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Abstract 14 

 15 

1. Insect abundance changes are well-established in some datasets, but far less is 16 

known about how this translates into biomass changes. Moths (Lepidoptera) 17 

provide particularly good opportunities to study trends and drivers of biomass 18 

change at large spatial and temporal scales, given the existence of long-term 19 

abundance datasets for moths. This requires estimation of the body mass of moths 20 

sampled over time, but such data do not currently exist. 21 

2. We collected empirical data in 2018 on the forewing length and dry mass of 22 

sampled moths, and used these to train and test a statistical model that predicts the 23 

body mass of moth species from their forewing lengths (with refined parameters for 24 

Crambidae, Erebidae, Geometridae and Noctuidae). We tested the relationships 25 

between biomass, abundance and species richness of samples of moths for our 26 

2018 samples, and over a 16-year period using long-term historical moth data (with 27 

model-estimated biomass) from a single site.  28 

3. Modelled biomass was positively correlated with measured biomass of moth 29 

species (R2 = 0.910) and mixed-species samples of moths (R2 = 0.915), showing 30 

that it is possible to predict biomass accurately. Biomass correlated with moth 31 

abundance and species richness in our 2018 data and in the historical dataset, 32 

revealing biomass declined by 65.9 % over a 16-year period. 33 

4. By allowing biomass to be estimated for historical moth abundance datasets, our 34 

approach creates opportunities to investigate trends and drivers of insect biomass 35 

change over long timescales and broad geographic regions. 36 
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Introduction 41 

 42 

Several recent studies have reported that insect biomass is in decline (Hallmann et al., 2017; 43 

Lister & Garcia, 2018; Sánchez-Bayo & Wyckhuys, 2019), but with substantial spatial and 44 

taxonomic variation in the existence and strength of such declines (Shortall et al., 2009). The 45 

reasons for such variation are not yet known, and it is therefore possible that declines in 46 

insect biomass are not always symptomatic of equivalent declines in abundance, or vice 47 

versa. Biomass could remain stable even in the face of declining abundance if communities 48 

became increasingly comprised of larger-bodied species. Likewise, changes in community-49 

level biomass could be attributable to changes in community composition, even in the 50 

absence of an overall abundance change. This might occur if communities became more 51 

biased towards larger- or smaller-bodied species, e.g. through size-bias in strength of 52 

selection for or against particular traits (Coulthard et al., 2019), such as faster or slower life-53 

histories, degree of habitat specialization (Mattila et al., 2011; Davis et al., 2013), and 54 

strength of attraction to artificial light at night (van Langevelde et al., 2011). However, the 55 

relationships between biomass, abundance and community composition have not yet been 56 

examined at large spatial and temporal scales because of a lack of suitable data on 57 

biomass. 58 

 59 

Opportunities to investigate changes over time and space in insect communities are 60 

provided by several large-scale, long-term abundance datasets for moths (Lepidoptera) in 61 

the UK, including the Rothamsted Insect Survey (RIS; Storkey et al., 2016), the National 62 

Moth Recording Scheme (NMRS; Fox et al., 2011), and the Garden Moth Scheme (GMS; 63 

Bates et al., 2014a; Wilson et al., 2018), and elsewhere (e.g. the Noctua database; 64 

Groenendijk & Ellis, 2011). However, these datasets do not record measurements of body 65 

mass, and in most cases do not retain specimens. To address questions of biomass change 66 

using these abundance datasets requires reliable body-mass data for all species, but such 67 

empirical data are currently available for only a limited set of species (García-Barros, 2015). 68 
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An alternative approach is to use empirical data from a subset of all species to model the 69 

expected body mass of all species from some other, more readily-available, trait. Such 70 

models have previously been formulated to predict the body mass of moths and other 71 

insects from their body length (Sage, 1982) and variants thereof (García-Barros, 2015), 72 

chosen because it is easily measurable from museum specimens (García-Barros, 2015). 73 

However, for moths, body length data are not widely available and in any case may be 74 

influenced to a greater degree by contraction in dried specimens than other traits (García-75 

Barros, 2015). The only morphological trait for which existing data on many species is 76 

readily available is forewing length: for example, an expected range of forewing lengths is 77 

included for all British species of macro-moths, and most British species of micro-moths, in 78 

standard field guides (Sterling & Parsons, 2012; Waring & Townsend, 2017), and it may 79 

therefore be possible to predict body mass based on forewing length. The existence of 80 

substantial interfamilial variation in body plan (e.g. between Saturniidae and Sphingidae; 81 

Janzen, 1984) may provide opportunities to fine-tune such a model without requiring further 82 

data, but no previous model has included any refinement based on taxonomic relationships 83 

between moths. Therefore, a model to predict body mass based on forewing length, with 84 

family-level refinements where possible, may therefore have the broadest potential 85 

application, but no such model currently exists. 86 

 87 

Two-thirds of British species of macro-moths show negative abundance trends in the long-88 

term (Conrad et al., 2006), with similar patterns observed elsewhere in Europe (e.g. 89 

Groenendijk & Ellis, 2011). The potential drivers of these declines are diverse (Fox, 2013), 90 

and likely to include habitat loss and fragmentation, agricultural intensification and 91 

associated agrochemical use, increased prevalence of artificial light at night and other 92 

factors associated with urbanisation, and climate change (Wickramasinghe et al., 2004; 93 

Morecroft et al., 2009; Fox, 2013; Fox et al., 2014; Gilburn et al., 2015; van Langevelde et 94 

al., 2018). Moths contribute to important ecosystem functions, including nocturnal pollination 95 

(Macgregor et al., 2015, 2019) and energy transfer from producers to higher-level 96 
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consumers (e.g. Franklin et al., 2003; Hooks et al., 2003; Singer et al., 2012). Thus, moths 97 

can be important to the conservation of their predators, such as bats (Vaughan, 1997; 98 

Threlfall et al., 2012) and some birds (Sierro et al., 2001; Denerley et al., 2018). In 99 

transferring energy, the quantity of vegetation consumed by caterpillars and the biomass of 100 

insects available to predators may be functionally important determinants of ecosystem 101 

processes (Brose et al., 2005). Similarly, the body size of individual species can play a 102 

substantial role in structuring networks of interspecific interactions (Woodward et al., 2005). 103 

Therefore, understanding changes in the biomass of moths at the community level is vital, 104 

requiring biomass data over long time-periods. 105 

 106 

In this study, we develop an approach to estimate the body mass of individual moths from 107 

their forewing length, and hence quantify the biomass of samples of moths. We have three 108 

aims: (i) collection of empirical data (during 2018 on the University of York campus, UK) to 109 

test the relationship between forewing length and body mass in moths; (ii) construction and 110 

testing of a predictive model for estimating body mass from species identity and associated 111 

forewing length; (iii) demonstration of our model’s potential applications by investigating 112 

changes over time in biomass, abundance and species richness, using a 16-year historical 113 

abundance dataset (RIS records from the University of York campus during the period 1991-114 

2006) for which no body mass data or specimens are available. 115 

 116 

Materials and methods 117 

 118 

Field sampling, identification and measurement of moths 119 

 120 

We sampled moths at three sites (Fig. S1) on the University of York campus, UK (53°56’41” 121 

N 1°2’2” W) between 11th June and 20th July 2018 (Appendix S1.1). Moths were collected 122 

using Heath-style moth traps (Heath, 1965), each operating a 15 W actinic fluorescent tube 123 

and powered by a 12 V battery (Anglian Lepidopterist Supplies, Hindolveston, UK). Moths 124 
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were euthanised and returned to the laboratory for identification and measurement. Moths 125 

were identified to species-level where possible using standard field guides (Sterling & 126 

Parsons, 2012; Waring & Townsend, 2017). Where species-level identification would have 127 

required dissection of the genitalia, identification was made to aggregate level (e.g. Common 128 

Rustic agg. Mesapamea secalis/didyma). After identification, moths were allowed to air-dry 129 

at room temperature for a minimum of one week (Appendix S1.2, Fig. S2). After drying, we 130 

measured the forewing length and dry mass of each moth. Forewing length was measured 131 

from wing base to wing-tip, using calipers and a ruler, to the nearest 1 mm. Dry mass was 132 

measured using an A&D HR-202 balance (A&D Instruments Ltd., Abingdon, UK), to the 133 

nearest 0.01 mg. Measurements were precise to within ± 6 % of the true value (Appendix 134 

S1.2). 135 

 136 

Modelling forewing length – body mass relationship from empirical data 137 

 138 

To investigate the relationship between forewing length (mm) and body mass (mg; both 139 

variables ln-transformed) in moths, we constructed a generalized linear mixed-effects model 140 

(GLMM) using our 2018 field data, with species as a random effect and the fixed-effect 141 

structure: body mass is explained by the interaction between forewing length and taxonomic 142 

family (i.e. ln(body mass) ~ ln(wing length) × family). We tested the significance of model 143 

terms, including the interaction between wing length and family, using Likelihood Ratio 144 

Tests. 145 

 146 

In order to refine the model for making predictions, we then simplified the family variable to 147 

analyse four families which had more than five species in our 2018 samples (Crambidae, 148 

Erebidae, Geometridae and Noctuidae), grouping all other families together as ‘others’ (n = 7 149 

families). This allowed the predictive model’s parameters to be refined for the four families 150 

with sufficient data, whilst also making overall predictions for all other families. We fitted a 151 

GLMM to the dataset as above, using this aggregated version of the family variable, and 152 
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extracted all parameters from the GLMM to form the predictive model. We did not include 153 

information on whether individuals were male or female, even though male and female 154 

moths can differ substantially in size, because this information is not recorded in historical 155 

abundance datasets. Our model therefore used overall slope and intercept to predict body 156 

mass from forewing length, with a refined slope and intercept for moths from the most 157 

speciose (and therefore data-rich) four families in our dataset. 158 

 159 

To test the accuracy of the predictive model when making predictions based on forewing 160 

length data from field guides, we used it to estimate the dry body mass of every moth in our 161 

dataset. For each moth, we obtained an expected forewing length by taking the midpoint 162 

between the minimum and maximum expected forewing lengths given by field guides (micro-163 

moths: Sterling & Parsons, 2012; macro-moths: Waring & Townsend, 2017), and applied our 164 

predictive model to these expected forewing lengths to generate estimated body masses 165 

that were independent of our empirical data. From these estimated body masses, we 166 

calculated the total estimated biomass of each sample of moths (i.e. all moths captured at 167 

one site in one night) in our study, and compared this estimate with the true biomass of the 168 

same samples that we had measured. We also calculated the mean dry body mass of each 169 

moth species in our dataset. At both species- and sample-level, we tested the relationship 170 

between measured and predicted biomass, using model II regressions with a Major Axis 171 

approach because neither biomass variable was dependent upon the other. Significance of 172 

relationships from random was tested using one-tailed permutation tests (with 100 173 

permutations), and relationships were also compared to the desired 1:1 (i.e. estimated = 174 

measured) relationship by calculation of 95% confidence intervals around the estimated 175 

slope and intercept. The strength of the relationships between measured and estimated 176 

biomass at species- and sample-level were determined by model R2 values. 177 

 178 

Testing biomass – abundance relationships and trends across samples and over time 179 

 180 
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We investigated the relationships between sample-level biomass, abundance and species 181 

richness across our three study sites in 2018 using sample-level data, and over time using a 182 

16-year historical dataset also collected on the University of York campus. We obtained this 183 

long-term historical abundance data from the Rothamsted Insect Survey (RIS), covering the 184 

period 1991–2006. In the RIS, moths are collected in the same location on every night of the 185 

year using standard-design light-traps operating a 200 W tungsten bulb (Storkey et al. 2016). 186 

Samples of moths are identified and counted daily or every few days, generating long-term, 187 

high-temporal resolution abundance data for a fixed site which can reveal site-level trends in 188 

abundance over many years (e.g. Fox et al. 2013). An RIS trap, “Heslington”, was operated 189 

between 1991–2006 on the roof of the Department of Biology, University of York (53°56’51” 190 

N 1°3’26” W), at approximately 500 m distance from 2018 sampling site 1 (Fig. S1). This trap 191 

was emptied daily and abundance records are available, but specimens were not stored. We 192 

used our predictive model to estimate the body mass of all British species of macro-moths 193 

and all British species of the micro-moth families Crambidae and Pyralidae (Fig. S3), which 194 

collectively included all species that had ever been recorded in the Heslington trap, and also 195 

provides a useful resource for other users of insect abundance data (Table S1). From these 196 

estimates, we calculated the total annual biomass of moths captured in this trap in each year 197 

from 1991–2006. 198 

 199 

For the 2018 samples, we used generalised linear mixed-effects models (GLMMs) to 200 

investigate the relationships between sample biomass, abundance, and species richness, 201 

with site as a random effect. We tested significance using a Likelihood Ratio Test. For the 202 

Heslington RIS data, we tested the same relationships (with no random effects) using 203 

generalised linear models (GLMs), testing significance using an F-test. We also confirmed 204 

significance of all relationships using model II regressions with a Major Axis approach, as 205 

above, because it was unclear which variable should be viewed as the independent variable. 206 

 207 
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We used linear regression to test for significant trends over time in biomass, abundance and 208 

species richness in the historical dataset, and checked significance of these trends using 209 

non-parametric Spearman’s rank correlation because trends over time might not be linear. 210 

We calculated the absolute change in biomass, abundance and species richness between 211 

1991 and 2006, as a percentage of the 1991 value. 212 

 213 

All statistical analyses were conducted in R version 3.5.0 (R Core Team, 2018) using the 214 

following packages: lme4 to fit and assess linear mixed-effects models (Bates et al., 2015); 215 

lmodel2 to conduct model II regressions (Legendre, 2018); and ggplot2 to plot figures 216 

(Wickham, 2016). All R scripts used in the analysis, and all data except the Heslington RIS 217 

data and its derivatives (which can be obtained independently by application to Rothamsted 218 

Research), are archived online at Zenodo (doi: 10.5281/zenodo.2645026). 219 

 220 

Results 221 

 222 

Sampled moths 223 

 224 

We sampled 614 individual moths in 2018, of which 13 could not be identified beyond family 225 

level. One micro-moth (Narycia duplicella [Goeze, 1783], Psychidae) could not be detected 226 

by our balance (and therefore weighed less than 0.005 mg). These 14 individual moths were 227 

excluded from further analyses. The remaining dataset contained exactly 600 individual 228 

moths, representing 94 species from 11 families (Table S2). 229 

 230 

Testing forewing length – body mass relationships in field data 231 

 232 

Body mass and forewing length were significantly related to each other at both species and 233 

individual levels (Fig. 1), with variation among the eleven families in the slope and intercept 234 

of this relationship (χ2 = 35.9, d.f. = 10, P < 0.001; marginal R2 = 0.819) revealing that 235 
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interfamilial variation in body plan significantly influences the scaling of forewing length to 236 

body mass. To reduce the risk of our model overfitting for families represented by only a few 237 

species in our dataset, we refitted this model with an aggregated family variable, in which 238 

seven families represented by fewer than five species in our dataset were grouped together 239 

as ‘other’ (effectively reducing the family variable from n = 11 to n = 5).  The significance of 240 

the model (and almost all of its explained variance) was retained when fitting this simplified 241 

model (χ2 = 30.7, d.f. = 4, P < 0.001; marginal R2 = 0.812), resulting in a set of parameters 242 

from which body mass could be predicted based on forewing length (Table 1). All four 243 

families with refined estimates had larger intercepts and shallower slopes than the overall 244 

prediction across the other families (Table 1), implying that within families, body mass may 245 

increase more gradually as forewing length increases than between families.  246 

 247 

We found that our estimates of biomass significantly predicted the measured biomass at 248 

both species- and sample-levels (Fig. 2), even though body mass varied widely both within 249 

and between species (within-species s.d. of body mass = 34.6 mg, between-species s.d. of 250 

body mass = 74.7 mg). At sample-level, the relationship between estimated and measured 251 

biomass was not significantly different a 1:1 relationship (Table 2), with 91.5 % of variation 252 

explained. At species-level, estimated biomass explained 91.0 % of variation, but the 253 

relationship was shallower than the expected 1:1 relationship (Table 2). However, when we 254 

excluded the 34 smallest species (i.e. only included species weighing > 15 mg, n = 60 255 

species), the relationship no longer deviated from a 1:1 relationship, indicating that our 256 

predictive model may slightly overestimate the body mass of very small species of moths. 257 

 258 

Testing biomass – abundance relationships and trends 259 

 260 

Amongst the samples of moths collected in 2018 for this study, we found that sample 261 

biomass was significantly predicted by abundance and species richness across the three 262 

study sites (Fig. 3), with the strongest relationship to abundance (R2 = 0.566). These results 263 
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were qualitatively unchanged and quantitatively similar when the biomass of samples was 264 

estimated from the predictive model (Table S3), illustrating that conclusions drawn from 265 

estimated biomass (rather than direct measurements of biomass) are likely to be robust. 266 

Similarly, both abundance and species richness were strongly correlated with estimated 267 

biomass in the Heslington RIS data, with the strongest relationship between biomass and 268 

abundance (R2 = 0.961).  269 

 270 

Using the Heslington RIS dataset, we found that both abundance and species richness 271 

declined significantly between 1991–2006 (Table 3), but changes were not necessarily linear 272 

(Fig. 4). These declines were matched by a significant decline in biomass of 445.6 ± 153.0 273 

mg per year (i.e. annual reductions of 3.1 % of the total biomass in 1991). Biomass declined 274 

by 65.9 % over the 16-year period. 275 

 276 

Discussion 277 

 278 

The strong relationship between forewing length and body mass in moths enables prediction 279 

(to a useful level of accuracy) of the biomass of samples of moths when specimens have not 280 

been kept. Data generated using this approach will allow researchers to address pressing 281 

and policy-relevant questions about ongoing declines in insect biomass (Hallmann et al., 282 

2017; Lister & Garcia, 2018; Sánchez-Bayo & Wyckhuys, 2019) using long-term recording 283 

datasets, or to include estimates of moth body mass in comparative studies and trait-based 284 

analyses, despite the general lack of empirical data of this nature (García-Barros, 2015). In 285 

particular, these data will facilitate studies of the relationships between biomass, abundance 286 

and community composition, asking questions such as: do biomass declines indicate a 287 

general decline in the abundance of the majority of species, or a severe decline in the 288 

biomass of a few key species (e.g. Shortall et al., 2009), or a shift in community composition 289 

towards smaller-bodied species, all of the above, or something else entirely? 290 

 291 
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Evaluation of the predictive model’s current and future utility 292 

 293 

Overall, the estimates of body mass calculated using the predictive model’s parameters 294 

performed relatively well during testing, with > 90 % of variation in measured biomass 295 

explained by predicted biomass at both species- and sample-levels. Therefore, using 296 

estimated body masses from the model (Table S1) to calculate the combined biomass of 297 

large samples of moths should yield accurate results (for example, when summed to 298 

generate annual totals; c.f. Fig. 4). However, our sampled dataset was only sufficiently data-299 

rich to allow refined parameter estimates for four families (Crambidae, Erebidae, 300 

Geometridae and Noctuidae). Further improvement of the model’s accuracy may be possible 301 

with the collection of additional data on body masses from a greater number of species from 302 

other families. These species are less abundant in moth-trap samples than the dominant 303 

family, Noctuidae, and so collection of sufficient data using field sampling may be 304 

challenging. An alternative may be to use museum collections to measure individuals of a 305 

much wider range of species and families, where methods exist to account for the mass of 306 

entomological pins when taking such measurements (Gilbert, 2011). Taking such an 307 

approach might allow for more data to be collected even from rarely-trapped families (e.g. 308 

Sphingidae), or those which are speciose globally but have few (e.g. Saturniidae) or no (e.g. 309 

Hedylidae) species extant in Britain, thereby allowing for incorporation of family-specific 310 

refinements for every family, even at a global scale. However, inspection of Fig. 1 indicates a 311 

‘valley’ in the data for the relationship between forewing length and body mass; two parallel 312 

relationships indicating two “ways to be a moth” (Janzen, 1984), whereby different moth 313 

families may have substantially different body-plans. For example, the Noctuidae generally 314 

have high body mass for a given forewing length, while Geometridae might have lower body 315 

mass for the same forewing length. In some cases it may, therefore, be sufficient to identify 316 

which relationship is appropriate for a given family, rather than to derive a separate 317 

relationship for every family. Such refinement could potentially be supported by a 318 

phylogenetic imputation approach (Penone et al., 2014). However, in some families (most 319 
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notably Erebidae), species are distributed across both parallel relationships with little 320 

obvious influence of phylogeny, and so it may be necessary to identify which “way to be a 321 

moth” is most relevant at genus- or even species-level. 322 

 323 

One source of potential error when using published forewing lengths to estimate biomass is 324 

that 19% of individuals in our 2018 dataset had a measured forewing length which was 325 

outside the expected range given by field guides. Nevertheless, there was an overall 326 

correlation (R2 = 0.942) between the mean forewing length at species-level derived from our 327 

2018 empirical measurements and the midpoint of the range of forewing lengths for each 328 

species, taken from the published field guides (Fig. S4). This suggests sufficient accuracy in 329 

our approach, particularly considering that our largest measured species, Laothoe populi 330 

(Sphingidae) had a forewing length 524 % larger than that of our smallest species, Eudonia 331 

pallida (Crambidae). 332 

 333 

An alternative source of possible error in our models is sexual dimorphism in moths. Some 334 

moth species, including some sampled in our study (e.g. Drinker Euthrix potatoria; 335 

Lasiocampidae), exhibit substantial sexual dimorphism in wing length (Waring & Townsend, 336 

2017) and in body mass (Allen et al., 2011). However, we did not quantify or adjust for 337 

sexual dimorphism in this study because long-term recording schemes rarely include 338 

information on sex of individual moths, even for dimorphic species, although the majority of 339 

such records are likely to be males (Altermatt et al., 2009). Therefore, for estimation of 340 

sample-level biomass, it will be of most use to provide a single average estimate of body 341 

mass per species, regardless of size dimorphism. 342 

 343 

Future research using our predictive model to study biomass change 344 

 345 

The fact that sample biomass correlated strongly with moth abundance, and that both 346 

declined over time in the Heslington RIS dataset (abundance: absolute decline of 56.5 % 347 
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between 1991 and 2006; biomass: absolute decline of 65.9 % over the same period), is 348 

consistent with other studies showing insect biomass declines in recent decades (Hallmann 349 

et al., 2017; Lister & Garcia, 2018; Sánchez-Bayo & Wyckhuys, 2019). However, questions 350 

remain regarding temporal, spatial, and taxonomic variation in these declines (Shortall et al., 351 

2009), the potential drivers of declines (Grubisic et al., 2018; Komonen et al., 2019), and the 352 

challenges of extrapolating across data types, geographic locations, and temporal and 353 

spatial scales (Thomas et al., 2019; Wagner, 2019). Our study illustrates the power of 354 

predictive models of body mass to tackle these challenges. Applying our estimates of body 355 

mass to RIS datasets across the UK (Storkey et al., 2016), or to other long-term moth 356 

abundance datasets, such as the National Moth Recording Scheme or the Garden Moth 357 

Scheme (Fox et al., 2011; Bates et al., 2014a), will facilitate investigation of declines over 358 

longer time-periods and broader geographical scales than has previously been feasible. 359 

Moreover, the same model parameters could be used to estimate body mass of moths in 360 

other databases, including macro-moth recording schemes from other regions (e.g. the 361 

Noctua database; Groenendijk & Ellis, 2011) and micro-moths, which were incorporated into 362 

the NMRS in 2016. This would allow comparison of biomass losses across multiple datasets 363 

at a global scale. 364 

 365 

Declines in biomass and abundance have been identified in some studies (Conrad et al., 366 

2006; Hallmann et al., 2017; Sánchez-Bayo & Wyckhuys, 2019), but the drivers of these 367 

trends have not been identified. Our study is consistent with the hypothesis that changes in 368 

insect biomass correlate with changes in abundance and species richness of insects (Fig. 3). 369 

However, declines in biomass within the 1991–2006 Heslington RIS dataset were greater 370 

than abundance declines, which in turn were greater than species richness declines (Table 371 

3). Thus, estimating biomass of samples has the potential to add to information held in 372 

abundance datasets, such as the RIS. Changes in community composition could also 373 

contribute to biomass loss; investigating changes in biomass over time at continuously-374 

recorded sites, using our approach, will be important for examining relationships between 375 
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biomass change and community composition. Similarly, the environmental drivers causing 376 

changes in insect biomass have not been fully established (Fox, 2013), and our approach 377 

will permit their effects to be investigated at a broader scale, in a similar manner to many 378 

studies of changes in abundance (Conrad et al., 2006; Pescott et al., 2015; Wilson et al., 379 

2018). 380 

 381 

Our approach will be of use for conducting trait-based analyses of moths (e.g. van 382 

Langevelde et al., 2018), where it is important that trait data have high precision (Middleton-383 

Welling et al., 2018). Our predictive model offers a means to estimate body mass 384 

reproducibly, potentially across multiple data sources, using a trait (forewing length) that is 385 

straightforward to measure using basic equipment, and therefore can be robustly applied to 386 

other datasets. Previous trait-based analyses have used forewing length as a proxy for body 387 

size, but we have shown that there is interfamilial variation in this relationship (Fig. 1), which 388 

can be incorporated by using our approach. 389 

 390 

Conclusions 391 

 392 

We have developed a predictive model to estimate the dry body mass of moths based on 393 

their forewing length, using it to generate body masses for all British species of macro-moth 394 

and demonstrating its potential for use in the investigation of historical changes in biomass 395 

at large temporal and spatial scales. The predictions of sample biomass made by our model 396 

correlated strongly with measured biomass of the same samples (R2 = 0.915). We use these 397 

predicted body masses to show that biomass of moths has declined by 65.9 % at a site in 398 

Britain over a 16-year period between 1991–2006. Our approach unlocks new opportunities 399 

to study trends in moth biomass over time and over large geographic regions. 400 

 401 
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Figures and tables 553 

Figure 1: Relationship between forewing length (mm) and dry mass (mg). In the top panel, 554 

the mean forewing length and dry mass of each species sampled in the study is shown on 555 

logarithmic axes, with error bars showing standard errors and family indicated by the 556 

combination of point colour and shape. In panel (b), the forewing length and dry mass of 557 

every individual moth sampled in the study is shown on logarithmic axes, with the four most 558 

speciose families in our sample (Crambidae, Erebidae, Geometridae and Noctuidae) 559 

indicated as above by point colour and shape. 560 
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Figure 2: Accuracy of predicted biomass of moth species and samples of moths compared 562 

to the true, measured biomass. (a) Predicted dry mass of species (mg) is plotted against 563 

mean measured dry mass (mg); the 1:1 relationship is plotted as a blue line, and points are 564 

coloured by the number of individual moths from which the measured mean was calculated. 565 

(b) The absolute difference between mean measured dry mass and predicted dry mass of 566 

each moth species is plotted against the number of individuals from which the measured 567 

mean was calculated; a horizontal line is plotted at y = 0. (c) Predicted dry mass of samples 568 

(mg) is plotted against measured dry mass (mg); the 1:1 relationship is plotted as a blue line, 569 

and points are coloured by the number of individual moths contained in the sample. (d) The 570 

absolute difference between measured and predicted dry mass of each sample of moths is 571 

plotted against measured dry mass (mg); a horizontal line is plotted at y = 0. 572 

 573 

 574 
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Figure 3: Relationship between sample biomass (mg) and abundance and species richness 576 

of moths, for (a,d) measured biomass of samples of moths captured in this study; (b,e) 577 

predicted biomass of samples of moths captured in this study; and (c,f) predicted biomass of 578 

samples of moths recorded in a historical dataset. All relationships are significant (P < 0.05) 579 

and are plotted as solid lines. Each point represents a single night for the ‘sampled moths’ 580 

data, whereas historical point samples are much larger, representing year-long totals. 581 

 582 
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Figure 4: Changes in total biomass (mg), abundance and species richness of moths 584 

captured in the Heslington RIS trap over a 16-year period between 1991 and 2006.  All 585 

trends are significant (P < 0.05) and are plotted as solid lines (significance of all trends was 586 

also confirmed by a non-parametric Spearman’s rank correlation; Table 3). 587 

 588 
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Table 1: Parameters of the predictive model, extracted by fitting a GLMM with the fixed-effects structure: log(body mass) ~ log(forewing length) 590 

× family, to data from 600 individual moths. Overall model parameters are given, including the χ2 and P-values of a Likelihood Ratio Test of the 591 

model’s overall significance. Family-specific slope and intercept values are refinements to be added to the parameters for ‘other families’ 592 

(rather than taken in isolation). To predict body mass of a moth from its forewing length, these parameters should be applied to the following 593 

formula: log(body mass) = (log(forewing length) × (‘other families’ slope + family slope adjustment)) + (‘other families’ intercept + family 594 

intercept adjustment). 595 

 596 

Family adjustment n species (n individuals) χ2, d.f. (P) Slope estimate (s.e.) Intercept estimate (s.e.) 

Overall model 94 (600); 11 families 30.7, 4 (<0.001) - - 

‘Other families’ (no adjustment) 15 (67); 7 families - 3.056 (0.180) -5.016 (0.540) 

Crambidae 11 (38) - -0.904 (0.311) 1.361 (0.813) 

Erebidae 10 (79) - -0.601 (0.360) 1.294 (1.029) 

Geometridae 22 (52) - -0.492 (0.322) 0.344 (0.891) 

Noctuidae 36 (364) - -1.297 (0.239) 3.788 (0.694) 
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Table 2: Details of statistical models testing the relationships between measured biomass and estimated biomass at species- and sample-level. 598 

Relationships were tested using a model II regression, and significance was determined by a one-tailed permutation test with 100 permutations. 599 

The R2 of each model is also given, alongside the estimated intercept and slope of each model, with associated 95% confidence intervals.  600 

 601 

Level Data subset n Model R2 Model intercept (95% CI) Model slope (95% CI) P 

Sample Full dataset 44 0.915 0.275 (-0.310, 0.810) 0.952 (0.865, 1.047) 0.010 

Species Full dataset 94 0.910 0.545 (0.369, 0.712) 0.877 (0.822, 0.936) 0.010 

Species > 15 mg only 60 0.823 0.168 (-0.311, 0.595) 0.964 (0.853, 1.090) 0.010 

 602 
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Table 3: Details of statistical models testing the trends over time in annual measures of estimated biomass, abundance and species richness, 604 

using historical samples recorded from the Heslington RIS trap over the 16-year period 1991–2006. Absolute % change over this period is the 605 

absolute difference between values in 1991 and 2006, given as a percentage of the 1991 baseline value. Trends were tested both with a 606 

parametric linear regression tested using an F-test, and a non-parametric Spearman’s rank correlation, because some trends appeared to be 607 

non-linear (Fig. 4). F-statistics are shown for linear regressions, and S-statistics for Spearman’s rank correlations. The R2 of each linear 608 

regression model is also given, alongside the effect size, which represents the annual change detected in each metric.  609 

 610 

Dependent variable Absolute % change n S (P) Model R2 Effect size (s.e.) F (P) 

Abundance -56.48 16 1046 (0.034) 0.401 -13.05 (4.12) 10.05 (0.007) 

Species richness -33.33 16 1234 (<0.001) 0.611 -2.05 (0.42) 23.6 (<0.001) 

Sample biomass (mg) -65.92 16 1046 (0.034) 0.361 -445.6 (153.0) 8.48 (0.011) 

 611 

 612 
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