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Abstract 25 

 26 

Host-seeking is an essential process in mosquito reproduction. Field releases of modified 27 

mosquitoes for population transformation rely on successful host-seeking by female 28 

mosquitoes, but host-seeking ability is rarely tested in a realistic context. We tested the 29 

host-seeking ability of female Aedes aegypti mosquitoes using a semi-field system. Females 30 

with different Wolbachia infection types (wMel-, wAlbB-infected and uninfected) or from 31 

different origins (laboratory and field) were released at one end of a semi-field cage and 32 

recaptured as they landed on human experimenters fifteen meters away. Mosquitoes from 33 

each population were then identified with molecular tools or through marking with a 34 

consistent weight of fluorescent powder. Wolbachia-infected and uninfected populations 35 

had similar average durations to landing and overall recapture proportions, as did 36 

laboratory and field-sourced A. aegypti. These results suggest that the host-seeking ability 37 

of mosquitoes is not negatively affected by Wolbachia infection or long-term laboratory 38 

maintenance. This method provides an approach to study the host-seeking ability of 39 

mosquitoes across a long distance which will be useful when evaluating strains of 40 

mosquitoes that are planned for releases into the field to suppress arbovirus transmission. 41 

An adjustment of this method may also be useful in sterile insect release programs because 42 

male host-seeking and swarming around female feeding sites can also be investigated. 43 

 44 

 45 

 46 
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Introduction 49 

 50 

The management of arboviral diseases has become increasingly important to global health 51 

in recent decades.
1
 The occurrence of arboviral diseases such as dengue, Zika, Japanese 52 

encephalitis and West Nile fever is increasing, especially in tropical and subtropical areas. 
2,3, 53 

4
 These viruses require blood-feeding mosquitoes to complete their life cycle,

5
 with 54 

mosquitoes from the genera of Culex and Aedes being particularly important.
6 

An effective 55 

way to control arbovirus transmission is to suppress the vector mosquito populations. 56 

Pesticides are widely used for this purpose but this can lead to the evolution of physiological 57 

resistance, alongside other undesirable effects associated with pesticide use.
7, 8 

The sterile 58 

insect technique (SIT),
9
 incompatible insect technique (IIT),

10
 and the release of insects 59 

carrying a dominant lethal gene (RIDL)
11

 are promising non-insecticidal alternatives, where 60 

wild-type females that mate with the released “modified” males have few viable offspring, 61 

decreasing the population size. 62 

 63 

An alternative approach aims to decrease the ability of mosquitoes to transmit viruses by 64 

introducing endosymbiotic Wolbachia bacteria.
12, 13

 Wolbachia are transmitted maternally 65 

and can invade natural populations through cytoplasmic incompatibility and any beneficial 66 

effects on host reproduction.
14, 15

 When introduced into mosquitoes from other insects, 67 

some Wolbachia strains reduce their capacity to transmit viruses.
12, 16

 Aedes aegypti 68 

infected with the wMel Wolbachia strain have been introduced into field populations, with 69 

the first releases taking place in Cairns, Australia in 2011.
17

 In locations in Australia where 70 

Wolbachia have established there have been no confirmed locally-transmitted cases of 71 

dengue occurring within the release areas.
18, 19

  72 
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 73 

Population replacement and suppression strategies ideally should be preceded by 74 

investigations to assess their potential for success, address safety concerns,
20

 and perform 75 

community engagement.
18, 21

 When using Wolbachia to block arbovirus transmission, fitness 76 

costs imposed on their hosts such as adult life-shortening,
22

 reduced quiescent egg 77 

viability,
23

 and reduced starvation resistance of larvae
24

 must be considered. Such effects 78 

mean that Wolbachia must exceed a threshold frequency in order to spread in natural 79 

populations.
17, 25, 26

 SIT, IIT and RIDL programs are simpler in that the only concern is male 80 

fitness, but still require the released males to have a high competitiveness to ensure 81 

successful mating with wild females.
27

 Populations reared in the laboratory can adapt to the 82 

artificial conditions which may reduce field performance.
28, 29

 For instance, laboratory 83 

maintenance can lead to the loss of pesticide resistance,
30 

greatly reducing fitness in release 84 

areas with heavy pesticide use.
21 85 

 86 

Fitness assays are usually carried out in the laboratory to detect fitness costs, but during 87 

releases mosquitoes must locate hosts or mates under variable environmental conditions. 88 

Performance under laboratory conditions often does not translate to performance in the 89 

field.
31, 32, 33

 Males from the transgenic OX3604C strain of A. aegypti successfully suppressed 90 

laboratory populations
34

 but were much less effective under semi-field conditions due to a 91 

strong mating disadvantage.
35

 For Wolbachia releases, density-dependent effects,
25

 loss of 92 

cytoplasmic incompatibility,
36

 and incomplete maternal transmission
37

 may account for the 93 

slower-than-expected spatial spread of infections in natural populations
37, 38

 or even failed 94 

establishment
39

 despite success under more controlled conditions.
12 95 

 96 
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Successful host-seeking is key to population replacement programs since female mosquitoes 97 

require blood for reproduction. Females locate a potential blood source by tracking exhaled 98 

CO2 over tens of meters, then approach and land on the host by detecting thermal plumes, 99 

host odors, moisture and visual contrast.
40, 41, 42

 Wolbachia infections do not affect the 100 

attraction of A. aegypti to human odors in the laboratory,
43

 but successful host-seeking in 101 

the field will depend on the detection of olfactory cues from a long distance, visual and 102 

temperature signals from a shorter distance and flight ability. 103 

 104 

In this paper, we tested the host-seeking ability of female A. aegypti using a semi-field cage 105 

in North Queensland, Australia
44

 to simulate an outdoor setting. Females were released at 106 

one end of the semi-field cage and then recaptured by two experimenters seated at the 107 

other end. This method allows for a direct comparison of host-seeking ability between 108 

different mosquito strains in a common environment. To test the method we compared 109 

mosquitoes with the wMel and wAlbB Wolbachia strains, which are now being released into 110 

the field in disease control programs,
17 

(Nazni et al., unpublished data) against uninfected 111 

counterparts. To evaluate whether laboratory adaptation could affect host-seeking as 112 

demonstrated in laboratory experiments previously,
45

 we also compared a laboratory 113 

population to a population collected recently from the field. 114 

 115 

Material and Methods 116 

 117 

Mosquito strains and maintenance 118 

 119 
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A. aegypti mosquitoes in this study were reared at 26-28°C in a controlled temperature 120 

room at James Cook University, Cairns, using methods described previously.
46

 We 121 

performed two sets of experiments to compare the effects of Wolbachia infection and 122 

laboratory maintenance on host-seeking ability respectively. To test for the effects of 123 

Wolbachia infection, we used uninfected, wMel-infected and wAlbB-infected A. aegypti 124 

with a similar genetic background. Populations infected with wMel and wAlbB were derived 125 

from lines transinfected previously.
12, 47

 The wMel population was collected from Cairns, 126 

Australia in May 2013 from regions that had been invaded two years earlier
17, 48

 while the 127 

wAlbB population was crossed to an Australian background and maintained in the 128 

laboratory.
49

 The uninfected population was established from A. aegypti (Wolbachia-129 

uninfected) eggs collected in Cairns, Queensland, Australia in November 2015.
50

 Females 130 

from all Wolbachia-infected lines were backcrossed for three generations to the uninfected 131 

males to ensure a similar genetic background before the experiments.
23

 To test for the 132 

effects of laboratory maintenance we compared the host-seeking ability of laboratory and 133 

field populations. The laboratory population was identical to the uninfected population 134 

described above and had been maintained in the laboratory for 27 generations. The field 135 

population of A. aegypti (Wolbachia-uninfected) was collected in September 2018 from the 136 

same location as the laboratory population and was a mix of the first and second laboratory 137 

generations at the time of experiments. 138 

 139 

For each release, the compared colonies were hatched synchronously, provided with 140 

TetraMin® fish food tablets (Tetra, Melle, Germany) ad libitum and the larval density was 141 

controlled to 150 in 1 L water to ensure matched eclosion. After pupation, approximately 80 142 

pupae were selected with a mix of 80% females and 20% males and left to emerge as adults 143 
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in one cage (BugDorm-4M1515 Insect Rearing Cage). Each cage was provided with a cup of 144 

10% sucrose and water and left for at least 4 d to ensure that females had matured and 145 

mated, but not blood fed. One day before the release, sugar cups were removed with only 146 

water cups remaining to starve the females, since sugar feeding may affect host-seeking 147 

behavior.
51, 52

 The released females were 5 d old in both the Wolbachia infection 148 

comparison and the laboratory maintenance comparison.  149 

 150 

Release-recapture method 151 

 152 

We used a semi-field system (17.5 × 8.4 m) at James Cook University, Cairns, Australia 153 

containing soil, vegetation, a “Queenslander” house structure (Qld) and a ventilation system 154 

to match outside ambient temperatures to simulate natural conditions (Figure 1).
44

 155 

Mosquitoes were released near the door side from a box with a mesh lid while two 156 

experimenters were seated within the Qld structure to attract mosquitoes from the other 157 

end (Figure 1). Two temperature loggers (Thermochron; 1-Wire, iButton.com, Dallas 158 

Semiconductors, Sunnyvale, CA, USA) were placed near the release point and two were 159 

placed under the Qld structure to monitor temperatures during experiments 160 

(Supplementary Table 1).  161 

 162 

 163 

Figure 1. Interior of the semi-field cage. (a) View of the door from inside the Qld. (b) View of 164 

the Qld from the door. (c) Schematic diagram of the cage showing the release point and the 165 

location of two experimenters. 166 

 167 
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 168 

Females from all populations in the comparison were aspirated into a single release box 169 

(Supplementary Figure 1) and placed in the semi-field cage to acclimate for at least 30 170 

minutes before experiments commenced. For the Wolbachia infection comparison, 50 171 

uninfected, 50 wMel-infected and 50 wAlbB-infected females were released into the box. 172 

For the laboratory maintenance comparison, 50 laboratory and 50 field source females were 173 

released. Females that were damaged during handling were replaced. 174 

 175 

Two experimenters wore bug net mesh hats, long-sleeved shirts and shorts, exposing only 176 

their lower legs to restrict the area where mosquitoes could land. The same two 177 

experimenters undertook all experiments. Experimenters sat on the floor within the Qld 178 

structure, 1 m apart (Figure 1) with an electronic timer, mechanical aspirators (Model 179 

2809C, BioQuip Products, Inc, Rancho Dominguez, CA, USA) and 15 collection vials nearby. 180 

The experiment commenced by pulling the fishing line to remove the mesh lid from the box 181 

to release the mosquitoes (Supplementary Figure 1), after which the timer was immediately 182 

started. Females landing on exposed skin were collected with mechanical aspirators as they 183 

landed. Collection vials were replaced with empty vials at 3-minute intervals until 42 184 

minutes had elapsed. After 42 minutes, both experimenters moved to the opposite end of 185 

the cage to capture mosquitoes that did not land during the experiment. Collections 186 

occurred until no more mosquitoes were detected after a thorough search of the semi-field 187 

cage. Between experiments, two Biogents Sentinel (BGS) traps (Biogents AG, Regensburg, 188 

Germany) were placed inside the semi-field cage to assist in the capture of any remaining 189 

mosquitoes. At least one hour before each experiment commenced, the experimenters 190 
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searched the semi-field cage and used an electric mosquito swatter to kill any mosquitoes 191 

found. 192 

 193 

 194 

Wolbachia infection comparison 195 

 196 

The host-seeking experiment was repeated seven times with 50 uninfected, 50 wMel-197 

infected and 50 wAlbB-infected females. Females collected from each replicate and time 198 

interval were stored in absolute ethanol at 4°C for wing length measurements, DNA 199 

extraction and Wolbachia screening. One replicate was discarded from other analyses due 200 

to the loss of samples during wing dissection. 201 

 202 

Field-collected A. aegypti are smaller and more variable in size than laboratory-reared A. 203 

aegypti.
53

 Since host-seeking females collected from the field in a previous experiment 204 

tended to be larger than non-host-seeking females,
54

 we tested whether host-seeking speed 205 

and successful host seeking within 42 minutes was affected by size. We measured the wing 206 

length of females from two experimental replicates to obtain an indication of their body 207 

size.
55

 Intact wings were dissected from individual females and fixed under a 10 mm circular 208 

coverslip (Menzel-Gläser, Braunschweig, Germany) using Hoyer’s solution
56

 for further 209 

observation and measurement with an NIS Elements BR imaging microscope (Nikon 210 

Instruments, Japan).
24

  211 

 212 

DNA extraction and Wolbachia screening were conducted according to the methods of Lee, 213 

et al. 
57

 DNA from whole mosquitoes was extracted using 200 µL of 5% Chelex 100 Resin 214 
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(Bio-Rad Laboratories, Hercules, CA) and 3 μL of Proteinase K (20 mg/ mL, Bioline Australia 215 

Pty Ltd, Alexandria NSW, Australia). Extractions were diluted by 1/10, pipetted into four 216 

positions of a 384-well plate and amplified with mosquito-specific (mRpS6) primers, A. 217 

aegypti-specific (aRpS6) primers, Wolbachia wMel-specific (w1) primers and Wolbachia 218 

wAlbB-specific (wAlbB) primers
48, 49, 58, 59

 using a LightCycler 480 system (Roche Applied 219 

Science, Indianapolis, IN, USA). Robust and similar amplification of mRpS6 and aRpS6 (within 220 

one cycle) was expected for each individual. Uninfected A. aegypti were expected to show 221 

no amplification and therefore, no crossing point (Cp) value, with both w1 and wAlbB 222 

primers. A. aegypti were classified as wMel-infected when they exhibited no amplification 223 

with wAlbB primers and low Cp values (< 28) and a Tm within the expected range for w1 224 

primers based on wMel-infected laboratory controls. wAlbB-infected A. aegypti tested 225 

positive for wAlbB, mRpS6 and aRpS6 primers but also showed late amplification (Cp > 28) 226 

with w1 primers. Individuals were therefore classified as wAlbB-infected when they 227 

exhibited a low Cp value (< 28) with wAlbB primers, a Tm within the expected range for 228 

wAlbB primers and an amplification curve shape consistent with wAlbB-infected laboratory 229 

control values (Supplementary Figure 2). At least two consistent technical replicates were 230 

obtained for each individual. 231 

 232 

Laboratory maintenance comparison 233 

 234 

In this experiment, laboratory and field populations were marked with different colors of 235 

fluorescent powder (DayGlo, Barnes Products Pty Ltd, Moorebank, NSW, Australia) before 236 

release since the two populations could not be distinguished by molecular assays. Orange, 237 

blue and yellow colors were used and were cycled between replicates. To reduce potential 238 
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negative effects of marking, we used a minimal, but visually identifiable amount 239 

(Supplementary Figure 3) by weighing powder on a microbalance (Sartorius BP 210 D). One 240 

hour before the release, 50 females from each population were aspirated into two separate 241 

70-mL specimen cups containing approximately 0.4 mg of fluorescent powder in different 242 

colors. The cups were shaken gently to coat the mosquitoes evenly in powder before placing 243 

them in the release box (Supplementary Figure 1). Recaptured females were killed by 244 

freezing at -20 °C for 30 minutes and identified under a microscope using a UV flashlight. 245 

This experiment was repeated six times. 246 

 247 

Data analyses 248 

 249 

Data visualization and ANOVA analyses were conducted using R studio with the packages 250 

Rmisc,
60

 plyr,
61

 and ggplot2.
62

 Mosquitoes were captured at three-minute intervals and 251 

assigned a value based on the median time of each catching interval for average landing 252 

time calculations. Mosquitoes caught after 42 minutes were considered as not landing. A 253 

two-way ANOVA analyzed differences in average landing time of the landed mosquitoes and 254 

the number of females that landed by treating population as a fixed factor and experimental 255 

replicate as a random factor. One-way ANOVA was used to compare the wing length of 256 

mosquitoes caught at different intervals by treating landing time as a factor. Cumulative 257 

landing proportions over time were analyzed with log-rank tests in IBM SPSS Statistics 258 

version 25 by combining replicate experiments together. 259 

 260 

 261 

Results 262 
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 263 

Wolbachia infection comparison 264 

 265 

We compared the host-seeking ability of uninfected, wMel-infected and wAlbB-infected 266 

females when released simultaneously in a semi-field cage. On average, more than 30% of 267 

the mosquitoes were captured during the first three minutes of the experiment, with 268 

approximately 70% landing over the course of 42 minutes (Figure 2A). We compared the 269 

cumulative landing proportions of each population when combined across replicates and 270 

found no significant differences between Wolbachia-infected and uninfected females (log-271 

rank: wMel : uninfected: χ2
 = 1.428, df = 1, P = 0.232; wAlbB : uninfected: χ2

 = 2.9, df = 1, P 272 

= 0.089, Figure 3A). 273 

 274 

The average time to landing of each population was used as an estimate of host-seeking 275 

speed (Figure 2b, 2d). Average time to landing did not differ significantly between 276 

uninfected (mean ± SE: 9.5 ± 0.9 minutes), wMel-infected (7.6 ± 0.6 minutes) and wAlbB-277 

infected (7.5 ± 0.3 minutes) females (two-way ANOVA: wMel : uninfected: F1,5 = 2.503, P = 278 

0.174; wAlbB : uninfected: F1,5 = 6.434, P = 0.052). There was also no significant effect of 279 

replicate on average time to landing in either comparison (wMel : uninfected: F5,5 = 0.617, P 280 

= 0.696; wAlbB : uninfected: F5,5 = 2.009, P = 0.231). We compared the total proportion of 281 

females landing as an indicator of overall host-seeking success (Figure 2c, 2e); here there 282 

were also no significant differences between populations (wMel : uninfected: F1,5 = 0.282, P 283 

= 0.618, wAlbB : uninfected: F1,5 = 2.426,P = 0.180). There was a significant effect of 284 

replicate in the wAlbB comparison (F5,5 = 7.505, P = 0.023) but not in the wMel comparison 285 

(F5,5 = 3.482, P = 0.099). 286 
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 287 

 288 

Figure 2. Host-seeking ability of 5 d old wMel-infected, wAlbB-infected and uninfected A. 289 

aegypti females in a semi-field cage. (a) Cumulative landing proportions of females on 290 

human experimenters across all replicates. Lines represent means and error bars represent 291 

standard errors. (b-c) Comparisons of average time to landing (b) and proportion landing (c) 292 

between uninfected and wMel-infected females, plotted separately for each replicate. (d-e) 293 

Comparisons of average time to landing (d) and proportion landing (e) between uninfected 294 

and wAlbB-infected females, plotted separately for each replicate. 295 

 296 

 297 

Females from two replicates of the Wolbachia infection comparison were measured for 298 

wing length (Figure 3). There was no significant effect of wing length on host-seeking speed, 299 

measured by capture interval (F14,251 = 0.708, P = 0.766). Females landing within the first 300 

three minutes (2.81 ± 0.02 mm, n = 102) did not differ in size from females collected after 301 

42 minutes had elapsed (2.80 ± 0.03 mm, n = 57), suggesting no difference in size between 302 

fast host-seeking females and non-host-seekers (F1,80 = 1.311, P = 0.256). 303 

 304 

 305 

Figure 3. Wing lengths of female A. aegypti collected during two replicates of the Wolbachia 306 

infection host-seeking experiment. Points represent wing lengths of individual females 307 

collected across each 3-minute interval of the experiment. Wing lengths of females 308 

captured after 42 minutes had elapsed were also included.  309 

 310 
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 311 

Laboratory adaptation comparison 312 

 313 

In comparisons of laboratory and field A. aegypti females, approximately 60% of the 314 

released mosquitoes were caught over the duration of the experiments. Cumulative landing 315 

proportions did not differ significantly between field and laboratory populations when 316 

combined across replicates (log-rank: χ2 
= 2.275, df = 1, P = 0.131, Figure 4a). The average 317 

time to landing did not differ significantly between field (mean ± SE: 12.3 ± 1.1 minutes) and 318 

laboratory (10.5 ± 1.3 minutes) females (two-way ANOVA: F1,5 = 2.346, P = 0.186, Figure 4b), 319 

with no significant effect of replicate (F5,5 = 2.876, P = 0.136). Furthermore, the total 320 

proportion of females landing did not differ between field and laboratory females (F1,5 = 321 

0.745, P = 0.428, Figure 4c), with no significant effect of replicate (F5,5 = 4.647, P = 0.059), 322 

suggesting that laboratory maintenance does not affect host-seeking ability.  323 

 324 

 325 

Figure 4. Host-seeking ability of field and laboratory A. aegypti females in a semi-field cage. 326 

(a) Cumulative landing proportions of females on human experimenters across all replicates. 327 

Lines represent means and error bars represent standard errors. (b-c) Comparisons of 328 

average time to landing (b) and proportion landing (c) between field and laboratory females, 329 

plotted separately for each replicate.  330 

 331 

 332 

 333 

Discussion 334 
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 335 

Suppressing the transmission of dengue and other arboviruses by releasing Wolbachia-336 

infected mosquitoes is becoming increasingly popular, with releases taking place in at least 337 

12 countries (https://www.worldmosquitoprogram.org/; 338 

https://www.nea.gov.sg/corporate-functions/resources/research/wolbachia-aedes-339 

mosquito-suppression-strategy/project-wolbachia-singapore; 340 

https://www.imr.gov.my/wolbachia/). For releases to succeed, the strain intended for 341 

deployment needs to have comparable fitness to wild-type mosquitoes, which should be 342 

tested prior to large-scale field release. The semi-field cage setting is widely used as an 343 

intermediate step between laboratory studies and open field releases. 
63, 64, 65

 Semi-field 344 

experiments have been used to test the mating success and invasive ability of Wolbachia 345 

infections
12, 66, 67

 and for evaluating the efficacy of novel mosquito traps and pesticides.
65, 68, 346 

69
 But while host-seeking is critical for the success of Wolbachia replacement programs, the 347 

strains used in field releases including wMel and wAlbB have not been evaluated for their 348 

effects on host-seeking ability in a realistic way.  349 

 350 

We compared the host-seeking ability of female A. aegypti with different Wolbachia 351 

infection types and from laboratory and field origins in a semi-field cage. Our method was 352 

similar to the method developed by McMeniman, et al. 
70

 In their study, the host-seeking 353 

ability of wild-type and Gr3 mutant females lacking a response to CO2 was compared by 354 

releasing mosquitoes in the middle of the cage and leaving them to disperse naturally for 5 355 

hours before the experiment. In our design, female mosquitoes were released 356 

simultaneously at a single release point fifteen meters away from the experimenters, thus 357 

standardizing the distance over which host-seeking is tested and allowing mosquitoes to 358 
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combine their flight ability with the detection of olfactory, visual and thermal queues to 359 

locate and land on experimenters. This is the first time that a semi-field approach has been 360 

used to evaluate the host-seeking ability of mosquitoes with Wolbachia strains intended for 361 

field deployment. 362 

 363 

We found no significant differences between A. aegypti with different Wolbachia infection 364 

types on host-seeking ability in our experiments. Females with the wMel and wAlbB strains 365 

should therefore not be at a disadvantage in terms of host-seeking if released into the field.  366 

Although a study with a Puerto Rican A. aegypti population indicated that laboratory 367 

maintenance altered attraction to human odors,
45

 no significant differences were found in 368 

overall host-seeking between laboratory and field populations in our semi-field 369 

experiments. Therefore, our laboratory maintenance protocol
46

 should not lead to 370 

compromised host-seeking ability in the field, though other factors that can coincide with 371 

laboratory maintenance such as inbreeding may reduce fitness.
71

 Different rearing 372 

procedures, such as the use of membrane feeders, non-human blood or small cages may 373 

also affect host-seeking ability if adaptation occurs. 374 

 375 

In the absence of molecular tools, visual marking is needed to distinguish between 376 

populations in the same experiment. However, overapplication of powder may affect 377 

longevity and behavioral responses, with effects depending on the method and the color 378 

used for marking.
72, 73, 74

 Although the two sets of experiments were conducted at different 379 

times, no significant differences were found between marked and unmarked uninfected 380 

laboratory females in terms of average arrival time (One-way ANOVA: F1,10 = 0.388, P = 381 
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0.547) and proportion landing (F1,10 = 0.387, P = 0.548), which suggests that the minimal 382 

amount of fluorescent powder used for marking does not affect host-seeking ability. 383 

 384 

We also ran experiments with wMel, wAlbB-infected and uninfected A. aegypti females that 385 

were 20 d old and found no significant differences between populations (Supplementary 386 

Figure 4). Although mosquitoes of different ages were not compared in the same 387 

experiment, we found that 20 d old females had slower average times to landing (Two-way 388 

ANOVA: ages: F1,24 = 8.567, P = 0.007, colonies: F2,24 = 1.407, P = 0.264) but higher landing 389 

proportions (ages: F1,24 = 5.802, P = 0.024, colonies: F2,24 = 0.461, P = 0.636) compared to 5 d 390 

old females by treating mosquito age and colony as fixed factors. This suggests that host-391 

seeking ability may be influenced by mosquito age, but direct comparisons between ages in 392 

the same experiment are needed to confirm this finding. 393 

 394 

Many factors can influence mosquito attraction to humans including environmental 395 

temperature and humidity, in addition to the CO2, skin emanations, body heat and moisture 396 

of the host.
75, 76, 77

 While all mosquitoes in each experiment were reared under the same 397 

conditions and were a similar age, we observed substantial differences in average times to 398 

landing and landing proportions between replicates (Supplementary Tables 2 and 3). We 399 

found no effect of temperature or the time of releases (Supplementary Table 1) according 400 

to Spearman’s rank correlation (P > 0.05), suggesting that temperature and time of day did 401 

not substantially influence host-seeking. We also ran a power analysis using an online 402 

calculator (http://powerandsamplesize.com/Calculators/Compare-2-Means/2-Sample-403 

Equality) with a 80% power test using the average times and standard deviations of 404 

Wolbachia-infected and uninfected colonies. For 20% differences in our studies (7.5 minutes 405 
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for wMel or wAlbB-infected A. aegypti while 9.5 minutes for uninfected A. aegypti), at least 406 

15 replicates are needed to detect an effect, while a difference of 30% could be detected 407 

with six replicates.  408 

 409 

In addition to studying the host-seeking ability of females, it may be possible to extend this 410 

method to male mosquitos. For SIT, IIT and RIDL approaches, testing the competitiveness of 411 

males before the release is essential.
27

 A previous semi-field cage study showed that 412 

Wolbachia infection does not reduce the competitiveness of A. aegypti males.
67

 However, in 413 

nature, adult female densities will not be as high as in semi-field cage tests; males will 414 

typically locate and fly around a human host first before detecting female flight tones and 415 

initiating courtship behaviour.
78, 79, 80

 In a pilot experiment where we released males into the 416 

semi-field cage, we found that A. aegypti males exhibited a similar host-seeking response to 417 

females (Supplementary Figure 5), but this requires further testing. 418 

 419 

In conclusion, we have developed a method to test the host-seeking ability of female A. 420 

aegypti populations under semi-field conditions. While changes in host-seeking behavior 421 

due to Wolbachia infections and laboratory adaptation are apparent from some laboratory 422 

studies, it is important to test host-seeking in a way that reflects natural conditions. 423 

Comparisons of host-seeking ability using this approach will be informative when evaluating 424 

mosquito strains for field release. This method can also be used to compare other factors 425 

such as age and rearing conditions which can help to better understand the host-seeking 426 

behavior of female mosquitoes.  427 

 428 
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