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ABSTRACT 

One challenge in engineering organisms is guaranteeing system behavior over many 

generations. Spontaneous mutations that arise before or during use can impact heterologous 

genetic functions, disrupt system integration, or change organism phenotype. Here, we 

propose restructuring the genetic code itself such that all point mutations in protein-coding 

sequences are selected against. Synthetic genetic systems so-encoded should “fail safely” in 

response to many individual spontaneous mutations. We designed a family of such fail-safe 

codes and analyzed their expected effect on the evolution of engineered organisms via 

simulation. We predict that fail-safe codes supporting expression of 20 or 15 amino acids 

could slow the evolution of proteins in so-encoded organisms to 30% or 0% the rate of 

standard-code organisms, respectively. We also designed quadruplet-codon codes that 

should be capable of encoding at least 20 amino acids while ensuring all single point 

mutations in protein-coding sequences are selected against. We show by in vitro experiments 

that a reduced set of 21 tRNA is capable of expressing a protein whose coding sequence is 

recoded to use a fail-safe code, whereas a standard-code encoding is not expressed.  Our 

work suggests that a rationally depleted but otherwise natural translation system should yield 

biological systems with intrinsically reduced evolutionary capacity, and that so-encoded 

hypoevolvable organisms might be less likely to invade new niches or outcompete native 

populations. 
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INTRODUCTION 

The ability to engineer organisms is increasingly important for academic, industrial, and public 

uses [Endy 2005; Benner and Sismour 2005; Keasling 2008; Khalil and Collins 2010; The 

White House 2012; Redford, Adams, and Mace 2013; Carlson 2016; Katz et al. 2018; Nye 

2018]. Traditional engineering disciplines have established methods for controlling systems 

on the timescales of immediate input and response (e.g., data storage and retrieval, or 

autonomous control) [Harashima 1996, Mittal and Vetter 2016], and intermediate learning and 

memory (e.g., algorithms that can learn to outperform humans in games through self-play) 

[Silver et al. 2016, Silver et al. 2018].  However, self-reproducing systems additionally 

demonstrate complicated spontaneous behaviors across multiple generations [von Neumann 

1966, Endy 2005]. To realize reliable operation of reproducing organisms we must also learn 

to engineer behavior across evolutionary timescales. 

Evolution within a population relies on the diversity of genetic makeups (i.e., genotypes) from 

which emerges a corresponding diversity of physiological and behavioral traits (i.e., 

phenotypes). Genetic diversity is generated by error during DNA replication (i.e., mutation) 

and propagated across generations [Wright 2005, Alberts et al. 2002]. Individuals with 

phenotypes better suited to a given environment tend to reproduce more successfully, 

enriching the population with their offspring while those that are less fit are outcompeted 

[Alberts et al. 2002, Loewe and Hill 2010, Sniegowski and Gerrish 2010]. Thus, to engineer 

the evolutionary trajectories of competing populations, we must either control the processes 

that generate mutations or the selective pressures acting within and among populations. 

One direct approach to controlling the behavior of engineered organisms over multiple 

generations is to reduce organism fitness outside of a prescribed niche. Scientists have long 
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sought and realized such control of engineered organisms in safely advancing fundamental 

research [Berg et al. 1974, NIH 2016]. For example, biocontainment methods such as 

engineered auxotrophy [Ronchel and Ramos 2001, Steidler et al. 2003, Bahey-El-Din et al. 

2010] or exogenously expressed “kill signals” [Gallagher et al. 2015; Callura et al. 2010; Cai 

et al. 2015; Agmon et al. 2017; Chan et al. 2016; Molina et al. 1998; Contreras, Molin, and 

Ramos 1991] have been widely used. However, such methods can be toxic to their host 

organisms and may result in selective pressures that inactivate the underlying mechanism 

[Lee et al. 2018]. 

More general approaches for controlling behavior over multiple generations consider altering 

the type and effect of mutations that arise. Such control can be realized by taking advantage 

of degeneracy in the mapping of DNA to proteins (i.e., the “genetic code”) to synonymously 

recode genes of interest [Koonin and Novozhilov 2009]. Such recoding approaches work by 

altering the distribution of phenotypes available to an individual without changing the identity 

of the translated proteins. For example, an organism can be recoded such that its initial 

fitness is high but nearby regions of its fitness landscape are less fit or even fatal. Such 

approaches have been tested by synonymously recoding Coxsackie B3 and influenza A 

viruses so that their genotypes were immediately adjacent to deleterious genotypes, resulting 

in attenuated virulence via decreased evolutionary rates [Moratorio et al. 2017]. Another 

approach is to recode an organism such that no single point mutation results in a significant 

change in fitness; organisms so-encoded might be used for a limited number of generations 

without fear that any single mutation will outcompete the original genotype. Such a strategy 

was tested by introducing infrequently used codon pairs into the poliovirus genome via 

synonymous recoding, resulting in both attenuated virulence and reduced likelihood of escape 
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mutants arising during use [Coleman et al. 2008]. We note that while recoding-based 

approaches are generalizable to other biological systems, such approaches only affect the 

local fitness landscape of an organism, implying that if an engineered organism were to 

escape its local fitness trap it might continue to evolve unimpeded.   

A more fundamental approach aims to control the entire fitness landscape of an organism by 

changing the underlying mapping of genotype to phenotype. Most life on Earth uses the 

“Standard Code” or a close variant thereof to assign 64 nucleotide triplets (i.e., “codons”) to 

20 unique amino acids plus a termination signal (Fig. 1a) [Koonin and Novozhilov 2009, 

Hinergardner and Engelberg 1963]. The Standard Code has a highly nonrandom structure 

that is optimized for translation fidelity across generations (Fig. 1a-b) [Koonin and Novozhilov 

2009, Koonin and Novozhilov 2017]. For example, mutations in the Standard Code are 

significantly more likely than in a randomly generated code to conserve the encoded amino 

acid (24% vs. 4%), and to minimize the physicochemical change upon mutations that do not 

conserve the encoded amino acid (Fig. 1d-e) [Kyte and Doolittle 1982]. Redesigning the 

genetic code would alter the type and effect of spontaneous mutations across all genotypes, 

independent of the biological system using the code. For example, recent theoretical work by 

Pines and colleagues proposed a “hyperevolvable” genetic code for use in directed evolution 

(hereafter “Colorado Code”) [Pines et al. 2017]. More specifically, Pines et al. proposed 

decreasing synonymous mutation rates while increasing the physicochemical changes in 

amino acids resulting from missense mutations (Fig. 1c-e), such that populations using the 

Colorado Code could traverse larger regions of phenotype space for each step in genotype 

space. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/695569doi: bioRxiv preprint 

https://doi.org/10.1101/695569


 6 

Here we propose a set of “fail-safe” genetic codes designed to map mutations to deleterious 

phenotypes, independent of the biological system in which these codes are implemented. We 

designed a subset of these fail-safe codes such that they might be realized using natural 

translation machinery, avoiding the need for molecular reengineering work. We simulated the 

evolutionary dynamics of populations of engineered organisms using our fail-safe genetic 

codes, as well as the interaction of populations using different genetic codes, in order to 

quantify the expected effects that different genetic codes have on evolutionary rates. We also 

implemented one such fail safe code using a reduced tRNA set and found that the selected 

reduced code is capable of synthesizing proteins in vitro. Our results suggest that fail-safe 

codes are likely to slow, or in some cases altogether arrest, the evolution of protein-coding 

sequences in fail-safe encoded organisms. Our results also suggest that fail-safe encoded 

organisms should be less able to compete with native species if introduced to new 

environmental contexts. 

RESULTS 

Fail-safe codes lacking translation machinery for a subset of codons are designed to 

penalize missense mutations  

We designed a set of fail-safe genetic codes with a minimal set of translation machinery 

necessary to encode each expressible amino acid, eliminating degenerate sense codons (Fig. 

2). Stated directly, most codons in such genetic codes are “null codons,” meaning they are not 

specifically recognized by any tRNAs or translation factors. Genes designed for such fail-safe 

codes would be encoded using the single, specific sense codon designated for each amino 

acid. Mutations in so-encoded open reading frames (ORFs) would most typically result in null 

codons. Previous work has shown that tRNA and release factor deletions that remove all 
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machinery decoding a particular codon are either strongly deleterious or lethal, implying that 

translating null codons would reduce organismal fitness [Johnson et al. 2012, Bloom-

Ackermann et al. 2014]. 

As a first example, we designed a family of fail-safe codes in which 20 sense codons map 

uniquely to 20 amino acids and, to the extent possible, single point mutations map to null 

codons. We call these codes “Fail-Safe 20,” or FS20, because they support expression of all 

20 conventional amino acids. There are P(64, 20) ≈ 5	 ×	10./ unique FS20 codes, one of 

which is shown as an example in Figure 2a. All FS20 codes have the same number of sense 

codons adjacent only to null codons, and of sense codons adjacent to each other via point 

mutation. However, the set of sense codons adjacent to each other via point mutation differs 

for each FS20 code. Engineers can therefore choose to encode their engineered organism 

using the FS20 code that maximizes the mutation rate to null codons given the distribution of 

amino acids used in the proteome of their organism. While our designs for FS20 codes 

anticipate eventual advances in synthetic biology sufficient to realize entirely arbitrary genetic 

codes, building most FW20 codes today would be nontrivial. For example, most FS20 codes 

would require codon reassignment involving significant reengineering of tRNAs and tRNA 

synthetases. While codon reassignment has been well explored for use with non-natural 

amino acids involving a few codons, such work has not yet been reported for all 64 codons 

[reviewed in Wang and Schultz 2005; reviewed in d’Aquino et al. 2018; Neumann et al. 2010; 

Neumann, Slusarczyk, and Chin 2010; Lajoie et al. 2013; Rovner et al. 2015; Cui et al. 2017]. 

To avoid reengineering all tRNAs and tRNA synthetases, we next considered synthetic 

genetic codes that reuse the translation machinery already implementing the Standard Code. 

Such genetic codes might be more readily realized by reusing naturally occurring molecules. 
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As a first example, we designed a “reduced” fail-safe code we call RED20 (Fig. 2b, Sup. Table 

1). Like FS20 codes, RED20 reduces the likelihood that mutations in protein-coding 

sequences result in missense mutations and increases the likelihood of mutating to a null 

codon. As a result, RED20 also increases the fraction of point mutations expected to result in 

a deleterious or lethal phenotype.  

Fail-safe codes with reduced amino acid sets or quadruplet codons only allow 

mutations to null codons 

While FS20 and RED20 are designed to maximize the fraction of coding-sequence mutations 

mapping to null codons and minimize the fraction of missense mutations, it is impossible to 

encode 20 amino acids in a 64-codon genetic code such that each sense codon is only 

immediately adjacent to null codons. Eliminating all missense mutations in a genetic code and 

ensuring that all mutations from sense codons map to null codons required we consider either 

encoding fewer amino acids or adopting a larger codon table.  

Thus, we designed a family of fail-safe codes based on the FS20 codes that encode reduced 

sets of 16 amino acids (hereafter FS16, Fig. 2c). FS16 codes are designed such that no 

single sense codon can mutate to any other sense codon via a single point mutation. 

Similarly, we designed a fail-safe code based on RED20 that encodes 15 amino acids, 

mapping all mutations to null codons, that can be built via naturally occurring translation 

machinery alone (hereafter RED15, Fig. 2d). Because FS16 and RED15 map all mutations to 

null codons we call them “ideal” fail-safe codes. We selected and recommend specific FS16 

and RED15 codes on the basis of various design principles (e.g., if one of many similar amino 

acids is encoded then other similar amino acids become less important) (Supplementary 

Materials; Sup. Fig. 1). 
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We also considered genetic codes with expanded codon sets. Quadruplet decoding occurs in 

nature [Gesteland, Weiss, and Atkins 1992] and has been demonstrated experimentally 

[Magliery, Anderson, and Schultz 2001; Neumann et al. 2010; Niu et al. 2013; Wang et al. 

2012]. While the use of quadruplet codons is currently limited to a few positions per gene 

[Neumann et al. 2010; Niu et al. 2013; reviewed in Wang et al. 2012], we considered 

quadruplet codon designs in anticipation of ongoing advances in synthetic biology. 

Specifically, we designed a family of quadruplet-codon fail-safe codes (hereafter FSQUAD) 

with 256 available codons (Sup. Fig. 2). FSQUAD codes would be able to encode more than 

20 amino acids such that all mutations from sense codons map to null codons, allowing for 

programmable incorporation of non-natural amino acids in a fail-safe encoded system. Like 

FS20- or FS16-encoded organisms, an FSQUAD-encoded organism should also be resistant 

to horizontal gene transfer. 

Simulations quantify relative evolutionary rates of different genetic codes 

To predict how fail-safe genetic codes affect evolution we simulated large, asexual 

populations of organisms encoded via fail-safe genetic codes. We developed a hybrid model 

where small population-size lineages are treated stochastically using a birth-death process to 

capture genetic drift, and large population-size lineages are treated deterministically with 

exponential growth. Mutations are generated stochastically, the number of which is dependent 

on the population size and genetic code used [Desai and Fisher 2007; Desai, Fisher, and 

Murray 2007]. During the course of a simulation an initially monoclonal population generates 

diversity via mutation. Newer, more fit strains arise and slowly outcompete less fit strains, 

increasing the mean fitness of the population (Fig. 3a). We compare the evolutionary rate of 

genetic codes by comparing the different rates of increasing fitness across populations using 
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these codes (Fig. 3b). For example, in the systems being studied we predict the Standard 

Code allows fitness to increase at a rate of 8.71	 × 	103/ 1 gen⁄ 8	(s.d 1.31	 ×	103/ 1 gen8⁄ ). In 

comparison, the Colorado Code is expected to evolve only slightly faster (9.79 ×	103/ 1 gen8⁄ , 

s.d. 1.36	 ×	103/ 1 gen8⁄ , or	12.4%	faster). 

The fail-safe codes studied here are expected to have a much stronger effect on evolutionary 

dynamics (Table 1). For example, FS20 reduced predicted evolutionary rates to 27% that of 

the Standard Code (2.35	 ×	103/ 1 gen8⁄ , s.d. 0.877	 ×	103/ 1 gen8⁄ ). RED20 behaves 

qualitatively similarly to FS20, despite its imposed design constraints, yielding an expected 

evolutionary rate only 43% that of the Standard Code (3.77	 ×	103/ 1 gen8⁄ , s.d. 

0.977	 ×	103/ 1 gen8⁄ ). The ideal fail-safe codes FF16 and RED15 were predicted to arrest 

ORF evolution due to single point mutations altogether, and thereby maintaining their initial 

population fitness over the duration of the simulation. 

Biocontainment may arise intrinsically in organisms using fail-safe genetic codes  

We hypothesized that fail-safe encoded organisms will adapt to new environments more 

slowly than naturally encoded organisms and thus might be less able to challenge 

established, native populations. If true then fail-safe encoding could be used as an intrinsic 

biocontainment layer, one that does not rely on a heterologous genetic function but rather is 

instantiated via the encoding of the entire organism. To quantitatively assess this possibility, 

we simulated competing populations of organisms encoded by both Standard and fail-safe 

codes, exploring when and to what extent invading populations might displace established 

populations. In our simulations the invasive populations either swept or were swept by the 

native populations (Fig. 4a). More specifically, we defined a containment probability, 

PBCDEFGD(fH, t, 𝕋), as the likelihood that the invasive population will have been outcompeted by 
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time t, given an initial invasive population fraction fH and genetic code 𝕋. After sufficient time 

PBCDEFGD	reaches a steady state, varying only in initial population fraction (Fig. 4b, Sup. Fig. 5). 

We generated approximate steady state containment curves (Fig. 4c). We predict FS20 will 

maintain a containment probability PBCDEFGD < 99% up to an initial invasive population fraction 

fH ≤ 36%. RED20 was able to maintain PBCDEFGD < 99% up to fH ≤ 14%. We predict organisms 

encoded in FS16 and RED15 would be outcompeted across all initial conditions simulated. 

Our results suggest that population-level biocontainment is expected to be an intrinsic 

property of organisms encoded via fail-safe codes.  

A reduced set of tRNAs instantiating RED20 enables protein expression 

We sought to prototype a translation system using one of our fail-safe codes to learn if our 

any of our designs might have a chance of working. PURE is a chemically defined in vitro 

translation system composed of individually purified components [Shimizu et al. 2001]. We 

obtained PURE lacking all native tRNAs (PURE ∆tRNAs).  We also procured a reduced set of 

tRNA instantiating RED20 via direct RNA synthesis, which we added to PURE ∆tRNAs to 

make an in vitro RED20 expression system. We recoded green fluorescence protein to use 

only the RED20 codons (Fig. 5a). We found that our system using only RED20 tRNA is able 

to successfully express RED20-encoded, but not standard-encoded, fluorescent protein. 

Specifically, we observed that our prototype RED20 system expressed RED20-encoded 

sfGFP at a level 8-fold higher than standard-encoded sfGFP (Fig. 5b).  

DISCUSSION 

We designed fail-safe genetic codes that lack translation machinery recognizing the majority 

of codons such that individual point mutations in protein coding sequences should be 
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deleterious to the host organism. We then simulated the evolution of populations using these 

codes to quantitatively predict the expected effects of fail-safe genetic codes on evolutionary 

dynamics. Our designed codes were able to reduce evolutionary rate to ~30% of the 

Standard Code while encoding the full set of 20 conventional amino acids and to select 

against all individual point mutations in coding sequences if encoding only 15 or 16 amino 

acids. The most practical-to-implement codes, RED15 and RED20, are predicted to behave 

qualitatively similarly to FS16 and FS20 respectively without requiring any tRNA and tRNA 

synthetase engineering. Further, we built a functional RED20 prototype in vitro and 

demonstrated its capacity for protein expression.   

Fail-safe codes may serve as a base layer for biocontainment strategies  

Previous work has focused on containing organisms to prescribed physical niches [Steidler et 

al. 2003; Ronchel and Ramos 2001; Bahey-El-Din et al. 2010; Gallagher et al. 2015; Callura 

et al. 2010; Cai et al. 2015; Agmon et al. 2017; Chan et al. 2016; Molina et al. 1998; 

Contreras, Molin, and Ramos 1991]. However, full control of reproducing populations will also 

require containing organisms to prescribed genotypes. To ensure the reliability and long-term 

stability of synthetic genetic programs we need “genetic containment” methods. Our work 

suggests that fail-safe codes can offer both physical and genetic containment. Specifically, we 

predict that fail-safe encoded organisms will not only explore genotype space slower than 

organisms encoded using the Standard Code but will also be less likely to outcompete native 

populations in new environmental contexts. Organisms encoded with fail-safe codes such as 

FS20 or FS16 would additionally be genetically isolated from natural organisms [Lajoie et al. 

2013, Ravikumar and Liu 2015]. We believe that fail-safe codes can be used as a base 
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containment layer upon which additional safeguards can be added modularly [Gallager et al. 

2015].  

Wobble decoding presents a general challenge for code engineering  

One challenge in code engineering is the tendency for tRNAs to recognize more than one 

codon due to wobble decoding [Crick 1966; Tuite 2001; Agris, Vendeix, and Graham 2007; 

Watanabe and Osawa 1995] For example, designs for a hyperevolvable code generally 

maximize the diversity of encoded amino acids adjacent to any given sense codon, which can 

result in an ambiguous code where many codons are recognized by two differentially 

aminoacylated tRNAs (Sup. Fig. 3). The effect of wobble decoding on fail-safe codes however 

is comparatively less drastic. We simulated the behavior of organisms using RED20 and 

RED15 assuming 100% efficient wobble decoding (Sup. Fig. 4). Under these assumptions, 

we predict an evolutionary rate for RED20 and RED15 of 65% and 37% of the Standard Code 

rate, respectively. We further predict under these assumptions that organisms using RED20 

and RED15 maintain a containment probability greater than 95% up to an invading population 

fraction (fH) of 23% and 54%, respectively. Therefore, while engineering one-to-one decoding 

would improve the efficacy of fail-safe codes, we predict that RED15 and RED20 are robust to 

wobble decoding even if instantiated via native or near-native tRNA.  

Predicting how wobble decoding might affect a quadruplet code is difficult. We may naively 

assume that the additional base pair in the codon-anticodon complex would allow FSQUAD to 

encode four times as many amino acids unambiguously. If so, an ideal quadruplet fail-safe 

code may be able to encode up to 32 sense positions adjacent only to null codons without 

requiring tRNAs capable of one-to-one decoding. However, engineering a full set of 
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quadruplet decoding tRNAs, the cognate aminoacyl transferases and translation factors, and 

maintaining perfect codon-anticodon specificity would be challenging. 

Reduced amino acid sets may still encode interesting biological functions  

One way to increase the probability of mutating to a null codon in a fail-safe code is to 

decrease the number of encoded amino acids, thereby decreasing the number of required 

sense codons. But what biological functions can be encoded with less than 20 amino acids? 

Could a whole organism ever be encoded with a reduced amino acid set? Of the 20 

proteinogenic amino acids, ten are predicted to have resulted from biosynthesis in early 

organisms [Miller 1953; Danger, Plasson, and Pascal 2012; Fujishima et al. 2018]. This 

implies relevant biological functions may have been encoded with as few as ten amino acids. 

As a first step towards a reduced amino acid set organism, we recently removed cysteine 

from all enzymes in the cysteine biosynthesis pathway [Fujishima et al. 2018].  However, 

significant additional work would be required to remove four or five amino acids starting from 

any known natural organism, as would be needed to realize a FS16 or RED15 code.  

Additionally, we searched the UniProt database [The UniProt Consortium 2017] to see if any 

existing natural proteins use less than 20 amino acids. As one example, we found the 

antimicrobial peptide acanthoscurrin-2 is encoded only via amino acids in our RED15 code 

[Lorenzini et al. 2003]. We also analyzed residue conservation in the green fluorescent 

protein (GFP) using ConSurf [Ashkenazy et al. 2016] to assess which residues are most 

essential to protein function and what diversity of amino acids are found at these positions, 

finding that it should be possible to realize a functional GFP using only the RED15 translation 

system (Sup. Table 2, Sup. Fig. 6).  
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Gene duplication and tRNA evolution are expected failure modes of fail-safe codes  

We expect that increasing the rate of mutations to null codons will add a selective pressure 

for noncognate translation machinery to recognize these null codons. For example, ribosomal 

ambiguity mutations (ram) impair the proofreading ability of the ribosome [Gorini, Jacoby, and 

Breckenrirdge 1966; Rosset and Gorini 1969], increasing the likelihood that a noncognate 

tRNA can recognize a null codon. While several ram mutations have been discovered in 

ribosomal proteins [Piepersberg, Böck, and Wittmann 1975; Cabezón et al. 1976; Kirsebom 

and Isaksson 1985; Agarwal et al. 2011; Agarwal et al. 2015], we expect that ram mutations in 

rRNA [McClory et al. 2010; McClory et al. 2014; Santer et al. 1995; O’Connor et al. 1995; 

O’Connor et al. 1997; Gregory, Lieberman, and Dahlberg 1994; Murgola et al. 1995] are more 

likely to accumulate in a fail-safe encoded organism given such genetic codes only affect 

mutations in protein-coding sequences. We also note that fail-safe codes do not prevent gene 

duplication. Chromosomal and whole-genome duplication events can result in novel genetic 

functions [Kasahara et al. 1996, Wolfe and Shields 1997; De Bodt, Maere, and Van de Peer 

2005], frequently as a response to stress [Yona et al. 2012]. Duplication of tRNA genes 

specifically and subsequent mutation of the anticodon loop has been suggested as a 

mechanism for genetic code reprogramming in nature [Schultz and Yarus 1994, Osawa and 

Jukes 1995]. Such a mechanism could generate tRNAs that recognize null codons, 

subverting an evolutionary containment strategy based on a fail-safe code. Duplication and 

subsequent mutation as an evolutionary mechanism has been experimentally validated in 

other contexts (e.g., E. coli lactose metabolism [Kugelberg et al. 2006]). Such failure modes, 

and likely others, would need to be addressed in order to realize fully nonevolving organisms. 
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Removing sense codons from a genome presents a technical challenge  

Building a fail-safe encoded organism will require the ability to encode an entire genome such 

that each amino acid is represented by only one codon. However, codon usage has been 

shown to regulate gene expression, translation speed, and co-translational folding of proteins 

[Hershberg and Petrov 2008, Buhr et al. 2016, Escudero et al. 2017], as well as affect the 

overall fitness of the organism [Coleman et al. 2008]. As a result, some synonymous codon 

substitutions appear disallowed in vivo [Wang et al. 2016]. It is an open question how many 

sense codons are required to instantiate a living organism. Recently, Fredens and colleagues 

created a synthetic variant of the E. coli genome using only 61 codons, 59 of which encode 

amino acids via synonymous recoding of 18,214 codons plus deletion of otherwise-essential 

tRNA [Fredens et al. 2019]. Additionally, Ostrov and colleagues are working to remove seven 

sense codons from E. coli to create a 57-codon organism, and have reported successfully 

recoding 60% of E. coli genes [Ostrov et al. 2016]. While both examples demonstrate the 

state-of-art in genome-scale codon reduction, they fall short of the scope of reduction 

necessary to realize a 15 or 20 sense-codon organism. However, recently developed tools 

that accelerate total genome synthesis have enabled researchers to more rapidly screen 

recoding strategies, accelerating the pace of progress in the field of codon reduction [Wang et 

al. 2016]. As engineering whole genomes becomes more feasible so too should designing 

and building genomes with fewer and fewer sense codons.  

We believe that fail-safe codes will play an important foundational role in controlling the 

evolution of biological systems, especially in the context of whole genome engineering. We 

noted several challenges that need to be addressed before the first fail-safe organism can be 

realized. Importantly, a subset of our proposed codes do not require reassigning sense 
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codons, relying instead only on the removal of some isoacceptor tRNAs from the natural 

translation system, greatly simplifying initial experiments.  Given the importance of exploring 

and realizing non-evolving biological systems, as well as the practicality of validation 

experiments, we hope that additional academic work on fail-safe codes will be quickly 

complemented by public and private efforts to realize fail safe organisms providing a best 

available technology for realizing responsible engineered organisms suitable for deployment 

in field, plant, animal, or patient. 

MATERIALS AND METHODS 

Software 

All code used herein is free online via https://github.com/EndyLab/codon-

tables/tree/manuscript 

Constructing mutation-distance networks  

We made abstract visualizations of the genetic codes considered in this work to understand 

the single and multiple point mutations available to any given code. We converted genetic 

codes into force-directed graphs. Nodes represent encoded amino acids and edges represent 

mutations between sense codons. Two nodes are connected by an edge if there exists at 

least one pair of codons (cM and c8) encoding amino acids (aM and a8) such that cM can be 

converted to c8 by a single point mutation. The edge weight between any two amino acids aM 

and a8 takes into account all possible acyclic paths between the set of codons encoding aM 

and a8, respectively, including indirect paths that involve initial synonymous mutations. 

Individual paths from cM to c8 are weighted by an inverse power law representing the number 
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of point mutations necessary to convert cM to c8. Paths are then summed to give the total 

edge weight. 

Formally, let C = {UUU,… , GGG} be the set of all triplet codons, A = {F, L, … , G} be the set of all 

amino acids, T: c → a	|	c ∈ C, a ∈ A be a genetic code, and w(aM, a8) be the edge weight 

between amino acids aM and a8: 

 

Modeling wobble decoding and tRNA promiscuity  

Here, we chose to represent sense codon decoding using the most specific tRNA species for 

a given codo (i.e., the tRNA recognizing the fewest additional codons). We used the following 

heuristic rules: NNY codons (with U or C in the wobble position) can be decoded by 

anticodons GNN and QNN (where Q is queuosine), however generally tRNAs cannot 

discriminate NNU from NNC. Similarly, NNR (with A or G in the wobble position) are decoded 

by tRNAs with modified uridine in the 34th position, e.g., cmnm5U, mcm5U, Um, and 

xm5s2U. While Ile-tRNACAU can distinguish AUA from AUG using k2C in the 34th position, 

this ability to decode NNA and not NNG does not generalize to all NNA decoding species. 

NNG is fully distinguishable from NNH (all but NNG) codons simply with an unmodified C in 
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the 34th position [Yokoyama and Nishimura 1995, Watanabe and Osawa 1995]. Please see 

Sup. Table 1 for a description of the RNA base modification shorthand used herein. 

Simulating evolutionary dynamics 

All simulations were carried out in Python 3.6.4 on Docker instances (running Debian 8) 

hosted by Amazon Web Services (AWS). Parallelization was managed by AWS Batch. Each 

simulated strain was partitioned into one of two groups based on population size, which are 

modeled independently over a small epoch dt (chosen at 0.1 gen). We modeled small 

population-size group using a stochastic birth-death model. The per-individual doubling 

probability in an epoch is given by p` = [1 + (fG − ⟨f⟩)]dt where fG is strain’s fitness and ⟨f⟩ is 

the mean fitness of the batch culture. The corresponding death probability is fixed at pg =

(1)dt. We modeled the large population-size group analytically with strain size NG given by 

NG(t + dt) = NG(t)	e(ij3⟨i⟩)gE. At the end of each epoch, we recalculated the mean fitness of the 

simulated batch culture and reallocated strains between the low and high population-size 

groups. The threshold population size at which a strain is reallocated (ϵG) is strain specific and 

given by ϵG = 	
l

ij3⟨i⟩
, where ξ is a constant factor (we chose ξ = 3). 

We modeled mutation and the generation of new strains in two steps. We first determine the 

number of mutants each strain will generate in a given epoch by drawing from a Poisson 

distribution with expectation value for each strain µG = NGU`ϕGdt, where NG is the strain’s 

population size, U` is the per genome per generation beneficial mutation rate (set at 103p.p), 

and dt is the epoch duration. ϕG is calculated as the fraction of missense mutations in a 

genetic code that do not result in truncation, normalized by that same fraction for the 

Standard Code. 
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Each mutation is then assigned a fitness effect (dfG), drawn from a Distribution of Fitness 

Effects (DFE). We modeled the DFE with a generalized half-normal distribution (P(df) =

	 qr
8	stuvw

	e3(r	gi)v). We then introduce a new strain for each mutation, with population size NG = 1 

and fitness fG = fx + dfG, where fx is the fitness of the parent strain from which the new strain 

mutated.  

We made two approximations to reduce computational load. Our first approximation relies on 

the theoretical result that mutants generated from strains with low population-sizes have a 

vanishingly low probability of establishing in the population [Desai and Fisher 2007]. Thus, to 

reduce computational load, we did not generate mutants originating from the small 

population-size group. Our second approximation prematurely removes low fitness strains 

from the population once two conditions are met: (1) strain fitness has dropped below the 

mean, and (2) after strain population size has reduced such that the strain would be moved to 

the small population-size group and modelled stochastically. While this artificially inflates the 

mean fitness of the simulated batch culture, the effect is small given the small population-

size’s total contribution to the weighted average of fitness of the batch culture (on the order of 

0.03%). We observed that these approximations greatly improved simulation speed without 

qualitatively affecting the results. 

Preparing expression plasmids  

We received pSB1C3-T7-sfGFP from Eric Wei as a gift, which we used as the Standard 

Code-encoded expression vector (sfGFP_SC), as well as the backbone of our RED20-

encoded expression vector (sfGFP_RED20). To produce sfGFP_RED20, we first 

computationally recoded the sfGFP coding sequence to only include codons used by RED20. 
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The recoded gene was then synthesized ab initio by Twist Biosciences and assembled into 

pSB1C3-T7 using the NEB HiFi Assembly kit (NEB# E5520S). 

Chemically competent E. coli Top10 cells were incubated with 2.5 µL of assembly product on 

ice for 30 minutes. These cells were then heat shocked at 42C for 30s, returned to ice for two 

minutes, then grown out in 950 µL SOC media at 37C for one hour. The resulting 

transformants were plated on LB agar with chloramphenicol (25 ng/µL) and grown over night 

at 37C. Colonies were then grown up in 50 mL TB broth with chloramphenicol (25 ng/µL) for 

16 hours. Each overnight culture was split into five batches of 10 mL each, and plasmid was 

prepped from each batch separately using QIAprep Spin Miniprep kits (QIAGEN, Cat No./ID: 

27104) and then pooled. Final DNA product was assessed for quantity and purity using a 

NanoDrop 2000 (Thermo Scientific). Annotated sequence maps for sfGFP_SC 

(https://benchling.com/s/seq-gqXNUQJ41NbxOmdFD3LN) and for sfGFP_RED20 

(https://benchling.com/s/seq-w63RBxrXRxi6uIruvKEM) can be found online. 

Expressing protein and measuring fluorescence in vitro 

Twenty-one tRNA species were chemically synthesized ab initio by Agilent Technologies and 

resuspended in nuclease free TE buffer at pH 8.0. These tRNAs were then combined in 

equimolar ratio, at 250 mM each, to create a RED20 tRNA 25x master mix (10 mM final 

concentration per tRNA). An in vitro RED20 prototype was prepared by supplementing 

PURExpress in vitro expression system lacking tRNAs (PURE ∆tRNA, NEB# E6840S). PURE 

∆tRNA supplemented with supplied control tRNAs was used as a Standard Code. We added 

1 µL of murine RNase inhibitor to all in vitro reaction (NEB# M0314S). Each reaction also 

received 60 pmol of either the RED20-encoded or the standard-encoded expression vector. 

Otherwise, reactions were assembled as specified by NEB to a final volume of 10 µL.  
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Reactions were carried out in a SpectraMax i3 plate reader (Molecular Devices) using clear 

bottom, 384-well microtiter plates (Corning) at 37C for 16 hours. Protein expression was 

measured using the same plate reader. Samples were excited at 485 nm (9 nm bandwidth), 

and emission was measured at 520 nm (15 nm bandwidth). At two minute read intervals 

samples were read from the bottom of the plate following three seconds of shaking prior to 

each measurement. 
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Figures & Figure Legends  
 

 

Figure 1: Genetic codes are expected to influence evolutionary dynamics. Table and 

mutation-distance network representations for (a) the Standard Genetic Code, (b) a genetic 

code with random structure, and (c) a theoretical hyperevolvable code from Pines et al. 2017, 

hereafter called the Colorado Code. For both representation styles, color signifies the rank-

ordered hydropathy of the amino acids – isoleucine (I) is most hydrophobic, and arginine (R) 

is most hydrophilic. Mutation-distance networks represent amino acids as nodes. Node size 

represents the number of codons allocated to each amino acid or null. Edge weights between 

nodes (representing amino acids aM and a8) represent the accessibility of a8 to aM via point 
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mutations. See Materials and Methods for a quantitative description of edge weighting. (d) 

Distribution of synonymous-mutation frequency (fy) for 10z randomly generated codes (gray 

histogram) and mean of this distribution (black), as well as fy for the Standard Code (blue) 

and Colorado Code (red). (e) Distribution of mean mutation effects given a nonsynonymous 

mutation (⟨ΔKD⟩) for 10z randomly generated codes (gray histogram) and mean of this 

distribution (black), as well as ΔKD for the Standard Code (blue) and Colorado Code (red). 

We defined ⟨ΔKD⟩ of a genetic code as the average over all nonsynonymous mutations (from 

aM to a8) of the change in Kyte-Doolittle hydropathy (ΔKD) between the two residues (ΔKD =

|	KD(a8) − KD(aM)|). 
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Figure 2: Genetic codes can be designed to map mutations from sense codons to null 

codons. Table and mutation-distance network representations of fail-safe codes. FS20 (a) 

requires synthetic translation machinery. RED20 (b) can be realized using E. coli translation 

machinery. Both FS20 and RED20 support expression with the full set of proteinogenic amino 

acids. FS16 (c) requires synthetic translation machinery. RED15 (d) can be realized using E. 
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coli translation machinery. Both FS16 and RED15 support expression with a reduced set of 

amino acids such that all point mutations map to null codons. We omit specific amino acids in 

accordance with specific rationales (Supplementary Materials; Sup. Fig. 1). 
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Figure 3: Simulations suggest fail-safe codes can attenuate evolution more effectively 

than hyperevolvable codes can accelerate evolution. (a) A simulation of mutation-

selection balance in large, asexual populations. Each line represents the population size of an 

isogenic lineage in the simulation vs. time. New lineages arise as mutants are generated. A 

detailed description of the model is given in the Materials and Methods section. (b) Mean 

fitness traces for replicates of populations (n = 1000) using the Standard Code (blue), 

Colorado Code (red), FS20 (dark green), FS16 (light green), RED20 (dark orange), and 

RED15 (light orange). Bold lines indicate the mean fitness of a batch culture, averaged across 

replicates. Shaded regions represent the standard deviation across replicates. 
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Figure 4: Fail-safe codes may also prevent organisms from escaping into the 

environment. (a) Replicates (n = 300) of simulated competition between a native population 

encoded in the Standard Code and a monoclonal invasive population either encoded in the 

Standard Code with an initial population fraction 𝑓H = 10% (light blue) or 70% (dark blue), or 

encoded in FS20 with 𝑓H = 70% (green). We approximate containment probability 𝑃������� as 
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the fraction of simulations in which the invasive population is eliminated. (b) Contour graphs 

of containment probability vs. time (x axis) and 𝑓H (y axis) for invasive strains using the 

Standard Code (n = 300 replicates). Color represents 𝑃�������  magnitude, varying from 0 

(green) to 1 (blue). 𝑃������� reaches a steady state value at the limit of large 𝑡. (c) 𝑃������� at 

steady state vs. for invasive strains using fail-safe codes (n = 300 replicates). Bootstrapped-

resampled traces of the data are represented as lighter shaded lines. Colors are the same as 

in Fig. 3b.  
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Table 1: Evolutionary rates are expected to vary across natural and fail-safe genetic 

codes. Summary of evolutionary dynamics simulations. Predicted evolutionary rate is 

reported as the change in fitness (in units of 1 ∕ 𝑔𝑒𝑛) per unit time (in units of 𝑔𝑒𝑛). Mean rate 

of fitness increase is reported along with standard deviation. Codes marked with an asterisk 

were simulated both with and without considering tRNA promiscuity. 

  

Genetic Code Evolutionary Rate (! "#$%⁄ ) 

Standard Code 8.709	 ×	10/0 ± 1.306	 ×	10/0  

Colorado 9.791 × 10/0 ± 	1.361	 × 10/0  

FS20 2.350	 × 10/0 ± 	0.877	 × 10/0  

FS16 0 ± 0 

RED20* 3.769	 × 10/0 ± 0.377	 × 10/0 (no wobbling)  
5.859	 × 10/0 ± 1.368	 × 10/0 (with wobbling)  

RED15* 0 ± 0 (no wobbling)  
3.177	 × 10/0 ± 0.936	 × 10/0 (with wobbling)  

FSQUAD 0 ± 0 
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Figure 5: A reduced set of tRNA encoding RED20 can express a functional fluorescent 

protein. (a) Frequency of codon usage in coding sequences for super folder variants of GFP 

(sfGFP) encoded in either the Standard Code (sfGFP_SC, left) or RED20 (sfGFP_RED20, 

right). Unused codons are represented in white, while frequently used codons are 

represented in red. (b) Fluorescence versus time for sfGFP variants expressed in vitro from a 

tRNA set encoding either the Standard Code (left) or RED20 (right). Blue lines represent 

negative control traces (without reporter DNA, n=3). Orange and green regions represent 

fluorescence traces from sfGFP encoded in the Standard Code (n=3) and RED20 (n=4), 

respectively, with mean values shown as bold traces.  
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