1 Measuring the host-seeking ability of *Aedes aegypti* destined for field release

- 2 Running head: Measuring *Aedes aegypti* host-seeking ability
- 3
- 4 Meng-Jia Lau¹*; Nancy M. Endersby-Harshman¹; Jason K. Axford¹; Scott A. Ritchie^{2,3}; Ary A.
- 5 Hoffmann¹; Perran A. Ross¹
- 6
- ⁷ ¹ Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of
- 8 BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- 9 ²College of Public Health, Medical and Veterinary Sciences, James Cook University,
- 10 Smithfield, Queensland, Australia
- ³ Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield,
- 12 Queensland, Australia
- 13 * Corresponding author. Email: mengjial2@student.unimelb.edu.au, phone: +61449830399
- 14 Keywords: Host-seeking, Semi-field, *Aedes aegypti*, *Wolbachia*, laboratory adaptation.
- 15 Abstract word count: 209
- 16 Main text word count: 3737
- 17 Number of figures: 4
- 18 Number of tables: 0
- 19 Number of supplementary figures: 5
- 20 Number of supplementary tables: 3
- 21
- 22
- 23
- 24

25 Abstract

26

27	Host-seeking is an essential process in mosquito reproduction. Field releases of modified
28	mosquitoes for population transformation rely on successful host-seeking by female
29	mosquitoes, but host-seeking ability is rarely tested in a realistic context. We tested the
30	host-seeking ability of female Aedes aegypti mosquitoes using a semi-field system. Females
31	with different Wolbachia infection types (wMel-, wAlbB-infected and uninfected) or from
32	different origins (laboratory and field) were released at one end of a semi-field cage and
33	recaptured as they landed on human experimenters fifteen meters away. Mosquitoes from
34	each population were then identified with molecular tools or through marking with a
35	consistent weight of fluorescent powder. Wolbachia-infected and uninfected populations
36	had similar average durations to landing and overall recapture proportions, as did
37	laboratory and field-sourced A. aegypti. These results suggest that the host-seeking ability
38	of mosquitoes is not negatively affected by Wolbachia infection or long-term laboratory
39	maintenance. This method provides an approach to study the host-seeking ability of
40	mosquitoes across a long distance which will be useful when evaluating strains of
41	mosquitoes that are planned for releases into the field to suppress arbovirus transmission.
42	An adjustment of this method may also be useful in sterile insect release programs because
43	male host-seeking and swarming around female feeding sites can also be investigated.
44	
45	
46	
47	

49 Introduction

50	
51	The management of arboviral diseases has become increasingly important to global health
52	in recent decades. ¹ The occurrence of arboviral diseases such as dengue, Zika, Japanese
53	encephalitis and West Nile fever is increasing, especially in tropical and subtropical areas. ^{2,3,}
54	⁴ These viruses require blood-feeding mosquitoes to complete their life cycle, ⁵ with
55	mosquitoes from the genera of <i>Culex</i> and <i>Aedes</i> being particularly important. ⁶ An effective
56	way to control arbovirus transmission is to suppress the vector mosquito populations.
57	Pesticides are widely used for this purpose but this can lead to the evolution of physiological
58	resistance, alongside other undesirable effects associated with pesticide use. ^{7, 8} The sterile
59	insect technique (SIT), 9 incompatible insect technique (IIT), 10 and the release of insects
60	carrying a dominant lethal gene (RIDL) ¹¹ are promising non-insecticidal alternatives, where
61	wild-type females that mate with the released "modified" males have few viable offspring,
62	decreasing the population size.
63	
64	An alternative approach aims to decrease the ability of mosquitoes to transmit viruses by
65	introducing endosymbiotic <i>Wolbachia</i> bacteria. ^{12, 13} <i>Wolbachia</i> are transmitted maternally
66	and can invade natural populations through cytoplasmic incompatibility and any beneficial
67	effects on host reproduction. ^{14, 15} When introduced into mosquitoes from other insects,
68	some <i>Wolbachia</i> strains reduce their capacity to transmit viruses. ^{12, 16} Aedes aegypti
69	infected with the <i>w</i> Mel <i>Wolbachia</i> strain have been introduced into field populations, with
70	the first releases taking place in Cairns, Australia in 2011. ¹⁷ In locations in Australia where
71	Wolbachia have established there have been no confirmed locally-transmitted cases of
72	dengue occurring within the release areas. ^{18, 19}

10	
74	Population replacement and suppression strategies ideally should be preceded by
75	investigations to assess their potential for success, address safety concerns, ²⁰ and perform
76	community engagement. ^{18, 21} When using <i>Wolbachia</i> to block arbovirus transmission, fitness
77	costs imposed on their hosts such as adult life-shortening, ²² reduced quiescent egg
78	viability, ²³ and reduced starvation resistance of larvae ²⁴ must be considered. Such effects
79	mean that Wolbachia must exceed a threshold frequency in order to spread in natural
80	populations. ^{17, 25, 26} SIT, IIT and RIDL programs are simpler in that the only concern is male
81	fitness, but still require the released males to have a high competitiveness to ensure
82	successful mating with wild females. ²⁷ Populations reared in the laboratory can adapt to the
83	artificial conditions which may reduce field performance. ^{28, 29} For instance, laboratory
84	maintenance can lead to the loss of pesticide resistance, ³⁰ greatly reducing fitness in release
85	areas with heavy pesticide use. ²¹
86	
87	Fitness assays are usually carried out in the laboratory to detect fitness costs, but during
88	releases mosquitoes must locate hosts or mates under variable environmental conditions.
89	Performance under laboratory conditions often does not translate to performance in the
90	field. ^{31, 32, 33} Males from the transgenic OX3604C strain of <i>A. aegypti</i> successfully suppressed
91	laboratory populations ³⁴ but were much less effective under semi-field conditions due to a
92	strong mating disadvantage. ³⁵ For <i>Wolbachia</i> releases, density-dependent effects, ²⁵ loss of
93	cytoplasmic incompatibility, ³⁶ and incomplete maternal transmission ³⁷ may account for the
94	slower-than-expected spatial spread of infections in natural populations ^{37, 38} or even failed
95	establishment ³⁹ despite success under more controlled conditions. ¹²
	 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

97	Successful host-seeking is key to population replacement programs since female mosquitoes
98	require blood for reproduction. Females locate a potential blood source by tracking exhaled
99	CO_2 over tens of meters, then approach and land on the host by detecting thermal plumes,
100	host odors, moisture and visual contrast. ^{40, 41, 42} Wolbachia infections do not affect the
101	attraction of <i>A. aegypti</i> to human odors in the laboratory, ⁴³ but successful host-seeking in
102	the field will depend on the detection of olfactory cues from a long distance, visual and
103	temperature signals from a shorter distance and flight ability.
104	
105	In this paper, we tested the host-seeking ability of female A. aegypti using a semi-field cage
106	in North Queensland, Australia ⁴⁴ to simulate an outdoor setting. Females were released at
107	one end of the semi-field cage and then recaptured by two experimenters seated at the
108	other end. This method allows for a direct comparison of host-seeking ability between
109	different mosquito strains in a common environment. To test the method we compared

110 mosquitoes with the wMel and wAlbB Wolbachia strains, which are now being released into

111 the field in disease control programs, ¹⁷ (Nazni et al., unpublished data) against uninfected

- 112 counterparts. To evaluate whether laboratory adaptation could affect host-seeking as
- 113 demonstrated in laboratory experiments previously,⁴⁵ we also compared a laboratory

114 population to a population collected recently from the field.

115

116 Material and Methods

117

118 Mosquito strains and maintenance

120	<i>A. aegypti</i> mosquitoes in this study were reared at 26-28°C in a controlled temperature
121	room at James Cook University, Cairns, using methods described previously. ⁴⁶ We
122	performed two sets of experiments to compare the effects of Wolbachia infection and
123	laboratory maintenance on host-seeking ability respectively. To test for the effects of
124	Wolbachia infection, we used uninfected, wMel-infected and wAlbB-infected A. aegypti
125	with a similar genetic background. Populations infected with wMel and wAlbB were derived
126	from lines transinfected previously. ^{12, 47} The <i>w</i> Mel population was collected from Cairns,
127	Australia in May 2013 from regions that had been invaded two years earlier ^{17, 48} while the
128	wAlbB population was crossed to an Australian background and maintained in the
129	laboratory. ⁴⁹ The uninfected population was established from <i>A. aegypti</i> (Wolbachia-
130	uninfected) eggs collected in Cairns, Queensland, Australia in November 2015. ⁵⁰ Females
131	from all Wolbachia-infected lines were backcrossed for three generations to the uninfected
132	males to ensure a similar genetic background before the experiments. ²³ To test for the
133	effects of laboratory maintenance we compared the host-seeking ability of laboratory and
134	field populations. The laboratory population was identical to the uninfected population
135	described above and had been maintained in the laboratory for 27 generations. The field
136	population of <i>A. aegypti (Wolbachia</i> -uninfected) was collected in September 2018 from the
137	same location as the laboratory population and was a mix of the first and second laboratory
138	generations at the time of experiments.
139	

140 For each release, the compared colonies were hatched synchronously, provided with

141 TetraMin[®] fish food tablets (Tetra, Melle, Germany) *ad libitum* and the larval density was

142 controlled to 150 in 1 L water to ensure matched eclosion. After pupation, approximately 80

143 pupae were selected with a mix of 80% females and 20% males and left to emerge as adults

144	in one cage (BugDorm-4M1515 Insect Rearing Cage). Each cage was provided with a cup of
145	10% sucrose and water and left for at least 4 d to ensure that females had matured and
146	mated, but not blood fed. One day before the release, sugar cups were removed with only
147	water cups remaining to starve the females, since sugar feeding may affect host-seeking
148	behavior. ^{51, 52} The released females were 5 d old in both the <i>Wolbachia</i> infection
149	comparison and the laboratory maintenance comparison.
150	
151	Release-recapture method
152	
153	We used a semi-field system (17.5 × 8.4 m) at James Cook University, Cairns, Australia
154	containing soil, vegetation, a "Queenslander" house structure (Qld) and a ventilation system
155	to match outside ambient temperatures to simulate natural conditions (Figure 1). ⁴⁴
156	Mosquitoes were released near the door side from a box with a mesh lid while two
157	experimenters were seated within the Qld structure to attract mosquitoes from the other
158	end (Figure 1). Two temperature loggers (Thermochron; 1-Wire, iButton.com, Dallas
159	Semiconductors, Sunnyvale, CA, USA) were placed near the release point and two were
160	placed under the Qld structure to monitor temperatures during experiments
161	(Supplementary Table 1).
162	
163	
164	Figure 1. Interior of the semi-field cage. (a) View of the door from inside the Qld. (b) View of
165	the Qld from the door. (c) Schematic diagram of the cage showing the release point and the
166	location of two experimenters.

169	Females from all populations in the comparison were aspirated into a single release box
170	(Supplementary Figure 1) and placed in the semi-field cage to acclimate for at least 30
171	minutes before experiments commenced. For the Wolbachia infection comparison, 50
172	uninfected, 50 wMel-infected and 50 wAlbB-infected females were released into the box.
173	For the laboratory maintenance comparison, 50 laboratory and 50 field source females were
174	released. Females that were damaged during handling were replaced.
175	
176	Two experimenters wore bug net mesh hats, long-sleeved shirts and shorts, exposing only
177	their lower legs to restrict the area where mosquitoes could land. The same two
178	experimenters undertook all experiments. Experimenters sat on the floor within the Qld
179	structure, 1 m apart (Figure 1) with an electronic timer, mechanical aspirators (Model
180	2809C, BioQuip Products, Inc, Rancho Dominguez, CA, USA) and 15 collection vials nearby.
181	The experiment commenced by pulling the fishing line to remove the mesh lid from the box
182	to release the mosquitoes (Supplementary Figure 1), after which the timer was immediately
183	started. Females landing on exposed skin were collected with mechanical aspirators as they
184	landed. Collection vials were replaced with empty vials at 3-minute intervals until 42
185	minutes had elapsed. After 42 minutes, both experimenters moved to the opposite end of
186	the cage to capture mosquitoes that did not land during the experiment. Collections
187	occurred until no more mosquitoes were detected after a thorough search of the semi-field
188	cage. Between experiments, two Biogents Sentinel (BGS) traps (Biogents AG, Regensburg,
189	Germany) were placed inside the semi-field cage to assist in the capture of any remaining
190	mosquitoes. At least one hour before each experiment commenced, the experimenters

- 191 searched the semi-field cage and used an electric mosquito swatter to kill any mosquitoes
- 192 found.
- 193
- 194
- 195 Wolbachia infection comparison
- 196

197 The host-seeking experiment was repeated seven times with 50 uninfected, 50 wMel-

- 198 infected and 50 wAlbB-infected females. Females collected from each replicate and time
- 199 interval were stored in absolute ethanol at 4°C for wing length measurements, DNA
- 200 extraction and *Wolbachia* screening. One replicate was discarded from other analyses due
- 201 to the loss of samples during wing dissection.
- 202

203 Field-collected A. aegypti are smaller and more variable in size than laboratory-reared A. *aeqvpti*.⁵³ Since host-seeking females collected from the field in a previous experiment 204 tended to be larger than non-host-seeking females, ⁵⁴ we tested whether host-seeking speed 205 206 and successful host seeking within 42 minutes was affected by size. We measured the wing 207 length of females from two experimental replicates to obtain an indication of their body size.⁵⁵ Intact wings were dissected from individual females and fixed under a 10 mm circular 208 coverslip (Menzel-Gläser, Braunschweig, Germany) using Hoyer's solution⁵⁶ for further 209 210 observation and measurement with an NIS Elements BR imaging microscope (Nikon Instruments, Japan).²⁴ 211 212

DNA extraction and *Wolbachia* screening were conducted according to the methods of Lee,
 et al. ⁵⁷ DNA from whole mosquitoes was extracted using 200 µL of 5% Chelex 100 Resin

215	(Bio-Rad Laboratories, Hercules, CA) and 3 μL of Proteinase K (20 mg/ mL, Bioline Australia
216	Pty Ltd, Alexandria NSW, Australia). Extractions were diluted by 1/10, pipetted into four
217	positions of a 384-well plate and amplified with mosquito-specific (<i>mRpS6</i>) primers, <i>A</i> .
218	aegypti-specific (aRpS6) primers, Wolbachia wMel-specific (w1) primers and Wolbachia
219	wAlbB-specific (<i>wAlbB</i>) primers ^{48, 49, 58, 59} using a LightCycler 480 system (Roche Applied
220	Science, Indianapolis, IN, USA). Robust and similar amplification of <i>mRpS6</i> and <i>aRpS6</i> (within
221	one cycle) was expected for each individual. Uninfected <i>A. aegypti</i> were expected to show
222	no amplification and therefore, no crossing point (Cp) value, with both w1 and wAlbB
223	primers. A. aegypti were classified as wMel-infected when they exhibited no amplification
224	with <i>wAlbB</i> primers and low Cp values (< 28) and a Tm within the expected range for <i>w1</i>
225	primers based on wMel-infected laboratory controls. wAlbB-infected A. aegypti tested
226	positive for <i>wAlbB, mRpS6</i> and <i>aRpS6</i> primers but also showed late amplification (Cp > 28)
227	with $w1$ primers. Individuals were therefore classified as wAlbB-infected when they
228	exhibited a low Cp value (< 28) with <i>wAlbB</i> primers, a Tm within the expected range for
229	wAlbB primers and an amplification curve shape consistent with wAlbB-infected laboratory
230	control values (Supplementary Figure 2). At least two consistent technical replicates were
231	obtained for each individual.
232	

233 Laboratory maintenance comparison

234

In this experiment, laboratory and field populations were marked with different colors of
fluorescent powder (DayGlo, Barnes Products Pty Ltd, Moorebank, NSW, Australia) before
release since the two populations could not be distinguished by molecular assays. Orange,
blue and yellow colors were used and were cycled between replicates. To reduce potential

239	negative effects of marking, we used a minimal, but visually identifiable amount
240	(Supplementary Figure 3) by weighing powder on a microbalance (Sartorius BP 210 D). One
241	hour before the release, 50 females from each population were aspirated into two separate
242	70-mL specimen cups containing approximately 0.4 mg of fluorescent powder in different
243	colors. The cups were shaken gently to coat the mosquitoes evenly in powder before placing
244	them in the release box (Supplementary Figure 1). Recaptured females were killed by
245	freezing at -20 °C for 30 minutes and identified under a microscope using a UV flashlight.
246	This experiment was repeated six times.
247	
248	Data analyses
249	
250	Data visualization and ANOVA analyses were conducted using R studio with the packages
251	Rmisc, ⁶⁰ plyr, ⁶¹ and ggplot2. ⁶² Mosquitoes were captured at three-minute intervals and
252	assigned a value based on the median time of each catching interval for average landing
253	time calculations. Mosquitoes caught after 42 minutes were considered as not landing. A
254	two-way ANOVA analyzed differences in average landing time of the landed mosquitoes and
255	the number of females that landed by treating population as a fixed factor and experimental
256	replicate as a random factor. One-way ANOVA was used to compare the wing length of
257	mosquitoes caught at different intervals by treating landing time as a factor. Cumulative
258	landing proportions over time were analyzed with log-rank tests in IBM SPSS Statistics
259	version 25 by combining replicate experiments together.
260	

262 Results

263

264 Wolbachia infection comparison

265

266	We compared the host-seeking ability of uninfected, wMel-infected and wAlbB-infected
267	females when released simultaneously in a semi-field cage. On average, more than 30% of
268	the mosquitoes were captured during the first three minutes of the experiment, with
269	approximately 70% landing over the course of 42 minutes (Figure 2A). We compared the
270	cumulative landing proportions of each population when combined across replicates and
271	found no significant differences between Wolbachia-infected and uninfected females (log-
272	rank: wMel : uninfected: χ^2 = 1.428, df = 1, P = 0.232; wAlbB : uninfected: χ^2 = 2.9, df = 1, P
273	= 0.089, Figure 3A).
274	
275	The average time to landing of each population was used as an estimate of host-seeking
276	speed (Figure 2b, 2d). Average time to landing did not differ significantly between
277	uninfected (mean \pm SE: 9.5 \pm 0.9 minutes), <i>w</i> Mel-infected (7.6 \pm 0.6 minutes) and <i>w</i> AlbB-
278	infected (7.5 \pm 0.3 minutes) females (two-way ANOVA: <i>w</i> Mel : uninfected: F _{1,5} = 2.503, P =
279	0.174; wAlbB : uninfected: $F_{1,5}$ = 6.434, P = 0.052). There was also no significant effect of
280	replicate on average time to landing in either comparison (wMel : uninfected: $F_{5,5}$ = 0.617, P
281	= 0.696; wAlbB : uninfected: $F_{5,5}$ = 2.009, P = 0.231). We compared the total proportion of
282	females landing as an indicator of overall host-seeking success (Figure 2c, 2e); here there
283	were also no significant differences between populations (wMel : uninfected: $F_{1,5} = 0.282$, P
284	= 0.618, wAlbB : uninfected: F _{1,5} = 2.426,P = 0.180). There was a significant effect of
285	replicate in the wAlbB comparison ($F_{5,5}$ = 7.505, P = 0.023) but not in the wMel comparison
286	$(F_{5,5} = 3.482, P = 0.099).$

200	
289	Figure 2. Host-seeking ability of 5 d old wMel-infected, wAlbB-infected and uninfected A.
290	aegypti females in a semi-field cage. (a) Cumulative landing proportions of females on
291	human experimenters across all replicates. Lines represent means and error bars represent
292	standard errors. (b-c) Comparisons of average time to landing (b) and proportion landing (c)
293	between uninfected and w Mel-infected females, plotted separately for each replicate. (d-e)
294	Comparisons of average time to landing (d) and proportion landing (e) between uninfected
295	and wAlbB-infected females, plotted separately for each replicate.
296	
297	
298	Females from two replicates of the Wolbachia infection comparison were measured for
299	wing length (Figure 3). There was no significant effect of wing length on host-seeking speed,
300	measured by capture interval ($F_{14,251}$ = 0.708, P = 0.766). Females landing within the first
301	three minutes (2.81 \pm 0.02 mm, n = 102) did not differ in size from females collected after
302	42 minutes had elapsed (2.80 \pm 0.03 mm, n = 57), suggesting no difference in size between
303	fast host-seeking females and non-host-seekers ($F_{1,80} = 1.311$, P = 0.256).
304	
305	
306	Figure 3. Wing lengths of female A. aegypti collected during two replicates of the Wolbachia
307	infection host-seeking experiment. Points represent wing lengths of individual females
308	collected across each 3-minute interval of the experiment. Wing lengths of females

309 captured after 42 minutes had elapsed were also included.

311

312 Laboratory adaptation comparison

313

314	In comparisons of laboratory and field A. aegypti females, approximately 60% of the
315	released mosquitoes were caught over the duration of the experiments. Cumulative landing
316	proportions did not differ significantly between field and laboratory populations when
317	combined across replicates (log-rank: χ^2 = 2.275, df = 1, P = 0.131, Figure 4a). The average
318	time to landing did not differ significantly between field (mean \pm SE: 12.3 \pm 1.1 minutes) and
319	laboratory (10.5 ± 1.3 minutes) females (two-way ANOVA: F _{1,5} = 2.346, P = 0.186, Figure 4b),
320	with no significant effect of replicate ($F_{5,5}$ = 2.876, P = 0.136). Furthermore, the total
321	proportion of females landing did not differ between field and laboratory females ($F_{1,5}$ =
322	0.745, $P = 0.428$, Figure 4c), with no significant effect of replicate ($F_{5,5} = 4.647$, $P = 0.059$),
323	suggesting that laboratory maintenance does not affect host-seeking ability.
324	
324 325	
	Figure 4 . Host-seeking ability of field and laboratory <i>A. aegypti</i> females in a semi-field cage.
325	Figure 4 . Host-seeking ability of field and laboratory <i>A. aegypti</i> females in a semi-field cage. (a) Cumulative landing proportions of females on human experimenters across all replicates.
325 326	
325 326 327	(a) Cumulative landing proportions of females on human experimenters across all replicates.
325326327328	(a) Cumulative landing proportions of females on human experimenters across all replicates. Lines represent means and error bars represent standard errors. (b-c) Comparisons of
 325 326 327 328 329 	(a) Cumulative landing proportions of females on human experimenters across all replicates. Lines represent means and error bars represent standard errors. (b-c) Comparisons of average time to landing (b) and proportion landing (c) between field and laboratory females,
 325 326 327 328 329 330 	(a) Cumulative landing proportions of females on human experimenters across all replicates. Lines represent means and error bars represent standard errors. (b-c) Comparisons of average time to landing (b) and proportion landing (c) between field and laboratory females,

334 Discussion

- 336 Suppressing the transmission of dengue and other arboviruses by releasing Wolbachia-
- 337 infected mosquitoes is becoming increasingly popular, with releases taking place in at least
- 338 12 countries (https://www.worldmosquitoprogram.org/;
- 339 https://www.nea.gov.sg/corporate-functions/resources/research/wolbachia-aedes-
- 340 mosquito-suppression-strategy/project-wolbachia-singapore;
- 341 <u>https://www.imr.gov.my/wolbachia/</u>). For releases to succeed, the strain intended for
- 342 deployment needs to have comparable fitness to wild-type mosquitoes, which should be
- 343 tested prior to large-scale field release. The semi-field cage setting is widely used as an
- intermediate step between laboratory studies and open field releases. ^{63, 64, 65} Semi-field
- 345 experiments have been used to test the mating success and invasive ability of *Wolbachia*
- 346 infections^{12, 66, 67} and for evaluating the efficacy of novel mosquito traps and pesticides.^{65, 68,}
- ⁶⁹ But while host-seeking is critical for the success of *Wolbachia* replacement programs, the
- 348 strains used in field releases including wMel and wAlbB have not been evaluated for their
- 349 effects on host-seeking ability in a realistic way.

350

351 We compared the host-seeking ability of female *A. aegypti* with different *Wolbachia*

infection types and from laboratory and field origins in a semi-field cage. Our method was

- 353 similar to the method developed by McMeniman, et al. ⁷⁰ In their study, the host-seeking
- ability of wild-type and *Gr3* mutant females lacking a response to CO₂ was compared by
- releasing mosquitoes in the middle of the cage and leaving them to disperse naturally for 5
- 356 hours before the experiment. In our design, female mosquitoes were released
- 357 simultaneously at a single release point fifteen meters away from the experimenters, thus
- 358 standardizing the distance over which host-seeking is tested and allowing mosquitoes to

359 combine their flight ability with the detection of olfactory, visual and thermal queues to 360 locate and land on experimenters. This is the first time that a semi-field approach has been 361 used to evaluate the host-seeking ability of mosquitoes with Wolbachia strains intended for 362 field deployment. 363 364 We found no significant differences between A. aegypti with different Wolbachia infection 365 types on host-seeking ability in our experiments. Females with the wMel and wAlbB strains 366 should therefore not be at a disadvantage in terms of host-seeking if released into the field. 367 Although a study with a Puerto Rican A. *aegypti* population indicated that laboratory maintenance altered attraction to human odors,⁴⁵ no significant differences were found in 368 369 overall host-seeking between laboratory and field populations in our semi-field experiments. Therefore, our laboratory maintenance protocol⁴⁶ should not lead to 370 371 compromised host-seeking ability in the field, though other factors that can coincide with laboratory maintenance such as inbreeding may reduce fitness.⁷¹ Different rearing 372 373 procedures, such as the use of membrane feeders, non-human blood or small cages may 374 also affect host-seeking ability if adaptation occurs. 375 376 In the absence of molecular tools, visual marking is needed to distinguish between 377 populations in the same experiment. However, overapplication of powder may affect 378 longevity and behavioral responses, with effects depending on the method and the color

379 used for marking.^{72, 73, 74} Although the two sets of experiments were conducted at different

- times, no significant differences were found between marked and unmarked uninfected
- 381 laboratory females in terms of average arrival time (One-way ANOVA: F_{1,10} = 0.388, P =

382	0.547) and proportion landing ($F_{1,10}$ = 0.387, P = 0.548), which suggests that the minimal
383	amount of fluorescent powder used for marking does not affect host-seeking ability.

385	We also ran experiments with <i>w</i> Mel, <i>w</i> AlbB-infected and uninfected <i>A. aegypti</i> females that
386	were 20 d old and found no significant differences between populations (Supplementary
387	Figure 4). Although mosquitoes of different ages were not compared in the same
388	experiment, we found that 20 d old females had slower average times to landing (Two-way
389	ANOVA: ages: F _{1,24} = 8.567, P = 0.007, colonies: F _{2,24} = 1.407, P = 0.264) but higher landing
390	proportions (ages: F _{1,24} = 5.802, P = 0.024, colonies: F _{2,24} = 0.461, P = 0.636) compared to 5 d
391	old females by treating mosquito age and colony as fixed factors. This suggests that host-
392	seeking ability may be influenced by mosquito age, but direct comparisons between ages in
393	the same experiment are needed to confirm this finding.
394	
395	Many factors can influence mosquito attraction to humans including environmental

	·····, ······
396	temperature and humidity, in addition to the CO_2 , skin emanations, body heat and moisture
397	of the host. ^{75, 76, 77} While all mosquitoes in each experiment were reared under the same
398	conditions and were a similar age, we observed substantial differences in average times to
399	landing and landing proportions between replicates (Supplementary Tables 2 and 3). We
400	found no effect of temperature or the time of releases (Supplementary Table 1) according
401	to Spearman's rank correlation (P > 0.05), suggesting that temperature and time of day did
402	not substantially influence host-seeking. We also ran a power analysis using an online
403	calculator (http://powerandsamplesize.com/Calculators/Compare-2-Means/2-Sample-
404	Equality) with a 80% power test using the average times and standard deviations of
405	Wolbachia-infected and uninfected colonies. For 20% differences in our studies (7.5 minutes

406 for wMel or wAlbB-infected A. aegypti while 9.5 minutes for uninfected A. aegypti), at least
407 15 replicates are needed to detect an effect, while a difference of 30% could be detected
408 with six replicates.

409

410	In addition to studying the host-seeking ability of females, it may be possible to extend this
411	method to male mosquitos. For SIT, IIT and RIDL approaches, testing the competitiveness of
412	males before the release is essential. ²⁷ A previous semi-field cage study showed that
413	<i>Wolbachia</i> infection does not reduce the competitiveness of <i>A. aegypti</i> males. ⁶⁷ However, in
414	nature, adult female densities will not be as high as in semi-field cage tests; males will
415	typically locate and fly around a human host first before detecting female flight tones and
416	initiating courtship behaviour. ^{78, 79, 80} In a pilot experiment where we released males into the
417	semi-field cage, we found that <i>A. aegypti</i> males exhibited a similar host-seeking response to
418	females (Supplementary Figure 5), but this requires further testing.
419	
420	In conclusion, we have developed a method to test the host-seeking ability of female A.
421	aegypti populations under semi-field conditions. While changes in host-seeking behavior
422	due to Wolbachia infections and laboratory adaptation are apparent from some laboratory
423	studies, it is important to test host-seeking in a way that reflects natural conditions.
424	Comparisons of host-seeking ability using this approach will be informative when evaluating
425	mosquito strains for field release. This method can also be used to compare other factors
426	such as age and rearing conditions which can help to better understand the host-seeking
427	behavior of female mosquitoes.
428	

429 Acknowledgements

- 430 We thank Qiong Yang and Ashley Callahan of the Pest and Environmental Adaptation
- 431 Research Group for LightCycler technical assistance and Edward Tsyrlin for helping with
- 432 taking mosquito photos. We also thank Chris Paton, Michael Townsend and Kyran Staunton
- 433 in James Cook University for collecting field population, providing space and facility support
- 434 for mosquito rearing and semi-field cage experiments.
- 435

436 **Financial support**

- 437 AAH was supported by the National Health and Medical Research Council (1132412,
- 438 1118640, www.nhmrc.gov.au) and the Wellcome Trust (108508, wellcome.ac.uk). The
- 439 funders had no role in study design, data collection and analysis, decision to publish, or
- 440 preparation of the manuscript.
- 441

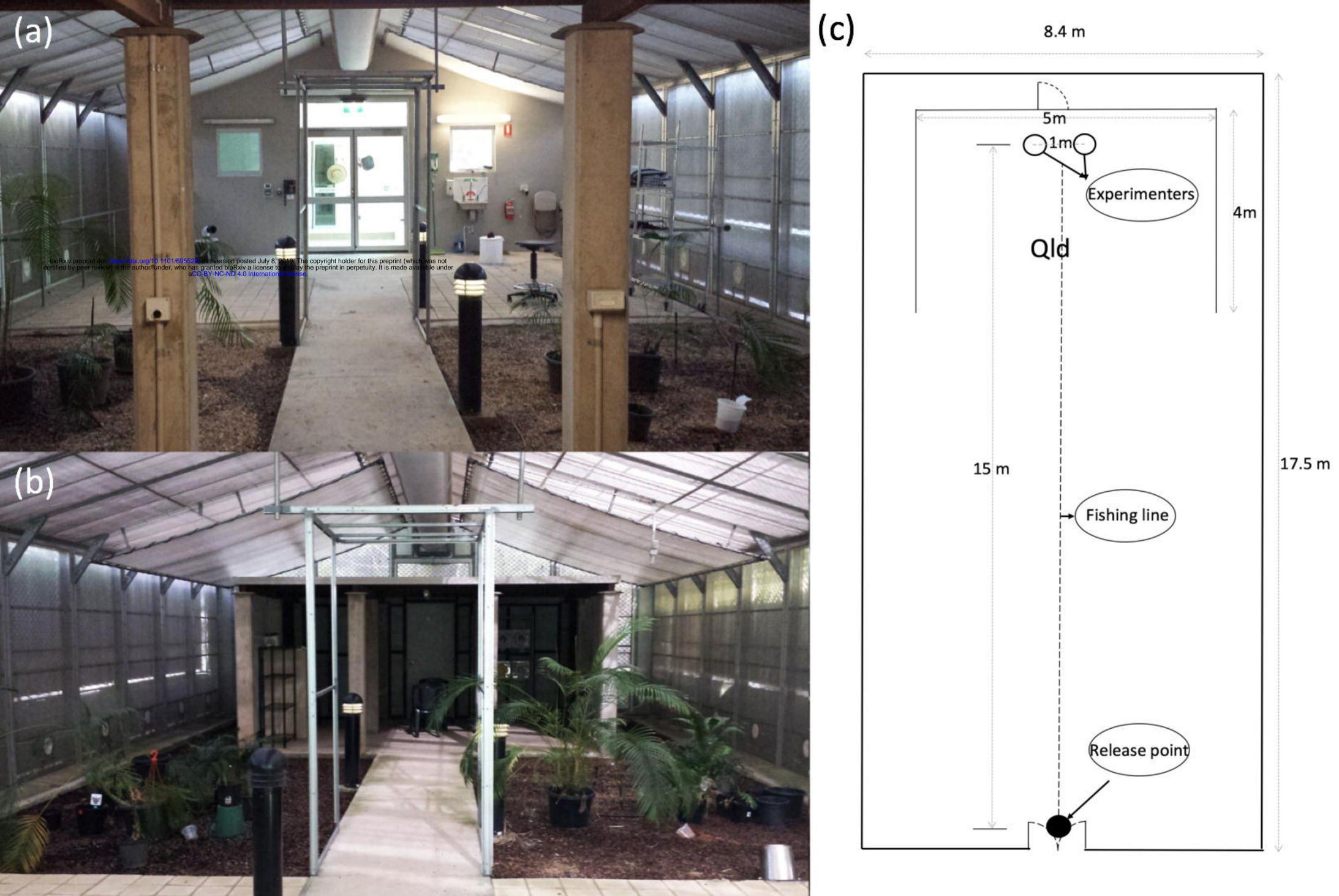
442 Disclosures

- 443 The authors declare that no conflicts of interest exist.
- 444

445 **Current addresses**

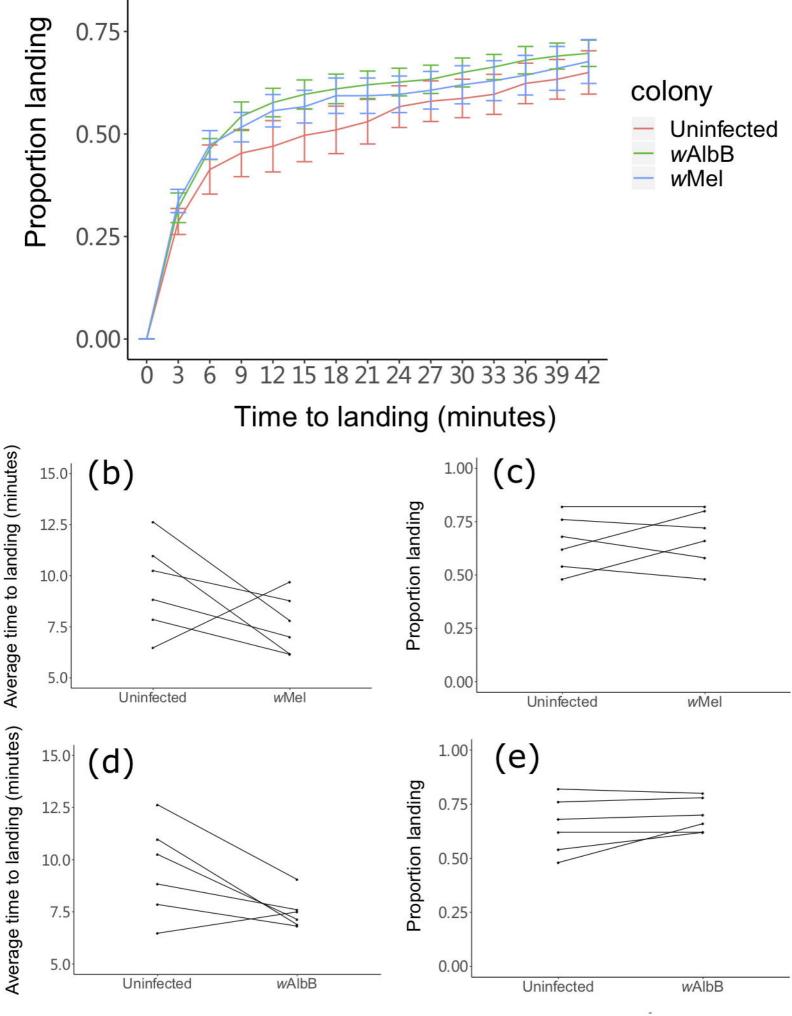
- 446 As per the author list, except for Scott Ritchie:
- 447 Scott Ritchie
- 448 World Mosquito Program
- 449 Institute of Vector Borne Disease
- 450 Monash University
- 451 Clayton 3800 Vic
- 452 Australia
- 453

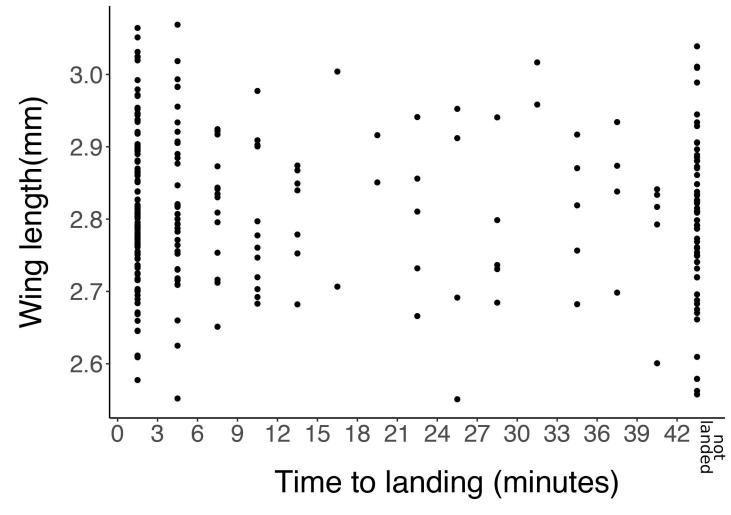
References

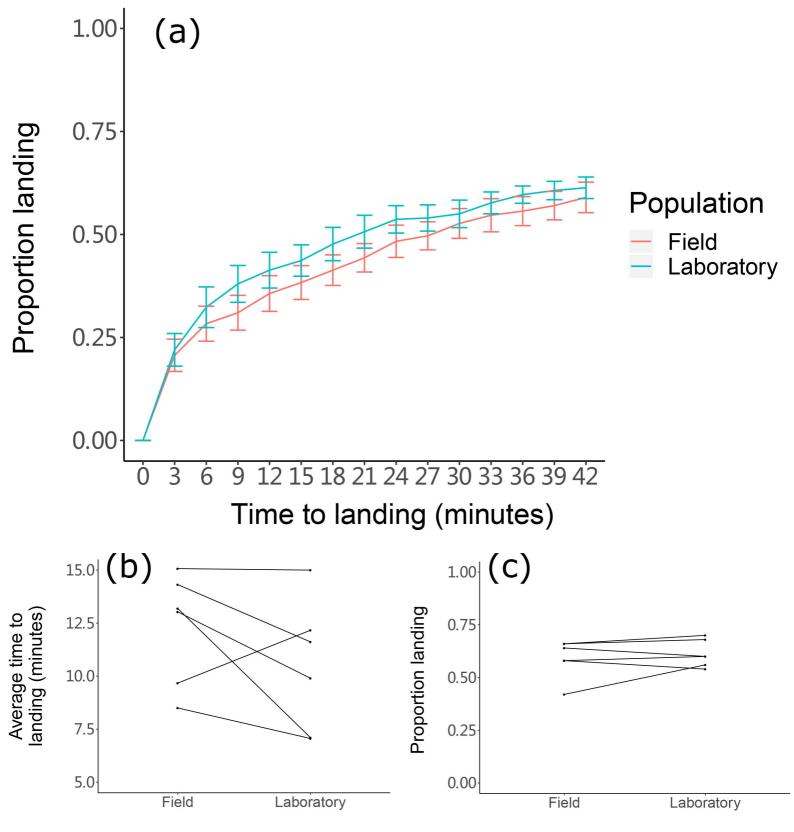

457	1.	Wilder-Smith A, Gubler DJ, Weaver SC, Monath TP, Heymann DL, Scott TW, 2017.
458		Epidemic arboviral diseases: priorities for research and public health. Lancet Infect
459	-	Dis 17: e101-e106.
460	2.	Gould EA, Higgs S, 2009. Impact of climate change and other factors on emerging
461		arbovirus diseases. Trans R Soc Trop Med Hyg 103: 109-121.
462	3.	Reiter P, 2001. Climate change and mosquito-borne disease. Environ Health Perspect
463		109: 141-161.
464	4.	Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM,
465		Brownstein JS, Hoen AG, Sankoh O, 2013. The global distribution and burden of
466		dengue. Nature 496: 504.
467	5.	Gubler DJ, 2002. The global emergence/resurgence of arboviral diseases as public
468		health problems. Med Res Arch 33: 330-342.
469	6.	Huang Y-J, Higgs S, Vanlandingham D, 2017. Biological control strategies for
470		mosquito vectors of arboviruses. Insects 8: 21.
471	7.	Brogdon WG, McAllister JC, 1998. Insecticide resistance and vector control. J Emerg
472		Infect Dis 4: 605.
473	8.	Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, Raghavendra K, Pinto J,
474		Corbel V, David J-P, 2017. Contemporary status of insecticide resistance in the major
475		<i>Aedes</i> vectors of arboviruses infecting humans. PLoS Negl Trop Dis 11: e0005625.
476	9.	Benedict MQ, Robinson AS, 2003. The first releases of transgenic mosquitoes: an
477		argument for the sterile insect technique. Trends Parasitol 19: 349-355.
478	10.	Mains JW, Brelsfoard CL, Rose RI, Dobson SL, 2016. Female adult Aedes albopictus
479		suppression by Wolbachia-infected male mosquitoes. Sci Rep 6: 33846.
480	11.	Harris AF, McKemey AR, Nimmo D, Curtis Z, Black I, Morgan SA, Oviedo MN, Lacroix
481		R, Naish N, Morrison NI, 2012. Successful suppression of a field mosquito population
482		by sustained release of engineered male mosquitoes. Nat Biotechnol 30: 828.
483	12.	Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ,
484		Leong YS, Dong Y, Axford J, Kriesner P, Lloyd AL, Ritchie SA, O'Neill SL, Hoffmann AA,
485		2011. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti
486		populations. Nature 476: 450-U101.
487	13.	Ant TH, Herd CS, Geoghegan V, Hoffmann AA, Sinkins SP, 2018. The Wolbachia strain
488		wAu provides highly efficient virus transmission blocking in <i>Aedes aegypti</i> . PLoS
489		Pathog 14: e1006815.
490	14.	Dobson SL, Fox CW, Jiggins FM, 2002. The effect of Wolbachia-induced cytoplasmic
491		incompatibility on host population size in natural and manipulated systems. Proc R
492		Soc Lond B Biol Sci 269: 437-445.
493	15.	Brownlie JC, Cass BN, Riegler M, Witsenburg JJ, Iturbe-Ormaetxe I, McGraw EA,
494		O'Neill SL, 2009. Evidence for metabolic provisioning by a common invertebrate
495		endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog
496		5. e1000368.

497	16.	Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-
498		Mendelin S, Day A, Riegler M, 2009. A Wolbachia symbiont in Aedes aegypti limits
499		infection with dengue, Chikungunya, and Plasmodium. Cell 139: 1268-1278.
500	17.	Hoffmann AA, Montgomery B, Popovici J, Iturbe-Ormaetxe I, Johnson P, Muzzi F,
501		Greenfield M, Durkan M, Leong Y, Dong Y, 2011. Successful establishment of
502		Wolbachia in Aedes populations to suppress dengue transmission. Nature 476: 454.
503	18.	O'Neill SL, Ryan PA, Turley AP, Wilson G, Retzki K, Iturbe-Ormaetxe I, Dong Y, Kenny
504		N, Paton CJ, Ritchie SA, 2018. Scaled deployment of <i>Wolbachia</i> to protect the
505		community from dengue and other <i>Aedes</i> transmitted arboviruses. Gates Open Res 2.
506	19.	Ritchie SA, 2018. Wolbachia and the near cessation of dengue outbreaks in Northern
507		Australia despite continued dengue importations via travellers. J Travel Med 25:
508		tay084.
509	20.	Benedict M, D'Abbs P, Dobson S, Gottlieb M, Harrington L, Higgs S, James A, James S,
510		Knols B, Lavery J, 2008. Guidance for contained field trials of vector mosquitoes
511		engineered to contain a gene drive system: recommendations of a scientific working
512		group. Vector Borne Zoonotic Dis 8: 127-166.
513	21.	de Azambuja Garcia G, Sylvestre G, Aguiar R, da Costa GB, Martins AJ, Lima JBP,
514		Petersen MT, Lourenço-de-Oliveira R, Shadbolt MF, Rašić G, 2019. Matching the
515		genetics of released and local <i>Aedes aegypti</i> populations is critical to assure
516		Wolbachia invasion. PLoS Negl Trop Dis 13: e0007023.
517	22.	McMeniman CJ, Lane RV, Cass BN, Fong AWC, Sidhu M, Wang Y-F, O'Neill SL, 2009.
518		Stable Introduction of a Life-Shortening Wolbachia Infection into the Mosquito
519		Aedes aegypti. Science 323: 141-144.
520	23.	Yeap HL, Mee P, Walker T, Weeks AR, O'Neill SL, Johnson P, Ritchie SA, Richardson
521		KM, Doig C, Endersby NM, Hoffmann AA, 2010. Dynamics of the "Popcorn"
522		Wolbachia Infection in Outbred Aedes aegypti Informs Prospects for Mosquito
523		Vector Control. Genetics 187: 583-595.
524	24.	Ross PA, Endersby NM, Hoffmann AA, 2016. Costs of three Wolbachia infections on
525		the survival of <i>Aedes aegypti</i> larvae under starvation conditions. PLoS Negl Trop Dis
526		10: e0004320.
527	25.	Hancock PA, White VL, Callahan AG, Godfray CH, Hoffmann AA, Ritchie SA, 2016.
528		Density-dependent population dynamics in <i>Aedes aegypti</i> slow the spread of <i>w</i> Mel
529		Wolbachia. J Appl Ecol 53: 785-793.
530	26.	Hu L, Tang M, Wu Z, Xi Z, Yu J, 2019. The threshold infection level for <i>Wolbachia</i>
531	-0.	invasion in random environments. J Differ Equ 266: 4377-4393.
532	27.	Chambers EW, Hapairai L, Peel BA, Bossin H, Dobson SL, 2011. Male mating
533	_/ .	competitiveness of a <i>Wolbachia</i> -introgressed <i>Aedes polynesiensis</i> strain under semi-
534		field conditions. PLoS Negl Trop Dis 5: e1271.
535	28.	Hoffmann AA, Ross PA, 2018. Rates and Patterns of Laboratory Adaptation in (Mostly)
536		Insects. J Econ Entomol 111: 501-509.
537	29.	Maclean H, Kristensen T, Sørensen J, Overgaard J, 2018. Laboratory maintenance
538		does not alter ecological and physiological patterns among species: A Drosophila
539		case study. J Econ Entomol 31: 530-542.
540	30.	Grossman MK, Uc-Puc V, Rodriguez J, Cutler DJ, Morran LT, Manrique-Saide P,
541		Vazquez-Prokopec GM, 2018. Restoration of pyrethroid susceptibility in a highly
542		resistant <i>Aedes aegypti</i> population. Biol Lett 14: 20180022.

543	31.	Kristensen TN, Hoffmann AA, Overgaard J, Sorensen JG, Hallas R, Loeschcke V, 2008.
544		Costs and benefits of cold acclimation in field-released <i>Drosophila</i> . Proc Natl Acad Sci
545		U S A 105: 216-21.
546	32.	Hoffmann AA, 2009. Drosophila and Selection in Nature: From Laboratory Fitness
547		Components to Field Assessments. van der Werf J, Graser H-U, Frankham R, Gondro
548		C, eds. Adaptation and Fitness in Animal Populations: Evolutionary and Breeding
549		Perspectives on Genetic Resource Management. Dordrecht: Springer Netherlands,
550		169-182.
551	33.	Calisi RM, Bentley GE, 2009. Lab and field experiments: are they the same animal?
552	~ •	Horm Behav 56: 1-10.
553	34.	de Valdez MRW, Nimmo D, Betz J, Gong H-F, James AA, Alphey L, Black WC, 2011.
554		Genetic elimination of dengue vector mosquitoes. Proc Natl Acad Sci U S A 108:
555	25	
556	35.	Facchinelli L, Valerio L, Ramsey JM, Gould F, Walsh RK, Bond G, Robert MA, Lloyd AL,
557		James AA, Alphey L, 2013. Field cage studies and progressive evaluation of
558	26	genetically-engineered mosquitoes. PLoS Negl Trop Dis 7: e2001.
559 560	36.	Ross PA, Ritchie SA, Axford JK, Hoffmann AA, 2019. Loss of cytoplasmic
560 561		incompatibility in <i>Wolbachia</i> -infected <i>Aedes aegypti</i> under field conditions. PLoS Negl Trop Dis 13: e0007357.
562	37.	Schmidt TL, Filipovic I, Hoffmann AA, Rasic G, 2018. Fine-scale landscape genomics
563	57.	helps explain the slow spatial spread of <i>Wolbachia</i> through the <i>Aedes aegypti</i>
564		population in Cairns, Australia. Heredity (Edinb) 120: 386-395.
565	38.	Turelli M, Barton NH, 2017. Deploying dengue-suppressing <i>Wolbachia</i> : robust
566	50.	models predict slow but effective spatial spread in <i>Aedes aegypti</i> . Theor Popul Biol
567		115: 45-60.
568	39.	Nguyen TH, Le Nguyen H, Nguyen TY, Vu SN, Tran ND, Le T, Vien QM, Bui T, Le HT,
569	00.	Kutcher S, 2015. Field evaluation of the establishment potential of <i>w</i> MelPop
570		Wolbachia in Australia and Vietnam for dengue control. Parasit Vectors 8: 563.
571	40.	Dekker T, Geier M, Cardé RT, 2005. Carbon dioxide instantly sensitizes female yellow
572		fever mosquitoes to human skin odours. J Exp Biol 208: 2963-2972.
573	41.	Cardé R, 2015. Multi-cue integration: how female mosquitoes locate a human host.
574		Curr Biol 25: R793-R795.
575	42.	van Breugel F, Riffell J, Fairhall A, Dickinson MH, 2015. Mosquitoes use vision to
576		associate odor plumes with thermal targets. Curr Biol 25: 2123-2129.
577	43.	Turley A, Smallegange R, Takken W, Zalucki M, O'neill S, McGraw E, 2014. <i>Wolbachia</i>
578		infection does not alter attraction of the mosquito <i>Aedes (Stegomyia) aegypti</i> to
579		human odours. Med Vet Entomol 28: 457-460.
580	44.	Ritchie SA, Johnson PH, Freeman AJ, Odell RG, Graham N, Dejong PA, Standfield GW,
581		Sale RW, O'Neill SL, 2011. A secure semi-field system for the study of Aedes aegypti.
582		PLoS Negl Trop Dis 5: e988.
583	45.	Clark GG, Bernier UR, Allan SA, Kline DL, Golden FV, 2011. Changes in host-seeking
584		behavior of Puerto Rican Aedes aegypti after colonization. J Med Entomol 48: 533-
585		537.
586	46.	Ross PA, Axford JK, Richardson KM, Endersby-Harshman NM, Hoffmann AA, 2017.
587		Maintaining Aedes aegypti mosquitoes infected with Wolbachia. J Vis Exp.
588	47.	Xi ZY, Khoo CCH, Dobson SL, 2005. <i>Wolbachia</i> establishment and invasion in an
589		<i>Aedes aegypti</i> laboratory population. Science 310: 326-328.


590	48.	Hoffmann AA, Iturbe-Ormaetxe I, Callahan AG, Phillips BL, Billington K, Axford JK,
591		Montgomery B, Turley AP, O'Neill SL, 2014. Stability of the <i>w</i> Mel <i>Wolbachia</i> Infection
592		following Invasion into <i>Aedes aegypti</i> Populations. PLoS Negl Trop Dis 8.
593	49.	Axford JK, Ross PA, Yeap HL, Callahan AG, Hoffmann AA, 2016. Fitness of wAlbB
594		Wolbachia infection in Aedes aegypti: parameter estimates in an outcrossed
595		background and potential for population invasion. Am J Trop Med Hyg 94: 507-516.
596	50.	Ross PA, Wiwatanaratanabutr I, Axford JK, White VL, Endersby-Harshman NM,
597		Hoffmann AA, 2017. Wolbachia infections in Aedes aegypti differ markedly in their
598		response to cyclical heat stress. PLoS Pathog 13: e1006006.
599	51.	Dittmer J, Alafndi A, Gabrieli P, 2019. Fat body–specific vitellogenin expression
600	51.	regulates host-seeking behaviour in the mosquito <i>Aedes albopictus</i> . PLoS Biol 17:
601		e3000238.
602	52.	
	52.	Attardo GM, Hansen IA, Raikhel AS, 2005. Nutritional regulation of vitellogenesis in
603	F 2	mosquitoes: implications for anautogeny. Insect Biochem Mol Biol 35: 661-675.
604	53.	Yeap HL, Endersby NM, Johnson PH, Ritchie SA, Hoffmann AA, 2013. Body size and
605		wing shape measurements as quality indicators of Aedes aegypti mosquitoes
606		destined for field release. Am J Trop Med Hyg 89: 78-92.
607	54.	Nasci RS, 1986. The size of emerging and host-seeking Aedes aegypti and the relation
608		of size to blood-feeding success in the field. J Am Mosq Control Assoc 2: 61-2.
609	55.	Briegel H, 1990. Metabolic relationship between female body size, reserves, and
610		fecundity of Aedes aegypti. J Insect Physiol 36: 165-172.
611	56.	Anderson LE, 1954. Hoyer's solution as a rapid permanent mounting medium for
612		bryophytes. Bryologist 57: 242-244.
613	57.	Lee SF, White VL, Weeks AR, Hoffmann AA, Endersby NM, 2012. High-throughput
614		PCR assays to monitor <i>Wolbachia</i> infection in the dengue mosquito (<i>Aedes aegypti</i>)
615		and Drosophila simulans. Appl Environ Microbiol: AEM. 00069-12.
616	58.	Joubert DA, Walker T, Carrington LB, De Bruyne JT, Kien DHT, Hoang NLT, Chau NVV,
617		lturbe-Ormaetxe I, Simmons CP, O'Neill SL, 2016. Establishment of a Wolbachia
618		superinfection in <i>Aedes aegypti</i> mosquitoes as a potential approach for future
619		resistance management. PLoS Pathog 12: e1005434.
620	59.	Zhou W, Rousset F, O'Neill S, 1998. Phylogeny and PCR-based classification of
621		Wolbachia strains using wsp gene sequences. Proc R Soc Lond B Biol Sci 265: 509-515.
622	60.	Hope RM, 2013. Rmisc: Ryan miscellaneous. R package version 1.
623	61.	Wickham H, 2009. plyr: Tools for splitting, applying and combining data. R package
624		version 0.1 9: 651.
625	62.	Wickham H, 2016. ggplot2: elegant graphics for data analysis: Springer.
626	63.	Madakacherry O, Lees RS, Gilles JRL, 2014. <i>Aedes albopictus</i> (Skuse) males in
627		laboratory and semi-field cages: release ratios and mating competitiveness. Acta
628		Trop 132: S124-S129.
629	64.	Mancini MV, Spaccapelo R, Damiani C, Accoti A, Tallarita M, Petraglia E, Rossi P,
630	04.	Cappelli A, Capone A, Peruzzi G, 2016. Paratransgenesis to control malaria vectors: a
631 632	65	semi-field pilot study. Parasit Vectors 9: 140. Darbro, IM, Johnson, PH, Thomas MB, Bitchie SA, Kay, BH, Byan, PA, 2012, Effects of
	65.	Darbro JM, Johnson PH, Thomas MB, Ritchie SA, Kay BH, Ryan PA, 2012. Effects of
633		Beauveria bassiana on survival, blood-feeding success, and fecundity of Aedes
634 625	66	aegypti in laboratory and semi-field conditions. Am J Trop Med Hyg 86: 656-664.
635	66.	Yeap HL, Axford JK, Popovici J, Endersby NM, Iturbe-Ormaetxe I, Ritchie SA,
636		Hoffmann AA, 2014. Assessing quality of life-shortening Wolbachia-infected Aedes


637		<i>aegypti</i> mosquitoes in the field based on capture rates and morphometric
638		assessments. Parasit Vectors 7: 58.
639	67.	Segoli M, Hoffmann AA, Lloyd J, Omodei GJ, Ritchie SA, 2014. The effect of virus-
640		blocking <i>Wolbachia</i> on male competitiveness of the dengue vector mosquito, <i>Aedes</i>
641		<i>aegypti</i> . PLoS Negl Trop Dis 8: e3294.
642	68.	de Lima Santos ND, da Silva Paixão K, Napoleão TH, Trindade PB, Pinto MR, Coelho
643		LCBB, Eiras ÁE, Navarro DMdAF, Paiva PMG, 2014. Evaluation of Moringa oleifera
644		seed lectin in traps for the capture of <i>Aedes aegypti</i> eggs and adults under semi-field
645	60	conditions. Parasitol Res 113: 1837-1842.
646	69.	Johnson BJ, Ritchie SA, 2016. The Siren's Song: Exploitation of female flight tones to
647	70	passively capture male <i>Aedes aegypti</i> (<i>Diptera: Culicidae</i>). J Med Entomol 53: 245-8.
648	70.	McMeniman CJ, Corfas RA, Matthews BJ, Ritchie SA, Vosshall LB, 2014. Multimodal
649 650		integration of carbon dioxide and other sensory cues drives mosquito attraction to humans. Cell 156: 1060-71.
650		
651	71.	Ross PA, Endersby-Harshman NM, Hoffmann AA, 2019. A comprehensive assessment
652		of inbreeding and laboratory adaptation in <i>Aedes aegypti</i> mosquitoes. Evol Appl 12:
653		572-586.
654	72.	Verhulst NO, Loonen JA, Takken W, 2013. Advances in methods for colour marking of
655		mosquitoes. Parasit Vectors 6: 200.
656	73.	Dickens BL, Brant HL, 2014. Effects of marking methods and fluorescent dusts on
657	74	Aedes aegypti survival. Parasit Vectors 7: 65.
658	74.	Hagler JR, Jackson CG, 2001. Methods for marking insects: current techniques and
659 660	75.	future prospects. Annu Rev Entomol 46: 511-543. Zwiebel L, Takken W, 2004. Olfactory regulation of mosquito–host interactions.
661	75.	Insect Biochem Mol Biol 34: 645-652.
662	76.	Takken W, 1991. The role of olfaction in host-seeking of mosquitoes: a review. Int J
663	70.	Trop Insect Sci 12: 287-295.
664	77.	Bowen M, 1991. The sensory physiology of host-seeking behavior in mosquitoes.
665		Annu Rev Entomol 36: 139-158.
666	78.	Hartberg W, 1971. Observations on the mating behaviour of <i>Aedes aegypti</i> in nature.
667		Bull World Health Organ 45: 847.
668	79.	Stone CM, Tuten HC, Dobson SL, 2013. Determinants of male <i>Aedes aegypti</i> and
669		Aedes polynesiensis (Diptera: Culicidae) response to sound: Efficacy and
670		considerations for use of sound traps in the field. J Med Entomol 50: 723-730.
671	80.	Cator LJ, Arthur BJ, Ponlawat A, Harrington LC, 2011. Behavioral observations and
672		sound recordings of free-flight mating swarms of Ae. aegypti (Diptera: Culicidae) in
673		Thailand. J Med Entomol 48: 941-946.
674		



1.00 (a)

bioRxiv preprint doi: https://doi.org/10.1101/695528; this version posted July 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

