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Abstract 
 
Somatic mutations in cancers affecting protein coding genes can give rise to potentially therapeutic 
neoepitopes. These neoepitopes can guide Adoptive Cell Therapies (ACTs) and Peptide Vaccines 
(PVs) to selectively target tumor cells using autologous patient cytotoxic T-cells. Currently, 
researchers have to independently align their data, call somatic mutations and haplotype the 
patient’s HLA to use existing neoepitope prediction tools. We present ProTECT, a fully 
automated, reproducible, scalable, and efficient end-to-end analysis pipeline to identify and rank 
therapeutically relevant tumor neoepitopes in terms of immunogenicity starting directly from raw 
patient sequencing data, or from pre-processed data. The ProTECT pipeline encompasses 
alignment, HLA haplotyping, mutation calling (single nucleotide variants, short insertions and 
deletions, and gene fusions), peptide:MHC (pMHC) binding prediction, and ranking of final 
candidates. We demonstrate ProTECT on 326 samples from the TCGA Prostate Adenocarcinoma 
cohort, and compare it with published tools. ProTECT can be run on a standalone computer, a 
local cluster, or on a compute cloud using a Mesos backend. ProTECT is highly scalable and can 
process TCGA data in under 30 minutes per sample when run in large batches. ProTECT is freely 
available at https://www.github.com/BD2KGenomics/protect. 
 
1 Introduction 
Tumor recognition by the adaptive immune system has been described in the literature as early as 
the 1980s. In 1987, Muul et al. described tumor infiltrating lymphocytes in a cohort of 6 melanoma 
samples that showed high cytotoxicity towards fresh, autologous melanoma tumor cells (1). 
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However, at the time, T-cell responses were observed to be short lived, often lasting only a few 
days. Later studies showed that tumors were capable of suppressing immune responses via 
different methods (2-5).  
 
Checkpoint blockade therapy has seen a great increase in interest in the past few years with 
numerous drugs being approved by the FDA for clinical treatment (6-8). Prevention of PD-1:PD-
L1 (9) and CTLA-4:B7.1/2 (10) binding via monoclonal antibodies re-enables the immune attack 
against the tumor, however it can leave the patient open to development of autoimmunity or other 
toxicities associated with unchecked immune action (11, 12). The mutational load of a tumor (or 
Tumor Mutational Burden) is a good predictor of response to checkpoint therapy (13, 14). The 
implication of aberrations in DNA Mismatch repair genes in impairment of tumor growth (15) 
suggest this effect is due to tumor “neoantigens” that act as markers for immune targeting. 
 
Adoptive cell therapies use T-cells specifically targeted against the tumor to reduce the collateral 
damage associated with conventional therapies. Chimeric Antigen Receptor (CAR) cells use cell 
surface receptors with an antibody as the recognition domain and the downstream effector domains 
of a T-Cell receptor to elicit a T-cell response upon cognate epitope recognition (16). This method 
has been well studied in B-Cell lymphomas and leukemias and shows great promise due to the 
tissue-specific expression of targets like CD19, exclusively expressed on B-cells (17, 18). There 
are several attempts to apply CAR therapy to other cancers (19, 20).  
 
Tumor Infiltrating Lymphocytes from patient tumors can be activated and expanded in-vitro using 
minced autologous tumor or experimentally primed autologous dendritic cells (21, 22). These cells 
selectively target cell-surface MHC-presented antigen produced by the tumor. Peptide vaccines 
attempt to produce the same result by stimulating dendritic cells in-vivo via synthetically produced 
peptides delivered subcutaneously to the patient. Experimentally primed Dendritic cells and 
Peptide vaccine therapies require prior knowledge of the mutations in the tumor in order to identify 
the potentially targetable sequence.  
 
Bioinformatic analysis of tumor sequencing data can aid in the selection of neoepitopes to target 
in vaccine and adoptive immune system-based cancer therapies. PVAC-Seq (23) is an automated 
pipeline that identifies neoepitopes generated from a pre-computed, VEP-annotated (24) VCF file 
run with specialized plug-ins that incorporate wildtype and mutant protein sequence. 
INTEGRATE-Neo (25) identifies neoepitopes from fusion genes provided in a pre-computed 
BEDPE file. These tools all require a user to previously align the sequencing data to a reference 
of choice and call variants before following the same logical paradigm of identifying mutant 
peptides and predicting pMHC affinity binding (often via netMHC (26)). The pipelines differ in 
their degree of automation, input mutation type and annotation, and presence or absence of a 
ranking schema, however neither of them fully automates the pipeline from end-to-end, beginning 
at the raw fastq files emitted by the sequencer from DNA and RNA sequencing.  
 
We describe ProTECT, a fully automated tool for the Prediction of T-cell Epitopes for Cancer 
Therapy. We previously demonstrated the utility of ProTECT, using an early version to analyze 
externally called Single Nucleotide Variants (SNVs) in a neuroblastoma cohort. There we 
identified a potentially therapeutic neoepitope from the ALK:R1275Q hotspot mutation (27). The 
full ProTECT codebase, reported here, is completely self-contained. It accepts an input trio of 
sequencing data from a patient consisting of the paired tumor and normal DNA, and the tumor 
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RNA reads in the fastq format and processes the data from end-to-end including alignment, in-
silico HLA haplotyping, expression profiling, mutation calling and neoepitope prediction.  
 
We demonstrate the scalability and utility of ProTECT, and evaluate its performance, using 
publicly available data. We use the 326 samples from The Cancer Genome Atlas (TCGA) Prostate 
Adenocarcinoma (PRAD) cohort (28) with  trios of genomic data (Tumor DNA, Normal Dna, and 
Tumor RNA), augmenting these data with 8 previously published clinical melanoma samples (29). 
The TCGA PRAD data set was previously evaluated for fusion-gene-derived epitopes using 
INTEGRATE-Neo (25) and the melanoma samples were previously analyzed by PVAC-Seq (23) 
We compared ProTECT’s performance to the performance of these other tools. The TCGA PRAD 
cohort has an average of 21.5 exonic mutations per sample (30) and 31% of all samples are 
predicted to contain a fusion transcript (31). The melanoma dataset was reported to have between 
219 and 598 missense exonic mutations per sample. We show that ProTECT outperforms both 
PVAC-Seq and INTEGRATE-Neo by identifying the expected peptides with a low false positive 
rate, in addition to other events missed by the original methods. 
 
2 Materials and methods 
2.1 Procurement of Input Data 
Genomic Trio (Tumor DNA, Normal DNA, and Tumor RNA) BAM files containing sequences 
from 326 samples in the Cancer Genome Atlas (TCGA) Prostate Adenocarcinoma (PRAD) cohort 
were downloaded from the Genomics Data Commons (GDC) at the National Cancer Institute using 
the GDC data transfer tool. The downloaded BAM files were converted back to FASTQ format, 
as would be produced by direct sequencing, using the SamToFastq module from Picard version 
1.1251. MHCI haplotype calls using POLYSOLVER (32) for all samples for benchmarking were 
obtained and used with the permission of Dr. Catherine Wu. 
 
Genomic Trios from 3 additional samples (Mel-21, Mel-38, Mel-218) were downloaded from the 
NCBI short read archive (SRA) (33) via Bioproject PRJNA278450/dbGaP accession phs001005. 
These patients were diagnosed with stage III resected cutaneous melanoma and had all previously 
received ipilimumab. Data from seven A*02:01 restricted vaccines tested for each patient were 
obtained from the supplementary information of the original manuscript (29). 
 
The input data for the INTEGRATE-Neo comparison included haplotype and fusion calls from  
240 samples in the supplementary data of the INTEGRATE-Neo paper. The fusions from 
supplementary Excel sheet 1 were parsed into individual BEDPE format files and the epitopes 
from sheet 3 were extracted into individual haplotype list files with one MHC allele per line. 
 
Indexes for the various tools were generated using the GRCh38 (hg38) reference sequence 
obtained from the UCSC genome browser (34). GENCODE (35) v25 was chosen as the reference 
annotation and was used to filter the background SNV databases and SNPEff. Every generic hg38 
index used in the analysis is available in our AWS S3 bucket `protect-data` under the folders 
`hg38_references`. A detailed list of commands used to create the various indexes is available in 
the same bucket in the `README`.  
 
2.2 Compute resources utilized 

                                                
1 Obtained from http://broadinstitute.github.io/picard/ 
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All TCGA-related analyses were conducted on a Mesos (36) cluster with one leader (12 cpus, 
62GB RAM, 500GB Local disk) and eight identical agents (56 cpus, 250GB RAM, 1.8TB local 
disk).  
The Melanoma data was analysed on the Amazon Web Services EC2 and the data was stored 
securely using SSE-C encryption on S3. 
 
2.3 326-sample PRAD compute 
The 326 samples were run in batches of 1, 2, 5, 10, 20, or 50 samples in order to gauge the 
efficiency and scalability of the pipeline engine, Toil (37). Each batch size was run 5 times with 
unique samples to normalize the runtime information. The configuration file for each run was 
generated from a template containing all the required tool options and paths to the input reference 
files on the NFS storage server. Each batch was run once on the mesos cluster using all nodes and 
an NFS-based Toil file job store to save the state of the pipeline. The five single-sample batches 
were also run separately without mesos on individual nodes of the cluster using an NFS-based Toil 
file job store to document the time taken per sample on a single machine. 
 
2.4 Comparison with PVAC-Seq 
To compare our results with PVAC-Seq, we ran ProTECT on the input samples on 
AWS EC2 using an S3-based cloud job store. The input configuration for the run included paths 
to hg38-mapped reference files from our S3 bucket `protect-data` and paths to the input FASTQ 
files in another secure bucket. The results were stored on S3 in the same bucket as the input. This 
analysis was conducted consistent with the mandatory cloud data use limitations on the input 
dataset. 
 
2.5 Comparison with INTEGRATE-Neo 
To compare our results with INTEGRATE-Neo, we parsed the data from the manuscript 
supplement into files acceptable by ProTECT via a python script. The initial input configuration 
file consisted of links to the fusion BEDPE format file for each of 240 samples, along with 
haplotype and expression data called from the ProTECT 326 sample run. The final analysis 
included fusion and inferred haplotype calls for 83 samples from INTEGRATE-Neo along with 
ProTECT expression estimates.  All ProTECT runs were conducted on the mesos cluster. 
      
3 Pipeline specifics 
ProTECT consists of 8 major sections: sequence alignment, haplotyping, expression profiling, 
mutation calling, mutation translation, MHC:peptide binding prediction, neoepitope ranking, and 
reporting. Figure 1 shows the schema for the run. Every tool used in the pipeline was hand-picked 
from industry-standard choices and literature reviews. Some aspects of the pipeline, notably 
Transgene and Rankboost, were developed in-house due to a lack of publicly available alternatives. 
 
The entire analysis from end-to-end is built to process data against the same reference sequence 
and annotation. The user provides links to the properly generated indexes for each tool in the 
pipeline. We provide Gencode (35) version 19 annotated references for hg19 and Gencode version 
25 annotated references for hg38 on our public AWS S3 bucket “protect-data”. The input for a 
protect run is a single configuration file that lists input files for each patient that will be processed, 
and all the options and links to indexes that will be used during the run.  
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3.1 Sequence Alignment 
DNA sequence alignment is carried out using the Burrows-Wheeler aligner (BWA) (38). The reads 
are aligned with BWA-MEM to the provided BWA reference using default parameters. The SAM 
file produced upon alignment is processed to properly format the SAM header, and is then 
converted to a coordinate-sorted BAM file with a corresponding index. 
RNA sequence alignment is carried out using the ultra-fast aligner, STAR (39). The parameters 
for the run are optimized for fusion detection via STAR-fusion (40). 
Alternatively, ProTECT accepts pre-aligned BAM files as an input if the MHC haplotype is 
provided as well. ProTECT assumes that the user has aligned the DNA and RNA using the same 
reference genome with the same genomic annotation. 
      
3.2 Haplotyping 
The HLA Haplotype of the patient is predicted using PHLAT (41). The haplotype is predicted 
using each input source of information (normal and tumor DNA, tumor RNA) and the consensus 
haplotype is generated based on agreement between the three haplotype predictions. Due to 
limitations in the tool, we only proceed with HLA-A, HLA-B and HLA-C for MHCI, and HLA-
DPA/B and HLA-DRB for MHCII. 
      
3.3 Expression profiling 
The gene-level and isoform-level expression is estimated using RSEM (42) with default 
parameters. 
      
3.4 Mutation Calling 
Single Nucleotide Variants (SNVs) are predicted on a per-chromosome basis using 5 separate 

 
Figure 1. A schematic description of the ProTECT workflow. ProTECT can process FASTQs all the 
way through the prediction of ImmunoActive Regions, including alignment, HLA Haplotyping, variant 
calling, expression estimation, mutation translation, and pMHC binding affinity prediction. ProTECT 
also allows users to provide pre-computed inputs for various steps instead. 
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mutation prediction algorithms: MuTECT (43), MuSE (44), RADIA (45), Somatic Sniper (46), 
and Strelka (47). The choice of mutation callers was guided by the results from the ICGC DREAM 
mutation calling challenge (48). All called mutations are merged into a common file and only 
events supported by 2 or more predictors advance to the translation step. Strelka additionally 
produces a callout for short insertions and deletions (INDELs). These are also used to identify 
neoepitopes. 
 
Fusion calling occurs using STAR-Fusion (40) with default parameters. Candidate fusions are 
annotated using Fusion-Inspector2 along with an optional assembly step using Trinity (49). 
      
3.5 Mutation Translation 
SNVs and INDELs are annotated using SNPEff (50). Mutations identified in coding regions of the 
genome are processed using an in-house translation tool, Transgene3. Transgene filters the input 
SNPEff-produced VCF file to exclude non-expressed calls based on the gene expression data 
obtained in the previous step. SNVs and in-frame INDELs are directly injected into the amino acid 
chain to produce the mutant sequence. Frameshift INDELs are translated downstream of the 
mutation event till a stop codon is found (or a user-defined threshold is reached). Events lying 
within 27, 30, and 45 bp of each other (for 9-mer-, 10-mer- and 15-mer-containing peptides 
respectively) are chained together into an “Immunoactive region” (IAR), or a  region that will 
potentially produce an immunogenic peptide. Separate mutation events that are combined into a 
single immunoactive region are phased using the RNA-Seq data to ensure that they truly are co-
expressed on the same haplotype. Fusion IARs are generated using the breakpoints present in the 
input BEDPE file. TransGene uses provided junction sequences or infers them from the input 
annotation file. The predicted IAR contains (n-1)*3 bp on either side of the fusion junction from 
each donor for each n in 9-, 10-, and 15mer. 
 
3.6 MHC:Peptide binding prediction 
The predicted neoepitopes are assayed against each of the MHCI (9- and 10-mers) and MHCII 
(15-mers) predicted to be in the patient’s HLA haplotype using the IEDB MHCI and MHCII 
binding predictions tools. 
 
The IEDB tools run a panel of methods (51-57) on each input query (input peptide fastq + MHC 
allele) and provides a consensus “percentile rank” that describes on average, how well each peptide 
is predicted to bind against a background set of 100,000 UniPROT derived peptides. Calls 
predicted to bind within the top 5% of all binders are selected for further study. The normal, 
unmutated (“wildtype”) counterpart peptide for each selected neoepitope is then also assayed 
against the MHC(s) identified to determine how well it binds, so that this can be compared to the 
binding affinity of the mutant version. 
 
3.7 Neo-epitope ranking 
Neoepitope:MHC calls are consolidated by the candidate IAR of origin. IARs are ranked using a 
boosting strategy (Supplementary Methods) that rewards candidates satisfying certain biologically 
relevant criteria including the number of calls originating from the IAR, the promiscuity of the 
region (i.e. the number of MHCs stimulated by peptides from the region), the combined expression 

                                                
2 Obtained from https://github.com/FusionInspector/ 
3 Hosted at https://github.com/arkal/Transgene 
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of the isoforms displaying a neoepitope-generating mutation, the number of neoepitopes in the 
region predicted to bind to an MHC better than their wildtype counterpart, and the number of 
events where a 10-mer and 9-mer subsequence of it both bind well to an MHC (only done for 
MHCI). The user can specify the weights for each of these criteria if they do not want to use the 
defaults. The user can specify how much a candidate is allowed to be boosted up within a range of 
0% to 55% (allowing the #1 position to be replaced by a better candidate). The algorithm conducts 
3 iterations over the table of candidates to provide a final ranked list of epitopes in the sample. We 
ran our samples prioritizing overlap and promiscuity (0.68 and 0.32 respectively) for MHCI calls 
and set each covariate to 0.2 (equally important) for MHCII calls. 

 
 
4 Results and Discussion 
We ran 3 experiments to demonstrate our pipeline. The first experiment was run on 326 samples 
from the TCGA PRAD cohort and highlights the scalability, efficiency and utility of ProTECT. 
We also identify recurrent IARs in the cohort (containing mutations that occurred in more than 
one case) suggesting possible public neoepitopes for PRAD. The second experiment compares 
ProTECT to the published SNV- and INDEL-based neoepitope prediction pipeline, PVAC-Seq. 
The third experiment compares ProTECT to the published fusion-based neoepitope predictor, 

 
Figure 2. Average runtimes on our cluster when ProTECT is run in a batch of ‘n’ samples. Each batch 
of size ‘n’ is run with 5 unique sample sets and the range of runtimes is described by the whiskers at 
each datapoint. The grey bar describes the result of running ProTECT on a single sample on one 
machine. ProTECT takes considerably less time on average when run in a large group. 
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INTEGRATE-Neo. In all experiments, ProTECT was run using a consensus of 2 out of 5 mutation 
callers (as described above) and using all TransGene fusion filters to remove inter-mitochondrial, 
inter-immunoglobulin, 5’ lincRNA, and transcriptomic readthrough events. Results were tabulated 
using a mix of python scripts and manual curation on a local machine. 
 
4.1 326 Sample run 
To describe the scalability, utility and efficiency of ProTECT, we ran ProTECT on a total of 326 
genomic trios from the TCGA PRAD cohort. We called a median of 79.5 SNVs and INDELs, and 
7 fusion genes per sample, and accepted 20 and 3 respectively for the production of IARs. We 
identified a median of 11 IARs per sample. Of the 326 samples, only 3 samples were predicted to 
have no IARs. These samples were observed to have no expressed non-synonymous mutations or 
filter-passing fusions. The entire metrics table is presented in Supplementary Table 1 and the 
results are submitted in Supplementary File 1. 
      
Figure 2 shows the results from running ProTECT with different batch sizes on our local cluster 
(See section Compute resources utilized). As the number of samples increases, we see an expected 
increase in overall time, but the average time per sample decreases drastically. We processed 
samples from end-to-end at a rate of 24.6 minutes per sample when running in a batch of 50 
samples. 
      
We detected the well-documented TMPRSS2-ERG fusion gene in 131 samples. We predicted at 
least one IAR each arising from 5 of the 10 unique breakpoints called (Table 1). Of the 5 
breakpoints that do not result in an IAR, 4 of these breakpoints are located in the 5’ UTR of 
TMPRSS2 and will not result in a neoepitope. The 5th  breakpoint has a 5’ intronic breakpoint and 
a 3’ exonic one, and the resulting neoepitope should contain the translated product from the last 
few bases of TMPRRS2 Exon 1 and the first bases after the de novo splice acceptor is reached in 
ERG. This case is not handled by TransGene at this time, and so no neoepitope call was made. 
One IAR of particular interest is DNSKMALNSEALSVVSED from the junction chr21:41498119-
chr21:38445621, which is found in 37 of the 48 unique samples harboring that junction (11% of 
the entire cohort).  Peptides from this IAR are predicted to bind well to HLA-A*02:01 (Allele 
Freq: 0.26) and HLA-C*07:01 (allele Freq: 0.17), alleles frequently seen in caucasian populations, 
which are highly represented in the TCGA cohort. Similarly, we predict SGCEERGAAGSLISCE 
from 22/35 samples with chr21:41507950-chr21:38445621, binding to C*07:01, C*04:01, 
B*44:02 (allele frequencies 0.14, 0.12, 0.08 respectively). The distributions of MHC alleles 
detected in patients harboring these events are shown in Supplementary Figures 1 and 2, 
respectively. These events are potentially viable candidates for public epitopes for patients with 
TMPRSS2-ERG, and could be pursued as vaccines for these cancers. 
 
We detected a number of recurrent mutations in the SPOP gene concordant with previous reports 
(28, 58, 59). We detected 7 unique recurrent variants across 19 samples that map to 3 different 
amino acid positions in the SPOP protein, p.F133C/V/I/L, p.F102C/V, and p.W131G (Table 2). 
The mutation at position 133 might be of immunological interest since Leucine, Isoleucine and 
Valine have small hydrophobic side-chains and may stimulate the same TCR depending on pMHC 
binding. Samples with SPOP mutations lack ETV family fusions, suggesting that vaccine therapies 
against SPOP and the TMPRSS2-ERG fusion would target different populations of PRAD 
patients. 
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An important topic to highlight are HLA haplotypes called by PHLAT (41). We compared our 
results to the POLYSOLVER (32) calls and consistent with prior work (60), we see that PHLAT 
miscalled HLA-A*02:01 as HLA-A*01:81 in 33 samples. However, 29 of these samples are 
predicted to be homozygous HLA-A*02:01 by POLYSOLVER so the effect of this miscall will 
be to add information to the final ranked IARS from one additional allele. Since most IARs contain 
peptides predicted to bind to more than one allele, the noise produced by this artifact should not 
adversely affect the scores generated via the signal from calls against the correct partners. The 
remaining 4 samples were predicted to be heterozygous HLA-A*02:01/HLA-A*01:01 via 

POLYSOLVER and ProTECT identified these samples as HLA-*02:01/HLA-A*01:81. This is 
slightly worse than the first case since we’re completely lacking HLA-A*01:01 peptide binding 
affinity predictions for all these samples. Overall, 67.5% of all samples had perfectly concordant 
haplotypes with POLYSOLVER, 28.8% differed by 1 allele and 3.7% differed by 2 (Figure 3). A 
large chunk of the second group consists of the miscalls mentioned above. ProTECT allows users 
to provide pre-computed MHC haplotype calls if they trust another external caller more than 
PHLAT, or if they have haplotype information from another source. 
 

 
Figure 3. HLA Haplotypes called by ProTECT (using PHLAT) are fully concordant with 
POLYSOLVER haplotypes in only 67.5% of samples. 28.8% differ by 1 call and 3.7% by 2 calls. A 
majority of the miscalled HLA-A alleles are a documented PHLAT artifact. 
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4.2 Comparison with published callers 
We ran ProTECT on the 8 melanoma samples from 3 patients (1 primary lymph node tumor each, 
and multiple metachronous tumors in 2 samples) (29) that were used to benchmark PVAC-Seq 
(23). Carreno et al. predicted 11-28 expressed, HLA-A*02:01 binding candidate peptides per 
sample and synthesized 7 unique peptide vaccines per patient based on presence of the mutants in 
the metachronous tumors, and assessed binding of the predicted peptide to HLA-A*02:01 in T2 
assays. 3 peptides per patient were found to induce an immune reaction. ProTECT correctly 
identified the expected immunogenic mutations in every reported mutation:sample pair. In some 
cases, ProTECT even predicted the expected variant in a metachronous tumor where the original 
paper missed it (E.g. CDKN2A:E153K in the Lymph Node of Mel-21) (Table 3). Overall, 
ProTECT ranked IARS containing the validated variants relatively highly (in the top 15-20%) 
except in Mel218. We cannot definitively comment on the ranking in Mel218 since ProTECT 
considers every mutant and MHC allele in the MHC haplotype, while Carreno et al. only 
considered a curated list of peptides against HLA-A*02:01. In addition to the validated variants, 
we also provided a larger ranked set of possible candidates that broaden the spectrum of testable 
epitopes. The data for all 7 tested peptides is provided in Supplementary Table 2 and all 
neoepitopes predicted by ProTECT in Supplementary Table 3 and Supplementary File 2.  
 
We compared our fusion prediction accuracy with  INTEGRATE-Neo (25). INTEGRATE-Neo 
was demonstrated on 321 samples from the TCGA PRAD cohort and at least 1 neoepitope was 
predicted from 161 samples. 240 of the 321 samples overlap with our 326 sample dataset and this 
subset was used for this experiment. None of the predicted neoepitopes in this study have been 
validated using any biological experiments. We first attempted to compare our fusions (called 
using STAR-Fusion) with the fusion calls generated from INTEGRATE (61). The overlap between 
the ProTECT and INTEGRATE calls was relatively low (595/1519, with 120 unique calls in 
ProTECT) but a large chunk of the non-overlapping calls were from events with 1 spanning read 
support in INTEGRATE(Supplementary Figure 3). We see a better overlap when we increase the 
minimum support to 2 (an internal metric within ProTECT), and also find that 44 events rejected 
for having 1 read support in INTEGRATE were detected by ProTECT with >1 read support. Some 
of the INTEGRATE-specific calls were picked up by ProTECT but filtered out as low quality 
events. We further noticed that the concordance between MHC haplotypes called by HLAMiner 
(62) (used by INTEGRATE-Neo), PHLAT (41) (Used by ProTECT), and POLYSOLVER (32) 
was very low (Supplementary Figure 4). 61 of the unique HLAMiner predictions across the cohort 
did not match any of the other two callers and 41 matched both. (Homozygous calls in a patient 
were treated as one call.) 2 alleles were shared exclusively between ProTECT and INTEGRATE 
and only 1 between INTEGRATE and POLYSOLVER. In order to conduct a more comparable 
analysis, we reran ProTECT with the INTEGRATE fusion calls and the MHC haplotypes from the 
INTEGRATE-Neo manuscript (182 neoepitopes from 720 fusions over 83 samples, 
Supplementary Figure 5). ProTECT rejected 100 of the 720 provided fusion events as 
transcriptional readthroughs (92) or for having a 5’ non-coding RNA partner (8). ProTECT 
correctly identified 139 neoepitopes as IARs and rejected the remaining for being in a rejected 
fusion (23), scoring below the 5% predicted binding score threshold (16), having a 5’ breakpoint 
in the UTR (3), or for having a 5’ non-coding partner (1) (Supplementary Table 4). On further 
inspection, we noticed that the 3 neoepitopes arising from the 5’ UTR breakpoints (TCGA-HC-
7080, PRH1>>RP11-259O18.4 and PRH1>>M6PR) could have been detected if the 5’ partner had 
been annotated with a different gene (PRR4) at the same locus (Supplementary Figure 6), an issue 
arising due to the differing gene annotation gtfs used between the methods (Gencode v25 for 
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ProTECT and Ensembl v85 for INTEGRATE). Interestingly, this type of event occurred in one 
other sample (TCGA-EJ-8474, C1QTNF3-AMACR>>NDUFAF2) however INTEGRATE called 
the overlapping call as well (AMACR>>NDUFAF2) and since the epitopes were identical from 
both, ProTECT picked them up under the correct call   (Supplementary Figure 7). The full set of 
results from running ProTECT on 83 INTEGRATE-Neo inputs is provided in Supplementary File 
3. Easing ProTECT’s 5% filter would increase the number of false positives called by too large a 
margin, so we stand by our decision to reject the 16 neoepitopes missed due to this filter. This 
experiment also highlights the modularity of protect, and it’s flexibility in accepting pre-computed 
inputs to run only the necessary steps to produce a ranked list of IARs. 
 
4.3 Reproducibility 
Every tool used the pipeline, from established aligners to the in-house script used to translate 
mutations, is wrapped in a Docker image (63). Docker allows a developer to wrap a piece of code, 
and any requirements, into an image that can be instantiated into a container on any other machine. 
The container is guaranteed to run in the same manner on any machine, under the same 
environmental constraints. This way, results from ProTECT runs on different machines will 
always be the same. 
 
4.4 Automation, Scalability and Efficiency. 
ProTECT is built to be run end-to-end without any user intervention. ProTECT is written in the 
Toil framework and will attempt to run the pipeline on the given input samples in a resource-
efficient manner. The pluggable backend Toil APIs allow protect ProTECT to run on a single 
machine, a grid engine cluster, or a mesos cluster setup on a local network or on AWS. Toil allows 
users to deploy scripts on Azure and the Google cloud as well, however ProTECT does not yet 
support these environments. 
 
Users provide ProTECT a config file that details the input files, and the various indexes and 
versions of tools to use during the run. ProTECT downloads the files to a “file store” and then 
spawns a graph of jobs for each input sample culminating in a ranked list of epitopes. The nodes 
in the graph are tuned to request an appropriate number of CPUs (for multithreaded jobs), memory 
and disk space. Toil ensures that these jobs are parallelized to the maximum extent.  
 
 
5 Conclusion 
We have described an efficient, automated, and portable workflow for the prediction of Neoepitope 
candidates that can guide Vaccine-based or adoptive T-cell therapies. We have shown that 
ProTECT scales well on a parallel processing environment and shows great efficiency gains as the 
number of samples processed in a batch increases. On average, we processed a sample from end-
to-end in 26.4 minutes when we ran 50 samples in a single batch on an 8-node cluster. We have 
shown that ProTECT is comparable to existing callers and improves on them by providing a ranked 
list of neoepitopes arising from SNVs, INDELs and fusion genes. None of the currently published 
pipelines give results for all three types of mutations. Positive results from a clinical trial were 
ranked highly in our results and we retrospectively picked up events missed by the caller (PVAC-
Seq) used to guide the trial. We identified recurrent epitopes arising from the well-documented 
TMPRSS2-ERG fusion and these results suggest a peptide vaccine could be developed for one of 
the common breakpoints. While designed for use in the rapidly growing fields of cancer vaccines 
and Autologous T-cell therapies, ProTECT can also be used to understand the link between tumor 
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mutational burden and response to checkpoint blockade therapies. It is our fervent hope that 
improvements in these fields will quickly establish neoepitope-targeted immunotherapies as 
standard-of-care for cancer treatment. 
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Table 1. Recurrent TMPRSS2-ERG breakpoints in the cohort. IARs from 21:41498119-
21:38445621 and 21:41507950-21:38445621 are recurrent suggesting their viability universal 
peptide vaccine candidates. We do not expect to see an IAR from fusions with 5’UTR breakpoints. 
*: TransGene cannot handle de novo splice acceptors. **: An Epitope will exist where the 
TMPRSS2 reads into the intron of ERG. ***: A frameshift is seen on the ERG side of the fusion. 
 
 

Breakpoint Count 5’ 
breakpoint 

3’ 
breakpoint 

Neoepitope 
Expected? IAR Count 

21:41508081- 
21:38445621 122 5’ UTR Exon 2 No NA  

21:41498119- 
21:38445621 48 Exon 2 Exon 2 Yes DNSKMALNS EALSVVSED 37 

21:41507950- 
21:38445621 35 Exon 1 Exon 2 Yes*** SGCEERGAA GSLISCE 22 

21:41508081- 
21:38474121 18 5’ UTR Intron 1 No NA  

21:41506445- 
21:38445621 18 Intron 1 Exon 2 Yes* NA  

21:41508081- 
21:38584945 11 5’ UTR 5’UTR No NA  

21:41498119- 
21:38474121 7 Exon 2 Intron 1 Yes** DNSKMALNS LNSIDDAQL 7 

21:41508081- 
21:38423561 7 5’ UTR Exon 3 No NA  

21:41498119- 
21:38423561 4 Exon 2 Exon 3 Yes*** DNSKMALNS ELS 1 

21:41494356- 
21:38445621 3 Exon 3 Exon 2 Yes*** SPSGTVCTS RSLISCE 3 
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Table 2. Recurrent mutants in the SPOP gene target 3 codons. The F133V/C/I/L mutant may be 
of interest as a universal neoepitope due to the similar chemical properties of Leucine, Isoleucine 
and Valine. 
 
 

Variant Count Gene Mutant IAR Frequency 

chr17:49619064A>C 5 SPOP p.F133V RFVQGKDWG V KKFIRRDFL 4 

chr17:49619063A>C 3 SPOP p.F133C RFVQGKDWG C KKFIRRDFL 2 

chr17:49619064A>T 2 SPOP p.F133I RFVQGKDWG I KKFIRRDFL 1 

chr17:49619062G>T 2 SPOP p.F133L RFVQGKDWG L KKFIRRDFL 2 

chr17:49619281A>C 2 SPOP p.F102C CPKSEVRAK C KFSILNAKG 2 

chr17:49619282A>C 3 SPOP p.F102V CPKSEVRAK V KFSILNAKG 3 

chr17:49619070A>C 2 SPOP p.W131G AYRFVQGKD G GFKKFIRRD 2 
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Table 3. ProTECT ranks on 8 Metachronous Tumors across 3 Melanoma patients [Hundal et.al]. 
Highlighted ranks describe instances where PVAC-Seq and ProTECT both call epitope. Green: 
Dominant epitope(existing immunity, neoantigen processed from endogenous protein), Orange: 
Subdominant epitope (immunity after vaccination, neoantigen processed from endogenous 
protein), Red: Cryptic epitope(immunity after vaccination, neoantigen not processed from 
endogenous protein). 
 

Sample and 
Source 

Mel 21 Mel 38 Mel 218 

LN Skin 
(2012) 

Skin (2013) Abdominal 
Wall Axilla LN Breast LN 

RNA 1 RNA 2 

Collection date 1/30/2011 5/10/2012 6/6/2013 6/6/2013 4/16/2013 4/19/2012 2/14/2013 4/4/2005 

Total Variants 1532 2140 1681 1679 1213 1121 1259 2176 

Actionable 
Variants 332 400 393 391 219 216 224 449 

Total IARs 105 137 114 116 73 80 86 155 

Vaccine 
Candidates 

with ProTECT 
ranks 

NDC1:F169L (Reported as TMEM48 
F169L) SEC24A:P469L EXOC8:

Q656P 

4 5 10 3 8 9 2 152 

TKT:R438W AKAP13:Q285K PABPC1
:R520Q 

6 6 4 4 14 80 17 140 

CDKN2A:E153K OR8B3:T190I MRPS5:
P59L 

21 - 18 17 11 13 14 26 
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