touching each other and also not touching the board edges 134 

to get an individual root value (Supplementary Figure 1). Five circles, each 7.5 cm in diameter 135 

were painted on the left and right sides of the board. Those circles were used as a reference to 136 

transform the final result from the pixel unit to cm. Labels were placed on the board for each 137 

image allowing images to be identified and renamed for further processing.  138 

 139 

Image processing and phenotype acquisition 140 

First, the images were coded to assign each photo to the plot from which the roots were taken. 141 

In some cases, several images were required per plot, to capture all roots from all the plants. 142 

For the GG collection, after quality control we obtained 805 images of cassava roots for 738 143 

clones of which 665 had genotypic information. For the C1 population, we had images 144 

originating from four locations and a total of 1091 root images for 997 clones. All the image 145 

processing was performed with ImageJ Java version 1.8.0_11 (64-bit). The images were copied 146 

in two folders, one for processing and measuring the roots and the second for scaling the 147 

measurements. Thus, each image was processed and analysed twice.  148 

 149 

Image processing 150 

The first step of the image processing was to convert our RGB colour images into HSB stacks 151 

(hue, saturation and brightness images). We obtained three slices, but we only kept the first 152 

slice (the hue image). We then set a threshold from 0 to 255 for the roots and from 125 to 255 153 

for the reference scaling circles before proceeding to run the “threshold” followed by the “make 154 

binary” commands. This threshold was determined by doing individual tests on some images. 155 

At the end of the processing, each image was binary, with our objects of interest (roots and 156 

scales) represented as white pixels and everything else as black. Most steps in the procedure 157 

were automated using customized ImageJ macros. 158 

 159 
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Phenotypes acquisition and description 160 

The “analyze particles” command in ImageJ counts each contiguous area of white pixels within 161 

a binary image and gives some additional basic measurements. With the aim to get shape 162 

related traits, we used the “extended particle analyzer” function in the BioVoxxel Toolbox 163 

plugin (http://imagej.net/BioVoxxel_Toolbox#Extended_Particle_Analyzer). This function 164 

computes useful parameters of which we chose to keep seven for downstream analysis: Area, 165 

Perimeter, Feret, Circularity, Solidity, Roundness, and the Aspect Ratio (AR). The area and 166 

the perimeter describe the size of a root. The Feret, is the longest distance between any two 167 

points along the selection boundary, also known as maximum caliper. Circularity, Solidity, 168 

Roundness and aspect ratio (AR) describe shape.  169 

The shape descriptors are ratio values that ranged from 0 to 1 except AR, which is not bounded. 170 

In addition, the shape descriptors do not have a unit, while area, perimeter, and feret are 171 

parameters expressed in pixels. The mean area value of the circles was used as a reference to 172 

convert pixels to centimetres (scaling coefficient). Since the exact diameter in centimetres of 173 

each circle was known, we used this value to calculate the mean number of pixels per cm2 for 174 

each image.  175 

 176 

Scaling coefficient=√ (Area (pixel2)/Area (cm2)) 177 

 178 

Genomic analyses 179 

We performed a two-step approach for the genomic analysis. In the first step, we used a linear 180 

mixed model to account for the variability in the field design and calculate the broad-sense 181 

heritability. The input data was: 1) the mean phenotype value for each plot (average phenotype 182 

of all imaged roots), 2) the same as (1) but adjusted to account for the potential effects of 183 

variation in cassava mosaic disease (CMD) severity among plots and 3) the standard deviation 184 

of the root shape and size measurements (across all imaged roots) per plot, also adjusted to 185 

remove the effect of CMD. We fit two different models, with CMD correction and without 186 

CMD correction, for each of the two focal populations (GG or C1).  187 

 188 

For GG, the following models were fitted:  189 

(1) 𝒚 = 𝑿𝑚 + 𝐙𝐜𝐥𝐨𝐧𝐞𝑐 + 𝐙𝐫𝐚𝐧𝐠𝐞𝑟 + 𝜀 190 
 191 

(2)𝒚 = 𝑿𝑛 + 𝐙𝐜𝐥𝐨𝐧𝐞𝑐 + 𝐙𝐫𝐚𝐧𝐠𝐞𝑟 + 𝜀 192 
 193 
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In both models 𝒚 is a vector of phenotypes, 𝐙𝐜𝐥𝐨𝐧𝐞  and 𝐙𝐫𝐚𝐧𝐠𝐞 are respectively the incidence 194 

matrices of the clones and range both fit as random with their effects vector c ~N(0, 𝐈𝜎:;) for 195 

clones and r ~N(0, 𝐈𝜎=;) for range.	𝐗 is the incidence matrix for the fixed effects. In model 1, 196 

the number of harvested plants per plot (NOHAV) and CMD were accounted for as fixed and 197 

the vector 𝑚 contains the effect estimates. In model 2, we did not correct for CMD, 𝐗 and n 198 

therefore only reference NOHAV. 199 

 200 

For C1, model (3) and (4) were fitted: 201 

(3)	𝒚 = 	𝑿𝑚 +	𝐙𝐜𝐥𝐨𝐧𝐞𝑐 + 𝐙𝐥𝐨𝐜:𝐫𝐚𝐧𝐠𝐞𝑟 + 𝜀	 202 

(4) 𝒚 = 	𝑿𝑛 +	𝐙𝐜𝐥𝐨𝐧𝐞𝑐 + 𝐙𝐥𝐨𝐜:𝐫𝐚𝐧𝐠𝐞𝑟 + 𝜀	 203 

In model (3) and (4), we replace the range variable with the combination of the location and 204 

the range (Loc:range, i.e. range is nested in location) as the C1 population was planted in 205 

several locations unlike the GG. In all models, for all traits, 𝒚 corresponded to the log 206 

transformation of the original phenotypic values. Additional explanation of the models fitted 207 

for these populations can be found in Wolfe et al. (2017). 208 

 209 

From these models, we extracted the clone-effect BLUP, which estimates the total genetic 210 

value (EGV) of each line and de-regressed the EGV by dividing them by their reliability to 211 

obtain the de-regressed BLUP. Broad-sense heritability values were calculated using the 212 

variance components estimated using the mixed-models described above. EGV and de-213 

regressed EGV are used in downstream analyses as described below. 214 

 215 

Genotyping data 216 

Both populations (GG and C1) were genotyped using the genotyping-by-sequencing (GBS) 217 

method (Elshire et al., 2011). TASSEL 5.0 GBS pipeline v2 (Glaubitz et al., 2014) was used 218 

for SNP calling. Alignment of GBS reads was to the cassava reference genome v6.1 219 

(http://phytozome.jgi.doe.gov; ICGMC, 2015). The condition for the genotype calls was the 220 

presence of a minimum of four reads. Extracted SNPs were filtered to remove clones with 221 

>80% missing and markers with >60% missing genotype calls. Markers were also removed 222 

when they had an extreme deviation from Hardy-Weinberg equilibrium (𝜒2 > 20). 223 

A combination of custom scripts and common variant call file (VCF); manipulation tools were 224 

used to accomplish the above pipeline. The missing data were imputed using Beagle v4.0 225 
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(Browning and Browning, 2016). For the GG and C1 populations, we had 112,082 and 179,041 226 

markers, respectively, with MAF > 0.01. 227 

 228 

Genomic prediction 229 

We estimated genomic prediction accuracy using 5-fold cross-validation repeated 25 times 230 

similar to what is described in Wolfe et al. (2017). Briefly, the for each replicate of the process, 231 

the population was split into five approximately equal chunks (folds). Five genomic predictions 232 

were then made in which each fold (fifth of the population) in turn served as the test set (no 233 

phenotypes) and were predicted by the remaining four-fifths (training set, with phenotypes). 234 

Prediction accuracy for each fold was defined as the correlation of the genome-estimated 235 

breeding values (GEBVs, which are BLUPs from the test-sets of each fold), with the de-236 

regressed EGVs from the pre-adjustment stage of the analysis.  237 

 238 

For genomic prediction, we used a mixed-model with a genotype (clone) random effect with   239 

covariance proportional to the genomic relationship matrix, also called GBLUP. The genomic 240 

relationship matrix was constructed using the function A.mat in the R package rrBLUP 241 

(Endelman, 2011; Endelman and Jannink, 2012)De-regressed BLUPs were used as the 242 

response variable and the GBLUP models were fit with the function emmreml in the R package 243 

EMMREML (Akdemir and Okeke, 2015). 244 

 245 

GWAS analyses 246 

Genome-wide association mapping (GWAS) analyses were performed using a linear mixed-247 

model analysis (MLMA) implemented in GCTA (Version 1.90.0beta) (Yang et al., 2011). 248 

Specifically, we followed a leave-one-chromosome-out approach and tested all markers with 249 

MAF>0.05. The leave-one-chromosome-out approach involves excluding all markers on the 250 

chromosome of the current candidate SNP from the genomic relationship matrix (GRM) used 251 

to control population structure when estimating their marker effects. Manhattan plots were 252 

generated using the R package qqman (Turner, 2014) with a Bonferroni threshold of 6.28. 253 

 254 

Candidate gene identification was performed using the significant GWAS results of the 255 

standard deviation + CMD correction GWAS results. Using the phytozome 12 portal link to 256 

biomart (https://phytozome.jgi.doe.gov/biomart/) we searched for genes located 10kb around 257 

the top SNP hits. 258 

 259 
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Multivariate GWAS analysis 260 

We used a multivariate linear mixed model as implemented in GEMMA (mvLMM) (Zhou and 261 

Stephens, 2014). We tested marker associations with multiple phenotypes that are fitted jointly 262 

in the mvLMM while controlling for population stratification. Different combinations of 263 

phenotypes were fitted in six models, the phenotypes that were fitted together were selected 264 

based on their phenotypic correlation. Model 1: Circularity, Round, Solidity; Model 2: Area, 265 

Feret, Circularity, Solidity, AR; Model 3: Area, Perimeter, Round, Solidity, AR; Model 4: 266 

Area, Perimeter, Feret, Circularity, Round, Solidity, AR; Model 5: Area, Perimeter, Feret; 267 

Model 6: Circularity, Round, Solidity, AR. 268 

 269 

Results 270 

Phenotypes distribution 271 

Using the plugin BioVoxxel in ImageJ, we extracted quantitative measurements of the Area, 272 

Perimeter, Feret, Circularity, Solidity, Roundness, and the aspect ratio (AR) from root images 273 

collected in the field. The raw value datasets show similar ranges for root shape and size 274 

descriptors in GG and C1 populations (Supplementary Table 1). The individual root 275 

measurements with the maximum and minimum value of each trait in both populations are 276 

presented in Figure 1. 277 

The frequency distribution of the mean value per plot of the GG and C1 populations is 278 

presented in Supplementary Figure 2 and the mean values per trait within population are 279 

presented in Supplementary Table 1 . Some genotypes exhibited large differences in their mean 280 

values for Area, Perimeter and Feret. For example, the maximum mean root Area in GG 281 

population was 339 cm2 while the mean Area of the GG population was 121.5 cm2. Similarly, 282 

those genotypes exhibited a maximum mean root Perimeter of 135 cm and a maximum mean 283 

Feret of 50 cm while the mean Perimeter and Feret value in the GG population were 66 cm and 284 

26 cm, respectively. 285 

In the C1 dataset, the maximum mean value for the root area in the C1 dataset was 372 cm2, 286 

while the mean area of that population was 128 cm2. The maximum values for Perimeter and 287 

Feret were 132 and 49 cm while the C1 population mean value for the two traits was 68 cm  288 

and 28 cm respectively.  289 

 290 

 291 

 292 
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Correlation plots  293 

Phenotypic correlations were calculated pairwise using de-regressed BLUPs of the mean values 294 

for each population separately (Figure 2). In the GG dataset, the highest correlation within yield 295 

traits corresponded to root number and root weight (r2 =0.79). Similarly, root number and root 296 

weight were highly correlated in C1 population (r2=0.88). In both datasets, correlations 297 

between yield traits were significant and high (r2 > 0.5) and these traits were also positively 298 

correlated with Area, Perimeter and Feret. However, a low correlation (r2 < 0.1) was observed 299 

between yield traits and root shape descriptors such as Circularity, Roundness, Solidity and 300 

AR in both populations.  301 

 302 

Size-related traits derived from root images (Area, Perimeter and Feret) showed the highest 303 

positive correlation (r> 0.7) with each other. In both datasets, the highest correlation between 304 

size-related traits corresponded to Perimeter and Feret (r=0.97). Additionally, Feret and 305 

Perimeter were negatively correlated with shape-related traits (Circularity, Roundness and 306 

Solidity) and positively correlated with AR. In the GG dataset, Area showed a negative 307 

correlation with Circularity (r= -0.26), Roundness (r= -0.21), Solidity (r= -0.19), and a positive 308 

correlation with AR (r= 0.19). While in the C1 population, a low correlation was observed 309 

between Area and shape descriptors.  310 

Within the shape related traits, the highest correlation was found between Circularity and 311 

Roundness (GG r = 0.89, C1 r = 0.86) and Solidity (GG r = 0.87, C1 r = 0.84). AR showed a 312 

negative correlation with Circularity, Solidity and Roundness in both datasets.  313 

 314 

Broad-sense heritability 315 

Broad-sense heritability values (H2) for root shape and yield-related traits were calculated for 316 

each population (Table 2). In the GG population, without adjusting the phenotypes for their 317 

CMD score, H2 of root shape related traits ranged from 0.17 (Perimeter and Circularity) to 0.46 318 

(aspect ratio) and for yield traits, H2 ranged from 0.29 root weight (RTWT) to 0.44 shoot weight 319 

(SHTWT). In the GG dataset, Perimeter, Circularity and Solidity exhibited the lowest 320 

heritability values at 0.17, 0.17 and 0.12, respectively. 321 

 322 

In the C1 population, the heritability of shape-related traits ranged from 0.36 (Perimeter) to 323 

0.54 (Circularity) while for yield traits H2 ranged from 0.36 (SHTWT) to 0.61 (RTWT). The 324 

heritability of most traits was higher in the C1 population than GG except for Area (0.39 to 325 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/695494doi: bioRxiv preprint 

https://doi.org/10.1101/695494
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.38) and SHTWT (0.44 to 0.36). The inclusion of the CMD in the calculation of the variance 326 

components always reduced the heritability of all the traits in both populations by around 10%. 327 

 328 

Genome-wide association study of root traits 329 

Using a univariate genome-wide association approach for root image traits (root size and shape) 330 

and root yield traits we identified significant loci for all traits except for area (Figure 3). We 331 

detected a total of 91 SNP markers exceeding the significance threshold (−log10 P ≥ 6.28). 332 

The Manhattan plots of the univariate GWAS results for yield traits are shown in 333 

Supplementary Figure 3 and detailed information on the significant markers is summarized in 334 

Supplementary Table 2. 335 

We detected markers associated with Perimeter and Feret on chromosome 12, and with Solidity 336 

on chromosome 1, whereas for AR we identified significant loci on chromosome 1 and 337 

chromosome 12. Similarly, for Circularity and Roundness, we detected significant loci on 338 

chromosome 1 and chromosome 12.  339 

For most shape-related traits several other regions on chromosomes 3, 4, 8, 9, 14, 15 and 18 340 

did not reach the significance threshold but showed a −log10 P ≥ 5 (Figure 3). For root yield 341 

traits we detected a QTL on chromosome 12 associated to root number (RTNO) and RTWT 342 

(Supplementary Figure 3, Supplementary Table 2). Notably, using the CMD adjusted 343 

phenotype removed the significance of the QTL on chromosome 12 but did not identify new 344 

QTL for the image traits shape phenotypes (Supplementary Figure 4) it detected new loci 345 

associated with root number and shoot weight (Supplementary Table 3).  346 

Significant SNP markers ((−log10 P ≥ 6.28) were detected for the standard deviation-derived 347 

traits of Perimeter (per-sd), Feret (feret-sd) and Aspect Ratio (AR-sd) (Figure 4). For per-sd, a 348 

significant QTL was detected on chromosome 16, though it was not observed in the GWAS 349 

model with the mean values nor in the GWAS model with mean values with CMD adjusted 350 

phenotypes. For feret-sd, two significant QTL were identified, one on chromosome 9 and one 351 

on chromosome 6 and for AR-sd one significant QTL was found on chromosome 8 352 

(Supplementary Table 4). 353 

Different markers were significant in the multivariate GWAS model dependent on which 354 

phenotypes were included in the multivariate linear mixed model (mvLMM). Although the 355 

multivariate model can increase the power for detecting pleiotropic variants when using 356 

correlated traits, we identified few significant markers above the Bonferroni threshold 357 

(Supplementary Fig 5-10). Nonetheless, when P-values were corrected for multiple testing by 358 

computing Benjamini-Hochberg q-values, four SNPs were identified as significant in the 359 
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multivariate analysis. In the multivariate analysis using Area, Perimeter, Feret, Circularity, 360 

Round, Solidity and AR in the mvLMM (Model 4) we identified a significant marker at the 361 

same location on chromosome 4 (Supplementary figure 8). Similarly, using model 6 362 

(Circularity, Round, Solidity, Aspect ratio) we identified one significant marker located on 363 

chromosome 4 (Supplementary figure 10). When Area, Perimeter and Feret were included in 364 

the mvLMM (model 5) we identified significant markers on chromosomes 6 and 9 using a q-365 

value threshold of < 0.1 (Supplementary figure 9).  366 

 367 

Genomic prediction  368 

Using the parental (GG) and offspring generation (C1) datasets independently, we calculated 369 

the prediction accuracies of size and shape image traits and compared those to root yield traits 370 

accuracies using de-regressed BLUPs of 1) the mean phenotype value (average phenotype of 371 

4 plants) (Figure 5, Supplementary table 5), 2) the mean root size and shape phenotypes 372 

adjusted to account for the potential effect of cassava mosaic disease (CMD) on these traits 373 

(Figure 6, Supplementary Table 5) and 3) the standard deviation of the root shape and size 374 

measurements adjusted to remove the effect of CMD (Figure 6, Supplementary Table 5). 375 

Prediction accuracy, calculated as the correlation between the genome estimated breeding 376 

values (GEBVs) and the de-regressed BLUPs of the mean phenotype value, ranged from 0.32 377 

(SHTWT) to 0.43 (RTNO) in the GG population and from 0.12 (RTNO) to 0.46 (AR) in the 378 

C1. For yield traits, accuracies in GG were higher than in C1 but were not different between 379 

populations for the shape and size related traits. In the GG population, the shape descriptors 380 

Circularity (mean = 0.40), Roundness (mean=0.39), Solidity (mean =0.37) and AR (mean 381 

=0.38) showed slightly higher accuracies than the size descriptors Area (mean =0.33), 382 

Perimeter (mean = 0.34) and Feret (mean = 0.33). In the C1 population, size and shape image 383 

traits exhibited a higher prediction accuracy than root yield traits. Among the size descriptors, 384 

Feret showed the highest accuracy (mean=0.34) and Area the lowest (mean=0.29). Among 385 

shape descriptors, AR showed the highest predictive value (mean=0.46) and Solidity the lowest 386 

(mean=0.33) (Supplementary Table 5). When the mean root size and shape phenotypes were 387 

adjusted to account for the effect of CMD, we observed a minimal decrease in predictive 388 

accuracy (Supplementary Table 5). A lower predictive accuracy was obtained for standard 389 

deviation of size and shape traits adjusted for CMD, in both populations. In the GG population, 390 

the decrease was pronounced with a maximum reduction of up to 55% for root perimeter (0.27 391 

mean to 0.12 CMD adjusted) while in the C1 population the largest reduction was of 73% for 392 

circularity (0.41 mean to 0.11 CMD adjusted) (Supplementary Table 5).  393 
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Discussion  394 

Root number and root weight are among the most important targets for improvement in cassava 395 

breeding programs. Although cassava root characterisation has been the subject of several 396 

studies (Adetan, Adekoya and Aluko, 2003; Padonou, Mestres and Nago, 2005; Anggraini et 397 

al., 2009), the genetic architecture underlying cassava root shape remains unexplored. This 398 

study aimed to evaluate the feasibility of the image phenotyping protocol and to assess the use 399 

of genome-wide analyses for size and shape image-extracted traits.  400 

Here, we phenotyped the GG and C1 populations from the International Institute of Tropical 401 

Agriculture (IITA) breeding program for root shape and size-related traits using image analysis 402 

of storage root photographs taken in the field. In both populations, the storage roots exhibited 403 

a wide range of shape variation. Root-size related traits (Area, Perimeter and Feret) obtained 404 

through image analysis showed significant but low correlation (r ≤ 0.5) with cassava root yield 405 

components (RTNO, RTWT). Roots with a large area were generally heavier and the circularity 406 

of storage roots was mostly inversely correlated to its area. These results, suggest that rounded-407 

shaped roots in cassava are generally smaller and hence lighter in weight. More importantly, 408 

the lack of correlation between size-related traits and shape related traits increases the interest 409 

in shape related traits as a target for selection.  410 

 411 

In radish, rice and wheat, imaging-based studies of root shape and size traits have demonstrated 412 

first, that these have different genetic architectures (Iwata et al., 2000) and second, that shape 413 

phenotyping can aid the identification of pleiotropic QTL. In our study, using univariate 414 

genome-wide association analysis, we detected for most shape and size related traits, 415 

significant QTL regions located on chromosomes 1 and 12. The QTL region on chromosome 416 

1 has been previously shown to be segregating for an introgressed segment from M. glaziovii 417 

(Bredeson et al., 2016). Furthermore, the QTL region on chromosome 1 has been associated, 418 

in the IITA genetic gain population, with other root traits such as dry matter and total carotenoid 419 

content (Rabbi et al., 2017).  420 

For root weight and root number, we identified a significant QTL associated with those traits 421 

on chromosome 12. The QTL region on chromosome 12 has been previously associated, using 422 

IITA breeding populations, to cassava mosaic disease (CMD) resistance (Wolfe et al., 2016). 423 

The effect of cassava mosaic disease (CMD) on root yield has been previously investigated in 424 

fully and partly infected stands of cassava (Seif, 1982; Otim-Nape, Thresh and Shaw, 1997; 425 

Owor et al., 2004). In those studies, fresh stem, leaf and root yields and the number of tuberous 426 
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roots were influenced by the health status of the plants harvested and that of their nearest 427 

neighbours. In our study, when we adjusted the size and shape phenotypes according to their 428 

CMD score we did not identify new QTL but a reduction in marker significance, which suggest 429 

that the CMD2 locus in chromosome 12 does not participate in the regulation of size and shape 430 

phenotypes. Nonetheless, the identification of new QTL for root number and shoot weight, 431 

when these traits were adjusted according to the CMD score, support the notion that CMD can 432 

have an effect on root yield traits. 433 

Because the uniformity in size and shape of cassava roots is an important breeding goal we 434 

calculated the standard deviation of individual root measurements per clone. The use of 435 

standard deviation measurements allowed the identification of new significant QTL for 436 

Perimeter, Feret and Aspect Ratio on chromosomes 6, 9 and 16. For the new QTL regions 437 

located on chromosomes 9 and 16 we identified candidate genes related to the tocopherol and 438 

carotenoids pathways which are known regulators of plant development (Nisar et al., 2015) 439 

(Supplementary table 6). On chromosome 6, the most promising candidate is 440 

Manes.06G078700 a root meristem growth factor 1 related gene. 441 

Together our GWAS results suggest that 1) root-related traits have in common the genetic 442 

control under few large effect loci and many small effect loci, 2) a possible correlation between 443 

disease severity and yield loss and, 3) that introgressed regions contain gene clusters which 444 

control root yield and root size/shape traits.  445 

To increase the power of our study and to detect pleiotropic loci for size and shape traits (Korol 446 

et al., 2001; Korte et al., 2012), we used a multivariate linear mixed model approach which 447 

included groups of correlated root size and root size/shape traits. Considering multiple 448 

phenotypes in the mvLMM enabled us to identify new candidate loci on chromosomes 4, 6 and 449 

9 that were not identified in the univariate analyses. 450 

 451 

The potential of GS as a breeding tool to increase the rates of genetic gain was recently tested 452 

in three Next Generation Cassava Breeding programs (Marnin D. Wolfe et al., 2017). The study 453 

showed promising results particularly for traits with consistent heritability values across 454 

programs and stable large-effect quantitative trait loci. Prediction accuracies for RTNO, RTWT 455 

and SHTWT were similar with those reported in previous cassava cross-validation analyses ( 456 

Wolfe et al., 2017). Root size and shape-related trait accuracies were lower than those reported 457 

for dry matter content (DM) and cassava mosaic virus resistance (CMD) (Wolfe et al., 2017).  458 

 459 
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Although the heritability of yield traits was higher in the offspring (Cycle 1, C1) than the 460 

parental generation (Genetic Gain, GG), the predictive accuracy of traits extracted from root 461 

images showed intermediate to high values in both populations. However, the C1 yield traits 462 

accuracies being lower than the GG, suggests that because the C1 had been selected strongly 463 

for these yield traits, its variance was diminished. 464 

 465 

Nonetheless, predictive accuracies of the mean values of root size and shape image-extracted 466 

traits were mostly higher than yield trait prediction accuracies in the C1 population. Adjusting 467 

the mean and standard deviation phenotypes for the effect of CMD reduced the predictive 468 

accuracy. However, that correction is necessary to unlink the effect of CMD from the causal 469 

loci that are responsible for the regulation size and shape root traits.  470 

 471 

Although these measurements were laborious in the field and not high-throughput, the analyses 472 

of the images are automated and quantitative, they avoid subjectivity in scoring and other 473 

human-errors and most importantly, they improve cassava root characterisation. The 474 

methodology described here and the results obtained in this study are promising and open up 475 

the opportunity to apply high-throughput methods in cassava. The image capture and analysis 476 

can now be performed using the OneKK (one thousand kernels) app 477 

(https://github.com/PhenoApps/OneKK), an inexpensive and user-friendly tool for automated 478 

measurement of seed size, shape, and weight using smart phones. The app is developed under 479 

the BREAD PhenoApps project and supported by the National Science Foundation. Still, there 480 

is a need to explore the use of image-based phenotyping in multiple environments to estimate 481 

the effect of the environment on root shape related traits and to automate the collection of root 482 

images in the field further.  483 

  484 
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Figures and tables 511 

 512 
 513 

Figure 1 : Phenotype description obtained using the extended particle analyzer plugin in 514 

ImageJ: Individual root measurements with the maximum and the minimum value of each 515 

trait in Genetic gain (GG) population and Cycle1 (C1) population, represented to highlight 516 

the range of values for each trait. 517 

  518 
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 519 

 520 
Figure 2: Heatmap with Pearson correlation coefficient: Trait correlation using the de-521 

regressed BLUP value of GG dataset (lower triangle) and C1 dataset (upper triangle). The 522 

stars depict the significance according the p-value (***P < 0.0001, **P < 0.001, *P < 0.05)  523 
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 524 
Figure 3. Genome-wide association results of size and shape-related traits using de-regressed 525 

BLUPs of mean values (not corrected for CMD). A. Area; B. Perimeter; C. Feret; D. Solidity; 526 

E. Aspect ratio; F. Circularity; G. Roundness. Blue horizontal line indicates the Bonferroni 527 

statistical threshold. 528 

  529 
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 530 
 531 

Figure 4. Genome-wide association results of standard deviation-derived size and shape-532 

related traits using de-regressed BLUPs of mean CMD-corrected values. A. Area; B. 533 

Perimeter; C. Feret; D. Solidity; E. Aspect ratio; F. Circularity; G. Roundness. Blue 534 

horizontal line indicates the Bonferroni statistical threshold. 535 

 536 

 537 

 538 
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 539 
Figure 5: Prediction accuracy of root size and shape and yield traits. Predictive accuracies 540 

were obtained with 5 fold-cross-validation analysis using a GBLUP model in the (a) GG 541 

dataset and in the (b) C1 dataset.  542 

543 
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 544 

Figure 6. GBLUP model predictive accuracy of root size and shape traits. a) GG population 545 

CMD adjusted phenotypes, b) C1 population CMD adjusted phenotypes, c) GG population 546 

standard deviation + CMD correction, d) C1 population standard deviation + CMD correction 547 

  548 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/695494doi: bioRxiv preprint 

https://doi.org/10.1101/695494
http://creativecommons.org/licenses/by-nc-nd/4.0/


 GG C1 
Trait no correction +MCMDS no correction +MCMDS 
Area 0.39 0.33 0.38 0.36 
Perimeter 0.17 0.12 0.36 0.33 
Feret 0.33 0.17 0.40 0.35 
Circularity 0.17 0.15 0.54 0.53 
Round 0.39 0.26 0.52 0.49 
Solidity 0.12 0.12 0.48 0.48 
Aspect Ratio 0.46 0.31 0.56 0.54 
RTWT 0.29 0.23 0.60 0.50 
RTNO 0.39 0.37 0.61 0.54 
SHTWT 0.44 0.39 0.36 0.33 

  549 

Table 2: Broad-sense heritability values of root shape and root yield traits for the Genetic 550 

gain and cycle 1 breeding populations. (RTWT: root weight; RTNO: root number; SHTWT: 551 

Shoot weight). 552 

 553 

Supplementary figures 554 

 555 

 556 
 557 

Supplementary figure 1: Schematic of the green board used as a background to take 558 

photographs in the field. 559 

 560 
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 561 
Supplementary Figure 2. Trait distribution of mean root values. Root values of each 562 

phenotype extracted from photographs from each genotype were averaged and the 563 

distribution plotted.Dark gray: GG, light gray : C1. 564 

  565 
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 566 
 567 

Supplementary figure 3. Yield traits GWAS results using the IITA Genetic Gain and Cycle 568 

1 breeding populations. Manhattan plots of -log10(P-value) of A. Root weight, B. Shoot 569 

weight, C. Root number. Blue horizontal line indicate the Bonferroni statistical threshold (-570 

log10(P-value) >6.28) 571 
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 573 
 574 

Supplementary figure 4. Size and shape GWAS results using the IITA Genetic Gain and 575 

Cycle 1 breeding populations using CMD score as a covariate. Manhattan plots of -log10(P-576 

value) of A. Area; B. Perimeter; C. Feret; D.Solidity; E. Aspect ratio; F. Circularity; G. 577 

Roundness. Blue horizontal line indicates the Bonferroni statistical threshold. 578 

 579 

 580 
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 581 
Supplementary Figure 5. Multivariate GWAS of Circularity, Round and Solidity (model 1). 582 

Manhattan plots of -log10(P-value) (top panel) and -log10(q-value) (bottom panel). In the top 583 

panel the blue horizontal line indicates the Bonferroni statistical threshold and the red line 584 

indicate a -log10(p-value) = 4. In the bottom panel de the blue line indicates the significant 585 

threshold of the q-value. 586 

 587 

 588 
Supplementary Figure 6. Multivariate GWAS of Area, Feret and Circularity (model 2). 589 

Manhattan plots of -log10(P-value) (top panel) and -log10(q-value) (bottom panel). In the top 590 

panel the blue horizontal line indicates the Bonferroni statistical threshold and the red line 591 

indicate a -log10(p-value) = 4.In the bottom panel de the blue line indicates the significant 592 

threshold of the q-value. 593 

 594 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/695494doi: bioRxiv preprint 

https://doi.org/10.1101/695494
http://creativecommons.org/licenses/by-nc-nd/4.0/


 595 
Supplementary Figure 7. Multivariate GWAS of Area, Perimeter, Round, Solidity and AR 596 

(model 3). Manhattan plots of -log10(P-value) (top panel) and -log10(q-value) (bottom panel). 597 

In the top panel the blue horizontal line indicates the Bonferroni statistical threshold and the 598 

red line indicate a -log10(p-value) = 4. In the bottom panel de the blue line indicates the 599 

significant threshold of the q-value. 600 

 601 

 602 

 603 
Supplementary Figure 8. Multivariate GWAS of Area, Perimeter, Feret, Circularity, Round, 604 

Solidity and AR (Model 4). Manhattan plots of -log10(P-value) (top panel) and -log10(q-value) 605 

(bottom panel). In the top panel the blue horizontal line indicates the Bonferroni statistical 606 

threshold and the red line indicate a -log10(p-value) = 4. In the bottom panel de the blue line 607 

indicates the significant threshold of the q-value. 608 
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 609 

 610 

 611 
Supplementary Figure 9. Multivariate GWAS of Area, Perimeter and Feret (model 5). 612 

Manhattan plots of -log10(P-value) (top panel) and -log10(q-value) (bottom panel). In the top 613 

panel the blue horizontal line indicates the Bonferroni statistical threshold and the red line 614 

indicate a -log10(p-value) = 4. In the bottom panel de the blue line indicates the significant 615 

threshold of the q-value. 616 

 617 

 618 

 619 
Supplementary Figure 10. Multivariate GWAS of Circularity, Round, Solidity and AR 620 

(model 6). Manhattan plots of -log10(P-value) (top panel) and -log10(q-value) (bottom panel). 621 

In the top panel the blue horizontal line indicates the Bonferroni statistical threshold and the 622 
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red line indicate a -log10(p-value) = 4. In the bottom panel de the blue line indicates the 623 

significant threshold of the q-value. 624 

 625 

 626 

 627 

 628 

 629 

 630 

Supplementary tables 631 

Supplementary table 1. Mean values of raw and plot shape and size root measurements. The 632 

plot value was calculated as the average of five plants per plot, the raw value was the 633 

individual root value per genotype 634 

 635 

Supplementary table 2. GWAS results of image-extracted and yield-related traits. Results in 636 

bold are SNP p-values that surpassed the Bonferroni threshold. 637 

 638 

Supplementary table 3. GWAS results of image-extracted and yield-related traits using 639 

CMD adjusted phenotypes. Results in bold are SNP p-values that surpassed the Bonferroni 640 

threshold. 641 

 642 

Supplementary table 4. GWAS results of the standard deviation of image-extracted traits 643 

using CMD adjusted phenotypes. Results in bold are SNP p-values that surpassed the 644 

Bonferroni threshold. 645 

 646 

Supplementary table 5. Summary results genomic prediction. Input phenotypes: mean 647 

values per genotype/plot, mean adjusted phenotypes (mean + CMD correction), standard 648 

deviation per genotype/plot of adjusted phenotypes (sd + CMD correction). 649 

 650 

Supplementary table 6. Candidate gene annotation of significant QTL regions in 651 

chromosomes 6,9 and 16 using the GWAS results of the standard deviation + CMD 652 

correction of root size and shape traits. 653 
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