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ABSTRACT1

The past century has seen substantial theoretical and empirical progress on the genetic basis of adaptation. Over this same
period a pressing need to prevent the evolution of drug resistance has uncovered much about the potential genetic basis of
persistence in declining populations. However, we have little theory to predict and generalize how persistence – by sufficiently
rapid adaptation – might be realized in this explicitly demographic scenario. Here we use Fisher’s geometric model with absolute
fitness to begin a line of theoretical inquiry into the genetic basis of evolutionary rescue, focusing here on asexual populations
that adapt through de novo mutations. We show how the dominant genetic path to rescue switches from a single mutation to
multiple as mutation rates and the severity of the environmental change increase. In multi-step rescue, intermediate genotypes
that themselves go extinct provide a ‘springboard’ to rescue genotypes. Comparing to a scenario where persistence is assured,
our approach allows us to quantify how a race between evolution and extinction leads to a genetic basis of adaptation that is
composed of fewer loci of larger effect. We hope this work brings awareness to the impact of demography on the genetic basis
of adaptation.
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14 Our understanding of the genetic basis of adaptation is15

rapidly improving due to the now widespread use of ge-16

nomic sequencing (see examples in Bell 2009; Stapley et al. 2010;17

Dettman et al. 2012; Schlötterer et al. 2015). A recurrent observa-18

tion, especially in experimental evolution with asexual microbes,19

is that the more novel the environment and the stronger the20

selection pressure, the more likely it is that adaptation primarily21

proceeds by fewer mutations of larger effect (i.e., that adaptation22

is oligogenic sensu Bell 2009). An extreme case is the evolution23

of drug resistance, which is often achieved by just one or two24

mutations (e.g., Bataillon et al. 2011; Pennings et al. 2014).25

However, drugs, and other sufficiently novel environments,26

will often induce not only strong selection but also population27

decline. Such declines hinder both the production and mainte-28

nance of adaptive genetic variation (Otto and Whitlock 1997),29

thus impeding evolution and threatening extinction. Drug re-30

sistance evolution is a particular instance of the more general31

phenomenon of evolutionary rescue (Gomulkiewicz and Holt32
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1995; Bell 2017), where persistence requires sufficiently fast adap-33

tive evolution.34

Most theory on the genetics of adaptation (reviewed in Orr35

2005) assumes constant population size and therefore does not36

capture the characteristic ’race’ between adaptation and extinc-37

tion that occurs during evolutionary rescue. Many models have38

been created to describe this race (reviewed in Alexander et al.39

2014) but so far largely focus on two extreme genetic bases, both40

already introduced in Gomulkiewicz and Holt (1995): rescue41

is either caused by minute changes in allele frequencies across42

many loci in sexuals (i.e., the infinitesimal model; Fisher 1918) or43

by the substitution of a single large effect ’resistance’ mutation44

(e.g., one locus, two allele models). We therefore largely lack45

a theoretical framework for the genetic basis of evolutionary46

rescue that captures the arguably more realistic situation where47

an intermediate number of mutations are at play (but see excep-48

tions below). The near absence of such a framework prevents49

us from predicting the number of mutations that evolutionary50

rescue will take and the distribution of their effect sizes. The51

existence of a more complete framework could therefore provide52

valuable information for those investigating the genetic basis53

of drug resistance (e.g., the expected number and effect sizes of54
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mutations) and would extend our understanding of the genetic55

basis of adaptation to cases of non-equilibrial demography (i.e.,56

rapid evolution and "eco-evo" dynamics).57

Despite these gaps in the theory on the genetic basis of evolu-58

tionary rescue, there is a wealth of data. For example, the genetic59

basis of resistance to a variety of drugs is known in many species60

of bacteria (reviewed in MacLean et al. 2010), fungi (reviewed61

in Robbins et al. 2017), and viruses (reviewed in Yilmaz et al.62

2016). This abundance of data reflects both the applied need63

to prevent drug resistance and the relative ease of isolating the64

genotypes that survive (hereafter "rescue genotypes"), e.g., in65

a Luria-Delbrück fluctuation assay (reviewed in Bataillon and66

Bailey 2014). Assaying fitness in the environment used to isolate67

mutants (e.g., in the drug) then provides the distribution of fit-68

ness effects of potential rescue genotypes. Additional data on69

the genetic basis of drug resistance arise from the construction70

of mutant libraries (e.g., Weinreich et al. 2006) and the sequenc-71

ing of natural populations (e.g., Pennings et al. 2014). Together,72

the data show that resistance often appears to arise by a single73

mutation (e.g., MacLean and Buckling 2009; Lindsey et al. 2013;74

Gerstein et al. 2012) but not always (e.g., Bataillon et al. 2011;75

Pennings et al. 2014; Gerstein et al. 2015; Williams and Pennings76

2019). The data also indicate that the fitness effect of rescue geno-77

types is more often large than small, creating a hump-shaped78

distribution of selection coefficients (e.g., Kassen and Bataillon79

2006; MacLean and Buckling 2009; Gerstein et al. 2012; Lindsey80

et al. 2013; Gerstein et al. 2015) that is similar in shape to that81

proposed by Kimura (1983) (see Orr 1998, for more discussion)82

but with a lower bound that is often much greater than zero.83

Theory on evolutionary rescue (reviewed in Alexander et al.84

2014) has primarily focused on the probability of rescue rather85

than its genetic basis. However, a few studies have varied the86

potential genetic basis enough to make some inference about87

how evolutionary rescue is likely to happen. For instance, in the88

context of pathogen host-switching, Antia et al. (2003) numer-89

ically explored the probability of rescue starting from a single90

ancestral individual when k sequential mutations are required91

for a positive growth rate, each mutation occurring from the92

previous genotype with the same probability and all intermedi-93

ate genotypes being selectively neutral. The authors found that94

rescue became less likely as the number of intermediate muta-95

tions increased, suggesting that rescue will generally proceed by96

the fewest possible mutations. This framework was expanded97

greatly by Iwasa et al. (2004a), who allowed for arbitrary muta-98

tional networks (i.e., different mutation rates between any two99

genotypes) and standing genetic variation in the ancestral popu-100

lation. Assuming the probability of mutation between any two101

genotypes is of the same order, they showed that genetic paths102

with fewer mutational steps contributed more to the total proba-103

bility of rescue, again suggesting rescue will occur by the fewest104

possible mutations. Iwasa et al. (2004a) also found that multiple105

simultaneous mutations (i.e., arising in the same meiosis) can106

contribute more to rescue than paths that gain these same mu-107

tations sequentially (i.e., over multiple generations) when the108

growth rates of the intermediate mutations are small enough,109

suggesting that rare large mutations can be the most likely path110

to rescue when the population is very maladapted or there is a111

fitness valley separating the wildtype and rescue genotype. This112

point was also demonstrated by Alexander and Day (2010), who113

emphasized that multiple simultaneous mutations become the114

dominant path to rescue in the most challenging environments.115

As a counterpoint, Uecker and Hermisson (2016) explored a116

greater range of fitness values in a two-locus two-allele model,117

showing that, with standing genetic variation, rescue by sequen-118

tial mutations at two loci (two mutational steps) can be more119

likely than rescue by mutation at a single locus (one simulta-120

neous mutational step), particularly when the wildtype is very121

maladapted, where the single mutants can act as a buffer in122

the face of environmental change. In summary, current theory123

indicates that the genetic basis of rescue hinges on the chosen124

set of genotypes, their fitnesses, and the mutation rates between125

them. So far these choices have been in large part arbitrary or126

chosen for mathematical convenience.127

Here we follow the lead of Anciaux et al. (2018) in allowing128

the genotypes that contribute to rescue, as well as their fitnesses129

and the mutational distribution, to arise from an empirically-130

justified fitness-landscape model (Tenaillon 2014). In particular,131

we use Fisher’s geometric model to describe adaptation follow-132

ing an abrupt environmental change that instigates population133

decline. There are two key differences between this approach134

and earlier models using Fisher’s geometric model (e.g., Orr135

1998): here 1) the dynamics of each genotype depends on their136

absolute fitness (instead of only on their relative fitness) and 2)137

multiple mutations can segregate simultaneously (instead of as-138

suming only sequential fixation), allowing multiple mutations to139

fix – and in our case, rescue the population – together as a single140

haplotype (i.e., stochastic tunnelling, Iwasa et al. 2004b). In this141

non-equilibrium scenario, variation in absolute fitness, which142

allows population size to vary, can create feedbacks between143

demography and evolution, which could strongly impact the144

genetic basis of adaptation relative to the constant population145

size case. In contrast to Anciaux et al. (2018), our focus here is146

on the genetic basis of evolutionary rescue and we also explore147

the possibility of rescue by mutant haplotypes containing more148

than one mutation. In particular, we ask: (1) How many muta-149

tional steps is evolutionary rescue likely to take? and (2) What150

is the expected distribution of fitness effects of the surviving151

genotypes and their component mutations?152

We first introduce the modelling framework before summa-153

rizing our main results. We then present the mathematical anal-154

yses we have used to understand these results and end with a155

discussion of our key findings.156

Data availability157

Code used to derive analytical and numerical results and pro-158

duce figures (referred to here as File S1; Mathematica, ver-159

sion 9.0; Wolfram Research Inc. 2012) and code used to create160

individual-based simulation data (Python, version 3.5; Python161

Software Foundation), as well as simulation data and freely162

accessible versions of File S1 (CDF and PDF), are available at163

https://github.com/mmosmond/GeneticBasisOfRescue.164

Model165

Fisher’s geometric model166

We map genotype to phenotype to fitness using Fisher’s geo-167

metric model, originally introduced by Fisher (1930, p. 38-41)168

and reviewed by Tenaillon (2014). In this model each geno-169

type is characterized by a point in n-dimensional phenotypic170

space, ~z. We ignore environmental effects, and thus the phe-171

notype is the breeding value. At any given time there is a172

phenotype, ~o, that has maximum fitness and fitness declines173

monotonically as phenotypes depart from ~o. We assume that174

n phenotypic axes can be chosen and scaled such that fitness175
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is described by a multivariate Gaussian function with vari-176

ance 1 in each dimension, no covariance, and height Wmax177

(which can always be done when considering genotypes close178

enough to an non-degenerate optimum; Martin 2014). Thus179

the fitness of phenotype~z is W(~z) = Wmax exp(−||~z−~o||2/2),180

where ||~z−~o|| =
√

∑n
i=1(zi − oi)2 is the Euclidean distance of181

~z from the optimum, ~o. Here we are interested in absolute fit-182

ness; we take ln[W(~z)] = m(~z) = mmax − ||~z−~o||2/2 to be the183

continuous-time growth rate (m is for Malthusian fitness) of184

phenotype ~z. We ignore density- and frequency-dependence185

in m(~z) for simplicity. The fitness effect, i.e., selection coeffi-186

cient, of phenotype z′ relative to z in a continuous-time model187

is exactly s = log[W(z′)/W(z)] = m(z′) − m(z) (Martin and188

Lenormand 2015). This is approximately equal to the selection189

coefficient in discrete time (W(z′)/W(z)− 1) when selection is190

weak (W(z′)−W(z) << 1).191

To make analytical progress we use the isotropic version of192

Fisher’s geometric model, where mutations (in addition to se-193

lection) are assumed to be uncorrelated across the scaled traits.194

Universal pleiotropy is also assumed, so that each mutation af-195

fects all scaled phenotypes. In particular we use the “classic"196

form of Fisher’s geometric model (Harmand et al. 2017), where197

the probability density function of a mutant phenotype is multi-198

variate normal, centred on the current phenotype, with variance199

λ in each dimension and no covariance. Using a probability200

density function of mutant phenotypes implies a continuum-of-201

alleles (Kimura 1965), i.e., phenotype is continuous and each202

mutation is unique. Mutations are assumed to be additive in203

phenotype, which induces epistasis in fitness (as well as domi-204

nance under diploid selection), as fitness is a non-linear function205

of phenotype. We assume asexual reproduction, i.e., no recom-206

bination, which is appropriate for many cases of antimicrobial207

drug resistance and experimental evolution, while recognizing208

the value of expanding this work to sexual populations.209

An obvious and important extension would be to relax the210

simplifying assumptions of isotropy and universal pleiotropy,211

which we leave for future work. Note that mild anisotropy212

yields the same bulk distribution of fitness effects as an isotropic213

model with fewer dimensions (Martin and Lenormand 2006),214

but this does not extend to the tails of the distribution. There-215

fore, whether anisotropy can be reduced to isotropy with fewer216

dimensions in the case of evolutionary rescue, where the tails217

are essential, is unknown. In the Discussion we briefly explore218

the effects of non-Gaussian distributions of mutant phenotypes.219

Given this phenotype-to-fitness mapping and phenotypic220

distribution of new mutations, the distribution of fitness effects221

(and therefore growth rates) of new mutations can be derived ex-222

actly. Let m be the growth rate of some particular focal genotype223

and m′ the growth rate of a mutant immediately derived from it.224

Then let so = mmax −m be the selective effect of a mutant with225

the optimum genotype and s = m′ − m the selective effect of226

the mutant with growth rate m′. The probability density func-227

tion of the selective effects of new mutations, s, is then given by228

equation 3 in Martin and Lenormand (2015). Converting fitness229

effects to growth rate (m′ = s + m), the probability density func-230

tion for mutant growth rate m′ from an ancestor with growth231

rate m is (cf. equation 2 in Anciaux et al. 2018)232

f (m′|m) =
2
λ

fχ2
n

(
2(mmax −m′)

λ
,

2(mmax −m)

λ

)
, (1)

where fχ2
n
(x, c) is the probability density function over positive233

real numbers x of χ2
n(c), a non-central chi-square deviate with n234

degrees of freedom and noncentrality c > 0 (equation 26.4.25 in235

Abramowitz and Stegun 1972).236

Lifecycle237

We are envisioning a scenario where N0 wildtype individuals,238

each of which have phenotype~z0, experience an environmental239

change, causing population decline, m0 ≡ m(~z0) < 0. Each240

generation, an individual with phenotype~z produces a Poisson241

number of offspring, with mean ln[m(~z)], and dies. This pro-242

cess implicitly assumes no interaction between individuals, i.e.,243

a branching process with density- and frequency-independent244

growth and fitness and no clonal interference. Each offspring245

mutates with probability U (we ignore the possibility of multi-246

ple simultaneous mutations within a single genome), and muta-247

tions are distributed as described above (see Fisher’s geometric248

model).249

Simulation procedure250

We ran individual-based simulations of the above process to251

compare with our numeric and analytic results. Populations252

were considered rescued when there were ≥ 1000 individuals253

(Figures 1-3) or ≥ 100 individuals (Figures 6-7, S1, and S3) with254

positive growth rates (all other replicates went extinct). The255

most common genotype at the time of rescue was considered the256

rescue genotype, and the number of mutational steps to rescue257

was set as the number of mutations in that genotype.258

Probability of rescue259

Let p0 be the probability that a given wildtype individual is260

"successful", i.e., has descendants that rescue the population.261

The probability of rescue is then one minus the probability that262

none of the initial wildtype individuals are successful,263

P = 1− (1− p0)
N0 ≈ 1− exp (−N0 p0) , (2)

where the approximation assumes small p0 and large N0. What264

remains is to find p0.265

Summary of Results266

We start with a heuristic explanation of our main results before267

turning to more detailed derivations in the next section.268

Rescue by multiple mutations269

A characteristic pattern of evolutionary rescue is a "U"-shaped270

population size trajectory (e.g., Orr and Unckless 2014). This is271

the result of an exponentially-declining wildtype genotype being272

replaced by an exponentially-increasing mutant genotype. On273

a log scale this population size trajectory becomes "V"-shaped274

(we denote it a ‘V-shaped log-trajectory’). On this scale, the pop-275

ulation declines at a constant rate (producing a line with slope276

m0 < 0) until the growing mutant subpopulation becomes rela-277

tively common, at which point the population begins growing278

at a constant rate (a line with slope m1 > 0). This characteristic279

V-shaped log-trajectory is observed in many of our simulations280

where evolutionary rescue occurs (Figure 1A). Alternatively,281

when the wildtype declines faster and the mutation rate is larger282

we sometimes see ‘U-shaped log-trajectories’ (e.g., the red and283

blue replicates in Figure 2A). Here there are three phases instead284

of two; the initial rate of decline (a line with slope m0 < 0) is285

first reduced (transitioning to a line with slope m1 < 0) before286

the population begins growing (a line with slope m2 > 0).287
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Figure 1 Typical dynamics with a relatively slow wildtype
decline and a small mutation rate (m0 = −0.1, U = 10−4).
(A) Population size trajectories on a log scale. Each line is a
unique replicate simulation (100 replicates). Replicates that
went extinct are grey, replicates that were rescued are in colour
(and are roughly V-shaped). (B) The number of individuals
with a given derived allele, again on a log scale, for the yellow
replicate in A. The number of individuals without any derived
alleles (wildtypes) is shown in grey, the rescue mutation is
shown in yellow, and all other mutations are shown in black.
Other parameters: n = 4, λ = 0.005, mmax = 0.5.

As expected, V-shaped log-trajectories are the result of a sin-288

gle mutation creating a genotype with a positive growth rate289

that escapes loss when rare and rescues the population (Figure290

1B), i.e., 1-step rescue. U-shaped log-trajectories, on the other291

hand, occur when a single mutation creates a genotype with a292

negative (or potentially very small positive) growth rate, itself293

doomed to extinction, which out-persists the wildtype and gives294

rise to a double mutant genotype that rescues the population295

(Figure 2B), i.e., 2-step rescue. These two types of rescue com-296

prise the overwhelming majority of rescue events observed in297

our simulations, across a wide range of wildtype decline rates298

(e.g., Figure 3).299

In the text, we focus on low to moderate mutation rates af-300

fecting growth rate. With sufficiently high mutation rates res-301

cue by 3 or more mutations comes to dominate (Figure S1). It302

has recently been suggested that when the mutation rate, U, is303

substantially less than a critical value, UC = λn2/4, we are in304

a “strong selection, weak mutation" regime where selection is305

strong enough relative to mutation that essentially all mutations306

arise on a wildtype background (Martin and Roques 2016), con-307

sistent with the House of Cards approximation (Turelli 1984,308

1985). Thus in this regime rescue tends to occur by a single309

mutation of large effect (Anciaux et al. 2018). In the other ex-310

treme, when U >> UC, we are in a “weak selection, strong311

mutation" regime where selection is weak enough relative to312

mutation that many cosegregating mutations are present within313

each genome, creating a multivariate normal phenotypic distri-314

bution (Martin and Roques 2016), consistent with the Gaussian315

approximation (Kimura 1965; Lande 1980). Thus in this regime316

rescue tends to occur by many mutations of small effect (An-317

ciaux et al. 2019). As shown in Figure 3 (where U = UC/10)318

and Figure S1 (where UC = 0.02), rescue by a small number319

of mutations (but more than one) can become commonplace in320

the transition zone (where U is neither much smaller or much321

larger than UC), where there are often a considerable number of322

cosegregating mutations (e.g., Figure 2B, where U = UC/2).323

The probability of k-step rescue324

Approximations for the probability of 1-step rescue under the325

strong selection, weak mutation regime were derived by Anci-326

aux et al. (2018). Here we extend this study by exploring the327

contribution of k-step rescue, deriving approximations for the328

probability of such events, as well as dissecting the genetic basis329

of both 1- and 2-step rescue in terms of the distribution of fitness330

effects of rescue genotypes and their component mutations.331

Although requiring a sufficiently beneficial mutation to arise332

on a rare mutant genotype doomed to extinction, multi-step333

evolutionary rescue can be the dominant form of rescue when334

the wildtype is sufficiently maladapted (Figures 3 and S1). In-335

deed, on this fitness landscape, the probability of producing336

a rescue genotype in one mutational step mutant drops very337

sharply with maladaptation (Anciaux et al. 2018); the probabil-338

ity of multi-step rescue declines more slowly as mutants with339

intermediate growth rates can be a “springboard" – albeit not340

always a very bouncy one – from which rescue mutants are pro-341

duced. These intermediates contribute more as mutation rates342

and the decline rate of the wildtype increase (Figures 3 and S1),343

the former because double mutants become more likely and the344

latter because the springboard becomes more necessary. With a345

large enough number of wildtype individuals or a high enough346

mutation rate (Figure S1), multi-step rescue can not only be more347

likely than 1-step, but also very likely in an absolute sense.348

Classifying 2-step rescue regimes349

2-step rescue can occur through first-step mutants with a wide350

range of growth rates. As shown below (see Approximating351

the probability of 2-step rescue), these first-step mutants can352

be divided into three regimes: "sufficiently subcritical", "suffi-353

ciently critical", and "sufficiently supercritical" (we will often354

drop "sufficiently" for brevity; Figure 4). Sufficiently critical first-355

step mutants are defined by having growth rates close enough356

to zero that the most likely way for such a mutation to lead to357

2-step rescue is for it to persist for such an unusually long period358

of time, and accordingly grow to such an unusually large sub-359

population size, that it will almost certainly produce successful360

double mutants. Sufficiently subcritical first-step mutants are361

then defined by having growth rates that are negative enough362

to almost certainly prevent such long persistence times. Instead,363

these mutations tend to persist for an expected number of gener-364

ations, proportional to the inverse of their growth rate (1/|m|),365

while maintaining relatively small subpopulation sizes (on the366

order of one individual per generation). Mutations conferring367
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Figure 2 Typical dynamics with a relatively fast wildtype de-
cline and a large mutation rate (m0 = −0.3, U = 10−2). (A)
Population size trajectories on a log scale. Each line is a unique
replicate simulation (500 replicates). Replicates that went ex-
tinct are grey, replicates that were rescued are in colour. Note
that the blue and red replicates are cases of 2-step rescue (and
roughly U-shaped), while the yellow replicate is 1-step rescue
(and therefore V-shaped). (B) The number of individuals with
a given derived allele, again on a log scale, for the red replicate
in A. The number of individuals without any derived alleles
(wildtypes) is shown in grey, the rescue mutations are shown
in red, and all other mutations in black. Here a single mu-
tant with growth rate less than zero arises early and outlives
the wildtype (solid red). A second mutation then arises on
that background (dashed red), making a double mutant with
a growth rate greater than zero that rescues the population.
Other parameters: n = 4, λ = 0.005, mmax = 0.5.

a positive growth rate can also go extinct, and thus can also368

act as springboards to rescue. Conditioned on extinction, su-369

percritical mutations behave like subcritical mutations with a370

growth rate of the same absolute value (Maruyama and Kimura371

1974). Sufficiently supercritical first-step mutants are therefore372

defined analogously to subcritical first-step mutants, having pos-373

itive (rather than negative) growth rates that are large enough374

to prevent sufficiently long persistence times once conditioned375

on extinction. Despite having similar extinction trajectories as376

subcritical mutations, ‘doomed’ supercritical mutations arise377

less frequently by mutation from the wildtype but mutate to res-378

cue genotypes at a higher rate. Overall, they too can contribute379

substantially to rescue. Note that supercritical 2-step rescue is380

not 1-step rescue with subsequent adaptation as we condition381

on the first-step mutation going extinct in the absence of the382

second mutation. However, empirically it will be impossible383

to tell if the first-step mutation was indeed doomed to extinc-384

tion if it is found to have a positive growth rate in the selective385

environment.386

The relative contribution of each regime changes with both387

the initial degree of maladaptation and the mutation rate (Fig-388

ures 5 and S2). When the wildtype is very maladapted (relative389

to mutational variance), most 2-step rescue events occur through390

subcritical first-step mutants (Figure 5A), which arise at a higher391

rate than critical or supercritical mutants and yet persist longer392

than the wildtype. When the wildtype is less maladapted, how-393

ever, critical and supercritical mutations become increasingly394

likely to arise and contribute to 2-step rescue, both due to their395

closer proximity to the wildtype in phenotypic space as well396

as the slower decline of the wildtype increasing the cumulative397

number of mutations that occur. The mutation rate also plays398

an interesting role in determining the relative contributions of399

each regime (Figures 5B and S2). When mutations are rare, only400

first-step mutations that are very nearly neutral (m ∼ 0) will401

persist long enough to give rise to a 2-step rescue mutation. As402

the mutation rate increases, however, the range of first-step mu-403

tant growth rates that can persist long enough to lead to 2-step404

rescue widens because fewer individuals carrying the first-step405

mutation are needed before a successful double mutant arises.406

The distribution of fitness effects among rescue mutations407

Mutants causing 1-step rescue have growth rates that cluster408

around small positive values (m & 0; blue curves in Figure 6).409

Consequently, the distribution of fitness effects (DFE) among410

these rescue mutants is shifted to the right relative to mutations411

that establish in a population of constant size (compare solid412

blue and gray curves in Figure 6), with a DFE beginning at413

s = m−m0 ≥ −m0 > 0 rather than s = 0 (Kimura 1983). As a414

result of this increased threshold, the 1-step rescue DFE has a415

smaller variance than both the DFE of random mutations and416

the DFE of mutations that establish in a constant population417

(compare blue and gray curves in Figure 6). Further, while the418

variance in the DFE of random mutations and of those that419

establish in a population of constant size increases slightly with420

initial maladaptation (due to the curvature of the phenotype-to-421

fitness function), the variance in the 1-step rescue DFE decreases422

substantially (compare panels in Figure 6), as rescue becomes423

restricted to a rapidly decreasing proportion of the available424

mutants.425

The DFE of genotypes that cause 2-step rescue (the combined426

effect of two mutations) is also clustered at small positive growth427

rates, but it has a variance that is less affected by the rate of wild-428

type decline (red curves in Figure 6). This is because double429

mutant rescue genotypes are created via first-step mutant geno-430

types that have larger growth rates than the wildtype (i.e., are431

closer to the optimum), allowing them to create double mutants432

with a larger range of positive growth rates.433

Finally, we can also look at the distribution of growth rates434

among first-step mutations that lead to 2-step rescue, i.e., ’spring-435

board mutants’ (Figures 7 and S2). Here there are two main436

factors to consider: 1) the probability that a mutation with a437

given growth rate arises on the wildtype background but does438

not by itself rescue the population and 2) the probability that439

such a mutation persists long enough for a sufficiently beneficial440

second mutation to arise on that same background and together441
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rescue the population. Subcritical mutations conferring growth442

rates closer to zero persist longer but are less likely to arise from443

the wildtype, creating a trade-off between mutational input and444

the probability of rescue that can lead to a wide distribution445

of contributing subcritical growth rates (blue shading in Fig-446

ure 7). In contrast, supercritical mutations with growth rates447

nearer to zero are more likely arise by mutation, to go extinct in448

the absence of further mutation, and to persist for longer once449

conditioned on extinction, together creating a relatively narrow450

distribution of contributing supercritical growth rates (yellow451

shading in Figure 7). As explained above, increasing the rate of452

wildtype decline (or decreasing the rate of mutation) increases453

the contribution of subcritical first-step mutants and the impor-454

tance of mutational input, lowering the mode and increasing the455

variance of the first-step DFE (compare panels in Figure 7).456

Note that, given 2-step rescue, the growth rate of both the457

first-step and second-step mutation may be negative when con-458

sidered by themselves in the wildtype background. This poten-459

tially obscures empirical detection of the individual mutations460

involved in evolutionary rescue.461

Mathematical Analysis462

The probability of k-step rescue463

Generic expressions for the probability of 1- and 2-step rescue464

were given by Martin et al. (2013), using a diffusion approxima-465

tion of the underlying demographics. The key result that we466

will use is the probability that a single copy of a genotype with467

growth rate m, itself fated for extinction but which produces468

rescue mutants at rate Λ(m), rescues the population (equation469

S1.5 in Martin et al. 2013). With our lifecycle this is (c.f., equation470

A.3 in Iwasa et al. 2004a)471

p(m, Λ(m)) = 1− exp

[
|m|

(
1−

√
1 +

2Λ(m)

m2

)]
. (3)

We can therefore use p0 = p(m0, Λ(m0)) as the probability that a472

wildtype individual has descendants that rescue the population473

and what remains in calculating the total probability of rescue474

(Equation 2) is Λ(m0). We break this down by letting Λi(m) be475

the rate at which rescue genotypes with i mutations are created;476

the total probability of rescue is then given by Equation 2 with477

p0 = p(m0, ∑∞
i=1 Λi(m0)).478

In 1-step rescue, Λ1(m0) is just the rate of production of res-479

cue mutants directly from a wildtype genotype. This is the480

probability that a wildtype gives rise to a mutant with growth481

rate m (given by U f (m|m0)) times the probability that a geno-482

type with growth rate m establishes. Again approximating our483

discrete time process with a diffusion process, the probability484

that a lineage with growth rate m << 1 establishes, ignoring485

further mutation, is (e.g., Martin et al. 2013)486

pest(m) ≈
{

0 m ≤ 0
1− exp(−2m) m > 0

. (4)

This reduces to the 2(s + m0) result in Otto and Whitlock (1997)487

when m = s + m0 is small, which further reduces to 2s in a488

population of constant size, where m0 = 0 (Haldane 1927). Using489

this, the rate of 1-step rescue is490

Λ1(m0) = U
∫ mmax

0
f (m|m0)pest(m)dm. (5)

Symbol Meaning

n number of (scaled) phenotypic dimensions

λ variance in mutant phenotypes along each di-
mension

mmax maximum growth rate

f (m′|m) distribution of growth rates among mutants
from a genotype with growth rate m (eq. 1)

U per genome mutation probability

N0 initial number of wildtype individuals

m0 wildtype growth rate

p0 probability a wildtype individual has descen-
dants that rescue the population

P probability of rescue (eq. 2)

p(m, Λ(m)) probability a genotype with growth rate m, it-
self fated for extinction, has descendants that
rescue the population (eq. 3)

pest(m) probability a genotype with growth rate m es-
tablishes, i.e., rescues the population (eq. 4)

Λ(m) probability that an individual with growth rate
m produces a mutant that has descendants that
rescue the population

Λi(m) probability that an individual with growth rate
m produces a mutant that has descendants with
i− 1 additional mutations that rescue the pop-
ulation

Λi
2(m) probability that an individual with growth rate

m produces sufficiently subcritical (i = ”− ”),
critical (i = 0), or supercritical (i = ” + ”) first-
step mutants that eventually lead to 2-step res-
cue (eq. 8)

ψ 2(1−
√

1−m/mmax)

ψ0 2(1−
√

1−m0/mmax)

ρmax mmax/λ

α ρmaxψ2
0/4

Table 1 Frequently used notation.

Taking the first order approximation of p(m0, Λ1(m0)) with491

Λ1(m0)/m2
0 small gives the probability of 1-step rescue (equa-492

tion 5 of Anciaux et al. 2018), which effectively assumes deter-493

ministic wildtype decline. For completeness we rederive their494

closed-form approximation in File S1 (and give the results in the495

Appendix, see Approximating the probability of 1-step rescue).496

The probability of 2-step rescue is only slightly more compli-497

cated. Here Λ2(m0) is the probability that a mutation arising on498

the wildtype background creates a genotype that is also fated499

for extinction but persists long enough for a second mutation500

to arise on this mutant background, creating a double mutant501

genotype that rescues the population. We therefore have502
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Λ2(m0) = U
∫ mmax

−∞
f (m|m0) [1− pest(m)] p(m, Λ1(m))dm.

(6)
Following this logic, we can retrieve the probability of k-step503

rescue, for arbitrary k ≥ 2, using the recursion504

Λk(m0) =U
∫ mmax

−∞
f (m|m0) [1− pest(m)]

p(m, Λk−1(m))dm,
(7)

with the initial condition given by Equation 5.505
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Figure 3 The probability of evolutionary rescue as a function
of initial maladaptation. Shown are the probabilities of 1-, 2-,
3-, and 4-step rescue (using Equations 2-7), as well as the prob-
ability of rescue by up to 4 mutational steps ("total", using
Λ(m0) = ∑4

i=1 Λi(m0)). Circles are individual-based simula-
tion results (ranging from 105 to 106 replicates per wildtype
growth rate). Open circles denote the fraction of simulations
where the rescue genotype (see Simulation procedure) had a
given number of mutations and closed circles are the sum of
these fractions. Parameters: N0 = 104, U = 2× 10−3, n = 4,
λ = 0.005, mmax = 0.5.

Approximating the probability of 2-step rescue506

The probability of 2-step rescue is given by Equation 2 with507

p0 = p(m0, Λ2(m0)) (Equations 3-6). We next develop some508

intuition by approximating this for different classes of single509

mutants.510

First, note that when the growth rate of a first-step mutation511

is close enough to zero such that m2 << Λ1(m), we can ap-512

proximate the probability that such a genotype leads to rescue513

before itself going extinct, p(m, Λ1(m)), using a Taylor series,514

as
√

2Λ1(m) (c.f. equation A.4b in Iwasa et al. 2004a, see also515

File S1). We can also derive this result heuristically by consid-516

ering the probability that a lineage will persist long enough517

that it will incur a secondary rescue mutation. As shown in the518

Appendix (see Mutant lineage dynamics), while t < 1/|m| a519

mutant lineage with growth rate m that is destined for extinction520

persists for t generations with probability ∼ 2/t (Equation 21)521

and in generation t since it has arisen has ∼ t/2 individuals522

(Equation 22). Thus, while T < 1/|m| a mutant lineage that523

persists for T generations will have produced a cumulative num-524

ber ∼ T2/4 individuals. Such lineages will then lead to 2-step525

rescue with probability ∼ Λ1(m)T2/4 until this approaches 1,526

near T = 2/
√

Λ1(m). Since the probability of rescue increases527

like T2 while the probability of persisting to time T declines only528

like 1/T, most rescue events will be the result of rare long-lived529

single mutant genotypes. Considering only the most long-lived530

genotypes, the probability that a first-step mutation leads to531

rescue is then the probability that it survives long enough to532

almost surely rescue, i.e., for T ∼ 2/
√

Λ1(m) generations. Since533

the probability of such a long-lived lineage is 2/T ∼
√

Λ1(m),534

this heuristic result agrees with our Taylor series approximation535

of Equation 5. Thus, for first-step mutants with growth rates536

satisfying 2/
√

Λ1(m) < 1/|m|, implying m2 << Λ1(m), which537

occur with probability ∼
√

Λ1(m), persistence is long enough538

to almost certainly ensure rescue. This same reasoning has been539

used to explain why the probability that a neutral mutation seg-540

regates long enough to produce a second mutation is ∼
√

U in a541

population of constant size (Weissman et al. 2009).542

At the other extreme, when the growth rate of a first-step543

mutation is far enough from zero such that m2 >> Λ1(m), we544

can approximate p(m, Λ1(m)), again using a Taylor series, with545

Λ1(m)/|m| (c.f. equation A.4c in Iwasa et al. 2004a, see also File546

S1). Conditioned on extinction such genotypes cannot persist547

long enough to almost surely lead to 2-step rescue. Instead, we548

expect such mutations to persist for at most ∼ 1/|m| genera-549

tions (Equation 21) with a lineage size of ∼ 1 individual per550

generation (Equation 22), and thus produce a cumulative total551

of ∼ 1/|m| individuals. The probability of 2-step rescue from552

such a first-step mutation is therefore Λ1(m)/|m|, and again this553

heuristic argument matches our Taylor series approach. This554

same reasoning explains why a rare mutant genotype with selec-555

tion coefficient |s| >> 0 in a constant population size model is556

expected to have a cumulative number of ∼ 1/|s| descendants,557

given it eventually goes extinct (Weissman et al. 2009).558

The transitions between these two regimes occur when559

Λ1(m)/|m| =
√

2Λ1(m), i.e., when |m| =
√

Λ1(m)/2. We560

call single mutants with growth rates m < −
√

Λ1(m)/2 "suf-561

ficiently subcritical", those with |m| <
√

Λ1(m)/2 "sufficiently562

critical", and those with m >
√

Λ1(m)/2 "sufficiently supercrit-563

ical". Given that U and thus Λ1(m) will generally be small, m564

will also be small at these transition points, meaning we can565

approximate the transition points as m∗ =
√

Λ1(0)/2 and −m∗.566

We then have an approximation for the rate of 2-step rescue,567

Λ2(m0) = Λ(−)
2 (m0) + Λ(0)

2 (m0) + Λ(+)
2 (m0)

Λ(−)
2 (m0) = U

∫ −m∗

−∞
f (m|m0)Λ1(m)/|m|dm

Λ(0)
2 (m0) = U

∫ m∗

−m∗
f (m|m0) [1− pest(m)]

√
2Λ1(m)dm

Λ(+)
2 (m0) = U

∫ mmax

m∗
f (m|m0) [1− pest(m)]Λ1(m)/|m|dm

(8)
where Λ(i)

2 (m0) is the rate of 2-step rescue through sufficiently568

subcritical first-step mutants (i = ” − ”), sufficiently critical569

first-step mutants (i = 0), or sufficiently supercritical first-step570

mutants (i = ” + ”). A schematic depicting the 1- and 2-step571

genetic paths to rescue is given in Figure 4.572

Closed-form approximation for critical 2-step rescue When U573

is small m∗ is also small, allowing us to use m = 0 within the574

integrand of Λ(0)
2 (m0), which spans a range, [−m∗, m∗], of width575

2m∗ ≈
√

2Λ1(0), giving576
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Figure 4 1- and 2-step genetic paths to evolutionary rescue.
Here we show an n = 2 dimensional phenotypic land-
scape. Continuous-time (Malthusian) growth rate (m) declines
quadratically from the centre, becoming negative outside the
thick black line. The grey zone indicates where growth rates
are “sufficiently critical" (see text for details). Blue circles show
wildtype phenotypes, red circles show intermediate first-step
mutations, and yellow circles show the phenotypes of rescue
genotypes.

Λ(0)
2 (m0) ≈ U f (0|m0)

√
2Λ1(0) 2m∗

= 2U f (0|m0)Λ1(0).
(9)

We can then approximate Λ1(m) with Λ̃1(m) (Equation 19) and577

take m→ 0 (Equation 20), giving a closed form approximation578

for the rate of 2-step rescue through critical single mutants in579

Fisher’s geometric model,580

Λ(0)
2 (m0) ≈ 4U2 f (0|m0)

√
mmaxλ/π. (10)

This well approximates numerical integration of Λ(0)
2 (m0) (Equa-581

tion 8; see Figure 5 and File S1) . In general, it will perform better582

when the critical zone, and thus U
√

mmaxλ, becomes smaller.583

To get a better understanding of how the rate of 2-step crit-584

ical rescue depends on the underlying parameters of Fisher’s585

geometric model, we approximate f (m|m0), assuming that the586

distance from the wildtype to the optimal phenotype is large587

relative to the distribution of mutations (i.e., ρmax = mmax/λ588

is large), and convert this to a distribution over ψ = 2(1 −589 √
1−m/mmax), a convenient rescaling (for details see File S1590

and Anciaux et al. 2018). Evaluating this at m = 0 gives591

Λ(0)
2 (m0) ≈ U2(1− ψ0/2)(1−n)/2e−α 2

π
, (11)

where ψ0 = 2(1−
√

1−m0/mmax) < 0 and α = ρmaxψ2
0/4.592

Closed-form approximations for non-critical 2-step rescue We593

can also approximate Λ1(m) in Λ(−)
2 (m0) and Λ(+)

2 (m0) with594

Λ̃1(m) (Equation 19), leaving us with just one integral over595

the growth rates of the first-step mutations. We then replace596

f (m|m0) with its approximate distribution over ψ as above.597

In the case of subcritical rescue we can then make two con-598

trasting approximations (see File S1 for details). First, when599

the ψ (and thus m) that contribute most are close enough to600

zero (meaning maladaptation is not too large relative to muta-601

tional variance) and we ignore mutations that are less fit than the602

wildtype, we find the rate of subcritical 2-step rescue is roughly603

Λ(−)
2 (m0) ≈ U2 (1− ψ0/2)1−n

1− ψ0/4
e−α log(ψ0/ψ∗−)

π
, (12)

where ψ∗− = 2(1−
√

1 + m̃∗/mmax) < 0 and m̃∗ =
√

Λ̃1(0)/2604

(Equation 20). Second, when the mutational variance, λ, is very605

small relative to maladaptation, implying that mutants far from606

m = 0 substantially contribute, we find the rate of subcritical607

2-step rescue to be nearly608

Λ(−)
2 (m0) ≈ −U2 (1− ψ0/2)1−n

1− ψ0/4

(
e−α 1

(α/2)3π

)1/2
. (13)

These two approximations do well compared with numerical in-609

tegration of Λ(−)
2 (m0) (Equation 8; see Figure 5 and File S1). As610

expected, we find that Equation 13 does better under fast wild-611

type decline while Equation 12 does better when the wildtype is612

declining more slowly.613

For supercritical 2-step rescue, only first-step mutants with614

growth rates near m∗ will contribute (larger m will rescue them-615

selves and are also less likely to arise by mutation), and so we616

can capture the entire distribution with a small m approximation617

(following the same approach that led to Equation 12). As shown618

in File S1, this approximation works well for sufficiently small619

first-step mutant growth rates, ψ <
√

2/ρmax, beyond which the620

rate of 2-step rescue through such first-step mutants falls off very621

quickly due to a lack of mutational input. Thus, considering622

only supercritical single mutants with scaled growth rate less623

than
√

2/ρmax, our approximation is624

Λ(+)
2 (m0) ≈ U2 (1− ψ0/2)1−n

1− ψ0/4
e−α log(ψmax/ψ∗+)

π
, (14)

with ψ∗+ = 2(1 −
√

1− m̃∗/mmax) and ψmax =
√

2/ρmax.625

This approximation tends to provide a slight overestimate of626

Λ(+)
2 (m0) (Equation 8; see Figure 5 and File S1).627

Comparing 2-step regimes These rough but simple closed-form628

approximations (Equations 11–14) show that, while the contri-629

bution of critical mutants to 2-step rescue scales with U2, the630

contribution of non-critical single mutants scales at a rate less631

than U2 (Figure 5B) due to a decrease in ψ∗− (decreasing the632

range of subcritical mutants) and an increase in ψ∗+ (decreasing633

the range of supercritical mutants) with U. This difference in634

scaling with U is stronger when the wildtype is not very mal-635

adapted relative to the mutational variance, i.e., when Equation636

12 is the better approximation for subcritical rescue. The approx-637

imations also show that when initial maladaptation is small, the638

ratio of supercritical to subcritical contributions (Equation 12639

divided by 14) primarily depends on the range of growth rates640

included in each regime, while with larger initial maladaptation641

this ratio (Equation 13 divided by 14) begins to depend more642

strongly on initial maladaptation and mutational variance (α).643

The effect of maladaptation and mutation rate on the relative644

contributions of each regime is shown in Figure 5.645
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Figure 5 The relative contribution of sufficiently subcritical,
critical, and supercritical single mutants to 2-step rescue. The
curves are drawn using Equations 10–14 (Equation 12 is used
for m0 < 0.2 while Equation 13 is used for m0 > 0.2). The dots
are numerical evaluations of Equation 8. Parameters: n = 4,
λ = 0.005, mmax = 0.5, (A) U = 10−3, (B) m0 = −0.1.

The distribution of growth rates among rescue genotypes646

We next explore the distribution of growth rates among rescue647

genotypes, i.e., the distribution of growth rates that we expect648

to observe among the survivors across many replicates.649

We begin with 1-step rescue. The rate of 1-step rescue by650

genotypes with growth rate m is simply U f (m|m0)pest(m). Di-651

viding this by the rate of 1-step rescue through any m (Equation652

5) gives the distribution of growth rates among the survivors653

g1(m) =
U f (m|m0)pest(m)

Λ1(m0)
, (15)

where the mutation rate, U, cancels out. This distribution is654

shown in blue in Figure 6. The distribution has a mode at small655

but positive m as a result of two conflicting processes: smaller656

growth rates are more likely to arise from a declining wildtype657

but larger growth rates are more likely to establish given they658

arise. As the rate of wildtype decline increases, the former pro-659

cess exerts more influence, causing the mode to move towards660

zero and reducing the variance.661

We can also give a simple, nearly closed-form approximation662

here using the same approach taken to reach Equation 19. On the663

ψ scale, the distribution of effects among 1-step rescue mutations664

is665

g̃1(ψ) =
exp(α)

√
αρmax

[exp(α)
√

παErfc(
√

α)− 1]ψ0
e−ρmax(ψ−ψ0)2/4ψ, (16)

implying the ψ are distributed like a normal truncated below666

ψ = 0 and weighted by ψ. This often provides a very good667

approximation (see dashed blue curves in Figure 6).668

In 2-step rescue, the rate of rescue by double mutants with669

growth rate m2 is given by Equation 6 with Λ1(m) replaced670

by U f (m2|m)pest(m2). Normalizing gives the distribution of671

growth rates among the double mutant genotypes that rescue672

the population673

g2(m2) ≈
A(m2)∫ mmax

0 A(m2)dm2

A(m2) =
∫ mmax

−∞
f (m|m0) [1− pest(m)]

p(m, U f (m2|m)pest(m2))dm.

(17)

This distribution, g2(m), is shown in red in Figure 6. Because the674

first-step mutants contributing to 2-step rescue tend to be nearer675

the optimum than the wildtype, this allows them to produce676

double mutant rescue genotypes with higher growth rates than677

in 1-step rescue (as seen by comparing the mode between blue678

and red curves in Figure 6). The fact that these first-step mutants679

are closer to the optimum also allows for a greater variance in the680

growth rates of rescue genotypes than in 1-step rescue. Thus the681

2-step distribution maintains a more similar mode and variance682

across wildtype decline rates than the 1-step distribution. Note683

that because g2(m2) depends on U the buffering effect of first-684

step mutants depends on the mutation rate (see The distribution685

of growth rates among rescue intermediates below for more686

discussion).687

The distribution of growth rates among rescue intermediates688

Finally, our analyses above readily allow us to explore the distri-689

bution of first-step mutant growth rates that contribute to 2-step690

rescue. Analogously to Equation 15, we drop the integral in691

Λ2(m0) (Equation 6) and normalize, giving692

h(m) =
U f (m|m0) [1− pest(m)] p(m, Λ1(m))

Λ2(m0)
, (18)

where the first U cancels but the U within Λ1(m) does not. This693

distribution is shown in black in Figure 7. At slow wildtype694

decline rates the overwhelming majority of 2-step rescue events695

arise from first-step mutants with growth rates near 0. As in-696

dicated by Equation 8, the contribution of first-step mutants697

with growth rate m declines as ∼ 1/|m| as m departs from zero,698

due to shorter persistence times given eventual extinction. As699

wildtype growth rate declines, the relative importance of muta-700

tional input, f (m|m0), grows, causing the distribution to flatten701

and first-step mutants with substantially negative growth rates702

begin to contribute (compare panels in Figure 7; see also Figure703

5A). Decreasing the mutation rate disproportionately increases704

the contribution of first-step mutants with growth rates near705

zero (while simultaneously shrinking the range of growth rates706

that are sufficiently critical; Figure 5B) making the distribution707

of first-step mutant growth rates contributing to 2-step rescue708

more sharply peaked around m = 0 (Figure S2). Correspond-709

ingly, with a higher mutation rate a greater proportion of the710

contributing single mutants have substantially negative growth711

rates.712
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2-step
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1-step approx.
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A

-0.3 -0.2 -0.1 0.0 0.1 0.2

m0=-0.2

B

-0.3 -0.2 -0.1 0.0 0.1 0.2

Growth rate

m0=-0.3

C

Figure 6 The distribution of growth rates among rescue geno-
types under 1-step (blue; Equation 15 solid and 16 dashed)
and 2-step (red; Equation 17) rescue for three different levels of
initial maladaptation. For comparison, the distribution of ran-
dom mutations (dashed; Equation 1) and the distribution of
beneficial mutations that establish in a population of constant
size (solid grey; Equation 1 times Equation 4 and normalized)
are shown. Intervals (horizontal lines) indicate the size of the
most common fitness effect (s = m0 −m) in a population of con-
stant size (grey) and in 1-step rescue (blue). The histograms
show the distribution of growth rates among rescue genotypes
observed across (A) 104, (B) 105, and (C) 106 simulated repli-
cates. Other parameters: N0 = 104, U = 2 × 10−3, n = 4,
λ = 0.005, mmax = 0.5.

subcritical

critical

supercritical

random

established

first-step

-0.3 -0.2 -0.1 0.0 0.1

m0=-0.1

A

-0.3 -0.2 -0.1 0.0 0.1

m0=-0.2

B

-0.3 -0.2 -0.1 0.0 0.1

Growth rate

m0=-0.3

C

Figure 7 The distribution of growth rates among first-step
mutations that lead to 2-step rescue (black; Equation 18) for
three different levels of initial maladaptation. Shading repre-
sents our sufficiently subcritical approximation (blue; replac-
ing p(m, Λ1(m)) with Λ1(m)/|m| in the numerator of Equa-
tion 18), our sufficiently critical approximation (red; using
U f (0|m0)

√
2Λ1(0) as the numerator in Equation 18), and our

sufficiently supercritical approximation (yellow; replacing
p(m, Λ1(m)) with Λ1(m)/|m| in the numerator of Equation
18). The histograms show the distribution of growth rates
among first-step mutations in rescue genotypes with 2 mu-
tations observed across (A, B) 105 or (C) 106 simulated repli-
cates. We hypothesize that the overabundance of supercriticals
(especially in panel A) is likely due to us sampling only the
most common rescue genotype in each replicate, which is not
necessarily the first genotype that rescues. See Figure 6 for
additional details.
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Discussion713

Here we have explored the probability and genetic basis of evo-714

lutionary rescue by multiple mutations on a simple fitness land-715

scape. We find that rescue by multiple mutations can be the716

most likely path to persistence under high mutation rates or717

when the population is initially very maladapted. Under these718

scenarios, intermediate genotypes that are declining less quickly719

provide a ‘springboard’ from which rescue genotypes emerge. In720

2-step rescue these springboard single mutants come from one721

of three regimes: those that have growth rates near enough to722

zero (“sufficiently critical") that rescue is most likely when a mu-723

tation persists for an unusually long period of time and grows to724

an unusually large subpopulation size, and those with growth725

rates that are either negative or positive enough (“sufficiently726

subcritical" or “sufficiently supercritical", respectively) to restrict727

persistence times and subpopulation sizes, conditioned upon728

the loss of the first mutation in the absence of a second, rescuing729

mutation. The relative contribution of each regime shifts with730

initial maladaptation and mutation rate; rare mutations that can731

occasionally reach unusually large subpopulation sizes play a732

larger role when the population is not severely maladapted (e.g.,733

Figure 7A) or mutation rate is high (e.g., Figure S2C). In contrast,734

when populations are initially very maladapted (e.g., Figure 7C),735

most first-step mutations are themselves also very maladapted736

and thus restricted in the subpopulation sizes they are expected737

to reach before being lost. All three regimes help to maintain the738

variance in the distribution of fitness effects among rescue geno-739

types as initial maladaptation increases; meanwhile, in 1-step740

rescue the variance declines due to ever more extreme sampling741

of the tail of the mutational distribution (compare blue and red742

curves in Figure 6).743

Our prediction, that rescue by more de novo mutations can be744

more likely than rescue by fewer, is novel. In previous models745

(e.g., Antia et al. 2003; Iwasa et al. 2004a; Alexander and Day746

2010) the general conclusion has been that, since the probability747

of rescue scales with Uk (where U is the mutation rate and k748

is the minimum number of mutations required for rescue), the749

probability of rescue declines with the number of mutations.750

This assumes, however, that the probability of a mutation occur-751

ring, U, is the limiting factor. Here we have shown that when752

the probability of a beneficial mutation arising declines with its753

selective advantage, the probability of sampling once from the754

extreme tail of the DFE can be lower than sampling multiple mu-755

tations closer to the bulk of the DFE, so that rescue via multiple756

mutations can become the dominant path. Rescue by multiple757

mutations may also be more likely with standing genetic vari-758

ation, as small-effect intermediate mutations may segregate at759

higher frequencies than large-effect rescue mutations before the760

environmental change (and also decline less quickly than the761

wildtype following environmental change); this is especially762

true with recombination, where rescue genotypes can arise from763

segregating intermediate mutations without mutation (Uecker764

and Hermisson 2016).765

How often rescue arises as a result of multiple mutations is766

an open question. It is clear that more than one mutation can767

contribute to adaptation to near-lethal stress, but experiments768

are often designed to avoid extinction (reviewed in Cowen et al.769

2002) and therefore greatly expand the scope for multiple mu-770

tations to arise on a single genotype. A few exceptions provide771

some insight. For example, populations of Saccharomyces cervisae772

that survived high concentrations of copper acquired multiple773

mutations (Gerstein et al. 2015) – in fact the authors argue for774

the ‘springboard effect’ discussed above, where first-step muta-775

tions prolong persistence and thereby allow further mutations to776

arise. In Pseudomonas flourescens, fluctuation tests with nalidixic777

acid showed that nearly a third of the most resistant surviving778

strains were double mutants (Bataillon et al. 2011), which were779

able to tolerate 10x higher drug concentrations than single mu-780

tants, suggesting 2-step rescue might dominate at high drug781

concentrations. While suggestive, it is unclear if our prediction –782

that rescue takes more mutational steps with greater initial mal-783

adaptation – holds true generally. Verification will require more784

experiments that allow extinction and uncover the genetic basis785

of adaptation at different severities of environmental change786

(e.g., drug concentration).787

In describing the genetic basis of adaptation in populations788

of constant size, Orr (1998) showed that the mean phenotypic789

displacement towards the optimum scales roughly linearly with790

initial displacement. Converting phenotype to fitness, this im-791

plies that the mean fitness effect of fixed mutations (s = m−m0)792

increases exponentially as initial Malthusian fitness (m0) declines793

(i.e., s ∼ exp(−m0)), which is a roughly linear increase when ini-794

tial fitness is small (|m0| << 1). Here we see that, under 1-step795

rescue, the mean fitness effect also increases roughly linearly as796

the initial growth rate declines (see horizontal blue lines in Fig-797

ure 6). However, the rate of this linear increase in fitness effect798

is much larger under rescue than in a population of constant799

size (compare blue and grey horizontal lines in Figure 6), where800

declines in wildtype fitness not only allow larger mutations to be801

beneficial but also require larger mutations for persistence. Thus802

the race between extinction and adaptation during evolutionary803

rescue is expected to produce a genetic basis of adaptation with804

fewer mutations of larger effect.805

While under 1-step rescue the fitness effect of the first muta-806

tion increases roughly linearly as wildtype fitness declines, most807

rescue events will be 2-step for wildtype fitnesses below some808

value (e.g., at m0 ≈ −0.25 in Figure 3; this threshold value of809

m0 increases with mutation rate, Figure S1). At this junction810

the effect size of the first mutation will no longer increase as811

quickly (and potentially even decrease), as it switches from a812

rescue mutant to an intermediate mutant whose expected fitness813

begins to decline substantially with the fitness of the wildtype814

(Figure 7). Thus as rescue switches from dominantly k-step to815

dominantly (k + 1)-step the genetic basis of adaptation becomes816

more diffuse, with each mutation having a smaller individual817

fitness effect as the contributing fitness effects spread over more818

loci. In the limit of large k (due to large initial maladaptation or819

high mutation rates), the genetic basis of adaptation should at820

some point converge to many loci with small effect, as would821

also be expected in a population of constant size. Indeed, at822

very high mutation rates the rate of adaptation (the change in823

mean fitness) is the same under rescue as it is in populations824

of constant size (Anciaux et al. 2019), implying that the genetic825

basis of adaptation no longer depends on demography. It is826

therefore at intermediate levels of initial maladaptation and low827

mutation rates, where rescue primarily occurs from a few large828

effect mutations, that the race between adaptation and persis-829

tence is predicted to have the largest effect on the genetic basis830

of adaptation.831

Fluctuation tests (Luria and Delbrück 1943) provide a means832

to generate random mutations and then isolate potential rescue833

genotypes (typically assumed to be 1-step only), whose growth834

rates can be measured under the selective conditions. These835

experiments are designed such that there is substantial standing836
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genetic variation at the time of exposure to the selective con-837

ditions, which should increase the contributions of mutations838

with small growth rates (Orr and Betancourt 2001), although839

these could be outcompeted by mutations with higher growth840

rates and/or be under-sampled. Regardless, consistent with841

our theory (Figure 6), the resulting growth rate distributions in842

both bacteria and yeast often find modes that are substantially843

greater than zero (as opposed to, say, an exponential distribution;844

Kassen and Bataillon 2006; MacLean and Buckling 2009; Gerstein845

et al. 2012; Lindsey et al. 2013; Gerstein et al. 2015). A number of846

these conform even more closely to our expected shape (Kassen847

and Bataillon 2006; Gerstein et al. 2015) while the others appear848

to be substantially more clumped around the mode, perhaps849

due to a very restricted number of possible rescue mutations in850

any one circumstance, the size of the experiment, or the way in851

which growth rates are measured. Finally, Gerstein et al. (2015)852

not only provide the distribution of growth rates among rescue853

genotypes, but also the growth rates of individual mutations854

that compose multi-step rescue genotypes. In four lines where855

multiple mutations were detected and a segregation analysis856

performed, one mutation in each line was inferred to have a857

minor effect and the other mutation was an amplification of the858

copper metallothionein CUP with a major fitness effect. These859

results are consistent with the minor effect mutations being sub-860

critical mutations that provided a springboard for the larger861

CUP mutations.862

Pinpointing the mutations responsible for adaptation is ham-863

pered by genetic hitchhiking, as beneficial alleles elevate the fre-864

quency of linked neutral and mildly deleterious alleles (Barton865

2000). The problem is particularly severe under strong selection866

and low recombination, and therefore reaches an extreme in867

the case of evolutionary rescue in asexuals, especially if many868

neutral and deleterious mutations are segregating at the time869

of environmental change. To circumvent this, mutations that870

have risen to high frequency in multiple replicates are often in-871

troduced in a wildtype background, in isolation and sometimes872

also in combination with a small number of other common high-873

frequency mutations, and grown under the selective conditions874

(e.g., Jochumsen et al. 2016; Ono et al. 2017). As we have demon-875

strated above (e.g., Figure 7C), however, under multi-step rescue876

there may be no one mutation that individually confers growth877

in the selective conditions. Thus, a mutation that was essential878

for rescue may go undetected or be mistaken as a hitchhiker if879

the appropriate multiple-mutation genotypes are not tested. Un-880

fortunately reverse engineering all combinations of mutations881

quickly becomes unwieldy as the number of mutations grows,882

and thus this approach will not be practical under severe initial883

maladaptation and high mutation rates, where we predict rescue884

to occur by many mutations. Interestingly, our simulations show885

that the population dynamics themselves may help differentiate886

how many mutations contribute to rescue (e.g., V- vs. U-shaped887

log-trajectories; Figures 1 and 2), and fitting models of k-step888

rescue could produce estimates for the growth rates of the k889

genotypes.890

Environmental change often selects for mutator alleles, which891

elevate the rate at which beneficial alleles arise and subsequently892

increase in frequency with them (Tenaillon et al. 2001). When893

beneficial alleles are required for persistence, as in evolution-894

ary rescue, mutator alleles can reach very high frequencies or895

rapidly fix (e.g., Mao et al. 1997). Consistent with this, mutator896

alleles are often associated with antibiotic resistance in clinical897

isolates (see examples in Bell 2017). Further, the more benefi-898

cial mutations available the larger the advantage of a mutator899

allele; for a mutator that increases the mutation rate m-fold, its900

relative contribution to the production of n beneficial mutations901

scales as mn (Tenaillon et al. 1999). Thus, conditions that cause902

multi-step rescue to be more likely than 1-step rescue should903

also impose stronger selection for mutator alleles. There are a904

number of examples where lineages with higher mutation rates905

acquired multiple mutations and persisted at higher doses of an-906

tibiotics (Couce et al. 2015; San Millan et al. 2017). The number of907

mutations required for persistence is, however, often unknown,908

making it difficult to compare situations where rescue requires909

different numbers of mutations. Experiments with a combina-910

tion of drugs may provide a glimpse; for instance, Escherichia911

coli populations only evolved resistance to a combination of two912

drugs (presumably through the well-known mutations specific913

to each drug) when mutators were present, despite the fact that914

mutators were not required for resistance to either drug in isola-915

tion (Gifford et al. 2019). In cases where we have less information916

on the genetic basis of resistance, our model suggests that muta-917

tors will be more advantageous when initial maladaptation is918

severe (e.g., higher drug concentrations or a larger number of919

drugs), as rescue will then be dominated by genetic paths with920

more mutational steps.921

Here we have investigated the genetic basis of evolution-922

ary rescue in an asexual population that is initially genetically923

uniform. Extending this work to allow for recombination and924

standing genetic variation at the time of environmental change925

– as expected for many natural populations – would be valu-926

able. The effect of standing genetic variation on the probability927

of 1-step rescue is relatively straight-forward to incorporate,928

depending only on the expected number of rescue mutations929

initially present and their mean establishment probability (Mar-930

tin et al. 2013). In the case of the fluctuation tests discussed931

above, where mutations accumulated in the short interval be-932

fore the onset of selection are assumed to be relatively neutral,933

the effect of standing genetic variance on 1-step rescue might934

be incorporated by a simple rescaling of N0, to account for the935

additional mutants present in the standing variation. When936

considering longer periods of time in populations that are not937

rapidly expanding, mutation-selection balance may be reached938

before the onset of selection. In this case the probability of 1-939

step rescue from standing genetic variance in Fisher’s geometric940

model was given by Anciaux et al. (2018), whose equations 3941

and 5 immediately give the distribution of fitness effects among942

those that rescue. Allowing these standing genetic variants to943

be springboards to multi-step rescue will help clarify the role of944

standing genetic variation on the genetic basis of rescue more945

generally. Recombination can help combine such springboard946

mutations into rescue genotypes but will also break these com-947

binations apart, as demonstrated in a 2-locus 2-allele model of948

rescue (Uecker and Hermisson 2016). How recombination af-949

fects the genetic basis of evolutionary rescue when more loci can950

potentially contribute remains to be seen. Also left unexplored951

is the effect of density-dependent fitness; for example, competi-952

tion may reduce mutant growth rates and thereby increase the953

size of mutations that are required for rescue, especially when954

the wildtype declines slowly. Combining density-dependence955

and standing genetic variance is known to create complex dy-956

namics in a 1-locus 2-allele model of rescue (Uecker et al. 2014),957

and adding more potential genotypes is sure to add yet more958

complexity.959

Many of our simple closed-form results rely upon knowing960
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the distribution of mutant growth rates (Equation 1), which961

arises from the assumption that mutant phenotypes are nor-962

mally distributed about their ancestor and Malthusian fitness963

is a quadratic, on some scaled phenotypic axes. It is clear that964

deviations from these assumptions will, at least quantitatively,965

affect our results. For instance, mutant phenotype distributions966

with truncated or fat tails are likely to lead to smaller or larger967

mutational steps, respectively, with downstream effects on the968

probability of rescue, the number of contributing mutations, and969

the resulting DFEs. As a preliminary investigation of this pre-970

diction, we have performed simulations with mutant phenotype971

distributions having the same expectation and covariances as972

assumed above under normality, but with truncated (platykur-973

tic) or fat (leptokurtic) tails (Figure S3A). While our qualitative974

results above hold, the probability of rescue declines slower with975

wildtype maladaptation when the mutational distribution has976

fatter tails (compare dotted and solid black in Figure S3C). Fatter977

tails also reduce the number of mutations contributing to rescue978

(e.g., 1-step rescue dominates for all wildtype decline rates in979

Figure S3C). Finally, fatter tails cause the distributions of rescue980

genotype growth rates following 1- and 2-step rescue to have981

more variance and become more similar to one another (Figure982

S4B) and also tend to increase the contribution of supercritical983

single mutants in 2-step rescue (Figure S5). All told, the genetic984

basis of rescue is expected to consist of fewer mutations of larger985

effect, with less consistent effect sizes across replicate popula-986

tions, as the tails of the mutant phenotype distribution become987

fatter.988

In the numerical examples above we have not varied the989

number of scaled phenotypic axes, n, i.e., the dimensionality of990

the phenotypic landscape (although the analytical results apply991

for arbitrary n). Because increasing the number of dimensions992

changes the distribution of fitness effects, and in particular de-993

creases the proportion of mutations that are beneficial (Fisher994

1930), this may have cascading influences on our results. As995

shown in Anciaux et al. (2018), the probability of 1-step rescue996

by de novo mutation declines with dimensionality, and is only997

weakly dependent on dimensionality when initial maladapta-998

tion is small (such that Λ1(m0) ≈ −m0Ug(α), Equation 19).999

Here we show that the distribution of fitness effects among 1-1000

step rescue mutants is nearly independent of dimensionality for1001

any degree of initial maladaptation (Equation 16 and the blue1002

curves in Figure S6B). Further, as seen by comparing Equations1003

11-14 to Equation 19, the probability of 2-step rescue depends1004

on dimensionality much like 1-step rescue does, suggesting that1005

while increasing dimensionality may decrease the probability1006

of rescue it may have little effect on the number of steps rescue1007

tends to take. This is demonstrated more generally in Figure1008

S6A, where an order of magnitude increase in the number of1009

dimensions decreases the probability of rescue by roughly an1010

order of magnitude but has little effect on the relative rates of 1-,1011

2-, 3-, and 4-step rescue. Finally, Figure S6B-C shows that dimen-1012

sionality has very little effect on the distribution of fitness effects1013

among 2-step rescue genotypes (Equation 17) and among first1014

step mutants leading to 2-step rescue (Equation 18). To conclude,1015

while the probability of rescue declines with the complexity of1016

the organism and its environment, the genetic basis of rescue is1017

expected to be relatively invariant across complexity, as with the1018

genetic basis of adaptation in populations of constant size (Orr1019

1998, see also gray curves in Figure S6B,C).1020

In the numerical examples above we have also focused on a1021

particular value of mutational variance, λ. Clearly, since rescue1022

relies on mutations of large effect, decreasing λ should decrease1023

the probability of rescue, much like decreasing the mutation rate,1024

U, does (Figure S1). While our analysis (Equations 19 and 11-14)1025

and numerical results (see File S1) show that this is true, we find1026

that λ and U have very different effects on the genetic basis of1027

rescue (File S1). In particular, given a similar effect on the total1028

probability of rescue, decreasing U generally restricts rescue to1029

fewer mutational steps while decreasing λ forces rescue to occur1030

by more mutations. Further, the distribution of fitness effects1031

of mutations contributing to rescue is nearly independent of1032

U but a decrease in λ strongly reduces the mode of the DFE.1033

This demonstrates that populations with similar probabilities of1034

rescue can vary greatly in the way they achieve it genetically.1035
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Appendix1249

Approximating the probability of 1-step rescue1250

The probability of 1-step rescue in this model has been derived1251

by Anciaux et al. (2018). As replicated in File S1 and given by1252

their equation 7, when ρmax = mmax/λ is large a simple, nearly1253

closed-form approximation is1254

Λ1(m0) ≈ Λ̃1(m0) ≡ −m0U
(1− ψ0/2)(1−n)/2

1− ψ0/4
g(α), (19)

where ψ0 = 2(1−
√

1−m0/mmax), g(α) = exp(−α)/
√

πα −1255

erfc(
√

α), and α = ρmaxψ2
0/4, with erfc(.) the complimentary1256

error function. When the wildtype declines slowly m0 and thus1257

ψ0 is small and Λ1(m0) ≈ Ug(α). In the limit m0 → 0, Equation1258

19 becomes1259

Λ̃1(0) ≡ lim
m0→0

Λ̃1(m0) = 2U
√

mmaxλ/π. (20)

Mutant lineage dynamics1260

Here we follow the lead of Weissman et al. (2010) and Uecker1261

and Hermisson (2016) in approximating our discrete-time pro-1262

cess with a continuous-time branching process (see chapter 6 in1263

Allen 2010). Consider a birth-death process, where individuals1264

give birth at rate b and die at rate d. One can then obtain the1265

probability generating function for the number of individuals at1266

a given time, n(t), given the initial number, n(0). We are primar-1267

ily interested in new mutant lineages, n(0) = 1. The generating1268

function then allows us to calculate the probability that a lineage1269

persists at least until time t and the distribution of n(t) given it1270

does so (see below).1271

To convert between birth and death rates and our compound1272

Malthusian parameter we follow Uecker and Hermisson (2016)1273

in equally distributing the growth rate m between birth and1274

death, b = (1 + m)/2 and d = (1−m)/2, such that m = b− d1275

and the continuous-time process exhibits the same amount of1276

drift as the discrete time process (and matches discrete-time1277

simulations well; Uecker et al. 2014). We can now report the1278

necessary results in terms of m (assuming |m| < 1).1279

Denoting the extinction time as T, the probability a mutant1280

with growth rate m persists until time t is approximately (see1281

File S1 for derivation)1282

P(T > t) ≈
{

2/t t << |1/m|
−2m exp(mt) t >> −1/m > 0

(21)

As pointed out in Weissman et al. (2010) (whose equation A21283

differs from Equation 21 by a factor of 2 because they have1284

b + d = 2), the distribution of persistence times has a long1285

tail (like 1/t) until being cut off (declining exponentially) at1286

t = −1/m.1287

Given a lineage persists until t, the distribution of n(t) is1288

roughly (see File S1 for derivation)1289

P(n(t) = n|n(t) > 0) ≈
{

2(1/t)(1 + 2/t)−n t << |1/m|
−2m(1 + m)n−1 t >> −1/m > 0

(22)
As pointed out in Weissman et al. (2010) (whose equation A31290

only differs from Equation 22 by constants), the distribution of1291

n(t) is approximately geometric for small or large t, implying1292

n(t) is very unlikely to be greater than the minimum of t and1293

−1/m.1294
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Figure S1 The probability of rescue as a function of mutation
rate for three different levels of initial maladaptation. See
Figure 3 for details. Other parameters: n = 4, λ = 0.005,
mmax = 0.5, N0 = 104.
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Figure S2 The distribution of first-step mutant growth rates
given 2-step rescue under three mutation rates. See Figure
7 for details. Parameters: n = 4, λ = 0.005, mmax = 0.5,
m0 = −0.2.
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Figure S3 (A) One-dimensional slices of multidimensional
platykurtic (dashed; semicircle), normal (solid; as used in main
text), and leptokurtic (dotted; Laplace) mutational distribu-
tions with the same (co)variance but varying kurtosis. (B,C)
The probability of 1-, 2-, 3-, or 4-step rescue with platykurtic
and leptokurtic mutational distributions, respectively. The
dots and broken lines represent simulation results (105 repli-
cates for each wildtype growth rate). The solid lines are the
numerical results for the normal mutational distribution (as
in Figure 3). Parameters: N0 = 104, U = 2 × 10−3, n = 4,
λ = 0.005, mmax = 0.5.
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Figure S4 The distribution of growth rates among rescue
genotypes under 1-step (blue) and 2-step (red) rescue with
(A) platykurtic and (B) leptokurtic mutational distributions
(see Figure S3A). The solid lines are predictions for a normal
mutational distribution (as in Figure 6). The histograms show
the distribution of growth rates among rescue genotypes ob-
served across 105 replicate simulations. Parameters: N0 = 104,
U = 2× 10−3, n = 4, λ = 0.005, mmax = 0.5, m0 = −0.1.
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Figure S5 The distribution of growth rates among first-step
mutations that lead to 2-step rescue with (A) platykurtic and
(B) leptokurtic mutational distributions (see Figure S3A). The
curves and shadings are predictions for a normal mutational
distribution (as in Figure 7). The histograms show the distribu-
tion of growth rates observed across 105 replicate simulations.
Parameters: N0 = 104, U = 2 × 10−3, n = 4, λ = 0.005,
mmax = 0.5, m0 = −0.2.
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Figure S6 The effect of the number of phenotypic dimensions,
n, on (A) the probability of k-step rescue, (B) the distribution
of growth rates among rescue genotypes, and (C) the distri-
bution of growth rates among first-step mutants that lead to
2-step rescue. Curves are numerical results, as in Figures 3,
6, and 7. Parameters: N0 = 104, U = 2 × 10−3, λ = 0.005,
mmax = 0.5.
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