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Summary 
Tumors evolve under selection for gene mutations that give a growth advantage to the cancer 

cell. Intriguingly, some cancer genes are more often found mutated in tumors than their closely 

related family members. For example, KRAS mutations are more frequently observed in cancer 

in comparison to HRAS and NRAS. Here, we find that for RAS and six oncogene families, the 

most prevalent mutated members in cancer have a codon usage characteristic of genes 

involved in proliferation. The codon usage of KRAS is more adapted to be efficiently translated 

in proliferative cells than the codon usage of HRAS. We also show that the translation efficiency 

of KRAS varies between cell lines in a manner related to their tRNA expression. Altogether, our 

study demonstrates that a dynamic translation program contributes to shaping the expression 

profiles of oncogenes. We propose that codon bias related to cell proliferation contributes to the 

prevalence of mutations in certain members of oncogene families. 
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Introduction 
Cancers arise due to mutations that confer a selective growth advantage on cells (Nowell, 

1976). These mutations can occur in oncogenes, which when activated by mutations contribute 

to the cancer proliferation phenotype. Interestingly, oncogenes often have closely-related family 

members that are less frequently mutated in cancer.  

 

The RAS family is a striking example. Activating mutations in KRAS are among the most 

common mutations in human cancers (Lawrence et al., 2014). KRAS belongs to a family of 

three genes, the other two being HRAS and NRAS. The encoded proteins share a high 

sequence identity of 85% and hence similar structure and biochemical properties (Hobbs et al., 

2016). However, the reasons for the drastic variation in mutation incidence between the RAS 

genes remain enigmatic. Significant effort is being invested in studying the molecular 

differences between the three family members and specifically to understand what is special 

about KRAS (Drosten et al., 2017); (Haigis et al., 2008); (Quinlan and Settleman, 2008); 

(Lampson et al., 2013); (Koera et al., 1997; Potenza et al., 2005); (Omerovic et al., 2008; Yan et 

al., 1998); (Apolloni et al., 2000; Rocks et al., 2006); (Prior et al., 2003)). An intriguing 

observation is that even though RAS proteins are very similar, the codon usage is different, with 

only 15% of codon identity (Lampson et al., 2013). The nucleotide sequence of KRAS is 

enriched in rare codons (decoded by low-abundant tRNAs) in comparison to HRAS. This has 

been linked to a poor translation efficiency of KRAS and a high efficiency for HRAS (Lampson et 

al., 2013). It has been speculated that these differences in codon usage relate to the imbalance 

of the mutation frequency within the RAS family: the constitutively activated form of the highly 

translated HRAS might lead to an over-activation of the MAPK pathway, ultimately leading to 

oncogene-induced senescence (Bodemann and White, 2013; Pershing et al., 2015).  

 

Codon usage and tRNA abundance are important parameters for fine-tuning protein synthesis. 

The functional influence of codon optimality and tRNA levels on the efficiency of protein 

production remains a topic of intense debate (Hanson and Coller, 2018). In recent years, 

studies have shown that tRNA levels are not static but dynamically regulated in different cellular 

contexts, leading to changes of the translation efficiency of transcripts depending on their codon 

composition (Torrent et al., 2018; Gingold et al., 2014; Goodarzi et al., 2016). In mammalian 

cells, changes in tRNA abundance have been reported across different cell states, and 

specifically between healthy and cancer cells (Gingold et al., 2014; Goodarzi et al., 2016). 
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Interestingly, Gingold et al (Gingold et al., 2014) showed that a specific subset of tRNAs are up-

regulated in proliferating cells, while they are downregulated in differentiated or arrested cells. 

Additionally, they show that genes that are necessary for cell division have a codon usage 

adapted to the tRNA repertoire in proliferative cells. Thus, changes in the expression of specific 

tRNAs could regulate an entire functional class of genes, for instance proliferative genes, to 

favor cell growth. Would a cancer cell take advantage of this translational program to modulate 

the expression of cancer genes to its own growth advantage? Could it be that a dynamic 

regulation of RAS translation efficiency determines the uneven mutation frequencies across 

RAS genes? Will this be a general phenomenon in other cancer gene families? 

 

To answer the above questions we first identify 8 protein families of three members, RAS, RAF, 

RAC, RHO, FOXA, FGFR, COL and AKT, with high protein sequence similarity and at least one 

protein being relevant for cancer. We find that in all but one family the codon usage signature of 

the most frequently mutated gene is characteristic of proliferation-related genes in comparison 

to its homologous family members. We then study the RAS family composed of KRAS, HRAS 

and NRAS in detail. We measure how proliferation and quiescent cell states induce codon-

dependent changes in KRAS protein levels. Finally, we find that different tRNA expression 

profiles between cell lines correspond to differences in KRAS protein levels. This work supports 

the existence of different translational programs such as the up-regulation of proliferative tRNAs 

that have the potential to boost the protein synthesis of oncogenes. Thus, our results suggest 

that dynamic changes in this fundamental cellular process may contribute to cancer and 

specifically to the prevalence of mutations in certain genes as compared to their closely-related 

family members. 

Results 

Codon usage of cancer genes. 

To explore whether the differences in mutation frequency between RAS genes are also 

observed in other gene families, we perform a genome-wide survey in a pan-cancer data set 

from The Cancer Genome Atlas (TCGA) to identify gene families with variation in mutation 

incidence in cancer. To define families, we cluster sets of proteins based on protein sequence 

similarity. We restrict the analysis to families containing at least one known cancer driver gene 
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(Lawrence et al., 2014). We identify 8 families including the RAS family. We consistently 

observe one gene more frequently mutated (non-synonymous mutation counts) in comparison 

to the other genes of the family (Figure 1A, Table S1). Especially, for the RAS, RAF and RAC 

families we observe at least a two-fold variation in the mutation count number (fold change 

between the family member with the lowest mutation count and the highest). For the RHO, 

FOXA, FGFR and COL families we observe between 1.30 to 1.95-fold change. However, this 

effect is mild for the AKT family with only a 1.22-fold change. 

 

As previously described, RAS genes have a high amino acid sequence identity (85%) but differ 

in their codon usage (15% codon identity) (Lampson et al., 2013). The same observation 

applies to the 7 other families we selected (Figure S1). This raises the question of whether 

differences in the mutation count could be related to variation in codon usage in addition to 

potential biochemical differences on the protein level. 

 

Therefore, we investigate whether the codon usage of these genes could be related to a specific 

translation program. Previously, Gingold et al (Gingold et al., 2014) described the average 

codon usage bias in different gene functional groups and observed that genes in two cellular 

programs, differentiation and proliferation, preferentially use different synonymous codons. 

Additionally, they found that tRNAs induced during proliferation correspond to the codons that 

are enriched in the functional set of proliferation genes.  

 

To test if functional adaptation to these cellular programs could have shaped the codon usage in 

the selected gene families, we examine how the codon usage of the genes correlates to the 

codon usage of proliferation-related and differentiation-related genes. We use a similar 

approach to Gingold et al (Gingold et al., 2014) by applying PCA to the relative codon usage 

frequencies of all individual genes, in order to visualize how the codon usage of the genes of the 

8 families correlate with the codon usage of pro-proliferative genes. By computing the projection 

of all major gene sets in the Gene Ontology (GO) classification, we reproduce the results of 

Gingold et al (Gingold et al., 2014) revealing two distinct functional poles at the extremes of the 

codon usage main projected axis, the first principal component (PC1) (Figure 1B). At one 

extreme, for negative values of PC1, we find a strong enrichment of gene sets that are 

descendants of the “cell cycle” term (16 out of the top 30, Fisher exact test two-sided p < 2.2e-

17). At the other extreme, for positive values of PC1, a majority of the gene sets are 

descendants of the “multicellular organism development” or “cell differentiation” terms (14 out of 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 11, 2019. ; https://doi.org/10.1101/695957doi: bioRxiv preprint 

https://doi.org/10.1101/695957
http://creativecommons.org/licenses/by-nc-nd/4.0/


the top 30, Fisher exact test two-sided p < 5.8e-6). This observation, together with the 

previously described changes in tRNAs in proliferative versus non-proliferative cells (Gingold et 

al., 2014), shows that the two poles of codon usage correspond to two cellular translation 

programs. We next calculate the average codon usage of each coding sequence of the selected 

cancer gene families and project it in the PCA plane (Figure S1) as well. We observe that the 

transcript of KRAS is composed of codons more frequently used by genes involved in 

proliferation in comparison to HRAS (Figure 1B). This seems to be a general phenomenon as 

the codon usage of the most frequently mutated family member corresponds better to the codon 

usage of pro-proliferative genes than their cognate family members, except for the FGFR and 

FOXA families. FGFR1 and FGFR2 have an inverse relationship, with the gene less often 

mutated being the one having a pro-proliferation codon usage. In cancer, amplifications are the 

most common alterations of FGFR1 whereas FGFR2 harbors activating mutations (Sobhani et 

al., 2018). Thus, in our analysis it is difficult to discern which of the two is more oncogenic. 

FOXA genes show a codon usage in the opposite pole of the pro-proliferation codon usage 

(Figure S1B). In this family the cancer driver gene FOXA1 can take the role of a tumor 

suppressor (Barbieri et al., 2012); (Schroeder et al., 2014), typically inactivated by mutations in 

contrast to the other families where the most frequently mutated gene is an oncogene with 

activating mutations. This suggests that the usage of proliferation-associated codons in cancer 

genes is a characteristic property of oncogenes.  

 

Next, we seek to assess the significance of the correlation pattern between codon usage and 

mutation frequency. Our main observation is that the gene member that is the most frequently 

mutated is the one that presents a codon usage most adapted to the proliferation codon usage 

pole (negative pole of PC1). Thus, we expect that PC1 and mutation frequency are negatively 

correlated. For the 63 gene families that do not contain any cancer driver gene (non-cancer 

gene families), we assume that there is no specific relationship between codon usage and 

mutation frequency, such that the correlation should be randomly distributed around zero 

(Figure S1C). We also assume that the pattern is more significant when, within a cancer gene 

family, we observe both a large variation in codon usage and in mutation frequency. Thus, we 

compare the distribution of the covariance of PC1 and mutation frequency for cancer gene 

families to the background gene families (Figure 1C, Table S2). The covariance tends to be 

large, and thus gives more weight to the families that present a large variation in codon usage 

and in mutation frequency. Families with little variation in either codon usage or mutation 

frequency, on the other hand, present a smaller covariance. We observe that the covariance of 
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cancer gene families is significantly more negative than the background families (Wilcoxon-

Mann-Whitney (W.M.W.) test p<0.018). In particular, 7 out of 8 families (RAS, RAF, COL, RAC, 

RHO, AKT and FGFR) present a pattern of negative correlation, with the families showing the 

highest covariance being RAS, RAF, RAC, RHO and COL. 

Codon usage-specific changes of KRAS protein abundance under 

different cell states. 

The above analysis suggests that oncogenes with a codon usage signature characteristic of 

proliferation-related genes will be more expressed under a proliferative cell state. To test this 

hypothesis, we decide to work with the RAS family.  

 

In order to determine if KRAS protein abundance changes in different cell states in a codon-

dependent manner, we establish a series of manipulated cells that co-express KRAS wild-type 

(KRASWT) and a protein sequence-identical KRAS variant but with a codon usage similar to 

HRAS (Lampson et al., 2013) (KRASHRAS). The two proteins have different N-terminal tags that 

allow us to distinguish between the two versions of KRAS by their size (FLAG and 3xHA; as a 

control we also made an identical construct with the tags swapped Figure S2A). A bidirectional 

symmetrical promoter controls the simultaneous expression of the two genes. This design 

provides us with a controlled expression system to assess exclusively codon-dependent 

changes in protein abundance while reducing the impact of other factors (eg. transcriptional 

efficiency or biochemical properties of the protein). Moreover, both genes are in the same 

plasmid and are therefore integrated into the genome with equal stoichiometry (Figure 2A).  

 

Gingold et al (Gingold et al., 2014) reported changes in tRNA profiles of BJ/hTERT fibroblast in 

different cell-states: a quiescent state when the cells are starved and a proliferative state when 

the cells are not starved. Therefore, we first co-express KRASWT and KRASHRAS in BJ/hTERT 

fibroblasts and quantify the protein ratio of KRASWT/KRASHRAS in these two different cell-states. 

We observe that the ratio increases by more than two fold when the cells are proliferating 

(Figure 2B). The observed fold change suggests that KRAS codons are more efficiently 

translated during proliferation than HRAS codons.  

 

We also measure the ratio at the transcript level and, interestingly, we find the same effect as 

observed at the protein level: the ratio between KRASWT and KRASHRAS is increased by more 
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than two fold in proliferation versus starvation (Figure 2C). Previous studies have shown in 

different species that codon optimality has a high impact on transcript stability (Presnyak et al., 

2015; Boël et al., 2016; Wu et al., 2019). An interesting hypothesis is that the dynamics of 

ribosomal elongation influences mRNA decay. Ribosome translocation is slower through non-

optimal transcripts and promotes mRNA decay, mediated by the DEAD-box protein Dhh1p in S. 

cerevisiae (Radhakrishnan et al., 2016). Thus, codon content directly modulates both translation 

efficiency and mRNA stability. Our study suggests that KRASWT is composed of codons that are 

optimal for its expression in proliferative cells but that are non-optimal in starved cells. 

Therefore, to determine if changes in KRAS transcript abundance are due to differences in 

translation efficiency and not transcriptional regulation, we prevent translation by deleting the 

ribosome binding site and the ATG start codon. We first test to confirm that there is no protein 

expression when cells are established with the non-productive expression cassette (Figure 

S2B). After blocking the translation of the two genes we observe that the difference of 

KRASWT/KRASHRAS between non-starved and starved is not significant at the transcript level 

(Figure 2D). In short, KRASWT/KRASHRAS changes are mainly due to a differential translation 

efficiency (that also increases the corresponding mRNA level) between a quiescent state and a 

proliferative state. Our results provide new evidence supporting the dynamic translational 

efficiency by cell-state-specific codon usage of transcripts. 

Specific differences in tRNA levels explain differences in KRAS 

abundance between cell lines. 

To investigate if the condition-specific translation efficiency is mediated by differential tRNA 

expression, we explore the effect of cell line-specific tRNA abundances on KRAS expression. A 

previous study (Fu et al., 2018) has already reported a cell line-specific expression of KRASWT 

and KRASHRAS. We therefore hypothesise that the tRNA content of different cell lines varies and 

may influence the translation efficiency in a codon-dependent manner. To test our hypothesis, 

we first establish two additional cell lines (HEK293 and HeLa) to co-express KRASWT and 

KRASHRAS. We verify that the expression results in changes of both protein and mRNA when 

comparing BJ/hTERT, HEK293 and HeLa (Figure 3A, 3B). Of these three cell lines HEK293 

exhibits the highest proliferative rate (Figure S2C) and higher abundance of KRASWT in 

comparison to HeLa and BJ/hTERT. We observe the same effect on protein level when 

switching the position of the tags (Figure S3A), showing that FLAG and 3xHA are not 

influencing our observation. As before, the removal of the ribosome binding site and start codon 
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leads to similar transcript levels for the three cell lines (Figure 3C), indicating that translation is 

an important determinant of mRNA stability.  

 

The above observations suggest that the effect of codon bias may be differentially regulated in 

different cell types. If translational efficiency is different in each cell type, we hypothesise that it 

should match the cell type’s tRNA anticodon abundance. More specifically, we expect that the 

relative synonymous codon frequencies (relative to the amino acid) of KRASWT match better to 

the relative abundances of cognate tRNAs in HEK293 than in HeLa. To associate the amount of 

tRNAs with codon usage, we perform hydro-tRNA sequencing (Gogakos et al., 2017) and 

quantify tRNA expression in HEK293 and HeLa cells (Table S4).  

We find 14 tRNAs showing significant differences (q < 0.05, t test) between the two cell lines 

(Figure S2D, Table S4). Six of them are expressed higher in HEK293 and match codons 

enriched in the coding sequence of KRASWT (TCT, AAA, AGT, GAT, GAA, GCA). One 

exception occurs with tRNASerCGA, which is expressed higher in HEK293, but the associated 

codon TCG is not enriched in KRASWT. On the other hand, 5 tRNAs expressed significantly 

higher in HeLa correspond to codons enriched in HRAS and therefore in KRASHRAS (ATC, GAG, 

GAC, ACG and AAG). Only two tRNAs higher in HeLa (tRNASerTGA and tRNAValAAC) do not 

match codons enriched in KRASHRAS (Figure 3D-E). To sum up, we find 11 out of 14 tRNAs 

matching the expected codons in KRASWT and KRASHRAS. Therefore, the difference in tRNA 

supply between cell lines could explain the observed variation of KRASWT and KRASHRAS protein 

levels. In a previous study in which different codons of KRAS had been changed, it was 

observed that certain replacements resulted in significant increases in KRAS expression 

reaching in a cumulative manner the levels of HRAS (Lampson et al., 2013). Among them were 

the changes GCA to GCC, AAA to AAG and ATT to ATC, which correspond to the anticodons of 

tRNAs differentially expressed between HEK293 and HeLa. The changes GAA to GAG and 

CCT to CCC did not display protein abundance changes (Figure S2E).  

 

Additionally, we investigate if the codons corresponding to the significantly changing tRNAs are 

also found enriched in the most prevalent oncogenes of the RAF, RAC, RHO and COL families. 

Overall, the codons enriched in KRASWT and having their matching tRNAs significantly 

increased in HEK293 are also enriched in the oncogenes BRAF, RAC1, RHOA and COL11A1 in 

comparison to their less mutated family member. Conversely, the codons enriched in KRASHRAS 

and the matching tRNAs in HeLa, are also enriched in the less frequently mutated genes, RAF1, 

RAC3, RHOC and COL11A2 (Figure S3). Finally, we confirm that 6 out of 7 tRNAs more highly 
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expressed in the most proliferative cell line HEK293, correspond to proliferation-related codons 

(Figure 4). Altogether, our results support a dynamic translational program, where specific 

changes in tRNA abundance can shape the expression of proliferation-related transcripts. 

Discussion 
Codon usage and tRNA abundance are crucial for efficient and accurate translation of mRNAs 

into proteins. Previous studies have found that tRNA repertoires are dynamic in a manner that 

facilitates selective translation of specific transcripts (Gingold et al., 2014; Supek, 2016; 

Newman et al., 2016; Torrent et al., 2018. Here, we investigate if there is an oncogenic 

translation program shaping the abundance of cancer driver genes. We describe protein 

families with strong differences in codon usage and mutation frequencies within the family. The 

observed codon bias reveals a proliferation-specific codon usage of the more prevalent family 

members in cancer. Specifically, the families RAS, RAF, RAC, RHO and COL exhibit the largest 

negative covariance between mutation frequency and proliferation-associated codon usage. 

This raises the question of whether these transcripts are more effectively translated in 

proliferative cells than their closely related family members. 

 

We focus on the example of the RAS family and we experimentally show that the translation 

efficiency of KRASWT is up-regulated in proliferative cells in comparison to the translation 

efficiency of KRASHRAS. Additionally, we find that translation efficiency is a determinant of 

transcript abundance. This observation has been previously described in H.sapiens (Wu et al., 

2019), S. cerevisiae (Presnyak et al., 2015) and E. coli (Boël et al., 2016). Here, we consistently 

show that the changes in KRASWT/KRASHRAS transcript abundance between cell types and cell 

states decrease when translation is suppressed.  

 

Activating mutations of oncogenes are a product of selection during tumor initiation for an ideal 

level of signaling. It is plausible that selection acting on a gene depends on the level of 

expression of that gene. Pershing et al observed that replacing KRAS codons with HRAS 

codons in one exon renders mice more resistant to lung tumors and decreases the amount of 

KRAS mutations (Pershing et al., 2015). This supports our hypothesis that translation efficiency 

might contribute to mutation frequency differences between genes.  
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RAS abundance is an important determinant of MAPK signaling which is tightly connected to 

cancer growth. Importantly, it has been shown that cells initially expressing low levels of 

oncogenic RAS only progressed into malignant lesions after RAS levels increased (Sarkisian et 

al., 2007; Ferbeyre, 2007). In line with this model, it is tempting to speculate that mutated RAS 

increases its own translation by triggering cell proliferation (Figure S4). 

 

Our observations are in agreement with recently identified alterations in transcript-specific 

translation that emerge as drivers of cellular transformation. For example, it has been shown 

that up-regulation of specific tRNAs (tRNAGluTTC and tRNAArgCCG) in metastatic cells leads to 

an increase in the amount of certain proteins, specifically EXOSC2 and GRIPAP1 that play an 

important role in metastasis (Goodarzi et al., 2016). Indeed, we have seen similar results here 

for KRAS. Consistent with previous reports (Dittmar et al., 2006; Pavon-Eternod et al., 2009), 

we observe that specific tRNAs vary between different cell lines, which could explain the 

differences in KRAS expression between HEK293 and HeLa. One of them, tRNAGluTTC, is also 

upregulated in metastatic breast cancer cells as mentioned above. Moreover, we find 

differentially expressed tRNAs corresponding to codons previously reported to change KRAS 

protein levels when synonymously mutated (Lampson et al., 2013). Taken together, our results 

suggest that in order to increase KRAS translation efficiency it is not necessary to change the 

expression of multiple tRNAs but just that of a few specific ones. Particularly, we observe that 

codons corresponding to the tRNAs playing a role in these changes, are also codons enriched 

in the oncogenes BRAF, RAC1, RHOA and COL11A1. Our results suggest that certain tRNAs 

could be used as markers of oncogene-specific translation. Determination of tRNA abundance 

of different cell types may reveal previously unseen connections between translation and 

oncogene prevalence in cancer. It would also be interesting to investigate how tRNA 

modifications could also influence oncogene translation. Furthermore, Supek et al (Supek et al., 

2014) show that selection acts on somatic synonymous mutations of oncogenes in tumor 

evolution. In many cases they are associated with changes in oncogene splicing in tumors. It 

would be interesting to further investigate if some of the recurrent synonymous mutations in 

those oncogenes correspond to changes towards enriching their coding sequence in 

proliferation-related codons, ultimately yielding to a greater translation efficiency. 

 

The question remains as to the physiological role of this family codon bias. One possible 

explanation is that the protein levels of KRAS, BRAF, RAC1, RHOA and COL11A1 need to be 

tightly controlled. For example, during embryogenesis tRNA levels have been shown to vary in 
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mouse brain and liver (Schmitt et al., 2014). Indeed, KRAS (Johnson et al., 1997), RAC1 

(Sugihara et al., 1998; Corbetta et al., 2005; Roberts et al., 1999) and RHOA (Liu et al., 2001); 

(Hakem et al., 2005) are the only family members embryonically lethal in homozygous null mice. 

On the other hand, BRAF (Wojnowski et al., 1997) and COL11A1 (Li et al., 1995) homozygous 

mutants are also lethal together with RAF1 (Wojnowski et al., 1998) and COL5A1 (Wenstrup et 

al., 2004). Thus, cancer cells could take advantage of a developmental translation regulation to 

boost the translation of oncogenic transcripts to their own growth advantage.  

 

Taken together, our work not only addresses a fundamental aspect of RAS biology but also 

provides insight into the controversial issue of how codon bias can influence protein expression. 

Collectively, our findings demonstrate that codon-driven translational efficiency can modulate 

protein expression of oncogenes in different cell contexts.  
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Figures legends 
Figure 1: Association between codon usage and mutation frequency in genes from 8 

different families. See also Figure S1 and Tables S1. 

A. Gene triplets with divergent mutation frequencies in cancer. 

B. PCA projection of the human codon usage. The location of each gene is determined by its 

codon usage. Distribution of GO gene sets along the main codon usage axis reveals the two 

functional poles, “proliferation” (negative PC1) and “differentiation” (positive PC1). The positions 

of the RAS genes and their normalized mutation count are shown. See also Figure S1B. 

C. Distribution of the covariance of mutation count normalized within family and PC1 (lines are 

kernel density estimates as a guide to the eye). The covariance of cancer gene families is 

significantly more negative than the background families (W.M.W. test p<0.018). All families but 

one (FOXA) have a negative covariance. See also Figure S1C. 

 

Figure 2: The codon usage of KRASWT is adapted to be efficiently translated during 

proliferation. 

A. Experimental design. The construct co-expresses two genes coding for the same KRAS 

protein, differentiated by size with two different tags. HRAS-specific codons are represented in 

green. KRAS-specific codons and identical codons between KRAS and HRAS are represented 

in blue. KRAS protein is represented in dark purple. Distinct tRNAs pools appear in green and 

blue. 

B. Western blot analysis of the levels of KRASWT and KRASHRAS in starved and non-starved 

BJ/hTERT cells. The protein ratio KRASWT/KRASHRAS increases from quiescent to proliferative 

state.  

C. The transcript ratio KRASWT/KRASHRAS increases between the two cell states.  

D. Translation inhibition with RBS and ATG site removal decreases the effect on transcript level.  

Results in B, C and D are representative of three independent experiments with three technical 

replicates each. Values are relative to starved condition. Error bars represent SEM. * p < 0.05 

(unpaired Student t test). 

 

Figure 3: tRNA levels variations are associated to KRASWT and KRASHRAS abundance in 

HEK293 and HeLa. See also Figure S2 and S3 and Tables S3 and S4. 

A. Western blot analysis of the levels of KRASWT and KRASHRAS in BJ/hTERT, HEK293 and 

HeLa cells. The protein ratio KRASWT/KRASHRAS varies between the different cell lines.  
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B. The transcript ratio KRASWT/KRASHRAS also varies between the cell lines.  

C. Translation inhibition decreases the differential effect observed in cell lines on transcript 

level.  

Results in B, C and D are representative of three independent experiments with three technical 

replicates each. Values are relative to HEK293. Error bars represent SEM. * p < 0.05; ** p < 

0.01; *** p < 0.001 (unpaired t test).  

D. Fold change of the relative codon usage (pseudocount +1) between KRASWT/KRASHRAS. The 

codons that are not changing in amount between KRASWT and KRASHRAS are not represented. 

tRNAs differentially expressed between HEK293 and HeLa are highlighted.  

E. Fold change of tRNA expression between HEK293 and HeLa is represented for the cognate 

tRNAs of the codons enriched in either KRASWT (blue) or KRASHRAS (green). Error bars 

represent SEM of three independent hydro-tRNAseq experiments. Differences between 

HEK293 and HeLa were assessed by a multiple t test using a permutation based FDR cut-off of 

p<0.05. * p < 0.05. 

 

Figure 4: Proliferation- versus differentiation-related codons. See also Figure S3.  
Codons are ordered following their value in the first component axis (PC1 axis). Note that the 

scale of the values is arbitrary, only the relative values are important (direction of the vector in 

the multidimensional space). Negative values indicate negative PC1 toward the proliferation 

pole, positive values toward the differentiation pole. 

Methods 

Data Sources 

Paralogs Ensembl 

To define gene families we retrieved protein sequence similarity and family membership 

information from Ensembl. As we observed that Ensembl’s family classification often contained 

outliers with much lower sequence similarity compared to the other proteins, we applied 

another, more stringent filter: for each family we computed the similarity distribution of all 

members to a consensus member. We then removed all family members with a similarity of less 

than the mean similarity minus one standard deviation. We only considered families with at least 

three members. 
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TCGA 
Mutation data was obtained from The Cancer Genome Atlas (TCGA). We retrieved somatic 

mutations in coding regions for 20 cancer types: Bladder Urothelial Carcinoma, Breast invasive 

carcinoma, Cervical squamous cell carcinoma and endocervical adenocarcinoma, Colon 

adenocarcinoma, Glioblastoma multiforme, Head and Neck squamous cell carcinoma, Kidney 

renal clear cell carcinoma, Kidney renal papillary cell carcinoma, Acute Myeloid Leukemia, Brain 

Lower Grade Glioma, Liver hepatocellular carcinoma, Lung adenocarcinoma, Lung squamous 

cell carcinoma, Pancreatic adenocarcinoma, Pheochromocytoma and Paraganglioma, Prostate 

adenocarcinoma, Skin Cutaneous Melanoma, Stomach adenocarcinoma, Thyroid carcinoma, 

and Uterine Corpus Endometrial Carcinoma comprising a set of 5,960 samples. 

Cancer gene catalogue 

We considered cancer driver genes to be those genes that had a significant (q < 0.01) number 

of non-silent mutations in at least 1 out of 21 cancer types in 4,742 patients as defined in 

Lawrence et al (Lawrence et al., 2014).  

Coding Sequences 

The coding sequences of Homo sapiens were downloaded from the Consensus CDS (CCDS) 

project (ftp://ftp.ncbi.nlm.nih.gov/pub/CCDS/) release 2016/09/08. In the case of non-cancer 

genes, one unique canonical coding sequence was arbitrarily chosen for each protein based on 

Uniprot mapping to the CCDS. In the case of genes in the selected cancer gene families, the 

canonical coding sequence was chosen following the corresponding protein defined as 

canonical in Uniprot. 

GO gene sets 

Gene ontology was downloaded as MySQL dump of the amiGO database release 2017/01, and 

human gene annotations were downloaded from amiGO database release 2018/01/04. We 

defined GO gene sets as follows: for each GO term, we retrieved all descendant GO terms (with 

any kind of relationship type) and assigned all associated genes. We selected all GO terms with 

a minimal distance to the root “biological process” term shorter or equal to 3, and at least 30 

associated genes, resulting in a total of 708 gene sets. Note that there is a lot of overlap 

between these GO gene sets, with a protein appearing on average in 44 sets. 
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Computational analysis 

Codon usage PCA 

We applied principal component analysis (PCA) to the relative synonymous codon frequencies 

(Sharp and Li, 1987) of all individual human coding sequences. Note that, contrary to other 

studies such as the one in Gingold et al (Gingold et al., 2014), we defined our PCA projection 

based on the codon usage distribution of individual genes, not of gene sets. By doing so, our 

projection is independent from the gene ontology annotations. In addition, PCA based on the 

average codon usage of gene sets may suffer from bias due to the fact that GO gene sets are 

highly overlapping. Thus, the codon usage of a specific gene may contribute to several gene set 

data points, which may in turn distort the real variation in codon usage. When computing the 

PCA of individual genes, we first excluded single codon families (AUG, UGG). In the case of 

coding sequences that lacked codons of a specific family (6.7% of total), we impute values with 

the average codon frequency across all genes. We applied the PCA projection to GO gene sets, 

by computing the mean of relative codon frequencies of all genes in the set. 

Quantification of tRNA expression 

tRNAseq mapping was performed using a specific pipeline for tRNAs (Hoffmann et al., 2018). 

The basic pipeline was adapted to paired-end sequencing data. Moreover, given that hydro-

tRNA-seq yields short sequences, all reads over 10 nt were included after BBDuk adapter 

trimming. Isoacceptors were quantified as reads per million (RPM), summing up all reads 

mapping to isodecoders that share the same anticodon. Ambiguous reads mapping to genes of 

different isoacceptors were discarded. The human reference genome GRCh38 (GenBank 

2339568) was used.  

Relative codon usage 

We correlated the relative codon usage of KRASWT and KRASHRAS (calculated by dividing each 

codon value by the sum of the codon values of a given amino acid). In order to be able to 

calculate the fold change we added a pseudo count to all values (+1). For the 4 other families 

we calculated this fold change of codon usage between the most mutated gene and the less 

mutated gene from the same family. We first performed a sequence alignment using 

TranslatorX (Abascal et al., 2010) to be able to compare only the codons that align between the 
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two sequences. Finally, we calculated the relative codon usage and the fold change in the same 

way as done for the comparison between KRASWT and KRASHRAS. 

Differential tRNA anticodon abundance 

We exclude anticodons for which there are no corresponding tRNA genes (ArgGCG, GlyACC, 

HisATG, LeuGAG, PheAAA, ThrGGT and ValGAC) based on the tRNA gene prediction from the H. 

sapiens genome GRCh38/hg38 using tRNAscan-SE (Chan et al.). Next, we calculate the 

relative anticodon abundance: dividing each anticodon rpm value by the sum of the anticodons 

rpm values for a given amino acid). Differential relative expression analysis was performed 

using t-test, where p-values were FDR-corrected, with p < 0.05 as a cutoff. 

Sample preparation and experimental procedures 

Cell lines 

The cell lines included in this study were comprised of: HeLa, HEK293 and fibroblast BJ/hTERT 

(used in Gingold et al.(Gingold et al., 2014), kindly provided by the author Disa Tehler). Cells 

were maintained at 37 °C in a humidified atmosphere at 5% CO2 in DMEM 4.5g/L Glucose with 

UltraGlutamine media supplemented with 10% of Tet-free FBS (Clontech) and 1% 

penicillin/streptomycin. 

Expression vector design 

KRASHRAS was obtained from pBABE-Puro-KRas* (Addgene#46745). For conditional-gene 

overexpression experiments, KRASWT and KRASHRAS were cloned into a modified version of the 

XLone-GFP vector (Randolph et al., 2017) (Addgene#96930). The modification consisted of 

replacing the promoter of XLone-GFP with a bidirectional TRE3G promoter (Clontech) allowing 

the simultaneous expression of both KRAS genes. We use a FLAG tag and 3xHA to distinguish 

FLAG-KRASWT and 3xHA-KRASHRAS by size. We also inverted the tags FLAG-KRASHRAS and 

3xHA-KRASWT. The vector was co-transfected in different cell lines with the plasmid pCYL43 

(Wang et al., 2008) containing the PiggyBac transposase. Cells were selected with blasticidin 

(HeLa: 5µg/mL, HEK293: 15µg/mL, BJ/hTERT: 5µg/mL). Gene expression was induced with 

doxycycline (HeLa: 100ng/mL, HEK293: 12ng/mL, BJ/hTERT: 500ng/mL). 
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Serum starvation assay 

BJ/hTERT were grown in starvation media (1% Tet-free FBS) or non-starvation media (10% 

Tet-free FBS) for 48 hours. The expression of both KRASWT and KRASHRAS was measured after 

doxycycline induction overnight. 

Cell lines assay 

Established HeLa, HEK293 and BJ/hTERT cells were induced with doxycycline and the 

expression was measured after overnight incubation. 

Cell growth 

The cells were seeded at a density of 25000 cells per well in a 12-well plate and the counts 

were performed with Countess cell counting chamber slides and the Countess automated cell 

counter (ThermoFisher). The counts were carried out every 24 hours. 

mRNA quantification 

RNA isolation was performed with RNeasy kit (Qiagen). KRASWT and KRASHRAS transcript 

abundances were quantified by RT-qPCR (Power SYBR Green RNA-to-CT 1-Step Kit, 

ThermoFisher). Primers for FLAG-KRASWT amplification: forward 5’-

CAAGGACGACGATGACAAG-3’ and reverse 5’-GAGAATATCCAAGAGACAGGTT-3’. Primers 

for 3xHA-KRASHRAS amplification: forward 5’-CCTGACTATGCGGGCTATC-3’ and reverse 5’-

GGGTCGTATTCGTCCACAA-3’. As both genes are in the same expression cassette, for each 

sample, the Ct values for KRASWT were normalized to the KRASHRAS, 𝛥𝐶𝑡 = (𝐶𝑡KRASWT -

  𝐶𝑡KRASHRAS) and represented as 2 -ΔCt.  

Quantitative protein blots 

Cells were lysed using an M-PER buffer (ThermoFisher) supplemented with anti-proteases. 

Protein concentration was measured using a BCA Protein Assay Kit (Pierce). Equal amounts of 

each sample were mixed with 1x Laemmli buffer and boiled for 5 min. Samples were separated 

using 12% polyacrylamide gels (BioRad). Transfer was performed using the iBlot system 

(Invitrogen). Membranes were treated with Li-COR Odyssey blocking buffer for 1 hr at RT, then 

incubated with primary antibody (1:1000) in 0.2% Tween-20/Li-COR odyssey blocking buffer 

overnight at 4℃. Following three 5 min washes in TBS-T, the membrane was incubated with 
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secondary antibodies (1:10000) in 0.2% Tween-20/Li-COR Odyssey blocking buffer for 45 min 

at RT. Following three 5 min washes in TBS-T, the membrane was scanned using the Li-COR 

Odyssey Imaging System. We used the following primary antibodies: anti-pan-RAS (Abcam, 

ab52939) and anti-𝛽-actin (Sigma, A2228) and were detected using a goat anti-rabbit (Abcam, 

ab216773) or goat anti-mouse (Abcam, ab216776) IgG antibody conjugated to an IRdye at 

800CW and 680CW, respectively. Visualization and quantification was done using ImageJ and 

Image Studio Lite (LI-COR). 

Hydro-tRNA sequencing 

Total RNA from HEK293 and HeLa was extracted using the miRNeasy Mini kit. For each 

sample, 20 µg of total RNA was treated following the protocol of hydro-tRNAseq (Gogakos et 

al., 2017). Sequencing was done on Illumina HiSeq 2500 platform in 50bp paired-end format. 

Raw data have been deposited in the ArrayExpress database (Kolesnikov et al., 2015) at 

EMBL-EBI (www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-8144. 

Supplemental figure legends 
Figure S1: Association between codon usage and mutation frequency in genes from 8 

different families, related to Figure 1. 

A. Codon and amino acid identity of gene families.  

B. PCA projection of the human codon usage. The location of each gene is determined by its 

codon usage. 

C. Distribution of the covariance of mutation count normalized within family and PC1. 

Covariance is significantly more negative for cancer gene families than for the background non-

cancer related gene families (W.M.W. test p<0.018). In particular, the covariance is negative for 

7 (RAS, RAF, RHO, RAC, FGFR, AKT and COL) out of 8 cancer gene families. 

 

Figure S2: Control with inverted tags, cell lines growth curves and differential tRNAs 

expression, related to Figure 3. 

A. Western blot analysis of the levels of KRASWT and KRASHRAS with inverted tags in HEK293 

and HeLa cells. The protein ratio KRASWT/KRASHRAS varies between the different cell lines 

similarly, regardless of the tag. Error bars in A represent SEM of two independent experiments 

*, p < 0.05. 
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B. Comparison of expression between the productive and non-productive (without RBS and 

ATG) expression cassette. No KRASWT or KRASHRAS expression is observed when translation is 

suppressed.  

C. HEK293, HeLa and BJ/hTERT cell count over 96 hours.  

D. Volcano plot showing relative tRNA differential expression in log2 fold change between 

HEK293 and HeLa.  

E. Immunoblot data taken and quantified from Lampson et al (Lampson et al., 2013) where 

KRAS codons were progressively converted. 

 

Figure S3: Relative codon usage between the most frequently and the less frequently 

mutated gene, related to Figure 3 and 4. 

Fold change of the relative codon abundance (pseudocount +1) between the most frequently 

and the less frequently mutated gene for the 4 families displaying the highest negative 

covariance together with the RAS family. tRNAs differentially expressed between HEK293 

(blue) and HeLa (green). Generally, the tRNAs enriched in HEK293 and matching the codons 

enriched in KRASWT are enriched in BRAF, RAC1, RHOA and COL11A1 and vice versa with the 

tRNAs enriched in HeLa. 

 

Figure S4: Based on the three-stage carcinogenesis model for RAS-induced tumours 

proposed in Sarkisian et al (Sarkisian et al., 2007).  

Adapted figure from “Barriers to RAS transformation”, Ferbeyre G, Nat Cell Biol, 2007 

(Ferbeyre, 2007). Oncogenic mutations lead to a constitutive activation of the oncogene that 

promotes cell proliferation. Low levels of oncogene are not transforming. An increase of 

oncogene translation efficiency will increase oncogene levels. High oncogene levels and activity 

would transform cells if cells evade senescence. 

 

Table S1: Data concerning the genes from the 8 different families, related to Figure 1 and 

S1. 

 

Table S2: Data concerning background and cancer gene families, related to Figure 1 and 

S1. 

 

Table S3: tRNA expression (rpm) data processed, related to Figure 3. 
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Table S4: tRNA expression relative fold change between HEK293 and HeLa and relative 

codon abundance for KRASWT and KRASHRAS, related to Figure 3 and Figure S2D. 
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