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Significance 
 
Plant reproduction relies on proper pollen tube growth to reach the female tissue and release 

the sperm cells. This process is highly regulated by a family of secreted signaling peptides that 

are recognized by cell-wall monitoring proteins to enable plant fertilization. Here, we report 

the crystal structure of the LRX-RALF cell-wall complex and we demonstrate that RALF 

peptides are active as folded proteins. RALFs are autocrine signaling proteins able to instruct 

LRX cell-wall modules and CrRKL1L receptors, through structurally different binding modes 

to coordinate pollen tube integrity.  

 
Abstract  
 
Plant reproduction relies on the highly regulated growth of the pollen tube for proper sperm 

delivery. This process is controlled by secreted RALF signaling peptides, which have been 

previously shown to be perceived by CrRLK1Ls membrane receptor-kinases and leucine-rich 

(LRR) extensin proteins (LRXs). Here we demonstrate that RALF peptides are active as folded, 

disulfide bond-stabilized proteins, which can bind to the LRR domain of LRX proteins with 

nanomolar affinity. Crystal structures of the LRX-RALF signaling complexes reveal LRX 

proteins as constitutive dimers. The N-terminal LRR domain containing the RALF binding site 

is tightly linked to the extensin domain via a cysteine-rich tail. Our biochemical and structural 

work reveals a complex signaling network by which RALF ligands may instruct different 

signaling proteins – here CrRLK1Ls and LRXs – through structurally different binding modes 

to orchestrate cell wall remodeling in rapidly growing pollen tubes. 
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Introduction 

In flowering plants, sexual reproduction depends on the directional, long-distance growth of 

pollen tubes that deliver sperm cells to the female gametophytes. The polarized and rapid 

growth of the pollen tube cell depends on the highly dynamic remodeling of its cell wall. The 

redundant signaling peptides RALF4 and RALF19 ensure pollen tube integrity and growth by 

interacting with two distinct protein families, the malectin-domain CrRLK1L membrane 

receptor kinases (1–3) and the cell-wall monitoring leucine-rich repeat (LRR) extensin proteins 

(LRXs) (4, 5). 

Both CrRLK1Ls and LRXs are required for proper pollen tube growth (4–7), but their 

relative contribution to specific RALF peptide sensing remains to be investigated. Here, we 

mechanistically dissect how RALF peptides involved in plant reproduction differentially 

interact with pollen-expressed LRX proteins and CrRLK1L receptors. Our work highlights that 

RALFs are folded signaling proteins specifically sensed by LRX proteins that monitor cell wall 

changes. 

 

Results 

There are 36 RALF peptides in Arabidopsis (8), with RALF4/19 being involved in the 

regulation of pollen tube integrity and growth (1, 4). Mature RALF4/19 peptides are 51 amino 

acids long and contain four invariant cysteines. We hypothesized that they may be folded 

proteins, stabilized by intra-molecular disulfide bridges. Hence, for biochemical and structural 

analyses, we expressed RALF4/19 as thioredoxin A fusion proteins by secreted expression in 

insect cells. We observed secretion of RALF4/19 into the insect cell medium only when co-

expressed with members of the LRX family, but neither as a stand-alone protein nor in the 

presence of the CrRLK1L ANXUR1 (ANX1) (6, 7) (SI Appendix, Fig. S1A). Efficient 

secretion of RALF4/19 required the N-terminal half of LRX8/11, lacking their C-terminal 

extensin domain (SI Appendix, Fig. S1). RALF4/19 formed stable complexes with LRX833-400 

(amino-acids 33-400) and LRX1145-415 in size-exclusion chromatography (SEC) experiments 

(SI Appendix, Fig. S1 C and D). The presence of both proteins in the respective complexes was 

verified by mass spectrometry analysis (SI Appendix, Fig. S2). Next, we biochemically mapped 

the RALF4 binding site to the predicted LRR core of LRX8 and LRX11 N-terminal half (SI 

Appendix, Fig. S1 B and E). 

To quantify the interaction of RALF4 and LRX8, we first dissociated the complex at 

low pH (see methods) (Fig. 1A). The LRX8–RALF4 complex could be fully reconstituted when 
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shifting back to cell wall pH (pH 5.0) (9, 10) (Fig. 1A). We titrated the RALF4 protein isolated 

from insect cells (RALF4folded hereafter) into a solution containing isolated LRX849-400 using 

isothermal titration calorimetry (ITC), and found that RALF4 tightly binds the LRR core of 

LRX8 with ~ 1 nM affinity and a binding stoichiometry (N) of ~ 1 (Fig. 1B). Importantly, a 

synthetic linear RALF4 peptide binds LRX8 with ~ 20-fold reduced affinity, suggesting that 

LRX8 may preferentially sense the RALF4folded signaling protein (Fig. 1B). In line with this, a 

Kd of ~ 900 nM has been reported for RALF4linear binding to plant extracted LRX8 using 

biolayer interferometry (4). 

Next, we assessed the stoichiometry of LRX–RALF complexes and found LRX8/11 to 

be constitutive dimers in absence or presence of RALF4folded, as judged by analytical SEC and 

multi-angle light scattering (MALS) experiments (Fig. 1C and SI Appendix, Fig. S3). The 

MALS data is consistent with a 2 + 2 complex where each glycosylated LRX protomer binds 

one RALF4 protein molecule. 

The fact that LRX proteins appear to specifically sense RALFfolded peptides prompted 

us to investigate LRX–RALF complex structures. Diffracting crystals were obtained for 

LRX2–RALF4 and the pollen-specific LRX8–RALF4 complex, determined at 3.2 Å and 3.9 

Å resolution, respectively (SI Appendix, Table S1). LRX2–RALF4 crystals contain four 

RALF4-bound dimers in the asymmetric unit, which closely align with each other, and with 

the LRX8–RALF4 complex (root mean square deviation (r.m.s.d.) is ~ 0.8 Å comparing 357 

pairs of corresponding Ca atoms) (Fig. 2A, and SI Appendix, Fig. S4). We thus could use the 

higher resolution LRX2–RALF4 structure to further analyze the signaling complex. 

A structural homology search with the program DALI (11) revealed that the LRX2 

protein is closely related to the extracellular domain of known LRR receptor kinases, such as 

the immune receptor FLS2 (DALI Z-score of 33.5, r.m.s.d. of ~ 1.7 comparing 299 

corresponding Ca atoms). LRX2 comprises 11 LRRs sandwiched by canonical N- and C-

terminal capping domains, and a cysteine-rich protrusion that represents the N-terminal part of 

the extensin domain (Fig. 2 A and D). The LRX2 and LRX8 complex structures confirm that 

LRX proteins form constitutive dimers, covalently linked by a conserved disulfide bond (Fig. 

2A, SI Appendix, Figs. S4 and S5). One RALF4 peptide is bound to each LRX protomer in the 

dimer, consistent with our MALS and ITC experiments in solution (Figs. 1 B and C, and 2A). 

The LRR core provides a binding platform for RALF4folded (Fig. 2B and SI Appendix, Fig. S4B). 

Despite the moderate resolution of our structures, we located difference electron density 

accounting for the entire RALF4 folded peptide, again supporting its tight interaction with 
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LRX proteins (SI Appendix, Fig. 6A). The mature RALF4 protein consists of a short N-terminal 

alpha-helix, followed by a long loop region that is shaped by two disulfide bonds and a final 

one-turn 310-helix at the C-terminus. The rather unstructured RALF4 peptide adopts a defined 

conformation when binding to the LRX LRR domain by making extensive contacts with the 

binding pocket (Fig. 2B and SI Appendix, Figs. S4 and S5). The RALF binding pocket is highly 

conserved among the known LRX family members, suggesting that other LRX proteins may 

bind different RALF peptides in a similar conformation (Fig. 2C and SI Appendix, Fig. S5). 

This particular binding configuration exposes the least conserved regions of the peptide to the 

solvent (SI Appendix, Fig. S7).  

In our structures, we also captured the cysteine-rich tail that links the C-terminal LRR 

capping domain of LRX2 and LRX8 to the cell-wall anchored extensin domain. The cysteine-

rich linker adopts similar conformations in the LRX2 and LRX8 structures (SI Appendix, Fig. 

4C). The cysteine-rich tail folds back onto the LRR domain and connects via a ladder of 

disulfide bridges with LRRs 7-11. Several conserved polar and hydrophobic residues further 

stabilize this LRR–linker interface (Fig. 2D and SI Appendix, Fig. S5). 

The LRX homodimer is stabilized by a central disulfide bridge (Figs. 2A and 3A, and 

SI Appendix, Fig. S4A), which contributes to a dimer interface formed by highly conserved 

hydrophobic and polar amino acids (642 Å2 buried surface area) (Fig. 3 A and B, SI Appendix, 

Fig. S5 and Table S2). We probed the LRX8 dimer interface by mutational analysis: LRX8 

still behaves as a dimer in solution when the disulfide bond was disrupted by mutating Cys157 

(Cys138LRX2) to Ala, suggesting that the LRX intermolecular disulfide bond is not essential for 

structural integrity of the dimer. Simultaneous mutation of Tyr87 (Phe68LRX2) to Ala and 

Ala133 (Ala114LRX2) to Phe resulted in a monomer-dimer equilibrium, which we could 

quantitatively shift to a LRX8 monomer by additionally introducing the Cys157Ala mutation 

(Fig. 3 C and F, SI Appendix, Fig. S8 and Table S2). Both dimeric and monomeric LRX8 forms 

retain the capacity to bind RALF4, with the monomer binding the folded peptide with wild-

type affinity (~2 nM) (Fig. 3 D-F). To assess the role of the central cysteine in a changing 

redox environment, we incubated purified LRX8 and LRX8–RALF4 complex with increasing 

concentrations of the reducing agent DTT in denaturing conditions. In both cases, the dimer 

could be converted into monomers (Fig. 3G). In addition, we could also quantitatively shift the 

oligomeric equilibrium of LRX8Y87A.A133F towards the monomeric species in the presence of a 

reducing agent in SEC experiments (Fig. 3H). Consistent with this, we could detect both 
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oligomeric species of a myc-tagged LRX81-400, when transiently expressed in tobacco leaves, 

in the absence of DTT (Fig. 3I).  

We next dissected the RALF4 binding mode to LRX8. Interaction between the N-

terminal alpha-helix (residues 64 – 69) of RALF4folded with the LRR core of LRXs are mediated 

by Tyr63, Ile64, and Tyr66, making hydrogen bonding and hydrophobic interactions with 

LRX8 residues Gln314 (Gln296LRX2), Phe221(Phe202LRX2), Glu266 (Glu248LRX2), and Glu313 

(Glu295LRX2) (Fig. 4A). A RALF4 Tyr63Ala/Tyr66Ala double mutant still bound LRX8 with 

wild-type affinity, suggesting that the N-terminal helix in RALF peptides is not a major 

determinant for high-affinity binding to LRX proteins (Fig. 4B). However, mutation of the 

Cys86 and Cys105 to Ala, targeting the two disulfide bonds observed in our RALF4 crystal 

structures, led to a ~ 20-fold reduction in binding when compared to wild-type RALF4folded. 

This suggests that the structural stabilization of the RALF4folded loop region (residues 70 –101) 

by the Cys76–Cys86 and Cys99–Cys105 disulfide bonds is required for high affinity binding 

to LRX8 (Fig. 4 A and B), in good agreement with the reduced binding affinity observed for 

the linear RALF4 peptide (Fig. 1B). We thus mutated the LRX–RALF4 loop interface and 

tested if stable LRX8–RALF4 complexes could still form. Co-expression of LRX8 

Phe109Ala/His150Ala (Phe90LRX2/His131LRX2) and wild-type RALF4 led to a reduced 

expression of the LRX8 protein in insect cells. Secretion of the RALF4 peptide was not 

detected, suggesting that the mutations in the LRX RALF binding interface inhibit the 

formation of a stable LRX8–RALF4 complex. The same behavior was observed when mutating 

the corresponding residues in the RALF4 loop region (Ile64Gly/Tyr83Ala/Tyr84Ala) (SI 

Appendix, Fig. S9). Consistently, the LRX8 and RALF4 mutant proteins also failed to form 

stable complexes in planta as judged by co-immunoprecipitation experiments in tobacco leaf 

extracts (Fig. 4C). Altogether, our experiments define the disulfide bond-stabilized loop in 

RALF4folded as a major determinant for LRX binding. 

Based on these findings, we compared the bioactivity of linear, folded, and cysteine-

mutated RALF4 signaling peptides in pollen tube growth assays (4). The inhibitory effect of 

RALF4 peptides on pollen tube elongation was quantified using two peptide concentrations: 

50 and 100 nM (Fig. 4D). Addition of a sequence-permutated version of RALF4 

(RALF4scrambled) had no effect on pollen tube growth, whereas RALF4folded completely inhibited 

growth at both concentrations. The linear and cysteine-mutated RALF4 peptides could only 

partially suppress pollen tube growth (Fig. 4 D and E), in good agreement with our structural 

and quantitative biochemical data (Figs. 1B, 2A and 4B). 
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It has previously been reported that CrRLK1Ls FERONIA (FER) and THESEUS1 (12, 

13) are receptors for RALF peptides with binding affinities in the nM to µM range (1, 14–16). 

We thus tested if RALF4folded can directly bind to ANX1 and BUDDHA’S PAPER SEAL2 

(BUPS2), which have been genetically implicated in pollen tube growth (1, 6, 7). We expressed 

the ectodomains of ANX1 and BUPS2 by secreted expression in insect cells as previously 

reported (2), and quantified their interaction with RALF4folded in ITC assays in acidic and 

alkaline conditions (16, 17) (Fig. 4 F). We found no detectable interaction between RALF4folded 

and either ANX1 or BUPS2 at pH 5.0 or pH 7.5, respectively. Like FER, the GPI-anchored 

protein LORELEI, expressed in the female gametophyte, is required for fertilization (18, 19), 

and LORELEI-LIKE proteins (LLGs) co-immunoprecipitate with FER in the presence of 

RALF peptides (20). We thus produced the ectodomain of the pollen-expressed LLG3 (SI 

Appendix, Fig. S10 and S11) and found that it binds RALF4folded with a Kd of ~1 µM at pH 7.5, 

with no detectable binding at pH 5. There was also no detectable interaction between LLG3 

and either ANX1 or BUPS2 in the absence of the peptide. However, BUPS2, but not ANX1, 

only binds a LLG3-RALF4folded complex with a dissociation constant of ~ 700nM at pH 7.5 

(Fig. 4 F), suggesting specific recognition between CrRLK1Ls and LLG-RALFs in the pollen. 

The pH also modulates LRX8-RALF4 binding, with affinity decreasing ~100 fold between pH 

5 and pH 7.5 (Fig. 1B and 4F). Strikingly, the Tyr63Ala/Tyr66Ala mutant in the RALF4 N-

terminal alpha-helix, which still binds LRX8 with wild-type affinity at both pHs (5 and 7.5), 

disrupts the interaction with LLG3 at pH 7.5 (Fig. 4 B and F). This suggests that 

LLG/CrRLK1Ls and LRX proteins may both sense RALF peptides in pollen tubes; however, 

with vastly different binding affinities and mechanistically distinct peptide binding modes. 

Despite being seemingly involved in the same process, we could not observe any biochemical 

interaction between LRX proteins and CrRLK1Ls/LLGs in the presence or absence of RALF4 

(Fig. 4 F).  

 

Discussion 

Taken together, our mechanistic analysis of RALF signaling peptides in pollen tube 

growth reveal that RALFs are folded, disulfide bond-stabilized signaling proteins, which 

interact with the N-terminal LRR domain of LRX proteins in the cell wall with high affinity. 

A recent independent NMR study on refolded RALF8 produced in bacteria, also confirms the 

presence of two disulfide bonds in the peptide and reports that the peptide lacks a specific 

folded state by itself in solution (21). It is of note that RALF4, when bound to LRX, adopts a 
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defined conformation exposing a highly basic surface patch, which could mediate targeted 

interactions with other proteins or cell wall components (SI Appendix, Fig. S6B). Binding of 

RALFs to the LRR region could thus affect the overall conformation of the LRX extensin 

domain, which our structures reveal to be tightly linked to the LRR core. Moreover, since 

polarized growth is sensitive to changes in the cell wall redox environment (22, 23), the 

oligomeric state of LRX proteins may be affected by changes in the redox state of the plant 

cell wall. Such redox-controlled oligomerization of LRX proteins may add an additional layer 

in the modulation of RALF signaling. In this respect, it is noteworthy that plant cell wall 

thioredoxins have been identified as putative LRX interactors (24). That we do not observe 

direct interaction between LRX and CrRLK1Ls/LLGs signaling modules, could be explained 

by the autocrine signaling mode of RALF4/19 during pollen tube growth (1, 4). On the one 

hand, RALF4/19 signal via the ANX1/2 CrRLK1Ls to affect processes inside the pollen tube 

through the cytoplasmic receptor-like kinase MARIS (4, 25); on the other hand, RALF4/19 

may signal to control processes outside the cell through their interaction with LRXs in the cell 

wall. This is consistent with the finding that, unlike mutants with reduced RALF4/19 activity 

(4), mutants lacking multiple pollen-expressed LRXs cannot be suppressed by dominant active 

MARIS (SI Appendix, Fig. S12) (26), indicating that RALF4/19 work in different but 

converging pathways to fine-tune pollen tube integrity. Our binding data between RALFs, 

LRXs and CrRLK1Ls/LLGs, together with previous studies (16), suggest that this autocrine 

signaling could be additionally regulated by cell-wall pH fluctuations to modulate cell wall 

integrity (9). Altogether, these findings suggest that RALFs have the capacity to instruct 

different signaling proteins to coordinate cell wall remodeling during pollen tube growth (SI 

Appendix, Fig. S13). Our structural, quantitative biochemical, and physiological experiments 

all support that folded rather than linear RALF peptides represent the bioactive ligands for 

LRX and CrRLK1L/LLG proteins. This point should be considered in future studies aimed at 

dissecting the contributions of LRXs and CrRLK1Ls to the diverse RALF-mediated signaling 

processes in plants. 
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Fig. 1 Dimeric LRX proteins bind RALFfolded peptides with high affinity. 
(A) Folded RALF4 peptide can be obtained by complex dissociation. LRX8-RALF4 complex 
purification, dissociation, and reconstitution. Size exclusion chromatography (SEC) graphs of 
the different steps are plotted on the left panel. From bottom to top: LRX8-RALF4 purified 
complex at pH 5.0 (dark purple); dissociated LRX8-RALF4 complex at pH 2.0 (light purple). 
Orange and red runs represent RALF4 and LRX8 peaks, respectively, dialyzed back to pH 5.0. 
The SEC for the reconstituted complex, using the previously separated proteins, is shown in 
yellow. Schematics of the different steps, and a SDS gel of the corresponding peaks, are shown 
alongside. (B) Isothermal titration calorimetry (ITC) of LRX8 versus RALF4folded and 
RALF4linear. Raw thermograms of ITC experiments are plotted. The table summarizes the 
biophysical values obtained. Kd, (dissociation constant) indicates the binding affinity between 
the two molecules considered (nM). The N indicates the reaction stoichiometry (N=1 for a 1:1 
interaction). (C) Table of SEC-MALS analysis of apo-LRX8 and LRX8-RALF4 complex. The 
predicted and measured values are reported in the table for comparison.  
 
 
Fig. 2 The LRR core of LRX proteins provides a conserved dimer interface, a RALF 
binding pocket, and a stabilized connection to the extensin domain. 
(A) Front and 90º x-axis rotated view of LRX2 covalently linked homodimer in complex with 
RALF4 (ribbon diagram). The LRR domain is depicted in blue, the cysteine-rich tail in orange, 
and the RALF4 peptide is highlighted in pink. The disulfide bridge covalently linking the two 
LRX protomers is highlighted in yellow. (B) Surface view of LRX2 (color code as in a) along 
with cartoon representation of RALF4 peptide (pink), highlighting the LRX RALF binding 
pocket. N-glycosylations are depicted in yellow. (C) Surface representation of LRX2 colored 
according to the LRX family amino acid conservation. The black rectangle underlines the 
conservation of the LRX RALF binding pocket. (D) Cartoon representation of the C-terminal 
part of the LRR core and the Cys tail of LRX2 (color code as in A). Each connecting disulfide 
bond is formed between a Cys from the LRR domain (depicted in blue) and the Cys-rich tail 
(highlighted in orange). Interface residues making polar contacts are shown as sticks and 
hydrogen bonds are depicted as dotted lines (in magenta). 
 
 
Fig. 3 LRX homodimer interface is further stabilized by a central disulfide bridge. 
(A) Close-up view of the dimer interface in LRX2. Details of the interactions between the two 
protomers (depicted in blue and grey) are highlighted. The Cys (C138) mediating the disulfide 
bond formation is depicted in yellow. The ionic and hydrogen bonds are shown as dotted lines 
(in magenta). (B) Side surface representation of LRX2 colored according to LRX family 
sequence conservation. The black rectangle depicts the LRX dimer interface. (C) The dimer 
interface of LRX proteins is stabilized by a central disulfide bridge. SEC runs of wild-type 
LRX8-RALF4, LRX8C157A-RALF4, LRX8Y87A.A133F-RALF4, and LRX8C157A.Y87A.A133F-
RALF4. Peak 1 and 2 correspond to the dimeric and monomeric forms of LRX, respectively. 
(D) SDS-PAGE analysis in the presence/absence of DTT of the mutants shown in C. (E) 
Isothermal titration calorimetry (ITC) of LRX8C157A.Y87A.A133F versus RALF4folded. The table 
summarizes the biophysical values obtained. Kd, (dissociation constant) indicates the binding 
affinity between the two molecules considered (nM). (F) SEC-MALS summary table for the 
LRX8C157A-RALF4 and LRX8C157A.Y87A.A133F-RALF4 complexes in solution at pH 5.0, along 
with the predicted molecular weights. (G) In vitro validation of covalently linked LRX8 
homodimers in denaturing conditions. SDS-PAGE gels of LRX8 alone (left) and in complex 
with RALF4 (right), treated with increasing DTT concentrations (0, 1, 3, and 5 mM). Dimers 
run above 100kDa while monomers run around 50kDa. (H) Shift of the monomer-dimer 
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equilibrium under reducing conditions in solution. LRX8Y87A.A133F-RALF4 run in the absence 
(orange) and presence (purple) of TCEP. (I) Detection of monomer and dimer species of 
transiently expressed LRX81-400 in tobacco leaves, ± DTT. 
 
 
Fig. 4 The RALF4 folded conformation is important for its bioactivity.  
(A) Close-up view of the LRX2-RALF4 binding pocket. A large surface of the RALF4 peptide 
(in pink) directly interacts with the LRR core (in blue) of LRX2. Polar contacts of RALF4 with 
LRX2 are shown as dotted lines (in grey). The two disulfide bridges responsible for the folding 
of the peptide, C76-C86 and C99-C105, are depicted as sticks in light orange. (B) ITC binding 
experiments of LRX8 vs RALF4C86A.C105A and RALF4Y63A.Y66A mutants. Table summaries for 
dissociation constant (Kd), binding stoichiometries (N), and thermodynamic parameters are 
shown alongside. (C) In vivo validation of the LRX8-RALF4 complex structure. Co-
immunoprecipitation (Co-IP) of LRX8-myc and RALF4-HA proteins transiently expressed in 
tobacco were performed using an anti-myc antibody (IP:a-myc). RALF4-HA peptides were 
detected with an anti-HA antibody in the IP elution. (D) Growth rate of wild-type pollen tubes 
after the addition of RALF4folded, RALF4linear, RALF4scrambled, and RALF4C86A.C105A peptides at 
different concentrations after 30 minutes (Data were analyzed by one-way ANOVA followed 
by Tukey’s test as post hoc, considering p≤0.05 as significantly different; data shown are mean 
± s.e.m. of three biological replicates, n=28 each. Distinct letters mean statistically significant 
differences within groups, ng = no growth after peptide addition). (E) Effect of RALF4folded, 
RALF4linear, and RALF4C86A.C105A peptides on wild-type pollen tubes growing in semi-solid 
medium at two time points after adding them to a concentration of 50 nM. Arrowheads indicate 
the position of the tip of selected pollen tubes at time point 0 min. Scale bar, 10 µm. (F) Binding 
matrix of RALF4 peptide with LRX8 and CrRLK1L/LLGs membrane proteins in acidic and 
alkaline conditions. ITC table summary with dissociation constants (Kd), binding 
stoichiometries (N), and thermodynamic parameters (DH). 
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Fig. 1 Dimeric LRX proteins bind RALFfolded peptides with high affinity. 
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Fig. 2 The LRR core of LRX proteins provides a conserved dimer interface, a RALF 
binding pocket, and a stabilized connection to the extensin domain. 
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Fig. 3 LRX homodimer interface is further stabilized by a central disulfide bridge. 
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Fig. 4 The RALF4 folded conformation is important for its bioactivity.  
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Materials and Methods 

 

Protein expression and purification  

Codon optimized synthetic genes for expression in Spodoptera frugiperda (Invitrogen 

GeneArt, Germany), coding for Arabidopsis thaliana LRX2 (residues 1-385), LRX8 (residues 

33-400, 49-400, and 49-373), LRX11 (residues 45-415, 64-415, and 64-388) domains were 

cloned into a modified pFastBac (Geneva Biotech) vector, providing a TEV (tobacco etch virus 

protease) cleavable C-terminal StrepII-9xHis tag. RALF4 (residues 58-110) and RALF19 

(residues 58-110) mature peptide sequences were N-terminally fused to TRX A (Thioredoxin 

A) in a pFastBac vector driven by a 30K signal peptide (28). For protein expression, 

Trichoplusia ni Tnao38 cells (29) were co-infected with a combination of LRX and RALF 

virus with a multiplicity of infection (MOI) of 3 and incubated for 1 day at 28°C and two days 

at 22°C at 110 rpm. The secreted complexes were purified from the supernatant by sequential 

Ni2+ (HisTrap excel; GE Healthcare; equilibrated in 25 mM KPi pH 7.8, 500 mM NaCl) and 

StrepII (Strep-Tactin Superflow high capacity; IBA; equilibrated in 25 mM Tris pH 8.0, 250 

mM NaCl, 1 mM EDTA) affinity chromatography. Proteins were further purified by size-

exclusion chromatography on a Superdex 200 increase 10/300 GL column (GE Healthcare), 

equilibrated in 20 mM sodium citrate pH 5.0, 150 mM NaCl. For crystallization and 

biochemical experiments, proteins were concentrated using Amicon Ultra concentrators 

(Millipore, MWCO 3,000 and 30,000). Proteins were analyzed for purity and structural 

integrity by SDS-PAGE and mass spectrometry.  

 

Mass spectrometry 

For LC-MS/MS analysis of LRX8-RALF4, 5 µL of complex (1 mg/ml) were diluted in 20 µL 

of the following buffer: 50 mM ammonium bicarbonate, 10 mM TCEP 

(triscarboxyethylphosphine) and 40 mM chloroacetamide. Samples were incubated 45 min in 

the dark at RT, and then digested with 0.1 µg of sequencing-grade trypsin or chymotrypsin 

(Promega). Samples were incubated at 37 ºC for 4 hours, and digestion reaction stopped with 

2µl of 10% formic acid. They were then diluted 10x with loading buffer (2% acetonitrile, 

0.05% trifluoroacetic acid) and injected on a Fusion Tribrid orbitrap mass spectrometer 

(Thermo Fisher Scientific) interfaced to a Dionex RSLC 3000 nano-HPLC. Peptides were 

separated on a 65 min. gradient from 4% to 76% acetonitrile in 0.1% formic acid at 0.25 µL/min 

on an in-home packed C18 column (75 μm ID x 40 cm, 1.8 μm, Reprosil Pur, Dr. Maisch). 
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Full MS survey scans were performed at 120’000 resolution. In data-dependent acquisition 

controlled by Xcalibur 4.1 software (Thermo Fisher), a top speed precursor selection strategy 

was applied to maximize acquisition of peptide tandem MS spectra with a maximum cycle time 

of 1.5 s. HCD (normalized collision energy: 32%) or EThcD (supplemental HCD activation 

energy: 25%) fragmentation mode were used with a precursor isolation window of 1.6 m/z. 

MS/MS spectra were acquired at a 15’000 resolution, and peptides selected for MS/MS were 

excluded from further fragmentation during 60s. For data analysis, tandem mass spectra were 

searched using PEAKS software (version 8.5, Bioinformatics Solutions Inc., Waterloo, 

Canada) against a custom database containing common contaminants and the sequences of the 

proteins of interest. Mass tolerances used were 10 ppm for the precursors and 0.02 Da for 

collision-induced dissociation fragments. Activities of proteases considered were semi-trypsin 

or semi-chymotrypsin (one specific cut) with 2 missed cleavages. Carbamidomethylation of 

cysteine was specified as a fixed modification. N-terminal acetylation of protein and oxidation 

of methionine were specified as variable modifications. PEAKS results were imported into the 

software Scaffold 4.8.5 (Proteome Software Inc., Portland, OR, USA) for validation of MS/MS 

based peptide (minimum 90% probability) and protein (min 95 % probability) identifications, 

dataset alignment as well as parsimony analysis to discriminate homologous hits. 

For LC-MS/MS analysis of LRX11-RALF4, 10 µL of complex (10 mg/ml) were diluted in 20 

µL of the following buffer: 8M Urea, 50 mM TEAB (triethylammonium bicarbonate), 5mM 

TCEP (triscarboxyethylphosphine) and 20 mM chloroacetamide. After 1h incubation at RT, 

the sample was then diluted adding 90 µL of 50mM TEAB, split into two aliquots of 55 ul and 

digested with 0.2 µg of trypsin or chymotrypsin. Samples were incubated at 37 ºC for 2.5 hours, 

and digestion reaction stopped with 1µl of 10% formic acid and 200 µL of loading buffer. They 

were injected on a Fusion Tribrid orbitrap mass spectrometer interfaced to a Dionex RSLC 

3000 nano-HPLC, as above. Full MS survey scans were performed at 120’000 resolution. In 

data-dependent acquisition controlled by Xcalibur 4.1 software, a top speed precursor selection 

strategy was applied to maximize acquisition of peptide tandem MS spectra with a maximum 

cycle time of 0.6 s. HCD (normalized collision energy: 32%) fragmentation mode was used 

with a precursor isolation window of 1.6 m/z. MS/MS spectra were acquired in the linear trap 

and peptides selected for MS/MS were excluded from further fragmentation during 60s. For 

data analysis, tandem mass spectra were searched using Mascot (Matrix Science, London, UK; 

version 2.6.2) against a custom database containing common contaminants and the sequences 

of the proteins of interest. Mass tolerances used were 10 ppm for the precursors and 0.5 Da for 
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collision-induced dissociation fragments. Activities of proteases considered were semi-trypsin 

(one specific cut) or chymotrypsin, with 2 or 3 missed cleavages, respectively. 

Carbamidomethylation of cysteine was specified as a fixed modification, and oxidation of 

methionine as variable modification. Mascot results were imported into the software Scaffold 

for validation of MS/MS based peptide (minimum 95% probability) and protein (min 95 % 

probability) identifications, dataset alignment as well as parsimony analysis to discriminate 

homologous hits. 

 

Multi-angle light-scattering (MALS) 

MALS was used to assess the monodispersity and molecular weight of the apo LRXs and in 

complex with RALF4. Samples containing 100 µg of protein were injected into a Superdex 

200 increase 300/10 GL column (GE Healthcare) using a HPLC system (Ultimate 3000, 

Thermo Scientific) at a flow rate of 0.5 ml.min-1, coupled in-line to a multi-angel light 

scattering device (miniDAWN TREOS, Wyatt). Static light-scattering was recorded from three 

different scattering angles. The scatter data were analyzed by ASTRA software (version 6.1, 

Wyatt). Experiments were done in duplicate with SD indicated in the figures. 

 

Protein complex dissociation 

LRX-RALF complexes were obtained in vivo by co-expression in insect cells. The apo proteins 

were obtained by complex dissociation in vitro using a low pH buffer. After purification of the 

LRX-RALF complex (see above), the protein complex was incubated for 1 h at 4°C in the 

following buffer: 20 mM citric acid pH 2, 150 mM NaCl. Next, the dissociated proteins were 

separated by gel filtration, using a Superdex 200 increase 10/300 GL column (GE Healthcare) 

equilibrated in the same buffer. Each protein was then collected separately and dialyzed against 

20 mM citric acid pH 5, 150 mM NaCl. To test whether proteins were still folded and 

functional, proteins were again run in a Superdex 200 increase 10/300 GL column (GE 

Healthcare) in 20mM citric acid pH 5, 150mM NaCl. We also tested, for each batch of 

dissociated protein, that the complex would be fully reconstituted when mixing the proteins in 

equimolar proportions. Additionally, we tested the in vivo activity in pollen tube growth assays 

of the dissociated peptide (folded) versus a synthetic linear version of RALF4 of the same 

sequence. 
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Isothermal titration calorimetry (ITC)  

Experiments were performed at 25°C using a MicroCal PEAQ-ITC (Malvern Instruments, UK) 

with a 200 µL standard cell and a 40 μL titration syringe. LRX8 protein and RALF peptides 

were gel-filtrated into either pH 5 ITC buffer (20 mM sodium citrate pH 5.0, 150 mM NaCl) 

or pH 7.5 ITC buffer (20 mM HEPES pH 7.5, 150 mM NaCl). A typical experiment consisted 

of injecting 2 μl of a 50 μM solution of the RALF synthetic peptides (RALF4 linear and RALF4 

C86A.C105A, sequence and manufacturer below) into 5 μM LRX8 (49-400) solution in the cell at 

150 s intervals. For the higher affinity experiments between RALF4folded protein and LRX8, 

the injection volume was reduced to 1 μl. The Experiments using RALF, CrRLK1Ls, and LLGs 

were typically performed with 10µM protein in the cell and 100µM ligand in the syringe, and 

an injection pattern of 2 μl. ITC data were corrected for the heat of dilution by subtracting the 

mixing enthalpies for titrant solution injections into protein free ITC buffer. Experiments were 

done in duplicates and data was analyzed using the MicroCal PEAQ-ITC Analysis Software 

provided by the manufacturer.  

 

Crystallization and data collection 

Crystals of the LRX229-385-RALF4 and LRX833-400–RALF4 complexes developed at room-

temperature in hanging drops composed of 1.0 μL of protein solution (20 mg/mL) and 1.0 μl 

of the following crystallization buffers, respectively : 20% [w/v] PEG 3,350, 0.1 M Bis-Tris 

pH 5 and 0.2 M sodium acetate and 17.5% [w/v] PEG 8,000, 0.1 M Bis-Tris pH 7 and 0.2 M 

sodium citrate. Drops were suspended above 0.6 mL of crystallization buffer. For data 

collection, LRX2-RALF4 crystals were transferred into crystallization buffer supplemented 

with 15 % (v/v) ethylene glycol and snap frozen in liquid nitrogen. In the case of the LRX8-

RALF4 complex, crystals were snap frozen in the presence of 15% glycerol as cryo protectant. 

A 3.2 Å and 3.9 Å dataset native was collected at beam-line PXIII of the Swiss Light Source 

(SLS), Villigen, CH. Data processing and scaling was done in XDS (v. June 2017) (30). 

 

 

Structure determination and refinement 

The structure of the LRX2–RALF4 complex (PDB-ID: 6QXP) was determined by molecular 

replacement using the program PHASER, implemented in the Phenix Mrage pipeline (31). 

Search models were selected using the program HHPRED (32) and tested iteratively in the 

Mrage pipeline. A solution using a fragment of the LRR ectodomain of the plant immune 

receptor FLS2 (PDB-ID 4MNA) yielded a solution with eight molecules in the asymmetric 
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unit. The search model, which showed 28% sequence identity with LRX2 target was further 

improved using the program CHAINSAW in CCP4(33, 34). The final solution was used for 

NCS averaging and density modification in the program PHENIX.RESOLVE (35). The 

resulting map was readily interpretable and the LRX2-RALF4 complex structure was build and 

completed by iterative round of manual model building in COOT (36) and restrained TLS in 

phenix.refine. The structure of LRX8-RALF4 (PDB-ID: 6QWN) was solved by molecular 

replacement in PHASER (37) and using the LRX2-RALF4 as search model. Inspection of the 

final models with phenix.molprobity (38) reveal good stereochemistry (Table 1). Diagrams 

were prepared with PYMOL (https://pymol.org/) or CHIMERA (39). 

 
Transient protein expression in tobacco leaves 

Nicotinia benthamiana plants were grown for three weeks prior to agroinfiltration. Appropriate 

Agrobacterium tumefaciens cultures were grown in YEB media at 28˚C until reaching an O.D 

of 0.6. Cultures were centrifuged 10 min at 4000 r.p.m. Cells were resuspended in fresh 

infiltration media (50 mM MES, 2 mM NaH2PO4, 0,5% (m/v) saccharose, 100 µM 

acetosyringone, pH 5.6) and let on the shaker for 2 h in the dark. For co-infiltration of two 

Agrobacterium strains, infiltration media with the appropriate Agrobacterium strains harboring 

the desired constructs were mixed in a 1:1 v/v ratio. Infiltration was performed with a syringe. 

Plants were grown for 2 more days prior to material collection. Leaves were cut and flash 

frozen in liquid nitrogen. 

 

In vitro redox sensitivity experiments 

To determine the importance of disulfide bridge formation in the LRX homodimers, samples 

were incubated at 95°C for 5 min in Laemmli buffers containing DTT 0, 1, 3, 5, or 20 mM, 

respectively. They were subsequently run on denaturing SDS gels for further size 

identification. In solution, reducing assays were performed by incubating the LRX8Y87A.A133F 

protein with and without 5 mM TCEP for 1 hour at RT. Samples were then run by size-

exclusion chromatography on a Superdex 200 increase 10/300 GL column (GE Healthcare), 

equilibrated in 20 mM sodium citrate pH 5.0, 150 mM NaCl, in the presence or absence of 

TCEP. 

 

Protein extraction, co-immunoprecipitation and Western blot analysis 

Transiently expressed LRX8 and RALF4 proteins in tobacco were extracted as follow: 300 mg 

of plant material were crushed in liquid nitrogen and resuspended in 600 µL of extraction buffer 
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(150 mM Tris pH7.5; 150 mM NaCl; 10% (v/v) glycerol; 10 mM EDTA, 0.5% IGEPAL, 

cOmplete protease inhibitor (Roche)). Samples were centrifuged at 15000 r.p.m. for 20 min, 

and the supernatant was then centrifugated twice more to discard residual pellet debris. 50 µL 

of input sample were kept at this stage, the rest was incubated for 1 h at 4°C with anti-myc or 

anti-HA magnetic beads (µMACS, Milteny Biotech). Immunoprecipitation was performed 

according to manufacturer’s specifications, using the extraction buffer for column washes. 

Standard Laemmli buffer (40) was added to the input and immunoprecipitated samples prior 

to gel loading. Finally, Western blot analysis was performed with horse radish peroxidase-

coupled anti-myc and anti-HA antibodies (MACS, Milteny Biotech) at 1:2000 dilution. 

Detection was performed using WesternBright™ Sirius (Advansta). Images were taken with a 

LAS500 BlotImager. 

 

Pollen germination in vitro assays 

Open flowers were incubated at 22°C for 30 min in moist incubation boxes. Then, pollen was 

bound to xilane-coated slides containing germination medium [0.01% boric acid (w/v), 5 mM 

CaCl2, 5 mM KCl, 1 mM MgSO4, 10% sucrose, pH 7.5]. Pollen grains were pre-incubated in 

moist incubation boxes for 30-45 min at 30°C and then transferred to 22°C from 30 min to 2h 

as indicated. After 2 h of in vitro pollen germination, peptides were added to pollen germination 

medium to a concentration of 50 nM and 100 nM. The effect on pollen tube growth was imaged 

using a Leica DM6000 microscope and analyzed using the ImageJ 1.40g software 

(rsb.info.nih.gov/ij). RALF4linear, RALF4scrambled and RALF4 C86A.C105A synthetic peptides were 

obtained from PHTD Peptides Industrial Co, Ltd. (Zhengzhou City, China). The rest of the 

peptides were expressed and produced in insect cells complexed with LRX8 and dissociated as 

indicated above.  

Sequence of RALF4linear:  

RRYIGYDALKKNNVPCSRRGRSYYDCKKRRRNNPYRRGCSAITHCYRYAR 

Sequence of RALF4scrambled:  

PTYNSCRRKCKRDRGYAARRYKRYRYVNADIKRNHSGYPCRICSRLYGRN 

Sequence of RALF4 C86A.C105A 

RRYIGYDALKKNNVPCSRRGRSYYDAKKRRRNNPYRRGCSAITHAYRYAR 
 

Generation of transgenic lines 

All transgenic lines were generated using the floral dip method (41) with the Agrobacterium 

tumefaciens strain GV3101. The construct pLAT52:MRIR240C-YFP, described previously 
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(25), was used for Arabidopsis thaliana transformation. The construct’s expression in pollen 

tubes was checked and imaged using a Leica DM6000 microscope. 
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