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Abstract 

Engineered Streptococcus pyogenes (Sp) Cas9s and Acidaminococcus sp. (As) Cas12a (formerly Cpf1) improve cleavage 
specificity in human cells. However, the fidelity, enzymatic mechanisms, and cleavage products of emerging CRISPR nucleases 
have not been profiled systematically across partially mispaired off-target DNA sequences. Here, we describe NucleaSeq—
nuclease digestion and deep sequencing—a massively parallel platform that measures cleavage kinetics and captures the time-
resolved identities of cleaved products for more than ten thousand DNA targets that include mismatches, insertions, and deletions 
relative to the guide RNA. The binding specificity of each enzyme is measured on the same DNA library via the chip-hybridized 
association mapping platform (CHAMP). Using this integrated cleavage and binding platform, we profile four SpCas9 variants 
and AsCas12a. Engineered Cas9s retain wtCas9-like off-target binding but increase cleavage specificity; Cas9-HF1 shows the 
most dramatic increase in cleavage specificity. Surprisingly, wtCas12a—reported as a more specific nuclease in cells—has 
cleavage specificity similar to wtCas9 in vitro. Initial cleavage position and subsequent end-trimming vary across nucleases, 
guide RNA sequences, and position and base identity of mispairs in target DNAs. Using these large datasets, we develop a 
biophysical model that reveals mechanistic insights into off-target cleavage activities by these nucleases. More broadly, 
NucleaSeq enables rapid, quantitative, and systematic comparison of the specificities and cleavage products of engineered and 
natural nucleases. 
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Introduction 

RNA-guided CRISPR-associated (Cas) nucleases have ushered in the 
gene editing revolution. S. pyogenes Cas9 —the most widely used Cas 
nuclease—is guided to a target DNA via a ~100-nt single guide RNA 
(sgRNA) (Hsu et al., 2013; Jinek et al., 2012). The first 20 nucleotides 
(nts) of the 5’ end of the sgRNA are complementary to the target DNA, 
referred to as the “protospacer” sequence. Cas9 interrogates potential 
genomic sites by first recognizing a three-nucleotide NGG protospacer 
adjacent motif (PAM), followed by propagation of an R-loop from the 
PAM, and finally activation of the nuclease domains (Gong et al., 2018; 
Jiang et al., 2016; Jinek et al., 2012; Sternberg et al., 2015). Cas9 also 
binds and cleaves off-target sites that are partially complementary to the 
sgRNA, resulting in unanticipated mutations, large-scale genomic 
deletions, and gross chromosomal rearrangements (Anderson et al., 
2018; Cullot et al., 2019; Fu et al., 2013). Intense efforts have been 

focused on mitigating these off-target activities to improve gene editing 
specificity. 

Engineered and natural Cas9 variants, as well as new subtypes 
of Cas nucleases, have been reported to reduce off-target DNA cleavage 
in cells (Amrani et al., 2018; Chen et al., 2017; Edraki et al., 2018; 
Kleinstiver et al., 2016a; Lee et al., 2018; Ran et al., 2015; Shmakov et 
al., 2015; Slaymaker et al., 2016; Smargon et al., 2017; Wu et al., 2018; 
Zetsche et al., 2015). For example, a series of engineered SpCas9s 
improve cleavage specificity by reducing protein interactions with 
either DNA strand or by modulating activation of the nuclease domains 
(Chen et al., 2017; Kleinstiver et al., 2016a; Slaymaker et al., 2016). In 
addition, the recently-discovered Cas12a  is reported to be more specific 
than SpCas9 at some genomic sites in human cells (Kim et al., 2016; 
Zetsche et al., 2015). However, no single experimental strategy exists to 
directly benchmark nucleases by systematically measuring the key 
enzyme-intrinsic binding and cleavage specificities across partially 
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matched DNA targets. Instead, nuclease specificity is typically assessed 
in cells by the extent of indel formation at the programmed target and a 
few known or putative off-target genomic sequences. Such approaches 
provide a broad overview of off-target nuclease activity but are limited 
by several critical shortcomings. First, these approaches do not provide 
a systematic comparison of how the mispaired base, its position within 
the R-loop, and the type of mispair—a mismatch, insertion, or 
deletion—impacts nuclease binding, cleavage rate, and nucleolytic 
DNA trimming. Second, the off-target binding specificity of high-
fidelity nucleases has not been measured comprehensively. Third, these 
approaches do not differentiate enzyme-intrinsic kinetic parameters 
from confounding factors such as the nuclease delivery method and 
exposure time, genetic context, cell cycle phase, and dominant DNA 
repair pathways. Next-generation sequencing (NGS)-based in vitro 
approaches can address some of these limitations, but existing methods 
rely on sequence-limited genomic DNA substrates, generally capture 
read counts rather than cleavage rates, and do not report on the resulting 
DNA ends or their processing (Crosetto et al., 2013; Guenther et al., 
2013; Kim et al., 2015; Tsai et al., 2015, 2017). We set out to develop 
an unbiased, massively-parallel, and general strategy to measure both 
DNA binding and cleavage specificity for benchmarking next-
generation CRISPR-Cas nucleases. 

Here, we describe NucleaSeq—nuclease digestion and deep 
sequencing—as a rapid and massively parallel platform for measuring 
cleavage kinetics by CRISPR-Cas nucleases. NucleaSeq also captures 
the time-resolved identities of cleaved products for a large library of 
fully and partially sgRNA-matched DNAs. The same DNA sequence 
library is used to measure the binding specificity of each enzyme via the 
chip-hybridized association mapping platform (CHAMP). Coupling 
NucleaSeq and CHAMP, we measured the cleavage and binding 
specificities of four SpCas9 variants and Acidaminococcus sp. Cas12a 
(wtCas12a) for DNAs containing mismatches, insertions, and deletions. 
Engineered Cas9s, most notably Cas9-HF1, dramatically increase 
cleavage specificity but provide minimal improvement to overall 
binding specificity. Surprisingly, wtCas12a—reported as a more 
specific nuclease in cells—resembles the cleavage specificity of wtCas9 
in vitro. This suggests that wtCas12a’s reduced off-target cleavage in 
cells may stem from its overall slower cleavage rate (10- to 40- fold 
slower than wtCas9) or other cell-specific factors (i.e., expression 
levels, chromatin and cell cycle state, etc.). Both Cas9 and Cas12a 
produce variable ssDNA overhangs. Initial cleavage position and 
subsequent end-trimming vary with the nuclease, sgRNA sequence, and 
the mispairs between the sgRNA and the target DNA. By programming 
mispairs between sgRNA and target DNA, these nucleases can generate 
incompatible DNA ends without slowing cleavage, ultimately biasing 
cellular repair outcomes. Using these large datasets, we develop a 
biophysical model that gives additional mechanistic insights into off-
target cleavage activities and provides a quantitative framework for 
comparing emerging CRISPR nucleases. More broadly, NucleaSeq and 
CHAMP enable rapid, quantitative, and systematic comparison of the 
specificities and cleavage products of engineered and natural nucleases. 

Results 

A massively-parallel platform for measuring nuclease cleavage and 
binding specificities 
We set out to systematically evaluate the DNA cleavage and binding 
specificities of five CRISPR-Cas nucleases: wild-type S. pyogenes Cas9 
(wt), three engineered SpCas9 variants (enhanced eSp1.1, high fidelity 
HF1, hyper accurate Hypa), and Acidaminococcus species Cas12a (wt, 
also known as Cpf1) (Figure 1A and S1A) (Chen et al., 2017; Jinek et  

al., 2012; Kleinstiver et al., 2016a; Slaymaker et al., 2016; Zetsche et 
al., 2015). For NucleaSeq, we synthesized a pooled library that contains 
>104 barcoded DNAs that randomize the PAM or have up to two edits 
(i.e., mismatches, insertions or deletions) relative to the sgRNA (Figure 
1B, 1C, Supplemental File 1). Each target is flanked by error-correcting 
barcodes that uniquely identify the two DNA fragments after nuclease-
catalyzed cleavage (Hawkins et al., 2018). The PCR-amplified library is 
incubated with a ten-fold excess of each CRISPR holoenzyme (e.g., 
Cas9 or Cas12a ribonucleoprotein) (Figure S1B and S1C). This high 
molar excess ensures that we measure single-turnover kinetics. The 
reaction is sampled as a function of time, quenched in a stop solution, 
and deproteinized to release the cut DNA products (Figure 1D and 
S1D). Each time point is prepared for Illumina-based next-generation 
DNA sequencing (NGS); adapter ligation includes gap-filling 5’ DNA 
overhangs and trimming 3’ overhangs. The adapter also includes an 
outer barcode to identify each time point prior to sequencing via the 
standard Illumina workflow. The resulting datasets are analyzed via the 
NucleaSeq bioinformatics pipeline. 

The bioinformatics pipeline first identifies cut and uncut (full-
length) library members by their flanking barcode(s). The read counts 
for each library member are normalized across time points and between 
replicates by comparing to read counts of ~150 negative control DNA 
sequences that are not recognized by any of the nucleases. Since Cas9 
and Cas12a cleave DNA at a constant rate under single turnover 
conditions, substrate depletion follows a single exponential decay 
(Sternberg et al., 2014; Strohkendl et al., 2018). We determine the 
cleavage rate for each library member by fitting the time-dependent 
depletion of uncut DNAs to a single exponential function (Figure 1E) 
(Guenther et al., 2013). As expected, all nucleases cleave their matched 
DNA substrate rapidly (kc ≥0.1 s-1 for wtCas9, Figure 1E), but even a 
single mismatch between the target DNA and the sgRNA can reduce 
cleavage rates by >104-fold (i.e., a G5 to C5 substitution, G5C, for 
wtCas9 in Figure 1E). The two cut products produced from the cleavage 
of each library member are then compared to identify the cut site and 
time-dependent trimming of the DNA ends (Figure 1F). The cleavage 
rates and cut product distributions were highly reproducible across two 
NucleaSeq biological replicates for both Cas9 and Cas12a nucleases 
(Figure 1G and S1E). The cleavage specificity—a ratio of the cleavage 
rate of a mismatched target to that of the matched target—is a simple 
way to benchmark nucleases. A large cleavage specificity indicates that 
the mispaired target is cut significantly slower than the matched target 
under saturating enzyme concentrations. Figure 1H summarizes the 
cleavage specificity of the five nucleases tested here. All engineered 
Cas9 variants outperform wtCas9 with Cas9-HF1 showing the highest 
specificity for all mismatched targets. Surprisingly, wtCas12a retains 
similar cleavage specificity to wtCas9. The cleavage rates are then 
compared to off-target DNA binding affinity for the same DNA 
libraries using the massively-parallel Chip-Hybridized Association 
Mapping Platform (CHAMP) (Jung et al., 2017). 

CHAMP is used to measure the apparent binding affinity of 
CRISPR-Cas nucleases to DNA clusters on the surface of regenerated 
NGS chips (Figure 1). Following NGS, all surface-tethered DNA 
clusters are regenerated via a single round of primer extension (Jung et 
al., 2017). A subset of the clusters is fluorescently labeled for 
computational alignment of fluorescent images to the NGS sequencing 
information. The sequence identity of each DNA cluster is thus decoded 
by the CHAMP analysis pipeline. To measure off-target DNA binding, 
a fluorescent nuclease-dead Cas protein (e.g. dCas9 in Figure 1K) is 
incubated in the flowcell at increasing protein concentrations. The 
corresponding increase in fluorescent signal at each DNA cluster is fit 
to a hyperbolic function to reveal an apparent binding affinity (ABA) 
for the protein to each underlying DNA sequence (Figure 1J). The  
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Figure 1: Overview of the integrated NucleaSeq and CHAMP platform. (a) Crystal structures and domain maps of Cas9 and Cas12a 
ribonucleoprotein complexes (RNPs; PDB: 5F9R, 5B43). Stars indicate clusters of mutations for engineered Cas9 variants. Triangles in the R-
loops indicate reported cleavage sites. (b) For NucleaSeq, a synthetic library of partially mispaired DNA targets is digested with a CRISPR-Cas 
nuclease under single-turnover conditions. Each DNA incorporates unique left and right barcodes. An outer barcode is added to each timepoint 
prior to next-generation DNA sequencing (NGS). The NGS chips are recovered for profiling DNA-binding specificity via CHAMP. (c) Each DNA 
library includes a randomized PAM and up to two edits (i.e., mismatches, insertions, or deletions) relative to the corresponding gRNA. Right: 
distribution of reads for each type of mispaired target. Two DNA library-gRNA pairs were analyzed for each RNP. (d) The time course of a 
wtCas9 nuclease reaction (sgRNA 1) is resolved by capillary electrophoresis. (e) The cleavage rate is computed by fitting the time-dependent 
depletion of uncut library members (circles) to a single exponential (solid line). (f) The time-dependent distribution of Cas9-generated cut sites in 
the target (TS) and nontarget strands (NTS) of a matched target is reported by the cut fragments (black in diagram). With sgRNA 1, wtCas9 
produces a blunt overhang between the 3rd and 4th nucleotides (left). With sgRNA 2, wtCas9 initially produces a one-nucleotide 5’ overhang that is 
trimmed towards a blunt cut (right). Line colors correspond to the indicated cut positions (triangles in diagram). Error bars: SEM based on 150 
library members containing the matched DNA sequence. (g) Cleavage rates are highly reproducible for all experiments (wtCas9 data shown, r = 
Pearson correlation coefficient). Gray regions contain sequences that exceed the dynamic range of the experiment and are therefore excluded from 
the correlation. (h) The relative cleavage rate of all mismatched targets (matched target cleavage rate divided by the corresponding rate) for all five 
nucleases. Limit = relative cleavage rate that is beyond the limit of detection. (i) CHAMP reports the apparent binding affinity of nuclease-inactive 
CRISPR enzymes. DNA libraries attached to the surface of a sequenced NGS chip are incubated with increasing concentrations of a fluorescent 
dCas9 (cyan puncta). Scale bar: 50 µm, inset: 5 µm. The sequence of each DNA cluster is computationally identified by comparison to the NGS 
output. (j) The mean fluorescence intensity of DNA clusters with the same DNA sequence (symbols) are fit to a Hill equation (lines) to determine 
the apparent binding affinity (ABA, dCas9 shown). AU: arbitrary fluorescence units. Error bars: SD of DNA clusters containing the same DNA 
sequence. (k) The ΔABAs measured via CHAMP are highly correlated with the dCas9 on-rates as reported via a related high-throughput assay 
(Boyle et al., 2017). ΔABAs are change in apparent binding affinity from a matched DNA normalized to that of a scrambled DNA. X-axis error 
bars: SD as measured by bootstrap analysis (ΔABA); Y-axis: SE of the mean. 
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ABAs are highly reproducible across two biological CHAMP replicates 
(Figure S1F). Moreover, CHAMP-derived ABAs are strongly correlated 
with a prior report of dCas9 on-rates for mismatched DNA sequences 
(Figure 1K) (Boyle et al., 2017). We conclude that ABAs—and the 
underlying DNA binding specificity of Cas9—is largely driven by 
differences in the on-rates for different DNA sequences. More broadly, 
NucleaSeq and CHAMP use the same library of DNA sequences. Thus, 
coupled cleavage and binding information identify sequence-specific 
mechanisms of nuclease fidelity. A detailed comparison of the cleavage 
and binding specificities of these five nucleases is described below. 

Systematic analysis of wtCas9 binding and cleavage specificity. 

We first focused on the cleavage and binding specificity of wtCas9 
(Figure 2 and S2). wtCas9 was loaded with one of two sgRNAs (Table 
S1), and then incubated with the corresponding DNA library for over 16 
hours. Individual time points were sequenced to obtain the cleavage 
rates that spanned the entire detectable range of kc ~10-1 to ~10-5 s-1. The 
cleavage rate for the matched DNA (≥0.1 s-1) agrees closely with a 
previously-reported overall kinetic rate constant of 0.2 s-1, which is 
limited by the rate of R-loop propagation (Gong et al., 2018). To 
measure off-target DNA binding, increasing concentrations of wt dCas9 
were incubated in regenerated MiSeq chips harboring the sequenced 
DNA library. We detected no DNA binding at the lowest dCas9 
concentration (100 pM), while the DNA clusters appeared completely 
saturated at the highest dCas9 concentration (300 nM). Apparent 
binding affinities (ABAs) were highest for the matched DNA sequence 
and lowest for scrambled control DNAs that were not complementary to 
the sgRNA or lacked the NGG protospacer adjacent motif (PAM, see 
below). Consistent with prior reports in vitro and in vivo, dCas9 had a 
high apparent binding affinity for partially mismatched target DNA 
sequences. Our results were strongly correlated between two biological 
replicates and with the binding affinities measured via another high-
throughput method (r=0.93, Figure 1G and S1E) (Boyle et al, 2017). 
Overall, we observed that Cas9 bound 70% of the library with a higher 
affinity than nonspecific DNA but could only cleave 60% of the same 
DNA library, indicating that cleavage is only partially determined by 
DNA binding.  

Comparison of wtCas9 binding affinities and cleavage rates for 
library members harboring single mismatches revealed key wtCas9 
characteristics (Figure 2A, 2B and S2A). Targets with an NGG PAM 
were cleaved rapidly, while DNAs with NGA and NAG PAMs were 
cleaved much slower, nearing our detection limit (kc > 10-5 sec-1)(Jiang 
et al., 2013; Kleinstiver et al., 2015; Sternberg et al., 2014; Zhang et al., 
2014). We also observed a ~9 nt “seed region”, where wtCas9 is 
particularly intolerant to mispairing. The seed region for wtCas9 has 
been variously reported to comprise the first eight to twelve nucleotides 
immediately upstream of the PAM (Hsu et al., 2013; Jiang et al., 2013; 
Jinek et al., 2012). Most single mismatches in the seed region reduce 
DNA binding close to that of unmatched DNA and are cleaved at rates 
near our detection limit. In contrast, DNAs with single mismatches in 
positions ~10-17 retain high apparent binding affinity,  but cleavage is 
almost as slow as seed-mismatched targets. Notably, the cleavage rate is 
dependent on both the base identity and the position of the DNA 
mismatch (Figure 2B and S2A). DNAs mismatched within the final 
protospacer nucleotides (~18-20) confer almost no sequence specificity 
to Cas9 binding or cleavage (Figure 2A, 2B and S2A) (Zeng et al., 
2018). Taken together, these data establish that our integrated platform 
quantitatively recapitulates known binding and cleavage specificity 
features of wtCas9. 

Two seed mismatches generally reduced DNA binding to 
background levels and abolished DNA cleavage (Figures 2C and S2B). 
However, cleavage rates depended on the mismatch identity. For 

example, a combination of G2A & A6G mismatches retained a 
relatively fast cleavage rate (0.0017 s-1) compared to other mismatch 
combinations within the seed (Figure 2C callouts). DNAs with a distal 
and seed mismatch pair show the broadest range of binding affinities 
and cleavage rates. Surprisingly, rG-dT mismatches were highly 
tolerated by wtCas9 (Figure 2C, also see Figure 5). The rG-dT 
mismatch is a thermodynamically stable wobble interaction that may 
also form transient Watson-Crick-like mispairs (Kimsey et al., 2015). 
Within the Cas9 R-loop, rG-dT mismatches are the most stable, while 
other known non-Watson-Crick interactions (rU-dG and rG-dG) are not 
well-tolerated, indicating that the protein exerts additional constraints 
on RNA/DNA duplex formation (Sugimoto et al., 2000). 

 DNA targets harboring insertions and deletions (indels; relative to 
the sgRNA/crRNA) have not been comprehensively profiled for any 
CRISPR nuclease, although a previous study indicates that DNAs 
containing indels are occasionally cleaved faster than fully-matched 
DNAs (Lin et al., 2014). We analyzed wtCas9 binding and cleavage of 
DNAs containing up to two indels compared to the fully-matched DNA 
(Figure 2D, 2E, S2C and S2D). wtCas9 activity was highly sensitive to 
deletions in the target DNA. A single deletion in the seed reduces 
apparent binding affinity and cleavage rates to near-background levels. 
DNAs with deletions at most PAM-distal positions are bound with 
intermediate affinity (ΔABAs of 0.2-0.5), while their cleavage rates are 
~100-fold slower than matched DNA (kc ~ 10-3 s-1) (Figures 2D and 
S2C). Cleavage of DNAs containing two deletions only occurred if 
positioned within nucleotides 18-20, which rarely affects binding or 
cleavage (Figure S3A). wtCas9 activity was similarly sensitive to 
insertions in the target DNA However, DNA targets with insertions at 
PAM-distal positions 19 & 20 bound DNA with slightly higher affinity 
than the matched DNA target (Figure S3B). One explanation is that 
nucleotides upstream of the protospacer weakly alter interactions with 
Cas9 (as observed by (Kim et al., 2017b)) and programmed insertions 
reveal their influence. In contrast to DNA binding, cleavage rates were 
much more sensitive to the identity of the inserted nucleotides (Figures 
2E, S2D, and S3B). This difference between DNA binding and cleavage 
may stem from the R-loop-dependent rearrangement of Cas9 nuclease 
domains for DNA cleavage (Chen et al., 2017). wtCas9 has lower 
affinity for DNAs containing two insertions or two deletions and 
cleaves them slower than DNAs with mismatches in the same positions 
(Figures 2 and S3), indicating that  indels encounter additional steric 
constraints within the propagating R-loop.  

Analysis of wtCas9 cleavage products 

We bioinformatically identified the 5’ ends of target and non-target 
strands (TS, NTS) of each DNA library member via the unique 
barcodes on either side of the DNA cut. The expected blunt cut was 
observed when wtCas9 was charged with sgRNA 1 (Figure 1F, left). 
However, wtCas9 charged with sgRNA 2 initially produced a one-
nucleotide 5’ overhang (Figure 1F, right). After approximately 15 
minutes, the 5’ overhang on the NTS recedes, likely due to a second 
RuvC domain-catalyzed cleavage (trimming). The variability in 
cleavage products and subsequent trimming activity extended across 
both DNA libraries. For example, a mismatch in the third position 
produced a blunt DNA with sgRNA 1, but a trimmed overhang with 
sgRNA 2 (Figure 2F). Surprisingly, the HNH domain consistently 
cleaved between the third and fourth bases for all types of single edits, 
whereas the RuvC domain produced variable overhangs that were 
strongly dependent on the position and type of mispair (Figure 2G, S2E 
and S2F). Edits near the scissile bond (between nucleotides 3 and 4) 
alter the cleavage position and trimming rates (Figure 2G). For 
example, a mismatch biases wtCas9 towards a blunt cut, presumably 
through modulation of RuvC domain-mediated NTS cleavage and is 
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even stronger for DNAs harboring a deletion (Figure S2E). Conversely, 
wtCas9 cleaved DNAs with an insertion at this position further from the 
PAM (TS +1, NTS +2) (Figure S2F). In sum, the RuvC domain 

repositions the cleavage site in response to a partially mismatched 
sgRNA-DNA complex and this behavior is sgRNA and mismatch 
specific. 

Figure 2: Comprehensive analysis of off-target wtCas9 DNA binding and cleavage. (a) dCas9 ΔABAs for all DNAs with a single mismatch 
relative to sgRNA 1. Dotted line: normalized matched target ΔABA (0); dashed line: scrambled DNA ΔABA (negative control, 1). Error bars: SD 
as measured by bootstrap analysis. (b) Cas9 cleavage rates for the same targets as in (a). Dotted line: cleavage rate of the matched target; dashed 
line: limit of detection for the slowest-cleaving targets. Error bars: 5% and 95% confidence intervals as measured by bootstrap analysis. (c) ΔABAs 
(upper, grays) and cleavage rates (lower, blues) for DNAs containing two mismatches. Black boxes expanded in callouts. (d) dCas9 ΔABAs 
(upper) and Cas9 cleavage rates (lower) for DNAs containing a single nucleotide deletion or (e) a single nucleotide insertion. Error bars: ΔABA 
SD and cleavage rate 95% confidence interval as measured by bootstrap analysis. (f) Normalized NGS reads for target (TS) and nontarget (NTS) 
strands of DNAs containing either a mismatch at nucleotide 3 (C3T or A3T) or a deletion at position 1 compared to sgRNA 1 (left) or sgRNA 2 
(right). Error bars: maximum SD for cut products produced from cleavage of matched DNA controls. (g) Average cut site positions for each strand 
(TS, NTS) from DNAs containing one mismatch relative to sgRNA 1 (upper) or sgRNA 2 (lower). Range spans the earliest timepoint with >33% 
cut reads (open diamonds) to the final time point (filled diamonds). Diamond size indicates the average cleavage rates of the associated DNAs. 
Dashed and solid horizontal lines indicate average cut site positions for matched DNA (M) at early and late time points. 
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Systematic off-target profiling of engineered Cas9 nucleases 

We selected three engineered Cas9 variants (enhanced eSp1.1, Cas9-
Enh; high fidelity Cas9-HF1, hyper accurate Cas9-Hypa) for 
comprehensive binding and cleavage comparison to wtCas9 (Figure 3). 
As expected, all engineered nucleases retain an NGG PAM. 
Remarkably, engineered Cas9 variants bound partially-matched DNA 
libraries with similar affinities to those of dCas9 (r = 0.96, 0.99, 0.96, 
respectively) (Figures 3A). This result is striking because Cas9-HF1 and 
Cas9-Enh were both designed to destabilize non-specific Cas9-DNA 
interactions and were speculated to reduce both off-target DNA binding 
and cleavage (Kleinstiver et al., 2016a; Slaymaker et al., 2016). In 
contrast to their DNA binding specificity, all three enzymes showed 
increased cleavage specificity relative to wtCas9 (Figure 3B). Cas9-
Enh, Cas9-HF1, and Cas9-Hypa all rapidly cleave matched DNA (~0.1 
s-1); >40% of the partially-matched DNA library was cleaved more 
slowly by the engineered enzymes than by wtCas9 (Figure 3B). Cas9-
HF1 reduced mismatched DNA cleavage rates the most relative to the 
matched DNA cleavage rate (i.e., increased specificity), followed 
closely by Cas9-Hypa, then Cas9-Enh, and finally wtCas9.  

Cas9-HF1 shows the most improved DNA cleavage specificity for 

targets in the three PAM-distal protospacer nucleotides (positions 18-
20) (Figure 3C). Improved specificity was observed for all types of base 
substitutions and for insertions or deletions at nucleotides 18-20 (Figure 
S4). Surprisingly, Cas9-HF1 also trims overhangs more slowly than 
wtCas9; we rarely observed Cas9-HF1 trim DNAs with mismatches, 
deletions or insertions (Figures 3E and S4C,D). One notable exception 
occurred when DNAs contained insertions or mismatches near cleavage 
sites (nucleotides 1-5) (Figures 3D and S4C,D). As with wtCas9, these 
DNAs still altered both the cleavage site and trimming rate. Different 
edits elicit different end trimming kinetics. For instance, a C1 to T1 
mismatch (C1T) produces blunt cuts like a matched DNA, but a 
deletion produces at least three NTS and two TS cleavage products. An 
insertion at that site shifts the cleavage pattern one nucleotide away 
from the PAM (Figure 3D) (Liu et al., 2019). In sum, Cas9-HF1 
provides the greatest cleavage specificity and the least trimmed DNA 
ends among the tested Cas9s. 

Profiling AsCas12a cleavage specificity 

AsCas12a is a type V CRISPR-Cas nuclease that is reported to be more 
specific than wtCas9 in cells (Kim et al., 2016; Yan et al., 2017; 
Zetsche et al., 2015). We recently showed that the specificity of 
wtCas12a is due to reversible R-loop propagation, even when the DNA 
has a PAM-distal mismatch (Strohkendl et al., 2018). Here, we expand 
our prior work to assay wtCas12a cleavage rates on two DNA libraries, 
each comprised of >105 partially mispaired DNA targets that provide a 
direct comparison to engineered Cas9 nucleases (Figure 4, Table S2). 
As with wtCas9, we recovered the canonical 5’-TTTV PAM (Figure 
4A), though wtCas12a cleaved matched DNA 10 to 30-fold more 
slowly than wt Cas9 (Figure 4B left). Mismatches in the first eight 
PAM-proximal positions slowed cleavage at least 100-fold, while single 
PAM-distal mismatches through position 16 were <10-fold slower 
(Figure 4A). The cleavage rate of mismatched DNAs strongly depended 
on mismatch identity. For example, a C17 to G17 mismatch was cleaved 
twenty-five times more slowly than a C17 to T17.  However, a single 
mismatch in positions 18-20 did not impact cleavage, as seen with 
wtCas9. Importantly, cleavage of single-mismatched DNAs correlate 
strongly with our previously-measured R-loop propagation rates 
(r=0.91, Figure 4B right) (Strohkendl et al., 2018). Taken together, our 
work shows that Cas12a cleavage specificity is dominated by rate-
limiting R-loop propagation followed by a rapid DNA cleavage step. 

We next analyzed wtCas12a cleavage rates of DNAs harboring up 
to two mismatches (Figure 4C). Two mismatches within the first 
fourteen PAM-proximal nucleotides typically reduced DNA cleavage 
rates below our detection limit of <10-5 s-1 (i.e., for a DNA substrate 
with G3T & G7C substitutions, Figure 4C callout). In contrast, DNAs 
with one or two PAM-distal mismatches (at positions 15-20) were 
cleaved similarly to their related single-mismatched DNAs (vertical 
banding in Figure 4C). Surprisingly, as with wtCas9, rG-dT mismatches 
show elevated cleavage rates relative to other types of mismatches at 
the same positions (Figure 4C, dashed boxes). We did not observe this 
mismatch preference in the PAM of either nuclease, indicating that both 
enzymes have similar preferences for stabilizing specific mispairs 
within a propagating R-loop.  

How Cas12a treats DNAs with deletions or insertions relative to 
the crRNA is unknown, but structural studies suggest that some R-loop 
bulges may be accommodated within the protein (Gao et al., 2016; 
Stella et al., 2018; Yamano et al., 2016). A deletion within the first 17 
positions slows DNA cleavage >10-fold, while the final positions have 
no affect (Figure 4D). DNAs with insertions at 1-17 are also slowly 
cleaved, often beyond the NucleaSeq detection limit. However, 
cleavage rates vary widely with the identity of the inserted nucleotide 
(Figure 4D, see 3A4 vs. 3C4), possibly reflecting protein-specific 
stabilization of the inserted DNA base. Like mismatches and deletions, 
DNAs with insertions at the final three positions (18-20) do not reduce 
cleavage rates). These data confirm that pairing with the final crRNA 
nucleotides is largely dispensable for wtCas12a cleavage, but not 
overhang trimming (see below). 

Analysis of AsCas12a cleavage products 

Cas12a produces staggered 5’ DNA overhangs when it cleaves a 
crRNA-matched DNA substrate (Zetsche et al., 2015). On matched 
DNA, we previously showed that the initial TS cleavage site varies by 
one nucleotide and the NTS overhang is progressively trimmed with 
time (Strohkendl et al., 2018). Using NucleaSeq, we expand this 
analysis across two different DNA libraries. wtCas12a produces ~5-nt 
5’ overhangs when cleaving a matched DNA (crRNA 3; Figure 4E). 
Since NucleaSeq reports on the 5’ strand of cleaved DNAs, we 
observed that the first NTS cleavage site also varies by one nucleotide. 
The TS was initially cleaved between nucleotides 23 and 24, but the 
distribution of cut products changed over time, indicating progressive 5’ 
trimming, as previously observed for the NTS. Loaded with crRNA 4, 
wtCas12a still produces ~5-nt 5’ overhangs, however the NTS cleavage 
sites vary less and wtCas12a trims the TS overhang more slowly 
(Figure 4E). After binding the matched target DNA, some Cas12a 
variants can also nick both single-stranded and double-stranded DNAs 
in trans via a non-specific nuclease activity (Chen et al., 2018; Li et al., 
2018; Murugan et al., 2019; Swarts and Jinek, 2018). We monitored 
Cas12a trans cleavage activity by mapping the time-dependent 
depletion of non-specific DNAs that are not complementary to the 
crRNA. Second, we looked for the accumulation of truncated DNA 
fragments that are expected to occur from multiple random Cas12a-
generated nicks (Figure S6). Both approaches indicate that trans 
cleavage is minimal under the single turnover conditions employed in 
this assay. 

Cas12a typically produces a similar spectrum of cleavage products 
on matched and mismatch-containing DNAs (Figure 4F). A notable 
exception is when the mismatches occur near the NTS cleavage site (nts 
18-20) (Figure 4F, top). For example, Cas12a cleaves the NTS up to 
three nucleotides closer to the PAM when a mismatch is located at the 
18th position. The identity of the mismatched nucleotide strongly 
influences both the cleavage site and the extent of trimming (Figure 4E, 
right graphs). An rT-dT mismatched DNA (T19A) is cleaved anywhere 
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between nucleotides 16 and 20 in the NTS. However, the NTS of an rT-
dC mismatched DNA (T19G) is cleaved between nucleotides 17 and 18 
only, reducing the diversity of overhangs even more than matched 
DNA. TS trimming is also strongly affected; time-dependent changes in 
cleavage outcomes suggest that wtCas12a trims mismatched DNAs 
more rapidly (T19G > T19A > matched). 

DNAs harboring deletions and insertions deviate from the trends 
that were observed with mismatched DNA targets (Figure 4F, center). 
The NTS is processed much like a matched DNA (unless deletions are 
near the cleavage site). TS cleavage occurs closer to the PAM (i.e., with 
deletions at nucleotides 4-8 or 16-19) or one nucleotide further away 
from the PAM (i.e., deletions at nucleotides 9-15). The periodicity of 

this trend is reminiscent of a full helix turn within the R-loop (10-11 bp) 
and highlights that a bulge in the crRNA may be more permissible on 
one face of the helix. For DNAs with insertions, TS and NTS cleavage 
tracked closely with one another (Figure 4F, bottom). A single insertion 
at nucleotides 1-14 pushes wtCas12a cleavage of both strands one 
nucleotide further from the PAM, suggesting that insertions may bulge 
out of the R-loop to maintain parity with the crRNA. Cleavage sites for 
DNAs harboring distal indels (18-20) are similar to those with 
mismatches, suggesting that they are interpreted by wtCas12a as a 
string of mismatches (compare across Figure 4F Taken together, DNAs 
containing all three edit types showcase that wtCas12a has considerable 
flexibility in cleaving both the NTS and TS. This mechanism is 

Figure 3: Comparison of engineered Cas9 nucleases. (a) Two-dimensional density plots show the correlation of Cas9-HF1 ΔABAs and (b)
cleavage rates to those from wtCas9, Cas9-enh and Cas9-hypa (sgRNA 1). Top and right histograms include all ΔABAs or cleavage rates for 
the respective nuclease. Pearson correlation coefficient shown in each panel. Color bars indicate the density of points in each bin. (c) Ratio of 
Cas9-HF1 to wtCas9 specificities for all DNAs containing two mismatches (sgRNA 1). Red: slower cleavage by Cas9-HF1; blue: slower 
cleavage by wtCas9. Black-outlined range expanded in call-out.  (d) Cas9-HF1 cleavage patterns on the target (TS) and nontarget (NTS) 
strands of select DNA targets (sgRNA 1). Normalized counts of cut products comprising ≥15% of the total cut reads are shown. Error bars: 
maximum SD for any cut product produced from cleavage of the related matched DNA controls. (e) Average cut site positions generated by 
Cas9-HF1 for each strand (TS, NTS) for targets containing a single mismatch relative to sgRNA 1. Range spans the earliest timepoint with 
>33% cut reads (open diamonds) to the final time point (filled diamonds). Diamond size indicates the average cleavage rates of the associated 
DNAs. Dashed and solid horizontal lines indicate average cut site positions for matched DNA (M) at early and late time points. 
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consistent with a single RuvC nuclease domain that cuts—and often 
trims—both strands (Chen et al., 2018; Li et al., 2018).  

Modeling CRISPR-Cas nuclease specificity. 

To understand the features governing off-target cleavage, we 
fit the cleavage specificity to several biophysical models of increasing 
complexity (Figure 5 and Supplemental Methods). In contrast to 
machine learning-based approaches, these models infer the penalties for 

Figure 4: Comprehensive analysis of off-target Cas12a cleavage. (a) Cas12a cleavage rates for DNAs containing a single mismatch relative to 
crRNA 3. Dotted line: cleavage rate of the matched target; dashed line: limit of detection for the slowest-cleaving targets. Error bars: 90% 
confidence interval as measured by bootstrap analysis. (b) Target strand cleavage rate compared to total cleavage rate (left); R-loop propagation 
(right) is the rate-limiting step for cleavage of mismatched DNA targets. Cleavage rate error bars: 90% confidence interval as measured by 
bootstrap analysis. TS cleavage rates and R-loop propagation rates with errors bars (SD of three replicates) are taken from (Strohkendl et al., 
2018). (c) Cleavage rates for DNAs containing two mismatches. Black box expanded in callout. (d) Cleavage rates for DNAs containing a single 
nucleotide deletion (upper) or a single nucleotide insertion (lower). Error bars: Cleavage rate 95% confidence intervals as measured by bootstrap 
analysis. (e) Normalized NGS reads for target (TS) and nontarget (NTS) strands of the indicated DNAs. Parenthesis: corresponding crRNA. Error 
bars: maximum SD for cut products produced from cleavage of matched DNA controls. (f) Average cut site positions for each strand (TS, NTS) 
from DNAs containing one mismatch (upper), deletion (middle), or insertion (lower) relative to crRNA 3. Range spans the first timepoint with 
>33% cut reads (early, open diamonds) to the final time point (end, filled diamonds). Diamond size indicates the average cleavage rates of the 
associated DNAs. Dashed and solid horizontal lines indicate average cut site positions for matched DNA (M) at early and late time points. 
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off-target cleavage via a limited set of biochemically intuitive 
parameters. For each nuclease, the models were trained on the entire 
dataset that includes two distinct DNA target libraries. Training the 
models on multiple DNA libraries was essential for properly 
constraining the fit and for obtaining a more comprehensive 
biochemical description of the enzymes. All models describe PAM 
recognition via a position weight matrix (PWM) (Stormo and Zhao, 
2010). The Cas9 PWM reproduces the canonical NGG and also reflects 
Cas9’s tolerance of G→A mismatches. Similarly, the model accurately 
reproduces the Cas12a TTTV PAM with increasing overall specificity 
from positions -4 to -2 and a modest tolerance for T→ C PAM 
substitutions (Figure S7). Each model is defined by how mismatches 
and indels within the R-loop are used to calculate the cleavage 
specificity. The optimal model was selected because it minimizes lost 
information as defined by the Akaike Information Criterion (AIC), and 
it accurately captures the variance in the experimental cleavage rates 
(Akaike, 1974). 

The simplest model assigned a position-independent penalty 
for each of the twelve types of possible mismatches, regardless of where 
they occur within the R-loop (Figure 5A, first model). Insertions and 
deletions were treated as long strings of mismatches. This model only 
correlated to the measured specificity constants for all five enzymes 
with correlation coefficients between 0.60 and 0.68 (Figure S7). 
Including a position-dependent mismatch penalty (but not mismatch 
type) significantly improved the AIC, highlighting that the position of a 
mismatch within the R-loop is a critical determinant of the cleavage rate 
(Figure 5A, second model). The third model also captured the 
experimental observation that different types of mismatches at a given 
R-loop position significantly altered Cas9 and Cas12a cleavage rates 
(e.g., Cas9 tolerates rG-dT mismatches more than rC-dC, Figure 2B). 
This model combines the position-dependent penalties with an 
additional position-independent penalty for all twelve possible 
mismatches. Although the third model improved correlation with 
measured values with r = 0.86-0.92 (Figure S7), it did not capture how 
indels altered cleavage specificity. Therefore, the most successful model 
also included additional position-dependent penalties for insertions and 
deletions, as well as a position-independent term for each of the four 
inserted bases (i.e., insertion of a dT vs dA anywhere along the R-loop) 
(model V, Figure 5B,). These additions further improved the AIC and 
Pearson’s correlation coefficient, highlighting that each edit has a 
distinct position-dependent impact on the enzyme’s overall specificity. 
The final model had the lowest information loss (as shown by the AIC) 
and had correlation coefficients between 0.93-0.97 with measured 
cleavage rates for all Cas9 variants and 0.91 for Cas12a (Figure 5B and 
Figure S7). This model reveals additional biochemical features of each 
enzyme’s cleavage specificity, as discussed below. 

Strikingly, all Cas9 variants and Cas12a have nearly identical 
mismatched and inserted base preferences (Figure 5C). Mismatch 
penalties are lowest for rG:dT, rA:dC, rC:dA, rU:dG—basepairs with 
known wobble and Watson-Crick like mispairing propensity (Sugimoto 
et al., 1997). However, mismatch penalties derived from 
thermodynamic studies of RNA-DNA duplexes do not completely 
recapitulate all Cas9 and Cas12a mispair preferences, indicating that 
some mismatches are further stabilized within the protein-mediated R-
loop (Sugimoto et al., 2000). Insertions showed a reduced penalty for 
pyrimidines, possibly because they are sterically smaller than purines 
within a Cas9 or Cas12a-enveloped R-loop. Since both Cas9 and 
Cas12a tolerated the same types of mismatches and insertions, we 
conclude that position-dependent specificity penalties are the major 
determinant of overall differences between the enzymes.  

Cas9-HF1 discriminates strongly against all types of PAM-distal 
edits (Figure 5D, top). For example, Cas9-HF1 cleaves targets with 

mismatches at positions 14-16 >103-fold slower than the matched 
target. Mismatches in the 16th position of the R-loop reduce the 
observed cleavage rates below our detection limit; we therefore report a 
lower estimate on the actual enzyme specificity (dashed lines in Figure 
5D). Cas9-Hypa—originally described as an improved variant of Cas9-
HF1—is overall less specific in the PAM-distal region, underscoring the 
need to comprehensively measure cleavage rates across a large DNA 
library. Cas9-Enh modestly improves PAM-distal specificity relative to 
wtCas9 but is still less specific than either Cas9-HF1 or Cas9-Hypa. 
Insertions and deletions in the PAM-distal region show the largest 
difference in specificity between WT and the engineered Cas9 variants 
(Figure 5D, middle, bottom). However, Cas9-HF1 still maintains the 
highest estimated specificity, with no detectable cleavage of targets with 
even a single insertion between the 9th and 16th R-loop positions.  

In addition to comparing within a class of nucleases, our datasets 
and biophysical model also allows direct comparison between Cas12a 
and Cas9. Surprisingly, Cas12a shows a similar cleavage specificity to 
wtCas9 across the entire R-loop. One minor exception is that Cas12a is 
more sensitive than wtCas9 to mismatches in positions five through 
eight. Cas12a also showed lower specificity than wtCas9 for DNAs 
with indels, with a progressive decrease in specificity as the indel 
occurs further from the PAM. The penalties for each class of edits point 
to the same two conclusions: 1) wtCas9 and wtCas12a have similar 
cleavage specificities, and 2) all engineered Cas9s are more specific 
than wtCas9, with Cas9-HF1 performing best. 

We compared our kinetic model at saturating enzyme 
concentration to prior in vitro and cellular studies of wtCas9 and 
wtCas12a specificity (Chen et al., 2017; Fu et al., 2016; Hsu et al., 
2013; Kim et al., 2015, 2016, 2017a; Kleinstiver et al., 2016b, 2016a; 
Pattanayak et al., 2013; Yan et al., 2017) (Figure 5E). Importantly, prior 
cellular high-throughput experiments enumerated off-target sites at 
multiple loci but at a single time point after transfection. Similarly, prior 
wtCas9 high-throughput in vitro studies also reported a single time 
point, thereby missing all kinetic and DNA end processing information. 
To compare different target DNAs, we computed the rank-order 
(Spearman’s) correlation coefficient between our model and the value 
for the position-dependent mismatch reported for each of the prior 
studies’ protospacer sequences. The Spearman correlation determines 
the strength and direction of the monotonic relationship between two 
variables that are not linearly related, as occurs between the 
logarithmically-distributed cleavage rates and the in vivo edit 
efficiencies measured via different reporter assays. (Figure 5E, top). We 
limited the comparison to studies that measured the effects of 
mismatches by either changing the DNA or the sgRNA at each position 
along the R-loop. Two representative genomic targets were selected 
from studies that included multiple sgRNAs. For wtCas9, our model 
strongly correlates with both cellular and in vitro studies (mean  = 0.66 
± 0.19; mean ± SD). Interestingly, the correlation between independent 
datasets is frequently weak ( = 0.53 ± 0.27), suggesting that the 
cleavage rates we measured here capture most but not all of the variance 
in the cellular datasets. The few Cas12a studies that profiled the effect 
of mismatches along the entire R-loop also had a positive correlation 
with the model ( = 0.43 ± 0.22; mean ± SD) (Figure 5E, bottom). 
Using the biophysical model, we next estimated the specificity of each 
enzyme in the context of the human genome. Figure 5F summarizes the 
distribution of strong (cleavage specificity < 2), medium (< 20), and 
weak (<200) off-target genomic sites for one thousand randomly 
selected exomic targets. Cas9-HF1 has the lowest number of off-target 
cleavage sites with wtCas9 and wtCas12a showing similar off-target 
behaviors. The surprising similarity between wtCas9 and wtCas12a in 
vitro suggest that nuclease-extrinsic factors such as the chromatin state, 
RNP expression level, genomic context, and DNA target sequence may 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/696393doi: bioRxiv preprint 

https://doi.org/10.1101/696393
http://creativecommons.org/licenses/by-nc-nd/4.0/


Jones Jr. et al., 8 July 2019 – preprint copy - BioRxiv 

10 

influence wtCas12a cleavage outcomes more strongly than wtCas9 (see 
Discussion). In sum, NucleaSeq and associated biophysical modeling 
provides mechanistic insights into enzyme-intrinsic cleavage rates and 
cleavage products, allows quantitative comparisons between nucleases, 
and can further improve off-target prediction algorithms.  

Discussion 

Newly discovered and engineered nucleases are outstripping our 
understanding of each enzyme’s cleavage mechanisms and intrinsic 
specificity. Here, we describe NucleaSeq, which comprehensively 

profiles cleavage kinetics, cut site structure, and overhang-trimming 
rates on designer DNA libraries (Figure 1). The DNA library design, 
post-cleavage analysis, and biophysical modeling software are freely 
available via GitHub (https://github.com/finkelsteinlab/nucleaseq). 
Future modifications to NucleaSeq can extend this platform for 
measuring the kinetics of off-target base-editing, DNA nicking, and 
CRISPR-transposon DNA insertions (Klompe et al., 2019; Strecker et 
al., 2019). Similarly, CHAMP can be extended via in vitro transcription 
and translation to measure protein-RNA and protein-peptide 
interactions (Buenrostro et al., 2014; Ozer et al., 2015). 

Figure 5: Statistical modeling of CRISPR-
Cas nuclease cleavage. (a) Akaike Information 
Criterion (AIC) values for five increasingly 
detailed biophysical models. The most detailed 
model has the lowest AIC, i.e. the best goodness 
of fit. The largest model improvements 
correspond with addition of R-loop position-
specific parameters. (b) Correlation between 
measured and modeled cleavage rates for Cas9-
HF1 (left, red) and wtCas12a (right, purple). 
Color bars indicate the density of points in each 
bin. Side histograms show the distributions of 
fit for measured values beyond the upper and 
lower detection limits. Percentages show the 
quantity of data in each category with one or 
both values beyond detection. r = Pearson 
correlation coefficient. (c) Base-dependent 
weights for mismatches and insertions averaged 
across all Cas9 and Cas12a enzymes. See Figure 
S7 and text for additional information. (d)
Modeled specificity penalties for a single 
mismatch (upper), insertion (middle), or 
deletion (lower). All protein variants are 
oriented with the PAM on the left for 
comparison. Arrows and dashed lines indicate 
values below the detection limit (dotted line). 
(e) The predicted reduction in mismatch-
dependent cleavage rates is strongly correlated 
with prior high-throughput measurements of 
reduced edit efficiencies for wtCas9 (blue) and 
wtCas12a (purple) (Spearman correlation). See 
supplementary materials for comparison 
methodology and associated data. (f) The 
number of off-target sites in the human genome 
with a predicted cleavage specificity greater 
than the indicated specificity threshold, shown 
for each nuclease. For each enzyme, one 
thousand targets were selected randomly from 
exomic DNA; the cleavage specificities of the 
potential off-target cleavage sites across the 
genome were calculated using model V.  
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Using the large NucleaSeq datasets, we develop a biophysical 
model that facilitates comparison across different types of nucleases, 
captures intrinsic nucleotide mispair preferences, and reveals additional 
biochemical features of each enzyme. Modeling cleavage specificity 
across multiple targets is especially important as we and others have 
observed that Cas9 and Cas12a have poorly-understood but pervasive 
target-specific behaviors (Doench et al., 2014; Moreno-Mateos et al., 
2015; Wang et al., 2014; Xu et al., 2017). In addition to specifying the 
appropriate enzyme for a specific gene editing application, the 
integration of these datasets into off-target prediction servers will 
improve genomic target DNA selection.  

All engineered Cas9 variants profiled here, and most notably Cas9-
HF1, retain similar off-target DNA binding affinities but improve 
cleavage specificity of DNAs with PAM-distal mispairs (Figure 5). 
However, all Cas9 variants had similar cleavage specificity in the PAM-
proximal region. Taken together, our data indicate that this increased 
specificity is largely driven by slowing the cleavage step after R-loop 
propagation (e.g., conformational changes that activate the nuclease 
domain(s)) (Liu et al., 2019). This observation is consistent with the 
observation that mutations in the SpCas9 bridge helix can regulate the 
HNH nuclease domain prior to cleavage (Babu et al., 2019; Nishimasu 
et al., 2014; Sternberg et al., 2015). Our data also indicates that off-
target DNA binding remains an ongoing challenge for Cas9 engineering 
and for dCas9-based applications (i.e., CRISPRi, CRISPRa, and base-
editing) (Gilbert et al., 2014; Komor et al., 2016; Qi et al., 2013). In 
contrast to SpCas9, Cas12a has a late transition during R-loop 
formation, making dCas12a a strong candidate for applications that 
require high DNA binding specificity (Strohkendl et al., 2018).  

Deep characterization of Cas9 and Cas12a reveals shared features 
that highlight convergence of these phage defense systems. They share 
similar cleavage specificities and tolerate similar types of mispairs (i.e., 
rG-dT mismatches and pyrimidine insertions), exchanging fidelity and 
off-target cleavage in order to target rapidly evolving phages. The RuvC 
domain of both enzymes can also create staggered cuts and trim DNA 
overhangs, possibly limiting error-free re-ligation of the invading 
nucleic acid. Kinetic discrimination against partially matched DNA 
targets may result from slowed R-loop propagation and/or slowed 
cleavage after the R-loop is formed. As R-loop propagation is the rate-
limiting step for cleavage by both Cas9 and Cas12a, it is the major 
determinant for enzyme specificity at sub-saturating concentrations that 
may dominate the cellular environment (Boyle et al., 2017; Gong et al., 
2018; Liu et al., 2019; Strohkendl et al., 2018).  

AsCas12a and related Type V nucleases are reportedly more 
specific than Cas9 in human cells (Kim et al., 2016; Yan et al., 2017). 
However, wtCas12a has a remarkably similar in vitro cleavage 
specificity to that of wtCas9 at saturating enzyme concentrations 
(Figure 5). One possible explanation for the discrepancy between the 
cellular and in vitro observations is that wtCas12a cleaves both matched 
and off-target DNAs 10- to 40-fold slower than wtCas9. This slower 
overall cleavage rate may provide sufficient time for wtCas12a to be 
displaced from off-target genomic sites in cells (i.e., by the transcription 
apparatus) without changing the in vitro specificity. In support of this 
idea, NmeCas9 was recently reported as high-fidelity and has a much 
slower cleavage rate than SpCas9 in vitro (Amrani et al., 2018; Edraki 
et al., 2018). The Cas12a-generated DNA overhang structure can bias 
the cellular repair pathway towards homologous recombination or non-
homologous end joining. We propose that programming specific PAM-
distal mismatches between the crRNA and target DNA can direct the 
repair outcomes without changing the overall cleavage rate (i.e., 
genome editing efficiency) for both Cas12a and Cas9.  

In sum, the integrated NucleaSeq and CHAMP platform 
provides a framework for profiling and engineering high-fidelity 

nucleases for gene editing applications. Engineered Cas9 variants 
generally improve specificity at a narrow set of R-loop positions but the 
relatively low seed-region mismatch specificity and inconsistent cut site 
structure across different target sequences are areas for further 
improvement. Future enzyme engineering efforts should aim to 
combine Cas12a-like binding specificity with Cas9-like conformational 
cleavage regulation. We anticipate that the integrated NucleaSeq and 
CHAMP workflow will be broadly useful for guiding enzyme profiling 
and engineering strategies. 
 
Materials and Methods 

Oligonucleotides, CRISPR RNA, and DNA libraries 

Oligonucleotides were purchased from IDT (see Table S1). Single 
guide RNAs (sgRNAs) for Cas9 and CRISPR RNAs (crRNAs) for 
Cas12a were purchased from Synthego (see Table S1). Pooled 
oligonucleotide libraries were purchased from CustomArray Inc. and 
Twist Biosciences (see Table S2). Libraries were amplified via 12 
cycles of PCR with Phusion polymerase (NEB).  

DNA Library Design 

Each library contains DNAs that are variations of a matched DNA 
sequence (defined by nuclease PAM preference and RNA guide), 
termed a ‘modified target’. Modified targets include: single and double 
substitutions, insertions, or deletions, and all sequences with a 
contiguous subsection changed to the complementary bases. Each 
modified target is flanked by the following additional sequence 
elements necessary for NucleaSeq analysis and (5’ to 3’): left primer, 
left barcode, left buffer, modified target, right buffer, variable length 
buffer, right barcode, right primer (Supplemental File 1). As controls, 
we included 146 copies of the matched target. Each copy had a unique 
left and right barcode set. Finally, we included 150 pseudo-random 
barcoded DNA strands to normalize read depth between time points and 
biological replicates (see below). 

Our libraries use unique barcodes appended to either end of 
each DNA strand (Hawkins et al., 2018). By searching for the barcodes 
after NGS, any cleaved DNA can be computationally identified from a 
partial fragment after cleavage. These barcodes are 17 bp, uniquely 
paired, and are correctly identified despite any combination of up to two 
substitutions, insertions, or deletions in their sequence. Similarly, 
primer sequences (common across the library) were selected that help 
distinguish left barcodes, right barcodes and cleaved ends.  They are 
distinguishable from one another and the cleaved end of any library 
member cut within 5 bp of a canonical cut site. 

Flanking each modified target are left and right 5 bp buffer 
regions held constant for all sequences to provide a constant local DNA 
context for nuclease activity. These buffer sequences were randomly 
generated with nearly equal nucleotide content. Oligos with insertions 
and deletions also included a variable-length buffer to ensure that these 
oligos were the same length as the matched target. 

Protein cloning and purification 

S. pyogenes Cas9 variants were generated via Q5 site-directed 
mutagenesis (New England Biolabs) of a pET-based plasmid (pMJ806) 
(Jinek et al., 2012). Nuclease dead Cas9 variants contained the D10A 
and H840A mutations. Enhanced-, HF1-, and Hypa- Cas9 variants 
harbored the mutations indicated in Table S1 (Chen et al., 2017; 
Kleinstiver et al., 2016a; Slaymaker et al., 2016). An N-terminal 3xFlag 
epitope was introduced for fluorescent imaging of nuclease dead 
variants via CHAMP (see below). 
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Cas9 protein variants were expressed in BL21 star (DE3) cells 
(Thermo Fisher Scientific) using a previously established protocol with 
minor modifications (Jinek et al., 2012). A 4L flask containing 1L LB + 
Kanamycin was inoculated with a single colony and then grown to an 
optical density (OD) of 0.6 at 30°C with shaking. Protein expression 
was induced with 1mM IPTG during 18 hours at 18°C with shaking. 
Cells were collected by centrifugation and lysed by sonication at 4°C in 
lysis buffer (20 mM Tris-Cl pH 8.0, 250 mM NaCl, 5mM imidazole, 5 
μM phenylmethylsulphonyl fluoride, 6 units ml-1 DNAse I). The lysate 
was clarified by ultracentrifugation at 35k RCF, then passed over a 
nickel affinity column (HisTrap FF 5mL, GE Healthcare) and eluted 
with elution buffer (20 mM Tris-Cl pH 8.0, 250 mM NaCl, 250 mM 
imidazole). The His6-MBP was proteolyzed overnight in dialysis buffer 
(20 mM HEPES-KOH pH 7.5, 150 mM KCl, 10% glycerol, 1mM DTT, 
1mM EDTA) supplemented with TEV protease (0.5 mg per 50 mg 
protein). The dialyzed protein was resolved on a HiTrap SP FF 5mL 
column (GE Healthcare) with a linear gradient between buffer A (20 
mM HEPES-KOH pH 7.5, 100 mM KCl) and buffer B (20 mM 
HEPES-KOH pH 7.5, 1 M KCl). Protein-containing fractions were 
concentrated via dialysis (10 kDa Slide-A-Lyzer, Thermo Fisher 
Scientific), and then sized on a Superdex 200 Increase 10/300 column 
(GE Healthcare) pre-equilibrated into storage buffer (20 mM HEPES-
KOH pH 7.5, 500 mM KCl). The protein was snap frozen in liquid 
nitrogen and stored in 10µL aliquots at -80ºC.  
Acidaminococcus sp (As) Cas12a was expressed as an N-terminal His6-
TwinStrep-SUMO fusion in a pET19-based plasmid (pIF502) 
(Strohkendl et al., 2018). The Cas12a fusion protein was expressed in 
BL21 star (DE3) cells (Thermo Fisher Scientific) using a previously 
established protocol with minor modifications (Strohkendl et al., 2018). 
A 20 mL culture of Terrific Broth (TB) + 50 mg mL-1 carbenicillin was 
inoculated with a single colony and grown overnight at 37ºC with 
shaking. A 4 L flask containing 1 L of TB was inoculated with 10 mL 
of the starter culture and then grown to an optical density (OD) of 0.6 at 
37°C. Protein expression was induced with 0.5 mM IPTG during 24 
hours at 18°C. Cells were collected by centrifugation and lysed by 
sonication at 4°C in lysis buffer (20 mM Na-HEPES pH 8.0, 1 M NaCl, 
1 mM EDTA, 5% glycerol, 0.1% Tween-20, 1 mM PMSF, 2000 U 
DNase (GoldBio), 1X HALT protease inhibitor (Thermo Fisher)). The 
lysate was clarified by ultracentrifugation at 35k RCF, applied to a 
hand-packed StrepTactin Superflow gravity column (IBA Life 
Sciences), and then eluted (20 mM Na-HEPES, 1 M NaCl, 5 mM 
desthiobiotin, 5 mM MgCl2 and 5% glycerol). The eluate was 
concentrated to <1mL using a 30 kDa MWCO spin concentrator 
(Millipore), SUMO protease was added at 3µM, and then the eluate was 
incubated overnight on a rotator at 4ºC.The protein was resolved on a 
HiLoad 16/600 Superdex 200 Column (GE Healthcare) pre-equilibrated 
with storage buffer (20 mM HEPES-KOH, 150 mM KCl, 5 mM MgCl2, 
2 mM DTT buffer). The protein was finally snap frozen in liquid 
nitrogen and stored in 10µL aliquots at -80ºC.  

Cas9 and Cas12a ribonucleoprotein (RNP) complexes were 
reconstituted by incubating a 2:3 molar ratio of apo protein and RNA 
(sgRNA and pre-crRNA for Cas9 and Cas12a, respectively) in RNP 
buffer (20 mM HEPES pH 7.5, 150 mM KCl, 10 mM MgCl2, 2 mM 
DTT) at room temperature for 30 minutes prior to each experiment. 
Reconstituted RNPs were diluted in the experimental reaction buffer, 
used immediately, and discarded after the experiment. 

NucleaSeq 

DNA libraries were mixed in buffer (20 mM HEPES pH 7.5, 150 mM 
KCl, 10 mM MgCl2, 2 mM DTT) at room temperature with RNP 
complex to final concentrations of 10 nM and 100 nM, respectively. 
Aliquots were transferred to a stop solution (final concentration: 12 mM 

EDTA and 12 U proteinase K (Thermo Fisher)) at the following time 
points: 0, 0.2, 0.5, 1, 3, 10, 30, 100, 300 and 1000 minutes. The stopped 
reactions were incubated at 37°C for 30 minutes to remove Cas9 and 
Cas12a from their DNA substrates. Each time point was ethanol 
precipitated and resuspended in TE buffer. Samples were submitted to 
the University of Texas Genomic Sequencing and Analysis Facility, 
where sequencing adapters (NEBNext Ultra, NEB) were appended. The 
samples were sequenced on a MiSeq or NextSeq 500 sequencer 
(Illumina). 

Bioinformatic analysis pipeline 

From each paired-end read pair, we inferred the maximum likelihood 
full-length sequence using the overlapping base pairs as described 
previously (Jung et al., 2017). Primer and barcode sequences were then 
used to identify the intended sequence identity and, for cleaved 
products, the observed side. Observed and intended sequences were 
aligned using either global alignment (Cock et al., 2009) for uncleaved 
products or global alignment with cost-free ends (Cieślik et al., 2016) 
for cleaved products. Throughout this process, sequences were filtered 
for quality based on length, primer and barcode structure, and number 
of synthesis and sequencing errors. Sequences with errors were not 
allowed in the target and buffer regions. 

Next, the read counts for each full-length library member in 
each sample were normalized to account for two sources of variation. 
First, we normalized the different total numbers of reads across 
different time points for each sample. Specifically, each member’s read 
count for each sample was normalized by the ratio of total read counts 
at that time point to the total read count of an input control sample (not 
treated with nuclease). Second, read counts were normalized to account 
for changes due to sampling from a library of changing composition. 
The generation of cleaved products and corresponding depletion of full-
length products by nuclease activity changes the number of sampled 
sequences of all species, including species unaffected by the nuclease. 
To account for this, we used the 150 non-target control sequences as a 
reference. For each randomly-generated non-target sequence, there is a 
small probability it will be susceptible to nuclease cleavage. Hence, we 
used the median read count value of all the random sequences as a 
robust measure of changes due only to sampling from a library of 
changing composition (non-target median). Read counts of each library 
member at each time point were normalized by the ratio of the non-
target median at that time point to the non-target median from the 
control sample. 

In addition to the above two steps, cleaved products were 
normalized to account for differences in PCR amplification between 
cleaved products and full-length oligos. We observed that the 
normalized number of cleaved products should be proportional to the 
depletion of the corresponding full-length oligos. Stated as an equation, 
let |F|t be the number of full-length product reads and |C|t

side be the 
number of cleaved product reads on a given side at a given time, for a 
single library member of choice, normalized as above. Then for 
normalization and proportionality constants Zt

side and kside, 

|𝐶|
𝑡

𝑠𝑖𝑑𝑒

𝑍𝑡
𝑠𝑖𝑑𝑒

= 𝑘𝑠𝑖𝑑𝑒 ቆ1 −
|𝐹|

𝑡

|𝐹|
0

ቇ 

We choose to set the final normalization constant 𝑍𝑡𝑓

𝑠𝑖𝑑𝑒 = 1 

and solve the above for kside. Plugging this back in and rearranging gives 
normalization constants 

𝑍𝑡
𝑠𝑖𝑑𝑒 =

|𝐶|
𝑡

𝑠𝑖𝑑𝑒

|𝐶|
𝑡𝑓

𝑠𝑖𝑑𝑒
ቆ

1 − |𝐹|
𝑡𝑓

|𝐹|
0

⁄

1 − |𝐹|
𝑡

|𝐹|
0

⁄
ቇ 
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This is intentionally a function only of ratios of read counts, 
not absolute read counts. This lets us use the median read count ratios 
from all 146 matched target controls to calculate the normalization 
constants. These final normalization constants are then used for all 
library members. Finally, read counts are normalized to range between 
zero and one. For full-length products, we normalize by the fit value of 
reads at time zero. For cleaved products, we normalize first by the sum 
of all cleaved products at all time points, then normalize to set the 
resulting median sum of all cleaved products at the final time point to 
the depletion of full-length products, 1 − |𝐹|௧೑

|𝐹|଴⁄ . 

The normalized read counts were fit to a single exponential 
decay. We observed that the data was well described by a single 
exponential, implying a constant reaction rate under the single turnover 
conditions used in this assay. A small fraction of the starting DNA 
sequences of each species were never cleaved, possibly indicating some 
hydrolytically inactive enzymes. We thus fit for exponential decay with 
a constant offset. For the constant offset, we used the median 
normalized fraction of uncleaved sequences of the 146 perfect target 
sequences at the final time point. Error bars give the standard deviation 
of 50 bootstrap measurements, each of which was calculated by 
resampling the raw read counts with replacement, renormalizing, and 
refitting (Efron and Tibshirani, 1993). 

Modeling cleavage specificity 

Model description 

We modeled cleavage specificity (Model 1), given as the ratio of the 

cleavage rate of a given sequence 𝑠 , 𝑘𝑠 , to the cleavage rate of the 

matched sequence 𝑚, 𝑘𝑚, as: 

log
𝑘𝑠

𝑘𝑚

= ෍ log Λ(𝑖, 𝑠𝑖)

𝑖∈𝒫

+ ෍ log 𝑃𝐷(𝑖)

𝑖∈𝒟

+ ෍ 𝑤𝐼(𝑠𝑖) log 𝑃𝐼(𝑖)

𝑖∈ℐ

+ ෍ 𝑡𝑀(𝑟𝑖, 𝑠𝑖) log 𝑃𝑀(𝑖)

𝑖∈ℳ

 

The terms of the model give cleavage rate penalties for the following 
sequence edits respectively: suboptimal bases in the PAM, target 
deletions, target insertions, and target mismatches, each with 
corresponding set of positions with the given sequence edit type: 𝒫, 
𝒟, ℐ, and ℳ. For suboptimal PAM bases, the cleavage rate penalty is 
given by the function Λ, a function of both the suboptimal base identity, 

𝑠𝑖, and its position 𝑖.  
For deletions, insertions, and mismatches, the cleavage rate 

penalty functions 𝑃𝐷, 𝑃𝐼, and 𝑃𝑀 are dependent only on the position 𝑖, 
reflecting the fact that position in the target is the primary determinant 
of the effect of a given sequence edit. This is intuitive for deletions, as 
they primarily require steric adjustments to realign the matching base 
pairs. For mismatches, position was determined to be the primary 
determinant of the cleavage rate penalty via comparison with other 
models (see Simplified models below). Insertions have a weighting 

function 𝑤𝐼  to allow for different inserted bases to have different 
penalties. The base identities in the mismatch are modeled via the 

weighting function 𝑡𝑀(𝑟𝑖, 𝑠𝑖), a function of the mismatched gRNA base 

𝑟𝑖 and target strand base 𝑠𝑖. 
Within the terms for insertion and mismatch penalties, there is 

an unconstrained degree of freedom in the relative magnitudes of the 
weights relative to the log position penalties. To remove this extra 

degree of freedom, the insertion and mismatch weighting functions 𝑤𝐼 

and 𝑡𝑀 were each constrained to have an average value of 1. This was 
accomplished through the use of Hadamard matrices, possible because 

𝑤𝐼 and 𝑡𝑀 have 4 and 12 parameters, respectively. Hadamard matrices 
are maximal-determinant matrices using elements of only 1 and -1. We 
used Hadamard matrices with negative one in all elements not in the 
first row or column along diagonals 0, -1, 2, -3, -4, -5, 6, 7, 8, -9, and 
10, where 0 is the main diagonal and diagonal indices increase up and to 
the right. We parameterize a constrained length 𝑛 weight vector 𝑤 with 

a length (𝑛 − 1) vector 𝑥 of free parameters as follows. Let 𝐻𝑛 be the 
𝑛 × 𝑛 Hadamard matrix described above. Due to the inverse identity of 

Hadamard matrices and the first row and column of 𝐻𝑛 being composed 
entirely of ones, parameterizing with 𝑥  and using the following 
conversions enforces an average value of 1 in the weights vector 𝑤: 

ቈ

𝑛

−

𝑥

቉ = 𝐻𝑛𝑤,    𝑤 =
1

𝑛
𝐻𝑛

𝑇 ቈ

𝑛

−

𝑥

቉ 

Cleavage rates that are shorter than the first time point or longer than 
the last one cannot be modeled accurately. We therefore constrained the 
output of our models with the following “bandpass filter” function: 

𝐵(𝑥) =  ൝
𝑥 𝑠 ≤ 𝑥 ≤ 𝑓
𝑠 𝑥 < 𝑠
𝑓 𝑥 > 𝑓

 

Where 𝑠  and 𝑓  are the slowest and fastest detectible cleavage rates, 
corresponding to half-lives at our first and last time points. 

Ridge regularization of the difference of insertion and 
mismatch weights from one was used to reduce over-fitting of the 
underlying cleavage data (Hoerl and Kennard, 1970). Figure S7D shows 
the fit weight values as a function of the regularization parameter 𝜆. The 
relative parameter values appear to stabilize near 𝜆 = 10ଷ, which we 
used to fit the model. 

Simplified models 

For comparison, we fit our data to four simplified models, each 
excluding some terms and/or factors in the full model above. The first 
three simplified models did not include the insertion or deletion terms, 
modeling the possibility that the recognition channel does not 
accommodate bulges to realign matching sequences after indels. Under 
this assumption, for example, a sequence with a single insertion 
between the first and second bases, but otherwise perfectly matching, 
would result in about 75% mismatches due to a forced frame shift. 
These three models were: cleavage rate as a function of only the 
mismatch base pair identities, only the mismatch position, or both as in 
the full model above. The fourth simplified model included insertions 

and deletions but omitted the insertion weights 𝑤𝐼 . Each simplified 
model included the PAM term. We number the models for reference: 

𝑀𝑜𝑑𝑒𝑙 5: log
𝑘௦

𝑘௠
= ෍ log Λ(𝑖, 𝑠௜)

௜∈𝒫

+ ෍ log 𝑇ெ(𝑟௜ , 𝑠௜)

௜∈ℳ

 

𝑀𝑜𝑑𝑒𝑙 4: log
𝑘௦

𝑘௠
= ෍ log Λ(𝑖, 𝑠௜)

௜∈𝒫

+ ෍ log 𝑃ெ(𝑖)

௜∈ℳ

 

𝑀𝑜𝑑𝑒𝑙 3: log
𝑘௦

𝑘௠
= ෍ log Λ(𝑖, 𝑠௜)

௜∈𝒫

+ ෍ 𝑡ெ(𝑟௜ , 𝑠௜) log 𝑃ெ(𝑖)

௜∈ℳ

 

𝑀𝑜𝑑𝑒𝑙 2: log
𝑘௦

𝑘௠
= ෍ log Λ(𝑖, 𝑠௜)

௜∈𝒫

+ ෍ log 𝑃஽(𝑖)

௜∈𝒟

+ ෍ log 𝑃ூ(𝑖)

௜∈ℐ

+ ෍ 𝑡ெ(𝑟௜ , 𝑠௜) log 𝑃ெ(𝑖)

௜∈ℳ

 

And Model 1 is the full model above. The mismatching base pairs 

function in Model 5, 𝑇𝑀(𝑟𝑖, 𝑠𝑖) , is different from the analogous 
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weighting function 𝑡𝑀(𝑟𝑖, 𝑠𝑖) in the other models as it gives absolute 
penalty values, not weights constrained to average value of one. 

Figure 5 compares these models using the Akaike Information 
Criterion (AIC) (Akaike, 1974). The significant improvement in AIC 
between Models 5 and 4 demonstrates that position is in fact the 
primary determinant of mismatch cleavage rates. Model 3 demonstrates 
that including the mismatched base pair identities is a useful but 
relatively small improvement to the position-only model. Similarly, 
Models 2 and 1 show that adding insertions and deletions to the model 
provides a significant improvement, while the addition of insertion 
weights is a relatively small improvement to the model (i.e., insertions 
are weakly sensitive to the inserted base identity). 

Model comparison to previously published datasets 

To compare the model’s output with prior measures of nuclease 
specificity, we selected in vitro and in vivo published datasets for either 
SpCas9 or AsCas12a that contained at least one measure of specificity 
per position in the sgRNA (for SpCas9) or the crRNA (for AsCas12a).  
Dataset 1 (Pattanayak et al., 2013) included representative genes 
CLTA1 and CLTA2 with sgRNA v2.1 and 100 nM wt Cas9. Published 
specificity scores were averaged across all single mismatch values at 
each position. Dataset 2 (Kim et al., 2015) used Digenome-seq and 
included sgRNAs targeting genes HBB and VEGFA. Dataset 3 
(Kleinstiver et al., 2016a) used GUIDE-Seq to profile indels at genes 
VEGFA-2 and EMX1-1. Values were extracted from the published 
heatmaps based on RGB values as measured with FIJI (Schindelin et 
al., 2012). The measured scores were averaged across all single 
mismatch values at each position. Dataset 4 (Fu et al., 2016) in vivo log 
retention scores for genes UNC-22A and ROL6 were extracted from 
published graphs with a data digitization tool (Rohatgi, 2019). The 
measured scores were averaged across all single mismatch values 
(transitions and transversions) at each position. Dataset 5 (Hsu et al., 
2013) used SURVEYOR nuclease to determine mean cleavage results 
for aggregated EMX1 targets. Values were extracted from the published 
heatmaps based on position-averaged RGB values as measured with 
FIJI (Schindelin et al., 2012).  
Dataset 6 (Chen et al., 2017) used a T7E1 reporter assay and included 
representative genes  FANCF-1 and FACNF-4. Percent of modification 
for each gene was extracted from the published heatmaps based on 
RGB values as measured with FIJI for wtCas9 (Schindelin et al., 2012). 
Dataset 7 (Yan et al., 2017) used BLISS to generate composite 
mismatch tolerances for each guide position. Values were extracted 
from the published graph with a data digitization tool (Rohatgi, 2019). 
Dataset 8 (Kim et al., 2017) relative indel frequency values at each 
position were extracted from the published graph with a data 
digitization tool (Rohatgi, 2019). Dataset 9 (Kleinstiver et al., 2016b) 
used a T7E1 reporter assay and included representative gene DNMT1, 
sites 1 and 3. Percent of modification for each gene was extracted from 
the published graphs with a data digitization tool (Rohatgi, 2019). Since 
the measure and distribution of data varied from study to study, a 
nonparametric correlation was used (only requires ordinal data). Each 
dataset was compared to one another and to our model’s average 
positional mismatch penalty to generate Spearman’s rank correlation 
coefficients (). The average mismatch penalty is denoted as PM in 
Model 1. 

CHAMP (Chip Hybridized Association Mapping Platform) 

DNA libraries were sequenced on a MiSeq using 2x75 paired-end 
chemistry (v3, Illumina) Sequenced MiSeq chips were stored at 4°C in 
storage buffer (10 mM Tris-Cl, pH 8.0, 1 mM EDTA, 500 mM NaCl) 
until needed for CHAMP.  

Chips were regenerated similarly to our previous strategy (Jung et al., 
2017). Each chip was loaded into a custom microscope stage adapter, 
with temperature controlled by a custom heating element. All solutions 
were pumped through the chip at 100 μl min-1 using a syringe pump 
(Legato 210, KD Scientific), with reagents added via an electronic 
injection manifold (Rheodyne MXP9900). Chip DNAs were made 
single-stranded with 500 μl 60% DMSO, then washed with 500 μl TE 
buffer. An unlabeled regeneration primer (user DNA specific) and a 
digoxygenin labeled primer (PhiX DNA specific, for alignment) were 
annealed over an 85-40°C temperature gradient (30 min) in 
hybridization buffer (75 mM tri-sodium citrate, pH 7.0, 750 mM NaCl, 
0.1% Tween-20), and then excess primers were removed at 40°C with 1 
ml wash buffer (4.5 mM Trisodium Citrate, pH 7.0, 45 mM NaCl, 
0.1% Tween-20). Annealed primers were extended at 60°C using 0.08 
U μl-1 Bst 2.0 WarmStart DNA polymerase (New England Biolabs) and 
0.8 mM dNTPs in isothermal amplification buffer (20 mM Tris-HCl, 
pH 8.8, 10 mM (NH4)2SO4, 50 mM KCl, 2 mM MgSO4, 0.1% Tween-
20), then washed with 500 μl wash buffer. Using 100 μl of rabbit anti-
digoxigenin monoclonal antibody (Life Technologies) and 100 μl 
Alexa488-conjugated, goat anti-rabbit antibody (Thermo Fisher 
Scientific), PhiX DNA clusters were fluorescently labeled as markers 
for subsequent image alignment. The MiSeq chips were imaged on a Ti-
E microscope (Nikon) in a prism-TIRF configuration (Jung et al., 
2017). Images were acquired in OME-TIFF format (uncompressed 
TIFF plus XML meta data) using the Micro-Manager software 
(Edelstein et al., 2014).  
The dCas9/sgRNA RNP complex was diluted to concentrations of 0.1, 
0.3, 1, 3, 10, 30, 100 and 300 nM in CHAMP buffer (20mM Tris-HCl 
pH 7.5, 100 mM KCl, 5 mM MgCl2, 5% glycerol, 0.2 mg mL-1 BSA, 
0.1% Tween-20, 1 mM DTT). Starting with the lowest concentration, 
100 μl of RNP complex was injected into the regenerated MiSeq chip at 
room temperature and incubated for 10 minutes. Then, 300 μl of 
CHAMP buffer containing 4 nM Alexa488-conjugated anti-Flag 
antibody (Alexa Fluor 488 antibody labeling kit, Thermo Fisher; 
monoclonal BioM2, Sigma-Aldrich) was injected to wash off unbound 
RNP and label DNA-bound RNP complex. The chip was then imaged 
over 420 fields of view (FOVs) with 10 frames of 50 ms each, while 
illuminated with 10 mW of laser power, as measured at the front face of 
the prism. Collected images were processed via the CHAMP 
bioinformatic software for downstream analysis (Jung et al., 2017). 

DNA Radiolabeling and PAGE purification 

DNA oligonucleotides 308 and 310 were 5’-radiolabeled with [γ-32P] 
ATP (Perkin-Elmer) using T4-polynucleotide kinase (New England 
Biolabs). Radiolabeled nucleotides were then purified by 
electrophoresis in a 12% native polyacrylamide gel, before being eluted 
in TE buffer (10mM Tris-HCl pH 8, 1 mM EDTA) to a concentration 
250nM. 

Nuclease active site titration 

Atto647N-labeled target DNA was generated with Q5 DNA polymerase 
(NEB) using oligonucleotides 365, 460 and 371. The DNA was diluted 
in series from 512 nM to 4nM in reaction buffer (20 mM HEPES pH 
7.5, 150 mM KCl, 10 mM MgCl2, 2 mM DTT). RNP complexes were 
formed by mixing protein and RNA (256nM:384nM) and incubating for 
30 minutes at room temperature in the same buffer conditions. Equal 
volumes of RNP and Atto647N-labeled matched DNA dilutions were 
combined then incubated for 30 minutes at room temperature. The 
reaction was stopped by addition of a stop solution (40 mM EDTA and 
50 U proteinase K (Thermo Fisher)) and a 30-minute incubation at 37ºC 
removed RNPs from their DNA substrates. All samples were run in a 
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10% polyacrylamide native gel and then imaged using a Typhoon 
FLA9500 gel scanner (GE Healthcare). 
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