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Abstract. The adaptive immune system is a dynamical, self-organized multiscale system that
protects vertebrates from both pathogens and internal irregularities, such as tumours. For these
reason it fascinates physicists, yet the multitude of different cells, molecules and sub-systems is often
also petrifying. Despite this complexity, as experiments on different scales of the adaptive immune
system become more quantitative, many physicists have made both theoretical and experimental
contributions that help predict the behaviour of ensembles of cells and molecules that participate in
an immune response. Here we review some recent contributions with an emphasis on quantitative
questions and methodologies. We also provide a more general methods section that presents some
of the wide array of theoretical tools used in the field.
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I. INTRODUCTION

The role of the immune system is to detect po-
tential pathogens, confirm they really are undesirable
pathogens, and destroy them. The goal is in principle
well defined. However recognizing molecular friends from
foes is not easy, and organisms have evolved many com-
plementary ways of dealing with this problem. Immu-
nologists separate the molecularly non-specific response
of the “innate” immune system, which includes every-
thing from scratching to the recognition of protein mo-
tifs characteristic of bacteria, and the molecularly specific
“adaptive” response, by which specialized cells recognize
evolving features of never encountered before pathogens.
From another angle we can consider different ways of de-
stroying a pathogen: either swallowing pathogens whole,
which is done by cells of the innate immune system called
neutrophils and macrophages; or killing our own cells
that have been infected by a pathogen or are tumourous
— as performed by representatives of the adaptive im-
mune system called killer T-cells. Alternatively, the
adaptive immune system produces specialized molecules
called antibodies that smother the invader: they attach
to pathogens to prevent them from entering cells and
multiplying; they bind to bacterial toxins, thereby dis-
arming them; or they bind directly to bacterial cells,
flagging them for consumption by macrophages.

That short overview gives us an idea of the many
strategies that both pathogens and the host organism
have at their disposal (Fig. 1). Pathogenic cells (a bac-
teria, virus, or a tumour cell) are programmed to divide.
The immune system is there to prevent this. To a large
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extend, its main challenge is to recognize the unknown.
Pathogens are constantly evolving to escape recognition
by the immune system. Although the host organism does
have a certain list of “warning sign features,” most of
which are taken care of by the innate immune system, it
is up against a large set of constantly moving targets —
as illustrated in our everyday experience by the evolving
influenza virus, which requires a new vaccination every
year. For this reason, the strategies developed by the
immune system are mostly statistical, and require multi-
ple interactions between different types of cells, a lot of
checks and balances that leads to a multiplicity of time
and length scales (Fig. 2). Despite this complexity, the
immune system works remarkably reliably. How do these
interactions on many scales dynamically come together
in a self-organized way to build a complex sensory system
against a high dimensional moving target? This review
breaks this high level question into smaller problems and
presents some results and concepts contributed by physi-
cists. It also presents a summary of the current meth-
ods, experimental and theoretical, used in the field. We
do not shy away from the biology of the immune sys-
tem, but to help the physicist navigate the complexity
of immunology, biological details will be introduced as
we go along. For an introduction of the immune system
for the non-specialist, we refer the reader to the short
but excellent book by Lauren Sompayrac [1]. This re-
view does not aim to be exhaustive, but rather focuses
on the important physical concepts of immune function,
reducing biological complexity to a minimum whenever
appropriate.

From an evolutionary perspective, all organisms have
some form of protection. Bacteria protect themselves
from viruses through specific CRISPR (Clustered Reg-
ularly Interspaced Short Palindromic Repeats)-Cas, or
unspecific restriction modification systems. The innate
immune system is shared by many animals, and is largely
similar between us and flies. The adaptive immune sys-
tem evolved in jawed vertebrates and also has changed
little between fish and mammals. Plants also have a well-
studied innate system, and have recently been shown to
have elements of adaptive immunity. Immunity is there-
fore a basic element of life. However the details of its
implementation and spatial organisation scale with the
organism.

Burnet’s clonal selection theory [2], built on previous
observations and ideas [3–5], provides a theory of the
adaptive immune system in the same sense that Dar-
win’s theory provides a theory or framework for evo-
lution. Burnet’s theory states that molecules of the
pathogens stimulate specific B and T lymphocytes (cells
of the adaptive immune system) among a pre-existing
ensemble of possible cells, which leads to proliferation of
this specifically selected clone. Molecules thus recognized
are called antigens. It explains the diversity and speci-
ficity of the adaptive immune system, also highlighting
its adaptive nature. The framework is often summarized
in four assumptions: (i) each T and B lymphocyte cell

P
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FIG. 1. The many scales of the immune system. The
immune system works at many scales from the molecular of
receptor-protein interactions, gene regulation, activation of
biochemical pathways, to the cellular of cell-to-cell communi-
cation directly and through signalling molecules, and organ-
ismal level responses using cells of the innate and adaptive
immune systems, to the population level where global viral
evolution drives the co-evolution of immune systems of differ-
ent individuals.

has one type of receptor; (ii) receptor-antigen binding is
required for cell or receptor proliferation; (iii) offspring of
the stimulated cell have the same receptor as their par-
ents; (iv) cells that have receptors that recognize the or-
ganism’s self molecules (self-antigens) are removed early
in their development. The theory was validated by show-
ing that B-cells always produce one receptor [6] and later
by experiments showing immunological tolerance to fac-
tors introduced in the embryonic period or immediately
after [7, 8]. Burnet’s theory provides an incredibly suc-
cessful framework to understand the adaptive immune
system, yet it is not a quantifiable theory that can be
tested against concrete measurements. While what re-
mains to be “filled in” may seem like details, these de-
tails still provide a lot of puzzles and uncertainties, also
at the conceptual scale. In this review, we present certain
examples of quantified ideas that have recently emerged.

We also present some (albeit not all) of the quantita-
tive puzzles, starting from the smallest molecular (sec-
tions II and III) and cellular (sections IV and V) scales
and moving to the organismal (sections VI, VII and
VIII) and population wide (section IX) scales. How do
cells discriminate between self and non-self in such an
exquisite way integrating processes taking part on many
timescales (section III on antigen discrimination)? How
do cells communicate and coordinate to orchestrate the
immune response as a collective phenomenon (section IV
on cytokines)? How do cells adopt specialized pheno-
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FIG. 2. Placing immune processes in length and
timescales. The timescales of immune interactions cary from
seconds to years, and the scales from 10−10m for molecular
interactions to thousand of kilometers for pathogen evolution

types through cell differentiation to span the range of
functions they must fulfil (section V on cell fate)? How
does the system cover the space of possible specificities al-
lowing for complete protection against the unknown (sec-
tion VI on repertoires)? How does the immune system as
a whole adapt to the changing environment (section VIII)
and how does it influence virus evolution (section IX)?

This review covers a lot of topics, many of them con-
nected. We try to mention these connections, however
we have tried to make the sections stand alone and the
reader does not have to (and probably should not at-
tempt to) read them all at once, or in the presented or-
der. At the end we include a glossary of the biological
terms (section XI) to help navigate the immunological
terminology. Detailed appendices (Sec. XII) present gen-
eral methods that are used in physical immunology as
well as other fields.

II. PHYSICAL CHEMISTRY OF
LIGAND-RECEPTOR INTERACTION:

SPECIFICITY, SENSITIVITY, KINETICS.

Our exploration of the immune system starts at the
molecular scale, through the binding of ligands and re-
ceptors expressed at the surface of immune cells. Ligands
carry information about the pathogenic threat and can
be of two types: antigens, i.e. bits of proteins that are
recognized by the immune system; and cytokines, which
are small molecules secreted by immune cells to commu-
nicate with each other about their current state and ex-
perience. Binding events between these ligands and their
cognate receptors provide the raw signals that cells must
interpret to adapt their individual and collective behav-
ior, eventually mounting an immune response in the case
of recognition.

All immune decisions start with the classical physical
chemistry of ligand–receptor interactions:

Ligand + Receptor
kon



koff

Complex −→ Activation (1)

This extremely simple reaction leads to strong limits
on how fast signals can spread in the immune system
(and in biological systems in general), which in turn
allows us to discriminate possible regulatory scenarios.

This constraint stems from physical-chemical limits on
the parameters of these reactions, typically in the pi-
comolar to millimolar range for the equilibrium dissoci-
ation constant KD = koff/kon (we recall that 1nM =
10−9mol/L = 10−24NAvogadroµm

−3 ≈ 0.6 molecules per

µm3, with NAvogadro ≈ 6 ·1023mol−1). In this section, we
discuss the physical considerations leading to estimates
of the biochemical rates driving in these reactions. Such
a discussion of the physical chemistry of ligand-receptor
interactions is necessary to understand key quantitative
aspects of immune activation, as well as discrimination
between self and non-self antigens by B & T cells (as we
will discuss in Sec. III).

A. Diffusion-limited reaction rates

The basic laws of physical kinetics [9] can be used
to obtain an estimate of the diffusion-limited rate of
molecular association (see Sec. XII A 1 for a derivation):
kon ≤ kdiffusion, with

kdiffusion = 4π (RLigand +RReceptor) (DLigand +DReceptor) ,
(2)

where RLigand and RReceptor are the radii of the ligand
and of receptor binding pockets (both assumed spheri-
cal), whileDLigand andDReceptor are their diffusion coeffi-
cients. Since the receptor in Eq. 1 is usually embedded in
the lipid bilayer of an immune cell, we can assume it is rel-
atively immobile compared to its ligand L, which diffuses
more rapidly in the extracellular medium or in the cyto-
plasm, DReceptor = Dmembrane � DLigand = Dsolution.

The ligand’s diffusion coefficient can be estimated from
Stokes-Einstein’s formula:

DLigand = Dsolution =
kBT

6πηRLigand
≈ 300µm2s−1 (3)

for a small ligand of size RLigand = 1nm, diffusing in
extracellular medium (whose viscosity is given by that
of water, η = 0.7mPa · s), at body temperature T =
310K with Boltzmann’s constant kB = 1.38 · 10−23J/K).
Then, from Eq. 2, assuming a small target (RReceptor �
RLigand), we obtain:

kdiffusion = 4πRLigandDLigand =
2kBT

3η
≈ 2 · 109M−1s−1.

(4)
Eq. 4 gives a general upper bound for any ligand-receptor
association rate, whether it is immunological or not. This
limit is conceptually equivalent to the speed of light (al-
though clearly not as fundamental).

Yet, there are examples when ligand-receptor associa-
tions between two small proteins seem to “beat” this dif-
fusion limit: kon > kdiffusion [10]. Such an apparent para-
dox can be resolved when considering the limiting step
for this association. If the ligand interacts weakly with a
large object, (e.g. the entire plasma membrane of a cell,
DNA coils), inducing directed diffusion in a constrained

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 28, 2019. ; https://doi.org/10.1101/696567doi: bioRxiv preprint 

https://doi.org/10.1101/696567


5

space before reaching its specific targets [11, 12], this
pre-equilibration step implies that the cross-subsection
of the object our ligand needs to hit can be much larger.
The diffusion molecules then can “hop” around these
non-specific binding sites to accelerate their search for
the specific binding sites. In these cases, the effective
RReceptor of collision is the macroscopic scale associated
with the large object of weak/non-specific interactions
(5µm for cells, > 0.1µm for DNA coils), hence, an ap-
parent increase in the rate of collision according to Eq. 2.
A careful calculation (see e.g. [13]) yields the appropriate
bound.

The diffusion coefficient will be slowed down for larger
macromolecular complexes, and for molecules diffusing
inside the cells (there, the apparent viscosity can be
increased by 10-fold). Additionally, when considering
biomolecules embedded within cell membranes, one must
take into consideration the dramatically increased vis-
cosity that leads to slowed-down diffusion for receptor
proteins on the surface of immune cells (Dsolution ≈
200µm2/s vs Dmembrane ≈ 5µm2/s for a typical protein
of radius 2nm). For this reason, when considering a sol-
uble protein interacting with proteins embedded within
the plasma membrane of immune cells (e.g. extracel-
lular cytokines being captured by a cytokine receptor,
intracellular enzymes –such as kinases or phosphatases,
that catalyze the phosphorylation/dephosphorylation of
proteins– interacting with an activated receptor, etc.),
the diffusion of the membrane proteins is so small
(Dmembrane � Dsolution), than it can be neglected and

kdiffusion = 4π (RLigand +RReceptor) (Dsolution) . (5)

B. Extrapolating collision rates in solution to
association rates in the physiological context

While the rate of collision calculated above is an upper
bound to the association rate, a very important limita-
tion must be taken into account: not every molecular
collision will lead to their association, and we must es-
timate the probability of a successful association event.
This probability is given by Arrhenius’s law:

kon = kdiffusione
−∆Gassociation/(kBT ), (6)

where ∆Gassociation is the free energy barrier (entropic
and enthalpic) that molecules must overcome to asso-
ciate.

The estimation of ∆Gassociation is tricky as it requires
a deep structural understanding at the atomic level
of the entropic, energetic and conformational changes
associated with bond formation between two large
biomolecules. For the entropic contribution, one rule of
thumb is to estimate the numbers of degrees of freedom
constrained by the association between biomolecules:
simply aligning two biomolecules (in rotation or in trans-
lation) incurs an entropic cost of at least 6kBT , reduc-
ing the probability of association of each collision by

e6 ∼ 400. Hence, the basal association rate (before
taking into account more subtle molecular constraints)
is ∼ 5 · 106M−1s−1 rather than the ∼ 2 · 109M−1s−1

estimated in Eq. 4. Additional corrections should be
made for each pair of biomolecules (as we will discuss
in Sec. II C 4).

C. Rates and numbers in the physiological context

1. Association rates

The formula in Eq. 2 is particularly useful in the con-
text of quantitative immunology, when one must estimate
the kinetics of molecular interactions in different context
(solution, intracellular cytoplasm, surface plasma mem-
brane etc.). Most kinetic parameters for biomolecular
interactions are measured in solution, as experimental-
ists routinely purify ligand–receptor pairs and test their
interactions in their soluble form (e.g. by calorimetry or
by surface plasmon resonance – in the latter case, one
molecule must be immobilized). Such measurements can
be used to estimate the hard-to-predict activation bar-
rier ∆Gassociation for molecular association by inverting
Eq. 6, using the measured in vitro kon, and the esti-
mated kdiffusion. Eq. 2 can be used to rescale the viscosity
η and cross-section RLigand + RReceptor of molecular in-
teractions in such a way that one can translate soluble
measurements into physiologically relevant parameters.

2. Dissociation rates

As discussed below, immunological interactions span
the range of very short lived interactions, koff > 10 s−1 or
τoff = (koff)−1 < 0.1 s for antibody binding to its target
in the initial phase of an immune response, to extremely
long-lived interactions, koff < 10−4s−1 or τoff > 3 hours
for cytokines interacting with their receptors. These esti-
mates set a huge range of time scales the immune system
must deal with, even before taking into consideration de-
lays in cellular responses and how these affect the lig-
and environment on time scales ranging from hours to
days. These considerations form the crux of the matter
for quantitative immunology at the cellular scale: while
the physical chemistry of ligand-receptor interactions is
straightforward, the immune system builds a response of
devilish complexity from such elementary interactions.

3. Numbers of receptors per cell

In some situations, such as in T cell antigen recog-
nition, where both the T cell receptor and the antigen
exist in a membrane-bound form. All dynamics of inter-
actions must be estimated taking into account the surface
concentrations of molecules, with proper adjustment for
slower diffusion in the association rates.
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One often measures the number of receptors per cell
#Rcell, e.g. by assessing the number of cytokine recep-
tors on the surface of cells using quantitative flow cy-
tometry, while the ligand is provided in soluble forms,
as is the case with cytokines. In this case, one must
estimate the solution-level concentrations of available re-
ceptors [R]total in the reaction volume V :

[R]total =
#RcellNcell

VNAvogadro
, (7)

where Ncell is the number of cells in volume V . For ex-
ample, the effective “concentration” of receptors binding
the IL-7 cytokine within a lymph node can be estimated,
knowing that each of 107 T cells within this 50 µL volume
express 103 receptors:

[IL− 7R]total ≈ 3 · 10−10M = 300pM, (8)

while KD = 10−11M = 10pM for IL-7 binding to its re-
ceptor. Hence [IL− 7R]total � KD and any secreted IL-7
will rapidly be captured by the cells within a lymph node.
The high density of receptors and cells within lymphoid
tissues makes for an interesting regime of competition
for soluble ligands, as discussed below (Sec. IV). Such
normalization by the Avogadro number, while straight-
forward, is of critical significance in many immunological
configurations, as one must bridge the molecular scale
of immune agents (cytokine secretion and consumption)
with the functional scale of the system, where competi-
tion between cells for soluble ligands takes place.

4. Typical binding rates and some biology

We summed up above the basic and general physical
chemistry that drives the molecular association and dis-
sociation of molecules in order to delineate key quantita-
tive parameters in immunological regulation. The precise
values of these rates is in fact crucial for the immune sys-
tem to recognized pathogens.

At its core, the immune system can be considered as
a collection of cells, called leukocytes, whose activation
registers the presence of “new” molecules — lipid and
nucleic acid signatures of viral and bacterial infection for
the innate system, or unknown proteins and peptides for
the adaptive immune system — and translates into a
defensive response — secretion of neutralizing antibodies,
killing or phagocytosing of infected targets, etc.

In the innate immune system, non-self recognition is
encoded in the structure of the ligand and the recep-
tor. Monocytes, macrophages, dendritic cells, and Mast
cells are endowed with genome-encoded receptors called
Toll-Like Receptors whose ligands are non-mutable ele-
ments of pathogens — peptidoglycans and liposaccha-
rides from the membrane of bacteria, CpG unmethy-
lated dinucleotides derived from viruses. Recognition of
non-self in that case is a “simple” lock-and-key propo-
sition whereby pathogenic ligands engage the receptors

and trigger a signaling response that activate innate re-
sponses. Hence, for the innate immune system, self vs.
non-self discrimination is hard-wired at the molecular
level and gets triggered in the early moments of an im-
mune response.

The adaptive immune system offers a more challenging
issue. Each B and T cell clone expresses its own unique
receptor (and one only), whose assembly is driven by ran-
dom events (described in detail in Sec. VI and Sec. VIII).
The ligands of these random receptors, which are called
antigens, are not pre-determined — in fact, they may
not even exist at the time of birth of the organism, if
for instance they are derived from fast evolving strains
of viruses. Understanding how the binding and unbind-
ing rates of such ligand-receptor pairs contribute to self
vs. non-self discrimination is one of the core issues in
quantitative immunology. Here we give some orders of
magnitude of the binding rates to be discriminated.

B and T cell differ fundamentally by the type of
antigenic ligands they interact with. T-cell receptors
(TCR) interact with their antigen on the surface of
antigen-presenting cells, which they scan for anomalies.
These antigens are complexes which include a short pep-
tide (around 10 amino acid-long) produced within the
antigen-presenting cells by chopping up larger proteins
expressed by the cell, either from the genome or from
foreign pathogens. Each peptide is loaded onto a large
protein called the Major Histocompatibility Complex
(MHC), forming a peptide-MHC (pMHC) complex. By
contrast, B cell receptors (BCR) bind directly to pro-
teins. The exact position where the binding occurs is
called an epitope. Antibodies are soluble versions of the
BCR with the same antigenic specificity, and also bind
directly to the pathogen proteins to neutralize them.

The affinity of antibodies (produced by B-cells) are
highly variable. At the onset of an immune responses, B-
cells express and secrete Immunoglobulin M (IgM), which
is a pentamerized version of antibodies whose affinity for
the target is weak (KD > 10µM): the ability of secreted
IgM to bind to pathogens and guide them towards erad-
ication is then driven by the multimeric interaction of
IgM with its target. Upon engagement of the adaptive
immune response, the interplay between T-cell help and
B-cell somatic hypermutation drives the maturation of
antibody affinity (see Sec. VIII). At this point, B cells
increase the affinity of the antibody they express (down
to KD < 1nM) and switch the class of antibodies from
IgM to IgG i.e. from a pentameric version to a monomeric
version that does not require as much multimerization of
the antibody to bind to their target. Such decrease in
KD and increase in affinity is not driven by better asso-
ciation rates: IgM binds to their target with typical kon

around 106M−1s−1 – similar to IgG. kon is essentially
driven by the collision rate and the contribution of the
energetic barrier in the association rate is very limited.
Instead, the improvement afforded by affinity maturation
is driven by a better fit between antibody and antigen,
resulting in a lower koff .
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In the case of T-cell antigen discrimination, the differ-
ence between ligands that will or not activate the immune
response is extremely sensitive. Some peptides can elicit
a robust activation with a single pMHC molecule, while
mutated versions of this peptide differing by just a sin-
gle amino-acid are unable to trigger T cells even in large
quantities (> 106). The striking feature in T-cell biology
is that a single mutation in the peptide of the pMHC
only has a marginal effect on koff , while greatly impact-
ing its functional capacity to activate T-cells [14, 15]).
Experimentalists can measure the biophysical character-
istics of pMHC–TCR interactions in solution, either by
surface–plasmon resonance on soluble pMHC interacting
with surface–immobilized TCR, by directly observing the
surface of cells using single-molecule imaging and fluores-
cence energy transfer, or by measuring mechanical forces
(see Sec. III A 3). Typically, an agonist ligand, defined
as a pMHC that will elicit an immune response, binds
to their TCR with τoff ∼ 1 − 10s, while non-agonist lig-
ands bind with timescales that are at least 3-fold shorter
(from 0.3 to 3 s), although this varies according to the
particular TCR, and also depends on the MHC class (of
which there are two, as we will see later). This rela-
tively small difference in binding results in a large fold
change (≥ 105) in response, regardless of the concentra-
tions. Understanding how cells can perform such sensi-
tive discrimination is a major challenge of quantitative
immunology, which we will discuss in detail in Sec. III.

D. Receptor-antigen specificity

T- and B-cell receptors do not interact as set of locks
and keys matched to each other. Instead, each receptor
can bind many different possible ligands, and vice-versa.
Here we discuss numbers, data, and models that charac-
terize this many-to-many mapping.

1. Cross-reactivity

Despite the huge diversity of BCR and TCR (reviewed
in Sec. VI), the diversity of antigens may be even greater.
While such an estimate is difficult for BCR epitopes, a
rough estimate of the number of antigens can be obtained
for peptide-MHC complexes. For each of the two MHC
classes that exist, only a few (∼ 5%) percents of pep-
tides can be presented on any of the 6 MHC genes ex-
pressed in an individual. For peptides of length 12, this
amounts to 0.05 × 2012 ≈ 2 · 1014 antigens. While this
might be a manageable number for humans, who har-
bor ∼ 1012 B and T cells, this is not by mice, who have
∼ 108 such cells, and this could be an issue even for hu-
mans for longer peptides. This argument led Mason [16]
to conclude that each TCR and BCR must be able to
recognize more than one antigen, a phenomenon called
cross-reactivity or polyspecificity. Cross-reactivity has
a less discussed counterpart, which is that each antigen

must be recognized by a large variety of receptors. If
there are N antigens, each of which can be bound by k
receptors, and R distinct antigen receptors, each of which
can recognize ` antigens, then one must have Nk = R`.
To fix ideas, the ratio p = `/N = k/R, the probabil-
ity that a random antigen and receptor bind together, is
thought to be around 10−5 [17].

It should be emphasized that finding the sequences of
binding pairs of antigens and lymphocyte receptors re-
mains an essentially experimental question, which has
received renewed attention lately thanks to the reduced
costs of sequencing allowing for high-throughput binding
or functional assays [18–21]. However, despite increas-
ing amounts of data on these binding pairs compiled in
useful databases [22, 23], and current attempts to lever-
age these data to make prediction using modern machine
learning techniques [24–26], there exists no good predic-
tive model of antigen-receptor specificity. Therefore, the
binding models presented in the next paragraph should
be viewed as useful toy models for investigating broad
properties of cross-reactivity.

2. Models of receptor-antigen binding

The recognition process of antigens by immune recep-
tors is based on molecular interactions between the two
proteins: the receptor protein and the antigen, which can
be summarized by KD = c0e

∆G(a,r)/kBT , where ∆G(a, r)
is the interaction free energy of binding between anti-
gen a and receptor r, and c0 a constant. This energy
may be modeled as a string matching problem [27]. In
such toy models, each interaction partner is decribed by
a string of length N representing the interacting amino
acids. The binding energy between these two specific in-
teraction partners is assumed to depend additively on the
interaction between pairs of facing amino-acids:

∆G(a, r) =

N∑
k=1

Jk(ak, rk), (9)

where the interaction matrix, Jk(ak, rk) is an q×q, where
q is the size of the space that defines the variabilty of
residues at each position. If we describe each residue as
one of the q = 20 amino acids, we need to define an amino
acid interaction matrix. The Miyazawa-Jernigan matrix
[28] was used in such a model to suggest that thymic
selection favors moderately interacting residues in TCR
[29], or more recently to study the effect of thymic se-
lection on tumor antigenic peptides [30]. The maximum
affinity of a receptor to a large set of antigens, which plays
a key role in thymic selection (Sec. VI C), is amenable to
a statistical mechanis analysis of extreme value statistics
[31, 32], leading to universal features that are robust to
the details of the models.

Alternatively, reduced models have been considered,
where each residue is defined using a projection that at-
tempts to capture the main biophysical and biochemical
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properties in a generalized “shape space” [33]. In the ini-
tial string model [34], ak and rk were bounded natural
integers, and Jk = ak⊕rk, where ⊕ is the exlusive OR op-
erator acting on each digit of the binary representations
of ak and rk. This choice was motivated by algorithmic
ease rather than biophysical realism. These models were
used by Perelson and collaborators to investigate the ef-
fect of thymic selection [34, 35] or the immune response
[27].

A more drastic reduction is to binarize the antigen: for
each epitope position, the amino-acid is defined either as
the one present in the viral wild type (ak = 1) or another
one (a mutant, ak = −1) [36]. The selective pressure ex-
erted by each receptor, which acts as a “field” on ak, was
drawn as a number rk from a random continuous distri-
bution, which reduces the model to Jk(ak, rk) = rkak.
In [36], it was additionally assumed that certain posi-
tions of the viral epitope were constrained to take the
wildtype value, ak = 1 for k > M , because of strong con-
servation at these sites. A similar description in terms
of binary strings [37] assumes both the viral epitope and
BCR to be binary strings (ak = ±1, rk = ±1), with
a fixed interaction strength, Jk(ak, rk) = κkrkak, with
again conserved viral positions k > M for which ak = 1
is imposed. Within this description a mismatch between
the receptor and the viral “spins” induces an energy
penalty. The convention is such that smaller energies
imply stronger binding and better recognition. Similar
models have been used recently for co-evolution of BCR
and HIV [36, 37], the results of which we describe in de-
tail in subsection VIII.

3. Data-driven receptor-antigen binding models

To go beyond the toy models described above, one
must experimentally map out the binding energies be-
tween specific pairs of antigens and receptors. This
can be done in a massively parallel way using high-
throughput experiments assaying the binding affinity of
many pairs in single experiments. Such an approach was
applied to a deep mutational scan experiment reporting
the dissociation constant, KD, of a large number of anti-
body variants against a fixed antigenic target, fluorescin
[19].

The simplest model assumes an additive contribution
of each residue to the binding free energy E(a, r) =
ln(KD/c0) as in (9), but with Jk(ak, rk) = hk(rk) fixed
to a single value of the antigen a. However, statistical
analysis shows that such an additive model is not able
to capture all the variability in the binding energy, ac-
counting for less than 2/3 of the variability in double and
triple mutants. Epistasis, defined as non-additive effects,
accounts for 25−35% of variability in the binding energy
between antibodies and the antigen and a large fraction
of the epistasis was found to be beneficial [38].

Non-additivity in the binding energy is likely to be a
general feature of both TCR and BCR. More sophisti-

cated models including intra-protein or higher-order in-
teractions will be needed to accurately predict receptor-
antigen affinity. Ultimately, it would be interesting to
reconcile the useful picture of an effective binding shape
space with affinity landscapes inferred from data. A ma-
jor roadblock is that most current experimental tech-
niques only allow for varying one element of the receptor-
antigen pair, either testing a library of receptors against
a fixed antigen, or a library of antigens against a fixed
receptor [18]. Full characterization of the binding land-
scape would require new methods to test double libraries
of antigens and receptors in an ultra-high-throughput
manner.

4. Modeling immunogeneticity

Rather than modeling the full details of the TCR-
antigen interaction, an alternative strategy is to focus on
the immunogenic potential of particular antigens, with-
out explicitly modeling the TCR. Such an approach was
followed to predict the response of cancer patients to
immunotherapy. The prediction is based on the knowl-
edge of the pMHC antigens presented by the tumor cells,
called neo-antigens [39]. To estimate the ability of a
neoantigen a to be recognized by the TCR repertoire,
a score was calculated to evaluate its similarity to a
database D of antigens known to elicit an immune re-
sponse:

S(a) =
∑
a′∈D

eksa,a′ , (10)

where sa,a′ is the alignment score between the neoantigen
a and antigens a′ from the database, and k an adjustable
parameter. The immunogenicity of a is then predicted
to be:

I(a) =
S(a)

S0 + S(a)
. (11)

This quantity was combined with the likelihood A(a)
that neoantigen a is presented by class-I MHC (predicted
by a neural network model [40]) to form a global score
−I(a)A(a). With its minus sign, this score reflects the
fitness of the tumor cells carrying antigen a. These scores
were found to be predictive of patient survival after im-
munotherapy.

While this similarity-based approach holds great
promise for generally predicting the immunogeneticity of
antigens, further tests are needed to validate the method
for broader use. The link between survival and TCR
recognition is indirect, and is complicated by the fact
that many neoantigens and tumor clones are involved.
Direct functional tests of the immune response against
libraries of antigens would help consolidate the founda-
tions of this approach.
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III. ANTIGEN DISCRIMINATION

We now move to the cellular scale, and describe how
the signal propagates in minutes from antigen-receptor
binding to biochemical networks, allowing for fine antigen
discrimination. We leave to a later section the discussion
how this signal is later integrated to make decisions about
cell fate and response on timescales spanning hours to
days (Sec. V).

A. T cells

1. Kinetic proofreading for ligand discrimination

To model T-cell antigen discrimination, we remain
within the quantitative parameters of the “lifetime
dogma,” in which the lifetime τoff of TCR-pMHC is the
sole determinant of the discrimination process. While
this dogma was derived from the biophysical measure-
ments on TCR/pMHC interactions [15], as any dogma
it must be revisited regularly for exceptions and refine-
ments. For example, recent studies in the mechanics of
TCR triggering have highlighted a new mode of signal
initiation, as we shall discuss in Sec. III A 3.

Upon engaging their pMHC ligands, T-cells trigger
a cascade of phosphorylation events, which consist of
adding phosphoryl groups to conserved residues of TCR-
associated chains. The phosphorylations in turn trigger
other reactions, ultimately activating transcription fac-
tors that modulate gene regulatory responses.

Decision making relative to antigen discrimination can
thus be modelled at the phenomenological level by the
state of phosphorylation. We assume that, when the
TCR complex has accumulated a certain number of phos-
phoryl groups NP, it flips a digital switch (to be specific,
the activation of the NFAT or ERK molecules [14]) which
defines the onset of T-cell activition.

One of the first quantitative models that tackled the
exquisite specificity of antigen discrimination during T
cell activation was proposed by McKeithan in 1995 [41],
building upon the classical kinetic proofreading (KPR)
scheme proposed by Hopfield and Ninio in the context
of protein translation [42, 43]. Upon binding its lig-
and, TCR progresses through the different steps of the
cascade, controlled by a phosphorylation rate kP and a
de-phosphorylation rate kdeP (Figure 3: A). A key as-
pect of the kinetic proofreading is that, at each step, it
is assumed that the complex is de-phosphorylated into
unoccupied receptors upon ligand unbinding: this is a
reasonable assumption because the CD45 phosphatase
— the enzyme that removes phosphoryl groups from the
TCR complex — prevents rebinding of TCR by the anti-
gen due to its large size, thus ensuring complete de-
phosphorylation before the next binding event. A con-
sequence of this resetting upon unbinding is that anti-
gens forming short-lived complexes with the TCR will

typically only accumulate a small number of phospho-
ryl groups, below the threshold NP necessary to acti-
vate the immune response, while long-lived complexes
can progress more deeply through the phosphorylation
cascade.

Neglecting dephosphorylation (kdeP � kP, koff), the
number of pMHC–TCR complexes Ci that accumulate i
phosphorylations scales with i as [41]:

Ci = C0

(
kP

kP + koff

)i
. (12)

At steady state, the total number of complexes, Ctotal =

C0

∑Np
i=1 Ci, is given by a second-order equation describ-

ing the balance between the rate of binding between free
antigens and free receptors, kon/(V.NA)(L− Ctotal)(T −
Ctotal), where L is the total number of antigens, T the
total number of TCR, V the volume, NA –the Avogadro
number, and the rate of unbinding events, koffCtotal. In
the limit when TCR are not limiting, Ctotal � T , this
balance yields the total number of complexes [44]:

Ctotal ∼
(kon/(VNA))TL

koff + (kon/(VNA))T
. (13)

Further assuming a relatively slow phosphorylation
rate, kP � koff , the number of fully phosphorylated com-
plexes CNP scales as ∝ konLk

−NP

off = Lkonτ
NP

off as a func-
tion of the antigen characteristics — concentration L and
binding affinity τoff . This scaling shows how alterations
in the pMHC ligand impacting τoff will get amplified into
large differences in the amount of phosphorylation accu-
mulating on the TCR:

CNp
(agonist)

CNp
(non− agonist)

=

(
τoff(agonist)

τoff(non− agonist)

)Np
. (14)

In other words, kinetic proofreading “reads off” the
lifetime of the pMHC–TCR complex and amplifies dif-
ferences in the output. As with the original KPR scheme
of Hopfield and Ninio, this amplification implies energy
expenditures caused by the phosphorylation steps. Struc-
turally speaking, the TCR complex contains 20 phospho-
rylation sites (specifically, tyrosine residues), which can
potentially participate in the kinetic proofreading cas-
cade. This means that NP can be as large as 20, and
a two-fold change in pMHC–TCR lifetime could be am-
plified into a 220 ≈ 106 fold difference in the number
of phosphorylated receptors CNp . This mechanism can
account for the fact that TCR ligands with minute dif-
ferences in affinity may elicit very different signals. In
addition, it is consistent with the lifetime dogma, in that
τoff has a much more determining impact on activation
than kon.

However, KPR is insufficient to capture all aspects
of T cells’ ability to discriminate between structurally-
related ligands. As pointed out by Altan-Bonnet & Ger-
main [45], T cells not only achieve high specificity in
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FIG. 3. Biochemical scheme to reconcile specificity, sensitivity and speed in antigen discrimination. A) a
classical kinetic proofreading (KPR) scheme amplifies differences in TCR phosphorylation (CN ) based on the lifetime τOFF

of the pMHC–TCR complex but gets overwhelmed by a large quantity of pMHC and achieves only partial discrimination of
antigens. B) the adaptive kinetic proofreading (AKPR) scheme relies on the activation of a phosphatase (S) to limit spurious
activation by a large quantity of non–agonist ligands (see text for details). In the KPR scheme (A) a non-agonist (blue line)
can activate a T-cell if it is present in high concentrations. The agonist (red line) activates T-cells also when it is present at
lower concentrations. In the AKPR scheme (B) even high non-agonist concentrations cannot lead to T-cell activation, while
an agonist still manages to activate T-cells.

ligand discrimination, but they also maintain high sen-
sitivity, as they are be able to trigger activation from
a single agonist ligand [46, 47];. In addition, they re-
spond very fast, typically within minutes of encounter-
ing an antigen presenting cell. These requirements for
speed, sensitivity and specificity are hard to achieve all
at once. For example, a large number of phosphorylation
steps in the KPR scheme allows for high discriminability,
but also implies a slower response, as each step must be
slow enough to discriminate between agonists and non-
agonists. It also affects sensitivity, as more steps imply a
lower chance of making it the activation step. These con-
siderations demonstrate how quantitative modeling in-
validates a bare KPR scheme, and calls for additional
mechanisms.

2. Adaptive kinetic proofreading

To fulfill the conflicting requirements of specificity, sen-
sitivity, and speed, one must expand on the simple kinetic
proofreading scheme by adding a mechanism of adapta-
tion to modulate the proofreading steps.

The resulting adaptive kinetic proofreading (AKPR)
model [14, 44], which is based on experimental evidence
presented by Štefanova et al. [48], quantitatively accounts
for key features of ligand discrimination by the TCR.

The adaptation module is introduced through a neg-
ative feedback mediated by a phosphatase S (which re-
moves phosphoryl groups), which is itself activated by
the engaged TCR in state C1, so that its steady-state
concentration is S = C1/(C1 + KS), where KS is a
model parameter. The dephosphorylation rate is then
enhanced in proportion to the phosphatase concentra-
tion, to kdeP + γS. The equations for steady state have
a simple closed form, whose solution is given by the root
of a fourth-order polynomial.

Fig. 3 presents a simple graphical argument illustrating
how KPR and AKPR schemes perform in their task of
discriminating ligands. In the adaptive kinetic proofread-
ing scheme, the negative feedback mediated by S enforces
a higher selectivity of antigen discrimination without af-
fecting the high sensitivity of the response.

To better understand how this is possible, consider a
large concentration L of non-agonists. Their unspecific
engagement with the TCR will cause the first phospho-
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rylation of the complex into C1, in proportion to their
concentration L. This C1 state activates the phosphatase
S, which in turn increases the specificity of the TCR by
accelerating its dephosphorylation. When L is large, the
amount of phosphatases, and hence desphosphorylation
rate, will exactly balance out the amount of non-agonist-
bound TCR complexes, preventing these complexes from
reaching the activation state CNP (see Figure 3 B). As
a result, for non-agonists CN is essentially flat and stays
below the threshold for T cell activation, regardless of L.

The activation threshold for CNP
must to be set at

very low values to account for the extreme sensitivity
of the TCR signalling cascade (a single ligand is suffi-
cient to trigger activation). Hence, one must introduce
stochastic equations to appropriately tackle the low num-
ber of molecules involved in the TCR decision making,
although this does not affect the qualitative features of
this particular model.

To conclude, the adaptive kinetic proofreading scheme
satisfies the joint requirements of ligand discrimination
and sensitivity. It can explain how a single agonist lig-
and can trigger T cell activation, while a large number
(> 105) of non-agonist ligands cannot. Additionally, it
can account for the speed of ligand discrimination by T
leukocytes, as only two steps can be sufficient to sort lig-
ands [49]. It is important to emphasize again the impor-
tance of a quantitative approach and of modeling to ap-
preciate why achieving speed, sensitivity and specificity
in ligand discrimination is indeed such an amazing feat
of the immune system.

3. Coupling mechanics and biochemistry: the significance
of forces for ligand discrimination

One of the most striking events in the T-cell activa-
tion process is the dynamic membrane reorganization
into what has been called an immunological synapse.
Within minutes of signal initiation, the antigen recep-
tors on the surface of lymphocytes congregate at the
center of the interface with their antigen-presenting cells
(this has been dubbed a central Supramolecular Assem-
bly Complex or c-SMAC), while transmembrane recep-
tors and phosphatases needed for signal propagation ac-
cumulate at the periphery of the contact area (p-SMAC
and d-SMAC respectively, standing for peripheral and
distal). Such a bullseye pattern has been studied quanti-
tatively using high-resolution and single-cell time-lapsed
microscopy. The functional significance of immunological
synapses has been identified for the long-term activation
of T cells, such as directed killing of antigen-presenting
cells or directed secretion of cytokines [51]. As the cell
biology of immunological synapse formation was being
studied, the question arose as to whether such cellular
structure could contribute to self vs non–self discrimina-
tion. Qi et al. [50] introduced a Ginzburg-Landau model
for the mechanical deformation of the T-cell membrane

during synapse formation. The model assumes the pres-
ence of several receptor-ligand pairs, indexed by i (e.g.
the TCR-pMHC pairs is one these pairs). The free energy
F for the membrane system is estimated as:

F =
∑
i

λi
2

∫
dxdy Ci(x, y)

[
z(x, y)− z(0)

i

]2
+

1

2

∫
dxdy

[
γ(∇z(x, y))2 + κ(∇2z(x, y))2

]
,

(15)

and the system evolves according to:

∂Ci
∂t

= Di

[
∇2Ci +

1

kBT
∇
(
Ci∇

δF
δCi

)]
(16)

+kon
i (z)LiRi − koff

i Ci + ζi,

and

∂z

∂t
= −M δF

δz
+ ζ, (17)

where z(x, y) is the membrane coordinate for the T-cell
membrane, Ri, Li, and Ci, are the surface densities of
receptors, ligands, and receptor-ligand complexes of the

ith type, z
(0)
i is the length of the Ci = Ri-Li complex

bond at rest; and the ζ’s are thermal noises for each
process (their distributions are not explicitely stated in
the original publications [50]). The free energy F sums
up the elastic energies of each type of complex i (with
stiffness λi), and the elastic energy of the membrane. kon

i

and koff
i are the binding and unbinding rates of ligand-

receptor complex formation.
This model is purely mechanical and passive, in the

sense that no energy is injected nor is there any bio-
chemical feedback. Yet it captures salient features of
the spontaneous formation of immunological synapses.
Importantly, synapse formation strongly depends on the
lifetime of ligand-receptor complexes, and thus allows for
fine discrimination between agonist and non-agonist lig-
ands. The model also emphasizes the functional rele-
vance of size differences in ligand-receptor pairs. For in-

stance, TCR-pMHC complexes have z
(0)
i = 15 nm, while

adhesion complexes such as ICAM-1/LFA-1 are much

larger, z
(0)
i = 42 nm, as it was confirmed experimentally

[52, 53].
This model makes several predictions that were vali-

dated experimentally. First, it explains how the forma-
tion of the characteristic bullseye pattern emerges from
the passive sorting of molecules based on their size, upon
coupling with the mechanical deformation of the surface
membrane. Second, the model predicts an optimum for
the lifetime of the pMHC-TCR complex for which the
accumulation of antigen in the center of the synapse is
maximal. For weak antigens, the membrane energy is
dominated by the binding of adhesive complexes, and
few antigen-TCR bonds can form because of molecular
crowding. For very strong antigens, at intermediate time
points (≈ 5min) or with ligands of intermediate affinity,
the membranes of the T-cells adopt an inverted bullseye
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with strong antigens

FIG. 4. Molecular sorting in the immunological synapse. Upon activation by antigen-presenting cells, T-cells reorganize
their membrane proteins to form a bullseye structure (so–called immunological synapse) that stabilizes cell-cell interactions and
drives cellular functions. Coupling of mechanical forces derived from the curvature of the membrane and differences in the sizes
of pMHC/TCR and integrin (LFA-1/ICAM-1) complexes drives the formation of two ”Supramolecular Assembly Complexes”
(central: cSMAC; peripheral: pSMAC). At early time points (¡ 2min) or for weaker antigens, the systems form an inverted
synapse with the tall, rapidly-formed integrin bonds concentrating in the center (red bonds), and pushing the slowly-formed
pMHC-TCR bonds to the periphery (blue bonds). For longer timescales and when strong antigen ligands are present, these
molecular complexes get sorted into a classical immunological synapse to alleviate the cost of negative curvature in the inverted
synapse. A Ginzburg–Landau model (as introduced by Qi et al. [50]) demonstrates that such self-organized sorting could help
in antigen discrimination.

pattern with TCR being in the p-SMAC and integrins
being in the c-SMAC. Such patterns can be explained
when the binding affinity of the integrin binding is larger
than the binding energy of the weak ligands. In this
case the integrins populate the center of the c-SMAC
and make the deformation of the membrane ”affordable”
energetically (see Figure 4). While this “bell-shaped”
activation as a function of antigen affinity has been doc-
umented experimentally [54, 55], it has not been consis-
tently observed and there is a sufficient number of ex-
ceptions [56, 57] to diminish its significance, especially at
the time when clinicians are engineering potent chimeric
antigen receptors with unphysiologically–large affinity for
their ligands [58, 59]. Third, the state of the membranes
of both the T cell and antigen-presenting cell is expected
to affect the synapse and thus T-cell activation, as was
observed in experiments where the cytoskeleton has been
depolymerized [60].

On the other hand, the model also fails to explain
more recent observations, such as the ability of T cells
to respond to a single agonist ligand while ignoring the

presence of many non-agonist ligands. More recently, its
interest has been rekindled by new observations empha-
sizing the importance of mechanics for ligand discrimina-
tion.

Using a biophysical setup to measure forces and life-
times of individual pMHC-TCR pairs under tension, Zhu
and colleagues [61, 62] discovered two types of bonds de-
pending on the peptide sequence: slip bonds and catch
bonds. The lifetime of slip bonds decreases monotonously
under tension: in other words, they break more easily
when pulled. By contrast, the lifetime of catch bonds in-
creases under tension. Molecular dynamics simulations
[63, 64] suggest that the bonds tension helps expose new
residues in pMHC, inducing a better contact with the
TCR. At high forces, catch bonds do ultimately break as
well, so there exists an optimal force of around 10 pN for
which the catch bond lifetime is longest.

This distinction between slip and catch bonds has been
suggested to have functional significance in terms of T-
cell activation. For instance, it was shown [63] that TCR-
pMHC pairs with similar binding constants elicited dif-

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 28, 2019. ; https://doi.org/10.1101/696567doi: bioRxiv preprint 

https://doi.org/10.1101/696567


13

ferent activation modes in T cells, with the stimulatory
pair forming a catch-bond and the non-stimulatory a slip
bond.

How these catch bonds relate to signalling remains
to be explained in detail, but this new effect may be
critical for predicting binding pairs, and immunogenic
neo-antigens of crucial relevance to immunotherapies (see
Sec. II D). However, the ability of pMHC to activate the
TCR signalling pathway might still be set by the lifetime
of the pMHC-TCR complex, but with a “catch”: this
lifetime would have to be assessed under the tension ex-
erted by the membrane dynamics, e.g. 10 pN. This would
also explain the dependence of activation upon mem-
brane properties such as stiffness. The Ginzburg-Laudau
model of Eq. 15 will need to be revisited to account for
the existence of catch bonds, e.g. by letting the koff

i of

pMHC-TCR pairs depend on the tension λi(z − z
(0)
i ),

possibly affecting how ligands get sorted by mechanical
forces in the immunological synapse.

Additional measurements in recent years (in partic-
ular, using super–resolution microscopy [65]) emphasize
the active role that cytoskeletal rearrangements may play
in concentrating TCR in the synapse [66] and the com-
plex interplay between membrane ruffling, receptor sort-
ing, and mechanical tensions. A more complete quanti-
tative model would help identify key limiting steps de-
ciding how strongly T cells get activated in different con-
texts — different antigen-presenting cells, or different co-
stimulatory contexts.

B. B cells

As mentioned before, the affinity of B-cells with their
cognate antigen undergoes a Darwinian selection process
that improves their affinities from KD = 10µM down to
100pM. Simple counting of the number of occupied recep-
tors in equilibrium could be sufficient to enforce antigen
discrimination in B-cells. As for TCR binding to pMHC,
the association rate of BCR to antigens is constant for
all antigens. But unlike TCR-pMHC binding, which is
subjected to an activation barrier, this rate is essentially
diffusion limited, kon > 106M−1s−1. Strong and weak
antigens thus only differ by their binding lifetimes τoff ,
which varies between 0.1s and 104 s, suggesting a possi-
ble kinetic proofreading scheme as for TCR [67]. How-
ever, since the number of potential phosphorylation sites
in the BCR complex is small compared to TCR, such a
mechanism may not be as important.

The previously mentioned monomeric version of the
BCR, IgG, is itself actually a dimer (so that IgM is a
pentamer of dimers), with two binding sites. By anal-
ogy with other dimeric receptors on the surface of cells
(e.g. Epidermal Growth Factor Receptors or Insulin Re-
ceptors [68, 69]), one could assume that this dimerization
would help concentrate kinases (the enzymes responsible
for phosphorylation) around the receptors, causing them
to form clusters. This “cross-linking model” of BCR ac-

tivation is appealing because it is consistent with the for-
mation of microclusters of BCR on the surface of B cells
in response to antigens, as observed by super-resolution
microscopy.

An alternative model proposed by Reth and col-
leagues [70] assumes that receptors cluster even in the
absence of antigens. When in clusters, BCR inhibit
each other and do not signal, but they can assemble
and disassemble dynamically. Monomers coming out of
these clusters are more prone to signaling, and antigen-
binding stabilizes this monomeric state supposedly be-
cause of steric hindrances preventing the return into the
clustered/inhibited state. This “dissocation-activation”
model explains how B cells limit spurious activation of
its ∼ 120, 000 surface BCR through their clustering, with
signaling made only possible by isolated, antigen-bound
monomers. The measurements of Reth and colleagues
pose a theoretical challenge in terms of understanding
the role dynamic clustering-release-re-clustering of BCR
during B cell activation. A full theoretical model of such
process and its impact on antigen discrimination remains
to be proposed.

One observation that must be taken into account when
considering B cell activation is the role of membrane
spreading and contraction. Upon initiation of the signal-
ing cascade, B cells rapidly (< 10 min) reorganize their
cytoskeleton and membrane, first by spreading to cap-
ture as many antigens on the presenting cells as possible,
second by contracting to “concentrate” the active recep-
tors. The quantitative model proposed in [71] accounts
for binding and unbinding events driving cell spreading
and contraction. The model predicts that such a dynamic
process can increase dramatically the number of agonist
ligands that get captured, compared to a static interface,
enhancing the difference between weak and strong lig-
ands, while weaker affinity antigens fail to concentrate.
A critical aspect of the model is that, if B cells fail to trig-
ger a sufficient number of BCR by 1 min (a hard cut-off),
they terminate the process and shut down their signaling
response. Alternatively, the activation response switches
to a contraction phase with the surface area decaying
according to the phenomenological law Amaxt

−0.35 with
Amax being the largest area the B cell spreads to, t is
the time, and 0.35 is an experimentally-determined ex-
ponent. This model is phenomenological as it does not
model explicitly the biochemical mechanism driving the
spreading and contraction, and makes ad hoc assump-
tions about their behaviour. Yet it illustrates quantita-
tively how such membrane dynamics can help discrimi-
nate ligands.

To conclude, although the issue of antigen discrimina-
tion in B cells may not be as stringent as for T cells,
it poses interesting quantitative issues for a different pa-
rameter range of binding constants (KD = 100 pM - 10
µM), over longer timescales (>10min), and using differ-
ent cellular mechanisms: receptor clustering and mem-
brane dynamics. It is worth recalling that this initial
recognition process connects to additional processes over
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longer timescales, such as validation by helper T-cells,
and dynamics within germinal centers. We will come
back to these questions in Sec. VIII.

C. Coarse-graining of molecular details and model
reduction

As we go deeper into the molecular details of immune
recognition, the number of molecular species, reactions,
intermediates, and therefore parameters explodes. This
poses a challenge for a number of reasons. First, the ef-
fective behaviour of the system as a whole may still be
relatively simple, suggesting that simpler phenomenolog-
ical models may describe these processes equally well.
While the variables of such models may be hard to relate
directly to molecular entities, they are easier to inter-
pret and allow for better analytical progress and predic-
tions. Second, even assuming that the full complexity of
all interactions is needed, large numbers of parameters
are likely to lead to overfitting problems, meaning that
many parameters or combinations of parameters are un-
derdetermined, undermining the accuracy of predictions.
And even when they can be determined, it is not always
clear which ones need to be fine-tuned to ensure proper
function, or what are the broad design principles presid-
ing over their choices. In Sec. XII E 2, we briefly review
the principles of model selection – the classical approach
of reducing model complexity from statistics. However,
that approach requires to have first defined a hierarchy
of models to test, from least to most complex. Besides,
model selection relies on goodness of fit as a criterion to
evaluate models, while in many cases we may be more in-
terested in capturing the principal features of a biological
function, rather than fitting all the data.

In another approach to reducing complexity, François
and Hakim [72] developed an method for generating sim-
ple molecular networks in silico that realize a desired bio-
logical function, simply based on a genetic algorithm that
selects the “best” solutions. Applied to the problem of
absolute ligand discrimination reviewed in Sec. III A, this
method infers a class of network motifs, called “adaptive
sorting”, that recapitulates known features of T cell ac-
tivation [49]. In particular, it predicts the emergence of
kinetic proofreading and biochemical adaptation. How-
ever, the chemical species and reactions of the networks
produced by that method may generally not be directly
related to the known actors of the phenomenon under
study.

To reduce model complexity while keeping close to the
details of actual biochemical reactions, one can instead
start from a complex biochemical network described by
many ordinary differential equations, and “prune” its pa-
rameters by setting them, individually or by their combi-
nations (ratio or products), to 0 or infinity [73]. Apply-
ing this strategy to a complex model of T cell recogni-
tion [74], which contains close to 100 parameters, shows
that its behaviour can be boiled down to just three cou-

pled differential equations highlighting its main features
of adaptation and discrimination, and reveals the broad
design principles that implement these features.

Beyond this particular example, this kind of approach
has great potential for helping to make sense of complex
biological systems with many entities and interactions,
as is often the case in the immune system.

IV. CELL-TO-CELL COMMUNICATION
THROUGH CYTOKINES

Cytokine communication is critical to synchronizing
the activation of various immune cells and to bridging
multiple spatial-temporal scales in immune responses,
from local or individual cell activation to global, sys-
temic responses. Cytokines are small glycoproteins that
get produced and secreted by all cells, immune or not,
with varied dynamics, amplitude and frequency. These
cytokines then diffuse and bind to receptors present on
the surface of adjacent cells to elicit a signaling response
that trigger a gene regulatory response. In short, cells
use cytokines to communicate between themselves. In
this section, we discuss quantitative models that have
been introduced to model how individual leukocytes re-
spond to cytokines (e.g. using the JAK-STAT pathway)
over multiple time- and length-scales.

A. Cytokine signaling and the JAK-STAT pathway

Cytokine receptors are heterodimers, or more rarely
heterotrimers, so that they carry at least two intracellu-
lar signaling domains. The JAK-STAT pathway is the
dominant pathway engaged by cytokine signaling. Upon
binding by its cognate cytokine, the receptor undergoes a
conformational change that presents phosphoryl attach-
ment sites on the JAK (Janus Kinase) receptor to face
the kinase domain that induces phosphorylation, which
in turn leads to activation. Then a protein called STAT
(Signal Transducer and Activator of Transcription) in-
teracts with the intracellular domains of the receptors,
gets phosphorylated by the activated JAK, and dimer-
izes upon release from the receptor. Dimers of STAT
then translocate into the cell nucleus, bind to the chro-
matin in specific sites and elicit a transcriptional re-
sponse. Such signal transduction is one of the simplest
biological pathway connecting the extracellular environ-
ment and its messenger cytokines to a transcriptional re-
sponse (Figure 5). Its complexity is encoded in the large
number of pairs of cytokines (> 40) and their receptors
that cells can express, as well as the 7 forms of STAT
and 72 = 49 homo- or hetero-dimers that they can form
upon activation [75]. Additionally, the dynamics of cy-
tokine signaling enriches the biology of these pathways,
with the existence of positive and negative feedback reg-
ulations: cytokine signaling inducing the expression of
additional cytokine receptors, cytokine degradation, cy-
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tokine receptor endocytosis, expression of negative regu-
lators such as Suppressor of Cytokine Signaling (SOCS).
Here we present simple derivations that can help under-
stand the quantitative regulation of cytokine communi-
cation within the immune system, which underlies the
coordination and orchestration of the immune response.

1. Cytokine binding and signaling at equilibrium

In this section, we discuss the contribution of the
field of quantitative immunology to understanding the
JAK-STAT pathway as a signal transduction cascade in
well-mixed conditions. Spatial heterogeneities in cell-to-
cell communication via cytokines will be tackled in sec-
tion IV B.

Within an individual cell, the biochemical reactions of
the JAK-STAT pathway can be treated as well-mixed:
the typical concentrations of molecules are fairly high,
with ∼ 1000 molecules per cell of diameter 10µm, which
translates into concentrations ∼ 100nM. We also assume
that most reactions are essentially diffusion-limited, as
discussed before: kon > 107M−1s−1. The signal trans-
duction cascade for JAK-STAT cascade can generically
be modelled in a step-wise manner, as sketched in Fig-
ure 5.

The kinetics of cytokine binding to its receptor acti-
vating JAK into JAK∗ can be modeled as a simple bi-
molecular process:

d

dt
#Receptor∗ = kon[Cytokine]#Receptor−koff#Receptor∗,

(18)
where #Receptor∗ is the number of cytokine-engaged re-
ceptors, [Cytokine] is the cytokine concentration. Be-
cause binding is very strong (typically KD = koff/kon ≈
10pM with k−1

off ≈ 3600 s and kon ≈ 3·107M−1s−1), most
cytokine molecules bind at a diffusion-limited speed with
very strong binding. We assume a large extracellular
volume, so that cells do not deplete cytokines as they
bind them. Receptors are usually pre-loaded with JAK,
waiting for the conformational change associated with cy-
tokine binding, to induce phosphorylation. From Eq. 18
the number of activated JAK (JAK∗) at steady-state is:

JAK∗ = JAKtotal
[Cytokine]

KD + [Cytokine]
, (19)

where JAKtotal is the total JAK receptor concentration.
The kinetics of STAT phosphorylation into pSTAT is de-
scribed using a classical Michaelis-Menten equation:

d

dt
[pSTAT] = kcat[JAK∗]

[STAT]

[STAT] +Km
−kdephos[pSTAT],

(20)
where [JAK∗] = JAK∗/(VNA) is the concentration of ac-
tivated JAK within the cytoplasmic volume V , pSTAT
is the phosphorylated form of STAT, kcat and kdephos are
phosphorylation and dephosphorylation rates, and Km is

the dissociation constant of STAT to the receptor, which
controls the specificity between different receptors and
different variants of STAT. Note that, for most signal-
ing networks, the identity of phosphatases that take care
of dephosphorylating receptors and kinases remain often
undetermined (because of overlapping and pleiotropic ac-
tivities): their activity is modeled phenomenologically as
a single rate reaction.

This system reaches steady-state within minutes [75,
76] such that one can solve d[pSTAT]/dt in Eq. 20
for pSTAT (with the conservation of matter condition
[pSTAT]+[STAT]=Stotal) as a quadratic equation. Com-
bined with Eq. 19, the result gives a direct expression of
the response STAT as a function of the input cytokine
concentration. This model serves as the basic building
block to tackle the dynamic complexity of cytokine re-
sponses.

2. Tunability of cytokine responses.

In the previous section we assumed that cytokines,
which are formed of several sub-units, were in a pre-
assembled configuration. When that is not the case, cy-
tokine binding to the cytokine receptor can be modeled
as a two-step scheme.

L + R1 + R2

kon
1



koff

1

LR1 + R2

kon
2



koff

2

LR1R2. (21)

The cytokine ligand L binds to the cytokine receptor
composed of two parts R1 and R2. A simple equilib-
rium model can be solved, with the dissociation constants
Ki = koff

i /kon
i :

K1[LR1] = [L][R1] = [L] ([R1]total − [LR1])

K2[LR1R2] = [LR1][R2] = [LR1] ([R2]total − [LR1R2])

that yields the total concentration of fully-engaged and
signaling receptors:

[LR1R2] =
[R2]total

1 + K2

[R1]total

(
1 + K1

[L]

) . (22)

This two-step model was shown to be valid for one
of the most studied cytokines, IL-2 [77]. IL-2 binds
weakly to the abundant α chain of the IL-2 receptor
(R1 = IL2Rα), before being “locked” into a stable and
signaling complex by association with the two other
chains (R2 = IL2Rβ-γC) to form the full IL-2−IL2R com-
plex. In that case, K1[L] � 1 such that equation 22
simplifies to:

[LR1R2] = [R2]total
[L]

[L] + K1K2

[R1]total

. (23)

This equation reveals key insights for IL-2 and other cy-
tokines [78]: the amplitude of cytokine signaling is pro-
portional the number of β − γ part of the IL2 receptor
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FIG. 5. Model of the regulation of JAK-STAT signaling in response to cytokines. This model in the adiabatic
regime can be solved analytically.

(the limiting part), and reaches half of its maximum at
[L]50 = K1K2/[R1]total, inversely proportional to the α
chain of the IL-2 receptor (the non limiting-part).

Such tunability of both the amplitude and sensitivity
of the dose response of cytokines based on the number
of cytokine receptor chains can be critical to achieve im-
mune plasticity, as demonstrated in the context of com-
petition for limited amounts of cytokines. For example,
the tug-of-war for IL-2 between effector T-cells and regu-
latory T-cells is mediated by the exact levels of IL2Rα on
the surface of these cells. Stimulated effector T-cells initi-
ate an immune response, whereas stimulated regulatory T
cells (Treg) downregulate the response to suppress auto-
immune responses (effector response to self-antigens). In
general, Treg cells are thought to bypass negative thymic
selection despite their strong recognition of self-antigens.
These cells then act as pre-activated sentinels that re-
spond to inflammatory cues (such as the upregulation
of self-antigens) while not contributing to inflammation
itself through cytokine secretion: Tregs constitutively ex-
press transcription factor FoxP3, a general downregulator
of cytokine production.

Whenever an effector T-cell initiates a spurious re-
sponse to self-antigens, Tregs can extinguish it by con-
suming cytokines (e.g. IL-2) and by downregulating their
inflammatory impact. In this tug of war, whichever
cell type, effector or regulatory, expresses more receptors
boosts its ability to capture the cytokine and deprives

the other cells of this key cytokine for anti-apoptosis and
proliferation in the T-cell compartment. Quantitative
models of such competition for IL-2 based on differential
expression of IL-2Rα receptors have illuminated how self
vs. non-self discrimination can emerge from such IL-2
tug–of–war [77, 79, 80].

Some cytokine receptors have an extracellular domain
that gets secreted extracellularly, in a soluble form.
These can “pre-bind” the cytokine in the extracellu-
lar milieu, and deliver it to the complementary chain
bound to the cell membrane: such molecular event can
have positive or negative effects on cytokine signaling
depending on the context. If the pre–formed soluble
cytokine/receptor complex binds to the cell to form an
incomplete receptor which lacks the intracellular signal-
ing domain of the soluble cytokine receptor, the JAK
misses its trans-phosphorylation partner and the cy-
tokine/cytokine receptor fails to signal— “no clap from
one hand.” Such soluble complexes act as decoys that
antagonize cytokine response (as with viral analogues of
IFN receptors, or IL-1 receptors), limiting inflammation
to the benefit of viruses [81].

Alternatively, secretion of soluble cytokine receptors
can trans-activate cytokine signaling and result in a boost
in cytokine response (as with IL-1, IL-2 or IL-6). For
example, in the case of IL-6, the soluble portion of the
IL-6 receptor (sIL-6R) gets secreted to stabilize IL-6 in
the extracellular medium (most cytokines are very small
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proteins with short half-lives) and to accelerate the as-
sembly of a complete IL-6/IL-6R/gp30 signaling complex
by binding to gp130 dimers on the surface of cells: such
activation of the IL-6 signaling response thus does not re-
quire the presence of the IL-6 receptor in the membrane
of the receiving cells, but only the ubiquitous presence of
gp130: this is called cytokine trans-activation [82].

Hence, depending on the exact molecular details, se-
cretion of cytokine receptors in the extracellular envi-
ronment can trigger or antagonize the cytokine signaling
response. The role of quantitative immunology in that
context is then to tease out the physico-chemical param-
eters of such regulation to better understand in which
regime inflammatory cues are regulated.

3. Regulation by cytokine consumption

Immune responses need tight regulation to avoid spuri-
ous auto-immune activation. This is particularly impor-
tant for cytokine regulation as overabundant cytokines
can be extremely deleterious to the organism as a whole.
For example, high concentrations of cytokines induce a
“capillary leak syndrome,” whereby tissues lose their bar-
rier against blood serum: this results in septic shocks or
viral hemorrhagic fevers. One simple mode of regula-
tion of cytokine signaling by the JAK-STAT pathway is
simply to limit the availability of cytokines in the extra-
cellular medium. Most cytokines are very small proteins
(with molecular weights in the 10-20kDa range) such that
their half-life in the bodily fluid is short. For example,
the half-life of IL-2 injected intravenously for the treat-
ment of renal cell carcinoma is at most 3 h in the serum.
More significantly, even in the extracellular environment
of lymphoid organs, cytokines have a very short half-life
due to rapid binding and consumption.

Given the strong binding of cytokine to their receptors
(typically KD < 100 pM or koff < (3000s)−1), immune
cells can rely on binding to switch off the cytokine sig-
naling response through buffering. This resetting process
relies on cytokine consumption by endocytosis of the cy-
tokine with its receptor, trafficking them towards lyso-
somes, release of the cytokine because of low pH within
the lysosomal compartment, and degradation. Note that
the signal transduction may persist after receptor endo-
cytosis as long as the cytokine-receptor pair remains en-
gaged [83]. What happens to the cytokine receptor in
this process varies based on the cytokine identity. For
example, the endocytosed IL-2 receptor dissociates and
has its chains sorted towards different compartments: the
IL2RγC chain goes to the lysosome and gets degraded,
while the IL2Rα chain goes to early endosomes and gets
recycled. This process of endocytosis, sorting, recycling
and degradation can be very complex at the molecular
level. Yet, a coarse-grained model of this process as a
single-biochemical step can be sufficient when modeling
IL-2 availability [84, 85]: the typical rate for this step has
been measured to be of the order of (900 s)−1.

One functional consequence is that cytokines get
rapidly consumed while triggering signaling. At the more
global level, one can integrate a dynamic equation for
production/consumption that accounts for the rise and
decay of inflammatory signals in the immune system:

d

dt
[Cytokine] = κprod − κconsum. (24)

In the most simple case, κprod = Nprodkprod/(VNA) is
fixed by the number Nprod of activated cells at a given
time, the rate of secretion kprod per individual cells, and
the extracellular volume V . The rate κconsum is deter-
mined by the rate of binding of the cytokine to its recep-
tor on the surface of the cells:
κconsum = konNconsumNR[Cytokine]/VNA,
where Nconsum is the number of consuming cells and

NR the number of receptors per cell. The time depen-
dency of Nprod, Nconsum, κprod, and NR can be arbitrar-
ily complicated and must be parametrized for each im-
munological setting under consideration. For example,
in the case of IL-2 in the early events of an immune re-
sponse within a lymph node, V ≈ 50µ` (free volume),
kprod = 10s−1, kon = 3 · 107M−1s−1, Nconsum = 10, 000
Treg cells, each endowed with typically NR = 3, 000
receptors. For IL-2 to accumulate and reach a signifi-
cant concentration (typically, 10−11M to trigger STAT5
phosphorylation), one must have κprod > κconsum, i.e.
Nprod > 1, 000. This estimate illustrates that there exist
thresholds of activation for immune responses, whereby
the systems needs a critical mass of activated, cytokine-
secreting cells to overcome consumption and drive acti-
vation and differentiation [86]. The estimate above does
not take into account some of the intricacies of IL-2 reg-
ulation: positive feedback in IL-2 secretion, recycling of
IL2Rα chains, upregulation of IL-2R in Treg cells have
been documented. To account for these, Eq. 24 must be
solved numerically in more complex settings [84, 85].

4. Other regulations

Cytokine consumption is one major mechanism to limit
the duration of availability of cytokines in the extracel-
lular medium, but there exist additional, cell-intrinsic
mechanisms that also limit or expand the duration of
JAK-STAT signaling in cells, as illustrated by the fol-
lowing examples.

Certain cytokine pathways rely on intracellularly
stored pools of receptors that get recruited upon recep-
tor engagement and JAK-STAT signaling. This recruit-
ment further fuels JAK-STAT signaling by avoiding sat-
uration of the initial receptors on the membrane surface.
This process was analyzed quantitatively in Ref. [87] to
reveal how a certain type of leukocyte called erythroid
progenitors can sense a cytokine called Epo over a large
range of concentrations (> 1000-fold range), where classi-
cal ligand-receptor binding would predict fast saturation
with increasing cytokine concentration.
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Another positive feedback in JAK-STAT signaling ex-
ists in the IL-2 signaling pathway: The α chain of the
IL-2 receptor gets upregulated upon IL-2 signaling, low-
ering the cytokine concentration at which activation is
half-maximum (by virtue of Eq. 23), hence driving fur-
ther IL-2 signaling [77–79]. Such positive feedback was
shown to be critical to commiting cells to long-term JAK
activation and proliferation [85].

Alternatively, JAK-STAT pathways are also endowed
with negative regulators, such as SOCS and Cytokine In-
ducible SH2-containing (CISH) proteins, which compete
with STAT for JAK binding, preventing activation [88].
This can be quantitatively modeled with SOCS or CISH
binding competitively with a stronger Km than STAT
onto the receptor (Eq. 20). Varying the exact value of
Km allows SOCS and CISH to negatively regulate JAK
activity in two separate regimes of concentrations of cy-
tokines [89]. Such dual feedback regulation of signaling
was also shown to extend the range of cytokines that trig-
ger STAT5 phosphorylation while avoiding saturation,
and ultimately control cell survival. The modeling of
such complex regulation of the JAK-STAT pathway in-
volves adding biochemical steps that can be integrated
numerically. The challenge in this context is to acquire a
large number of system-specific biochemical parameters.
This task has become more amenable as the field pro-
gresses and quantitative approaches have been delivering
more and more estimates: protein abundances, biophys-
ical parameters, enzymatic rates [78, 90–92].

To conclude, in this section we have reviewed the ba-
sic equations governing the regulation of the cytokine-
activated JAK-STAT pathway in the immune system.
While JAK-STAT signaling can be solved analytically in
the adiabatic limit, the long-term dynamics of cytokine
accumulation and consumption are complicated by the
multitude of feedback regulations triggered in leukocytes.
Such rich dynamical complexity will need to be tackled
quantitatively and systematically to deliver a more com-
prehensive understanding of cytokine communication in
the immune system [75].

B. Communication across space and time, and
cytokine niches

Cytokines allow immune cells to communicate and to
modulate their response collectively. In section V A, we
will discuss how lymphocyte differentiation can be de-
cided by toggle switches encoded in gene regulatory net-
works. Most of the positive feedbacks in these toggle
switches are in fact associated with a response to cy-
tokines, and are thus intrinsically collective. Tackling the
nonlinearities and spatio-temporal aspects of cytokine
communication at a more quantitative level is critical
to expanding our understanding how antigen recognition
leads to such a collective response. We now focus on
the dynamics of cytokine secretion and capture in space

and time, over the relatively short timescales (minute to
hours) over which cytokines convey information between
cells.

1. Cytokine dynamics as diffusion-degradation

The propagation of cytokines within tissues is governed
by reaction-diffusion equations which generalize Eq. 24:

∂c(~r, t)

∂t
= D∇2c(~r, t) + κprod(~r, t)− κconsum(~r, t), (25)

where c(~r, t) is the spatio-temporal profile of the concen-
tration of cytokine, D is the diffusion coefficient for the
cytokine in the extracellular medium, κprod and κcons are
volumic rates of cytokine production and consumption
respectively. Cytokines are produced by discrete cells,
and the production rate κprod(~r, t) concentrates on the
cell surface. The consumption rate can be estimated by
taking into account that cytokines bind tightly to cy-
tokine receptors on the cell surface and get consumed
by endocytosis of the engaged receptors. The limiting
step for this cytokine consumption is then the binding to
receptors, so that

κconsum = konNRnconsumc(~r, t) = kcc(~r, t), (26)

where nconsum is the density of consuming cells. This
expression is valid at low concentrations, when cytokine
receptors are not saturated and the kinetics of binding
remain linear with the concentration of cytokines. It also
assumes that consuming cells are uniformly distributed,
in a mean-field manner, rather than modelling the precise
location of their surfaces. In more general cases, κprod

and κconsum may have additional, nonlinear dependencies
on c(~r, t), for instance because of spatial heterogeneity
or receptor saturation. Little can be done analytically in
these cases and one must resort to numerical solutions
[93]. In the linear regime, Eq. 25 becomes:

∂c(~r, t)

∂t
= D

[
∇2c(~r, t)− ξ−2c(~r, t)

]
, (27)

with a characteristic length ξ =
√
D/kc over which cy-

tokines diffuse before being consumed. In the following
section, we focus on the simple homogenous and linear
case to derive insights about the quantitative aspects of
cytokine communication.

2. Screening by cytokine-consuming cells

Diffusion and consumption of cytokines regulates how
the cytokine gradient spreads i.e. the lengthscale for
cell communication. It was demonstrated that the short
timescale to reach stationary concentration profiles for
soluble proteins are explained by the first arrival time of
the cytokine ligands, rather than the characteristic dif-
fusion timescale for an individual molecule [94, 95]. This
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result implies that the characteristic timescale to reach
steady state at a distance r from the secreted cell scales
linearly with r rather than with r2. The analytical ex-
pression for this local relaxation time τ(r) is [94]:

τ(r) =
1

2kc

(
1 +

r

ξ

)
. (28)

Two relaxation processes are at play in this system: the
diffusion timescale (τd(r) = r2/2D) and the reaction
timescale (k−1

c ). The relaxation timescale is dominated
by the reaction time at short distances (r � ξ) where
cytokine consumption dominates. However, at large dis-
tances (r � ξ), both diffusion and consumption are im-
portant and the relaxation timescale is the geometric
mean of the two, τ(r) ∼ (τd(r)k

−1
c )1/2 ∝ r. Numeri-

cal simulations in the context of immune responses [96]
validated this theoretical argument and estimated that
it takes only a few minutes for the cytokine gradient to
reach its steady state.

The timescale at which immunological regulation by
cytokine exchange operates is typically in the range of
hours for the activation of gene regulatory elements, to
days for the decision to proliferate or to die. The typical
timescale at which cells move is also very slow. In the
first phase of an adaptive immune responses, antigen-
responding T-cells are essentially stuck on their antigen
presenting cells. One can thus assume steady state for the
distribution profile of the cytokines, c(~r, t) = c(~r), and
solve for dc/dt = 0 in Eq. 27. Using spherical symmetry
c(~r, t) = c(r) for the Laplace operator, the steady state
profile for the cytokine distribution is

c(r) = c(Rcell)
Rcell

r
e(Rcell−r)/ξ, (29)

and the boundary value c(Rcell) can be determined by
estimating the flux of molecules secreted and consumed
at the cell surface:

κprod − κconsum =

∮
~j.d~r = −4πDR2 dc(r)

dr

∣∣∣∣
Rcell

= 4πDc(Rcell)Rcell

(
1 +

Rcell

ξ

)
.

(30)

Typically, cells secrete cytokines at a constant rate be-
tween kprod =10 to 1000 molecules per second (e.g. IL-2
and IFN-γ cytokines) and consumption by the secreting
cell is given by kconsum = konNRc(Rcell). Solving for
c(Rcell) yields:

c(Rcell) = kprod/(4πDRcell(1 +Rcell/ξ) + konNR) (31)

The characteristic scale

ξ =
√
D/kc =

√
D/(konNRnconsum) (32)

is analogous to the screening length of electrostatic in-
teractions and is inversely proportional to the square
root of the density of consuming cells. By this analogy,

consuming cells “screen” the diffusion of cytokines from
the secreting cells and end up determining the extent
of cell-to-cell communication in a dense tissue. In other
words, the simple diffusion-consumption of cytokines can
account for the heterogeneous accessibility of cytokines
in dense tissues and the formation of cytokine “niches,”
defined as the portion of space in where cytokines can be
sensed.
ξ is controlled by the density of cytokine-consuming

cells, and the number NR of receptors on the surface of
consuming cells. In close-packed tissues the density of
consuming cells is typically 1 cell every 10µm, imply-
ing nconsum ∼ 10−3µm−3; for IL-2 D is approximately
100µm2/s (even in close-packed tissues, there is suffi-
cient free space in the extracellular medium for cytokines
to diffuse freely as in solution), and each cell consumes
typically 10 cytokine molecule per second [96], implying
konNR = 1011M−1s−1, so that ξ ∼ 25µm = 2.5 cell di-
ameters. In more physiological conditions, where cells are
more dilute, occupying only 10% of the space and cells
express lower level of receptors, nconsum ∼ 10−2µm−3,
this length scale rises to ξ ∼ 250µm ∼ 25 cell diame-
ters: there is negligible screening and all the cells within
a lymph node or a spleen have access to the cytokine.
Note that this 10-fold increase in the screening length
ξ implies an increase by 1000-fold in the volume of the
cytokine niche and a 1000-fold increase in the number
of cells that potentially respond to the cytokine. Such
tuneability can be critical to decide which cells (helper
T cells or regulatory T cells) win the tug of war for IL-2
and ultimately whether the immune response expands or
gets extinguished [77, 79, 80].

3. Probability of autocrine capture

Cells that secreted cytokines often express the as-
sociated receptors, and can in principle communicate
with themselves. To quantify this effect, we must es-
timate the non-zero probability Pauto that cells cap-
ture their own cytokines rather than let them dif-
fuse and interact with neighbouring cells. This phe-
nomenon, called autocrine signaling, is particularly sig-
nificant when cytokine-secreting cells are surrounded by
cytokine-consuming cells and compete for their consump-
tion.

At steady state, there is a balance between cytokine
production kprod, cytokine consumption by the secreting
cell kconsum, and diffusion away from the cell followed
by consumption by other cells, as given by Eq. 30. The
probability of absorption by the secreting cell is given by:

Pauto =
kconsum

kprod
=

[
1 +

4πDRcell(1 +Rcell/ξ)

konNR

]−1

.

(33)
We can define the characteristic number of receptors at
which this probability reached 50%, N∗R = 4πDRcell(1 +
Rcell/ξ)/kon ≈ Rcell/σR, where σR = Rreceptore

−∆Gassoc
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is the effective cross-section of the receptor-cytokine in-
teraction (Eq. 2 and 6), and where we assumed ξ � Rcell.

Leukocytes are typically Rcell = 5 to 10 µm in radius,
and σ ∼ 0.5nm, henceN∗R ≈ 104. If cells have much fewer
than 104 receptors (a common situation), Pauto � 1 and
most of the secreted cytokines diffuse away without be-
ing captured in an autocrine manner. Alternatively, if
cells have more than 104 receptors, Pauto ∼ 1 and secret-
ing cells capture a large fraction of their own cytokines.
The functional relevance of autocrine capture remains de-
bated in the field: why would a cell need to respond to
the cytokine it secretes. There are also molecular mecha-
nisms limiting its impact. For instance, T cells secreting
IL-2 upon antigen recognition express low levels of IL-2
receptors as long as the antigen response lasts to limit
autocrine capture [84]). In the tug of war between cell
types for cytokine consumption, competition between au-
tocrine and paracrine signaling is crucial, and thus the
amount of autocrine capture is significant [80]. Discrim-
inating between autocrine and paracrine signaling is of-
ten difficult and it has been suggested that dilution ex-
periments in vitro can be used to distinguish the two
modes [97].

4. Size of cytokine niches

Eqs. 29-31 can also be used to estimate the functional
size of a cytokine niche established by a single secret-
ing cell. In the limit of no autocrine capture and long
dispersal ξ � Rcell, we have:

c(r) =
kprod

4πDr
e−r/ξ (34)

The radius of the niche rniche can be defined as the
r at which c(r) falls below the characteristic concen-
trations KD needed to trigger cytokine signaling, and
is the solution to the implicit equation: rniche =
ξ ln(kprod/4πrKD). The logarithmic dependence on the
rate of cytokine secretion kprod is significant because that
rate may vary greatly depending on the cytokine or de-
pending on the state of differentiation of cells. For ex-
ample, CD8+ T cells can secrete up to 1000 IFN-γ per
second, CD4+ T cells secrete 10 IL-2 per second upon
activation from a naive state, and 1000 IL-2 per second
as they mature [84] or when get activated from a memory
state [98].

In Figure IV B 4, we present the numerical solution for
rniche for different secretion rates for cytokines with dif-
ferent screening lengths. Note how variable the volume of
the cytokine niche can be, based on realistic parameters
of immune responses.

To conclude, in this section we discussed how sim-
ple equations for the diffusion and consumption of cy-
tokines in dense immunological tissues can quantitatively
account for the tunability of cell-to-cell communication
in the immune system. It is particularly striking that
such active modulation of cell communication plays a

functional role in modulating immune responses. In the
first moments of activation, there are very few cytokine-
consuming cells, and the field of cytokines extends to
the entirety of the lymphoid organ (ξ > 100µm), reach-
ing blood vessels and making communications global.
Within 24 hours, many cells migrate closer to cytokine-
secreting cells. As they do so, they increase their cy-
tokine consuming capabilities by upregulating their re-
ceptors, thereby “screening” the diffusion of cytokines
(ξ ∼ 10µm) and limiting the extent of cell communica-
tion to nearest neighbours, within a tight niche around
secreting cells.

V. CELL FATE

There is a large variety of types and subtypes of im-
mune cells, making the field of immunology sometimes
difficult for the non-specialist. These fates are acquired
either at the very beginning during haematopoiesis, the
process by which all types of blood cells are generated
by differentiation from stem cells, or following an im-
mune response or challenge, during which cells further
specialize to better fight infections. We first describe the
physical mechanisms of gene regulation that lead to sta-
ble distinct cell fates. We then review modeling strate-
gies for understanding and inferring the hematopoiesis
differentiation tree. Finally, we discuss the problem of
differentiation during an immune response.

A. Gene regulation and cell differentiation

Many cell decision making processes in the immune
system are carried out at the level of gene regulation,
whereby expression of key transcription factors decide
cell fate and subsequent immune effector function. For
example, T-cells sense their inflammatory environment
as defined by the combinations of cytokines in the extra-
cellular environment, and drive their signaling response
towards expressing key transcription factors that in turn
decide which cytokines get produced and secreted.

To consider a concrete example of gene regulation, we
use the classical example of the differentiation of CD4+
helper cells, a particular type of T cells whose function is
to regulate the action of other immune cells through the
production of cytokines — the messenger molecules used
by immune cells to communicate with each other. In their
näıve state, T cells are essentially a blank slate which
can later differentiate into more specialized cell states to
best match the pathogenic threat. Upon antigen stimu-
lation, helper T cells can orchestrate three types of im-
mune responses. They can elicit a ‘Th1’ response, further
unleashing T- and NK cells’ cytotoxic response against
infected cells. This is particularly relevant when eradi-
cating an intracellular infection such as a viral infection.
Alternatively, helper T cells can elicit a ‘Th2’ response to
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FIG. 6. Size of cytokine niches for different parameters of secretion/consumption. (Left) Cytokine profile as a
function of the distance from the surface of the secreting cell (normalized by KD – the critical cytokine concentration to induce
STAT phosphorylation), for different rates of secretion kprod (in molecules per second), and different screening length ξ (in
µm). (Right) Size of the cytokine niche as a function of the rate of cytokine secretion. For these graphs, KD = 3pMol and
Rcell = 5µm in equation (34).

engage with B cells, drive affinity maturation and class
switching in antibody production towards secretion of an-
tibodies that can annihilate extracellular (e.g. bacterial)
infections. Finally, T-cells can elicit a ‘Th17’ response
that protects mucosal barriers from infection. These
three characteristic types of T-helper cell differentiation
respond to and amplify distinct cytokine environments.
Note that similar decisions are made by other immune
cells: for example macrophages differentiate into ‘M1’
(pro-inflammatory) and ‘M2’ (anti-inflammatory) types,
which mirror the decisions and inflammatory outputs as-
sociated with the Th1 and Th2 helper T-cell types.

Immunologists are interested in dissecting the inter-
play and feedback between inflammatory environments
and immune cell differentiation [99]. In that context,
quantitative immunology brings the tools of nonlinear
dynamics to explain how sharp and cross-inhibitory deci-
sions can be made by activated T-cells during differentia-
tion. Many immunological systems involve nonlinearities
with self-reinforcing feedback loops, whereby the protein
of interest acts as a positive feedback that drives further
expression. Additionally, most gene regulation involve
mutltimerization of transcription factors onto one gene
locus, as in the case with phosphorylated STAT, a tran-
scription factor induced by cytokine signaling. Multimer-
ization implies a nonlinearity because the association rate
of an n-mer scales with the nth power of the monomer’s

concentration. These nonlinearities and their functional
consequences for cell fate in the immune system can be
studied using nonlinear stability analysis. Many tran-
scription factors auto-amplify their production in a direct
loop or, more generically, in a more convoluted cytokine-
mediated manner. For example, the transcription fac-
tor Tbet drives the secretion of a cytokine called inter-
feron γ (IFN-γ) that signals through pSTAT1 to produce
more Tbet in the context of Th1 T-cell differentiation. In
section XII B 1 of the Methods, we recall the basic for-
malism of nonlinear analysis, which explains the generic
occurence of bimodal distributions of expression of tran-
scription factors, cytokines and surface markers that im-
munologists encounter in their single-cell measurements
(cytometry or single-cell transcriptomics). We discuss
classical models of gene regulation and feedback regula-
tion that account for the molecular programs enforcing
sharp cell differentiation in the immune system.

1. Th1/Th2 differentiation

Early experimental evidence demonstrated that CD4+
helper T-cells commit to two distinct and incompatible
states of differentiation, Th1 and Th2, upon antigen ac-
tivation and response to inflammatory cues. A model
describing this system is based on two inhibitory loops
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(see Sec. XII B 1) whereby transcription factor P1 inhibits
the production of P2 and vice versa (Figure 7A & B).

dR1

dt
= v1

Kn2
2

Kn2
2 + Pn2

2

− γR1
R1

dP1

dt
= k1R1 − γP1

P1

dR2

dt
= v2

Kn1
1

Kn1
1 + Pn1

1

− γR2
R2

dP2

dt
= k2R2 − γP2

P2,

where R1 and R2 are number of mRNA leading to the
production of P1 and P2, γ decay rates, ki and vi are
production rates, Ki are binding dissociation constants,
and ni are Hill coefficients. At steady state,

P1 ∝
Kn2

2

Kn2
2 + Pn2

2

P2 ∝
Kn1

1

Kn1
1 + Pn1

1

,

(35)

to which some background expression may be added to
account for leaky gene regulation.

The nonlinearities, which are controlled by the Hill co-
efficients ni > 1, originate from the multimeric control
of transcription by the transcription factors. A graphi-
cal inspection of the nullclines (Eq. 35) for this dynam-
ical model (Figure 7.C) reveals that there exist three
fixed points for this gene regulatory system, two stable

ones, (Phigh1 , P low2 ) and (Phigh2 , P low1 ), and one unstable

fixed point (Phigh1 , Phigh2 ). This simple dynamical sys-
tem reveals how cross-inhibition of transcription factors
yields a classical toggle-switch that yields two incompat-
ible states. Note that such a model predicts hysteresis in
T cell differentiation (Figure 7D) as has been observed
experimentally [100–102].

2. Other differentiation switches

A similar formalism has been applied to account for the
differentiation of CD4+ T-cells in Th17 and regulatory
T-cells (Treg). Th17 cells are pro-inflammatory and crit-
ical to eradicate infections in mucosal tissues; regulatory
T cells are anti-inflammatory and limit overzealous im-
mune responses, such as auto-immune disorders caused
by a strong response against self antigens, or runaway
immune responses such as septic shock. These two states
of differentiation for CD4+ T cells can be accessed upon
exposure to the cytokine TGFβ. However, that cytokine
has been shown to be both pro- or anti-inflammatory
depending on the context. Tyson & coworkers [103] pro-
posed a model to account for such bimodality in TGF-β
action. In that model, the concentration of each protein
species Pi generically follows:

dXi

dt
= γi

(
Xeq
i

1

1 + e−x
−Xi

)
(36)

where ωi = ω0
i +

∑
j ωj→iPj , P

eq
i is the characteristic

concentration of Pi in differentiated cells at steady state,
γi are degradation rates, ω0

i is the constitutive level of
expression of regulation of Xi, ωj→i is the (possibly neg-
ative) influence of Xj on Xi, and σi is a parameter modu-
lating the steepness of the regulation. Note that proteins
can regulate their own production, ωi→i 6= 0.

There are three main species involved in Th17/Treg
differentation: P1=FoxP3, P2 =RORγt (the transcrip-
tion factors controlling Treg and Th17 differentiation,
respectively), and P3 =TGFβ (a cytokine that regu-
late T cell differentiation), which acts as an externally
fixed stimulus. Their interactions are represented in Fig-
ure 8A. For instance RORγt+ is activated by TGFβ
(ω3→2 > 0), as well as by itself (ω2→2 > 0), and but
is repressed by RORγt (ω1→2 < 0).

Graphically, one can represent the nullclines (dXi/dt =
0) for both transcription factors as shown in Fig-
ure 8. There are three stable fixed points where the
nullclines meet: RORγt+FoxP3− for the Th17 cells,
FoxP3+RORγt− for the Treg cells and RORγt+FoxP3+

for a mixed state whose existence was later confirmed
experimentally [103]. This formalism is interesting be-
cause it handles coupling and feedback phenomenologi-
cally, through the effective regulation parameters ωi→j ,
rather than through detailed mechanisms of how these
regulations are implemented.

3. Experimental test of bistability in cell differentiation

The elegant models presented in the two previous sub-
sections (Th1/Th2 and Th17/Treg differentiation) ac-
count qualitatively for the observation that many acti-
vation conditions lead T-cells to commit to clear, sepa-
rate and stable cell fates. The crux of these models is
the existence of toggle switches based on cross-inhibition
of transcription factors and, optionally, self-reinforcing
positive feedback loops for transcription factors. Similar
models have been proposed in the context of hematopoi-
etic differentiation [104, 105], and they provide a quanti-
tative framework to account for the bimodal distribution
of transcription factors in immune cells. How do these
models compare with experiments?

A theoretical inspection of the Th1/Th2 model of T-
cell differentiation by Antebi et al. [102] highlighted how
the bistable solution of the model presented in Figure 7
does not generically produce a bistable solution. A sim-
ple scan of parameters within the physiological range for
induction of Tbet and GATA-3, the candidate P1 and
P2 in Eq. 35, demonstrated that the ratios of rates for
their self-reinforcement and inhibition most commonly
predicted a single stable fixed point, and only rarely
more than two. In addition, the induction of transcrip-
tion factors is known to be inherently stochastic, be-
cause of intrinsic noise in gene induction [106–109] or
extrinsic noise in the levels of expression of signalling
molecules in T cells [110]. Overall, the “simplest” model
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FIG. 7. Modeling Th1/Th2 differentiation. A. Cartoon model of the cross-regulation of Tbet and GATA-3 transcription factors
(TF) whose expression determines T cell fate in terms of Th1/Th2 differentiation. B. Diagram of the interactions of TF deciding
cell fates. C. Nullcline for the regulation of TF (P1 and P2): three fixed points can emerge in the dynamics of the system,
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of a toggle switch in T-cell differentiation, though el- egant in its inception, is not consistent with observa-

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 28, 2019. ; https://doi.org/10.1101/696567doi: bioRxiv preprint 

https://doi.org/10.1101/696567


24

tions. This case is typical in quantitative immunology,
where initial insight is often derived from genetic ma-
nipulations with severe consequences as in the case of
the Th1/Th2 system where knocking out Tbet leads to
a reduction/maintenance of induction of Th1/Th2 cy-
tokine secretion, respectively [111]. These knockout ex-
periments must be balanced and reinterpreted in non-
perturbative settings, e.g. by monitoring the sponta-
neous induction of Tbet in differentiating T-cells. Similar
reassessments are happening in many models of leuko-
cyte differentiation, such as in the M1/M2 model of
macrophage differentiation [112], or PU-1-controlled dif-
ferentiation in the myeloid compartment [113]). Future
work will require better parametrization an innovative
modeling approach that can embrace the combinatorial
and dynamic complexity of cytokine communications and
gene regulation in the immune system.

Such “murkiness” in immunology must be embraced as
it opens up functional possibilities. For example, Peine
et al. [114] tracked the formation of Tbet+GATA-3+

mixed phenotypes, i.e. with characteristics of both Th1
and Th2, so in apparent contradiction with bistability.
Their presence was demonstrated to limit the deleterious
impact of all-out, non-mixed Th1 or Th2 inflammation.
Thus, a better understanding of noise and stability in
immune cell differentiation will be key to understanding
virtuous and pathologic inflammation.

B. Hematopoiesis

1. Timescales

Where do immune cells come from? A human being
has ∼ 5·1013 cells in the body and more than half of them
are made by hematopoietic stem cells (HSC) found in the
bone marrow. There are an estimated order of magni-
tude ∼ 1016 cell divisions per human, which gives ∼ 106

cell divisions per second [115, 116], and most of them
are linked to the HSC cells. HSC number ∼ 104 in mice
(there are no reliable numbers for humans), many of them
already made in the fetus. Through a series of differenti-
ation and phenotypic commitment events (HSC→ Short
Term HSC (ST-HSC)→ Multipotent progenitor (MPP),
these cells give rise to different kinds of cells found in the
blood, including red blood cells and all immune cells (see
Fig. 9). The first branching decision, whose precise tim-
ing is currently being questioned, is about becoming a
myeloid progenitor, that will give rise to red blood cells,
mast cells, thrombocytes (so not immune cells) but also
macrophages, granulocytes (neutrophils, basophils and
eosinophils) and dendritic cells – so cells of the immune
system that eat up cells and proteins non-specifically.
They function as cells of the innate immune system, sim-
ply eliminating bacteria and other pathogens, but some
of them (e.g. dendritic cells) also play an important role
in adaptive immunity as antigen presenting cells (APC).
The remaining branch of the differentiation tree leads to

hematopoietic 
stem cell (HSC)

B-cell

T-cell

megakaryocyte
short term HSC 

(ST-HSC)

multipotent 
progenitors (MPP)

common lymphoid
progenitor (CLP)
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Natural Killer (NK) cell

erythrocyte
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FIG. 9. Hematopoiesis. A cartoon representation of the
outline of the hematopoiesis process that leads to the forma-
tion of immune cells. The cells that are discussed in some
detail in this review are marked in red.

lymphoids that include cells of the adaptive immune sys-
tem: B and T-cells as well as natural killer (NK) cells.
The decision about becoming a myeloid or a lymphocyte
is widely assumed not be an autonomous decision but is
believed to be influenced by external signal (see below
for a detailed discussion).

General quantitative questions about differentiation
apply to the differentiation of cells in the immune system.
For example, given that in mice there are of the order of
104 HSC, what kind of dynamics results in ∼ 107 very
short lived granolocytes (of the order of a day) while at
the same time producing ∼ 1011 lymphocytes that can
live even for years? How long does it take to produce
these cells? What kind of differentiation process can pro-
duce this kind of diversity, and how is it regulated to
produce the right numbers of cells? A lot of information
about these differentiation processes has be gained from
two types of experiments. The first involves exposing
cells at a given upstream stage with died or radioactive
markers (i.e. bromium, deuterium) that get taken up
— and then diluted — upon cell division. Analysis of
the decay curves is informative about cellular lifetimes.
The second type of experiment — an adoptive transfer
experiment — is experimentally harder, since it involves
transplanting new marked cells into an animal (typically
mouse) and then tracking them. To study cells during
the early stages of hematopoiesis the mouse must first be
cleared of its natural cells, and recent results suggest that
the dynamics of differentiation after transplantation may
be very different from regular dynamics [117]. Lympho-
cyte divisions can be studied without killing the host’s
own immune system. The principle of these experiments
is simple — after some time δt the marked cell will appear
in a given compartment.

At the population level, given that cells at stage i of
differentiation can proliferate with rate λi, differentiate
with rate αi or die with rate δi, the dynamics of a given
cell type nR in the differentiation process follows [117,
118]

dnR

dt
= αunu − (αR + δR − λR)nR, (37)

where nu describes the upstream (pre-differentiation) cell
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type. Cells can also migrate, which introduces a spa-
tial component to the equations. In general, all these
rates are functions of the concentrations of the differ-
ent populations ni, resulting in non-linear equations.
αR + δR − λR = kR define a collective timescale of decay
of the nR population. This highlights the identifiabil-
ity problem that without specially planned out experi-
ments guided by theory, it may be hard to tease apart
the timescales of biological interest.

Commonly in this kind of analysis it is assumed that
the cellular differentiation of the adult individual is in
steady state. We will return to this assumption when we
learn the timescales for the process. Within this assump-
tion the steady state ratio of cells in the compartment
of interest, compared to the upstream compartment is
nR/nu = αu/(αR−βR), with βR = λR−δR. This kind of
approach has been used to learn proliferation rates for T-
cells [119]. Stochastic versions of such models have also
been considered in detail [119–121], showing that theo-
ries of age-structured cell populations [120] are equiva-
lent to branching processes [119] (see section XII C 6).
For hemapoietic stem cells, a HSC in the bone marrow
divides once every 50 days (λR = 1/110days) and a HSC
becomes a granulocytes after ∼ 1 year (and then lives
for a day). This is known from so-called fate-mapping
experiments, consisting of tracking labeled cells, which is
easier for granulocytes since they are known not to pro-
liferate. It is also known that granulocytes have no other
cell source, unlike other cell types. In this case the la-
bel from the HSC appears in a granulocyte after a year.
Since a lifetime of a mouse is ∼ 2 years, a 1 year timescale
to produce a new cell may put the steady state assump-
tion into question. The fetal dynamics is very different,
the steady state assumption cannot be used, and a new
granulocyte is produced in a few weeks [117].

Technically, measuring cell counts directly is not reli-
able because of sampling bias. Instead, one should mea-
sure cell ratios, fi = ni/ntotal, as was shown in the pre-
vious example. In steady state, the fraction of cells of
a given type evolves according to dfi/dt = ki(fi−1 − fi),
with ki = αi − βi. By looking at subsequent compart-
ments it is possible to disentangle differentiation and pro-
liferation. This gives an estimate of how self-renewing
the compartment is (βi), and how much comes from up-
stream differentiation (αi). For a perfect stem cell we
expect ki → 0. Real stem cells (e.g. HSC) are essentially
self-renewing with τ (in mice) on the order of the life-
time of the mouse. Other differentiation compartments
are clearly transitional, with k−1

i ∼ 1 day. HSC divide
once every 110 days but they also differentiate once every
110 days, so they seem to have a lifetime of (they replace
themselves every) 110 days (this remains to be verified
with more direct means). Short Term HSC (ST-HSC, see
Fig. 9) die at a rate of 1 per month and Multipotent pro-
genitor (MPP) of 1 per day. This produces a strong self-
renewal gradient from HSC to MPP. At the same time
the proliferation rates of these cells go up from HSC to
MPP with a similar gradient. Some have speculated that

these inverse trends of proliferation and self-renewal pro-
tect the organism from malignancy by making sure the
right amounts of cells are produced. Myeloid lymphomas
— a condition where the organisms produces too many
myeloid cells — have been linked to disturbances in this
balance and the condition is only visible in aged individ-
uals when the overproduced cells have accumulated.

Most HSC become myeloid cells, with only one in 100
cells becoming a lymphoid cell. Lymphoid cells are very
long lived and the thymus can function for long time
without input from new HSC. In general, due to the slow
timescales of the whole process, the system has a lot of
inertia. If all HSC are killed in a young adult mouse,
there are no visible phenotypic effects for ∼ 5 months,
unless the hemopoietic pathway itself is stressed [122].

There are a priori no biological reasons for downstream
cells in the hematopoietic pathway not to influence up-
stream cells, however this has not yet been directly ob-
served. Probably certain feedback mechanisms are at
play.

C. Inferring the hematopoiesis differentiation tree

Analyzing experiments from mice with progenitor cells
carrying unique barcodes with a maximum likelihood
approach (see section XII E 1) coupled to a stochastic
model, Perié et al [123], uncovered a more complex
picture of myeloid and lymphoid differentiation. They
considered the lymphoid primed multipotent progeni-
tors (LMPPs) differentiation process during which each
LMPP is called an MDB, since it has the potential to be-
come a myeloid (M), dendritic (D) or B cell. They built a
stochastic branching process model of cell differentiation
(see section XII C 6), where in each step of the decision
tree a cell can loose one or two of its potentialities: an
MDB can become an MD, MB, DB or directly an M, D,
B. Similarly an MD can become an M or a D etc. They
contrasted this with a traditional differentiation model,
where the MB phenotype is forbidden, and an MDB can-
not loose two potentials at once. Using mice with pro-
genitor cells carrying unique barcodes, they build lineage
trees, traced each offspring cell to its parent and counted
how many offspring of each type (Ni for i ∈ {M,D,B})
were produced by each MDB cell. The generating func-
tion G(zM , zD, zB) =

∑
m,d,b z

m
Mz

d
Dz

b
BP (m, d, b) for the

probability of a cell to give rise to a given combination of
offspring cells P (NM , ND, NB) can be calculated from a
convolution of simple branching process generating func-
tions [123]):

G(zM , zD, zB) = H(pMDB, GMDB(zM , zD, zB)), (38)
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where H(p, z) is given by the generating function, in
Eq. 130 in section XII C 6, and

GMDB(zM , zD, zB) =
∑

i∈{M,D,B}

pMDB→izi

+
∑

i,j∈{M,D,B},i6=j

pMDB→ijH(pij , Gij(zj , zj)),
(39)

pMDB, pMB, pMD, pBD are the probabilities of not dif-
ferentiating from (staying in) the MDB,MB,MD,BD
states and pMDB→ij describes the transition probabili-
ties from the MDB state to the ij ∈ {MD,MB,DB}
states. The remaining functions are defined recursively
as in Eq. 39, e.g. for ij = MD: GMD(zM , zD) =
pMD→MzM + pMD→DzD etc.

The marginals of this distribution give the probabil-
ity that a given barcode appears in each of the 7 pos-
sible cell types. Following the equal loss of potential
model (ELP) [124, 125], the rate of loss of the cells’ abil-
ity to make different cell types was assumed to be con-
stant and independent of current cell type, which gives
three rates αM , αB , αD, that parametrize the transition
probabilities between the cell types pi→j (for all allowed
combinations of i, j ∈ MDB,MD,MB,DB,M,D,B)
and reduces the number of parameters. The parame-
ters are determinied by carrying out a maximum like-
lihood fit ~pmax = argmax~p (

∑
i niπi(~p)) , where ni

is the number of observed barcodes in state i and
πi(~p) is the model probability (from Eq. 38) that
an ancestral barcoded cell gives rise to offsprings in
states i, where i ∈ MDB,MD,MB,DB,M,D,B cal-
culated from the generating function: πMDB(~p) =∑
m,d,b≥1 P (m, d, b), πMD(~p) =

∑
m,d≥1 P (m, d, b = 0),

πM (~p) =
∑
m≥1 P (m, d = 0, b = 0) etc.

This approach showed that the classical model of se-
quential loss forbidding the MB state is not consistent
with data. In fact, the MB state is very unlikely but
is essential to explain the observed barcode distribution.
Simulation of the dynamics of these models showed that
the differentiation process between LMPPs and the com-
mitted cell types requires ∼ 20 rounds of differentiation,
which translates into about 2 weeks. Recent barcod-
ing experiments combined with similar inference meth-
ods that looked at earlier stages of differentiation from
HSC cells [126] showed that most HSC cells give rise to
many cell fates.

Similar techniques of branching processes coupled to
likelihood inference methods were initially used by Yates
et al [121], to analyse fluorescent dye experiments of dif-
ferentiating T-cells and estimate cell division and death
rates.

D. Cell fate during the immune response

1. Choice and timing of cell fate under stimulation

Lymphocytes, both T and B-cells, start growing and
dividing upon stimulation during an infection. When
they divide they also acquire new specialized functions,
make many decisions at the individual cell level, e.g.
whether to divide further, whether to switch class for im-
munoglobulins (Ig) molecules, whether to become mem-
ory cells for both T-cells and B-cells, or to become plas-
mablasts for B-cells. As their number increases, they
eventually make another decision to stop dividing and
start dying. At the population level we observe a de-
crease of the population size, after the large expansion
due to proliferation, and a return to pre-infection cell
counts. Since each cell can in principle adopt a differ-
ent decision path, at the population level we see a large
combinatoric diversity of cell states: from cells that have
divided a small number of types and become memory
cells, to cells that have divided many types to leave no
offspring.

This diversity is even more staggering for B-cells,
since they undergo a phenomena called class (or isotype)
switching recombination (CSR), where the variable re-
gion (discussed in Sec. VI) of the antibody does not
change but the constant region of the receptor is mod-
ified. This process does not change the affinity of the
antibody for the antigen, but it means the antibody can-
not interact with signaling molecules (see sec. III B). B-
cells do this by expressing a specific gene located in the
heavy chain locus, organized in a specific order. During
CSR, segments of genes in this locus are removed, and
the remaining DNA is recombined to encode a different
isotype. Since the double stranded breaks occur at con-
served nucleotide motifs, the identity of the expressed
isotype-encoding genes are conserved between cells and
individuals. Since the non-expressed isotype-encoding
genes are deleted from the locus, in general the order of
cycling through the classes is conserved, although inter-
chromosomal translocation from the other allele can add
deleted loci [127].

How are these decisions made by cells? One view is
that cells integrate signals from the environment, which
act as cues to trigger decisions. While this is certainly
true [128, 129], and experimentalists can induce certain
cell fates in vitro using cytokine cocktails (see sec. IV),
an alternative (yet not contradictory) idea was proposed
in the “cyton” model [130]. The basic idea behind this
model is that each cell in the population makes a stochas-
tic decision, choosing from one of the accessible cell fates.
To do this it uses an intrinsic pre-programmed timer,
telling it when it should divide and die. However since
the timer in each cell picks a time from a distribution of
times, each cell will go through a different decision sce-
nario. Putting together the different decisions each cell
can make this leads to a heterogeneity of cell fates in one
population. Yet, for each trait (division times, becom-
ing a memory cell), the population level distribution is
reproducible.

The model can be and has been adapted to different
cells [130–133] but let us present it on the simple example
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of three possible options: to divide, to die or do nothing
even if stimulated. Given an experimentally character-
ized distribution of division time φi(t) and death times
ψi(t) for each division round i, and assuming that a frac-
tion Fi of cells will divide when stimulated in division
round i, the number of cells dividing or dying per unit
time is a given round i = 1, ...,m of divisions is:

ndiv
i (t) = 2pFi

∫ t

0

dt′ndiv
i−1(t′)

(
1−
∫ t−t′

0

dt′′ψi(t
′′)

)
φi(t−t′),

ndie
i (t) = 2

∫ t

0

dt′ndiv
i−1(t′)

(
1−Fi

∫ t−t′

0

dt′′φi(t
′′))

)
ψi(t−t′),

where the terms in parantheses account for cells that
would have divided (died) at time t but had previously
died (divided). The total number of cells in each division
round is then calculated by summing gains and losses in
each round:

N0(t) = N −
∫ t

0

dt′
(
ndiv

0 (t) + ndie
0 (t)

)
, (40)

Ni(t) =

∫ t

0

dt′
(
2ndiv

i−1(t)− ndiv
i (t)− ndie

i (t)
)
,

for i = 1, ...m. These integrals can be performed analyt-
ically for exponential distributions but since the experi-
mental data are better described by log-normal distribu-
tions [134, 135], the integrals are performed numerically.

The cyton model and its generalizations have been
shown to be able to fit the number of cells in experi-
ments with and without stimulation [130]. Of course, one
could note that the cyton model takes the experimen-
tally observed distribution of division and death times
and simply calculates the number of surviving cells. Yet
the power of the model lies in the paradigm shift that
assumes there are rules and, while the immune system
functions stochastically and relies on heterogeneity, we
can nevertheless predict and understand its behaviour.
The idea of a programmed stochastic system, as opposed
to a black box integration of cues, is extremely powerful.

Using data from transgenic mice infected with the in-
fluenza virus, Marchingo et al [131] showed that T-cell
receptors and costimulatory signals impose an intrinsic
division fate on each cell, and cells then count through
generations, as defined by the cyton model, before re-
turning to the pre-stimulation state. This initial heri-
table priming can be later modified by dose dependent
cytokine signling, which is also integrated by the cells
and influences their the response. As a result different
combinations of costimulatory signal and cytokines can
generate signals of similar magnitude. These experiments
also show that the cyton model is not in contradiction
with signaling-based decision making.

2. An aside on cell types

Cell types in immunology are defined using surface
markers. Cells communicate by binding and unbinding

signaling molecules (cytokines), for which they need spe-
cialized receptors. A cell that commits to participate in
a given communication channel, expresses a surface re-
ceptor and the combination of surface receptors gives the
spying experimenter an idea of how this cell is bound to
behave when triggered – this is what we call a cell type.
This phenomenological approach has been very successful
in the history of immunology and provides a way to clas-
sify different cells and give us some idea about their func-
tion and properties. In practice, FACS (Fluorescence-
activated cell sorting) sorting experiments segregate cells
according into ones that have a high concentration and a
low concentration of a given surface marker on their sur-
face. By doing this in many dimensions, one can zero in
on a very specific cell type. Technically, this leaves the
problem of deciding where the boundary between high
and low is – in practice cells are heterogenous and the
experiment produces a distribution of marker concentra-
tions, which, if we are lucky, is bimodal. This problem
of finding the separatrices between cell types is called
gating, and is an art implemented in analysis softwares.
Advances in machine learning will alleviate the need for
expert-guided gated and make the definition of cell types
more automatic and easy-to-validate. Being aware and
using the heterogeneity of the population data is often
useful. Looking at the population distribution has made
people realize that often there is continuum of pheno-
types and a binary approach is not valid. This has been
amplified by recent high throughput cell sorting experi-
ments by mass cytometry –so-called CYTOF [136], which
make it clear that cell types are more continuous and dy-
namic than traditionally assumed. With that in mind, we
can now try to learn something about how cells acquire
and switch identity.

3. Inferring cell fate timelines during the immune response

The problem of infering the timeline of cell differentia-
tion during T-cell response can also be treated using the
cyton theory [130–133]. Here we present another more
data-driven approach to the problem described in Buch-
holz, Flossdorf et al [137]. We will concentrate on the
example of CD8 T-cells. A clone, here defined as all
the TCR that respond to the same antigen, starts with
∼ 10−100 long-lived naive cells (lifetime of about 80 days
in mice). During an infection this clone grows to ∼ 107

short-lived effector cells. After infection clearance, there
remains 103 memory cells with an intermediate lifetime
(about 15 days in mice). These memory cells can then re-
spond more robustly in a subsequent infection. Memory
and effector cells also proliferate within their classes to
maintain their pool. This is done through small antigenic
signals they constantly receive for memory, and strong
antigenic signals for effector cells.

The above textbook description provides a simplified
picture, but is unable to put measurable numbers behind
each of the described populations. More importantly,
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this picture was painted by looking by eye at bulk popu-
lation data summing over many cells. Can inference and
data discrimination approaches help us infer the differen-
tiation pathways? Population-level adoptive transfer ex-
periments can be used to infer the parameters of known
models, but it is much harder to infer the topology of the
network, especially from single snapshots. Flossdorf et
al [137, 138] analyzed single cell adoptive transfer (single
cell fate mapping) experiments to discriminate between
different differentiation tree topologies and find the un-
derlying model parameters. They considered a model
with four cell types: naive (N), effector (TEF), effector
memory precursor (TEMp) and central effector memory
precursor (TCMp) and wrote down the most general net-
work diagram, in which every non-naive cell type could
differentiate into any other cell type, all of which also
could proliferate and further differentiate. Naive cells
could become any of the other cells, but no other cell
could become a naive cell. This led to 302 possible mod-
els, defined by their network topologies, as well as their
parameters. The precise definitions of the particular cell
types in the experimental data was done using surface
markers (see discussion above) can be found in the origi-
nal paper. The immunological meaning of these cell types
is under debate – but we are mainly interested here in
the power of the theoretical method.

The considered models where simple stochastic dynam-
ics for each cell type that considered differentiation (~α)

and proliferation (~β) reactions. As mentioned above, a
lot of heterogeneity was observed within naive cells and
in vitro experiments show heterogeneity in the reaction
rates, which had implications on the model. Differenti-
ation rates where chosen from underlying distributions:
an exponential and gamma distribution of differentiation
rates were considered. The data resolution did not al-
low to discriminate between the two, with an exponen-
tial giving a sufficiently good fit. The proliferation rates
were taken to be fixed, since longitudinal correlations
of proliferation events were previously shown to decay
rapidly [139]. The considered models ignored the het-
erogeneity in the phenotype of naive cells, but since the
heterogeneity in the number of naive cells would render
model selection impossible, the experiment was tuned to
start with one naive cell (Nnaive = 1).

The model consisted of a Master equation for the evo-
lution of the joint probability of the different cell types:

∂tP ( ~N) = F
(
P ( ~N), ~α, ~β, nnaive, ~r

)
, (41)

where is F a linear operator describing the prolifera-
tion and differentiation dynamics of the different cells

types, ~N = (NTEMp, NTCMp, NTEF) are the numbers
of cells of each type, and ~r is the death rate vector of
all cell types. The analytically calculated first and sec-
ond moments of these equations are fit to the variances
(CVi(t)) and covariances (Σij(t) and mean concentra-
tions (〈N〉i(t)) for each cell type i from cell fate map-
ping data using a mean squared error minimisation. The

model selection is then finalized by comparing the AIC
(see section XII E 1) of the best fit for each topology. The
necessity to use correlations in the inference procedure,
and not just population averages, was demonstrated on
synthetic data generated with known parameters and
topologies. For instance, both a linear (A → B → C)
and tree (C ← A → B) topology can give rise to the
exact same evolution of the mean number of cells as a
function of time, for well chosen parameters. However
covariances between these numbers give clearly different
signatures, allowing us to distinguish the different topolo-
gies. These data-based, model-selection approaches are
similar to those developed for stem cell hemapoiesis [123],
described in section V C.

As a result, from the 302 possible models, two strongly
stand out as potential candidates to describe the cell dif-
ferentiation of CD8 T-cells responding to a listeria ex-
pressing chicken ovalbumin (to which these T-cells were
specific) in mice. These two models are:

naive→ TCMp→ TEMp→ TEF, (42)

naive→ TCMp→ TEMp→ TEF & naive
10 %−−−→ TEMp,

where each cell type except for the naive one proliferates.
The models have well defined parameters that can easily
be identified. This bacterial response is an acute infection
and generates exponential cell growth, and the inferred
proliferation rates form a gradient from TEF → naive
cells with naive cells proliferating the least. Both of these
models correctly predict the time dependent dynamics of
the mean concentrations of the different cell types. Even
if learned on single-cell progeny data at only one time
point, the first linear diversification model is able to pre-
dict the phenotypic composition of the expanding popu-
lation at earlier time points. These kinds of approaches
shed light on the possible differentiation dynamics and
allow us to rule out possible scenarios. To give just one
example, for this system the cell differentiation is largely
(∼ 90%) symmetric: the two offspring of a cell are usu-
ally the same, although not the same as the mother, as
opposed to asymmetric divisions where the two daughter
cells have different cell types which happen about ∼ 10%
of times. Also, it turns out that the differentiation and
proliferation rates must depend on time to explain the
data. These time-dependent rates are the same in a re-
sponse to both bacterial (listeria) and viral challenges,
suggesting universal response dynamics.

Using similar methods to those proposed by Flossdorf
et al [137, 138], Miles et al [140] showed that the model is
consistent with the data of Buchholz [137] et al, but ap-
plied to the data of Kinjyo et al [141] suggests that mem-
ory precursors are produced before effector cells. This
shows that this type of inference is robust but the bio-
logical interpretation of the results depends both on the
experimental conditions and model assumptions.
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4. Quorum sensing

Recent experiments have revisited the question of naive
T-cells differentiation into different memory cell types
upon antigen stimulation, by considering collective ef-
fects through cell-cell communication. Polonsky et al [86]
tracked live cells tagged with antibody markers over time
in microwells with different initial cell numbers. By con-
tinuously tracking individual cell differentiation states
and proliferation, they are able to overcome the lim-
itations of bulk experiments where local cell densities
are hard to control. Live-cell imaging showed that the
decision to differentiate into progenitor central memory
(pTCM) is collective: in equal medium conditions, cells
surrounded by more cells had a larger differentiation rate.
That rate depended solely on the instantaneous num-
ber of cells in the well, as shown by data collapse of the
differentiation rate onto a single curve as a function of
the number of cells, for various conditions (different me-
dia, different initial number of cells in the well). The
curve shows that cells are more likely to differentiate into
pTCM if there are more than Nc ∼ 30 cells in the cluster.
The process can be described by a stochastic differenti-
ation model, in which cells divide and die, and differen-
tiate with a rate R. However, to explain the data R(N)
must be made to depend on the number of cells N . Such
a stochastic model also captures the observed well-to-
well variability. The collective decision could be linked
to the IL-2 and IL-6 cytokine communication: blocking
IL-2 reduced the maximum of the universal differentia-
tion rate curve, while blocking IL-6 increased Nc without
significantly altering the plateau value. Interestingly, IL-
2 and IL-6 receptors where found to cluster on cell sur-
faces, with receptor patches directed towards neighbour-
ing cells. This experiment shows that the percentage of
cells that differentiate into memory cells and effector cells
depends on the instantaneous local T-cell density, inde-
pendently of the additional post-stimulation influence of
T-cell receptor signalling strength, or the effect of antigen
presenting cells.

Polonsky et al [86] give a threshold in terms of abso-
lute number of cells in a micro-well needed for collective
decision making, Nc ∼ 30. However, that number must
depend on the size of the well, if cells do communicate
through cytokine diffusion. As we have discussed in sec-
tion IV B in the context of CD4+ T-cell differentiation
into Tregs and T-helper cells, signal propagate to short
distances as they are taken up by neighboring cells [96].
For pTCM differentiation, this is facilitated by the IL-2
and IL-6 orientation of the receptors towards secreting
cells. But at large distances, diffusion starts playing a
role. Active clustering seems to be a mechanism that
puts cells in the non-diffusive regime.

The scale of cytokine communication has also been
shown to depend on the type of signal: an anti-
inflammatory IL-10 signal produced by dendritic cells
is long-ranged, while the pro-inflammatory TNFα sig-
nal produced by the same cells is short ranged. These

cells are also known to cluster in cultures and in-vivo.
A two step model for the integration of these two op-
posing signals was proposed to explain the nonlinear re-
sponse of dendritic cells when integrating pro- and anti-
inflammatory information [97]: an initial intermediate
molecule integrates both signals in an indiscriminate way
until a threshold value, providing a bottleneck. This way
either the pro- or anti-inflammatory signal can stimu-
late the system. But the output of the this bottleneck is
later down-regulated by only the anti-inflammatory sig-
nal. This combination of collective decision making with
a modulated bottleneck safeguard was proposed as a way
to control possibly excessive immune responses.

Collective decision making, also called “quorum sens-
ing”, was previously proposed theoretically as a way for
immune cells to help solve the self non-self discrimination
problem [32]. According to that theory, which we discuss
in more detail in Sec. VI C, communication allows cells
to make a census-based decision by integrating the sig-
nal read out by many clones in order to correct mistake
made by individual cells. This is a cellular implementa-
tion of an error-correcting code, similarly to kinetic proof
reading discussed in section III A 1. The context of that
proposal is different from that of [86], where the T-cell
population is monoclonal, while the idea of error cor-
rection relies on taking a census of different T cell clones
that make independent decisions. This difference in clon-
ality does not change the general similarity in the nature
of the collective decision. The experimental results are
likely to hold for different T-cell clones with with similar
affinities for the stimulating antigen. The T-cell response
is multiclonal (see section VI G) and any quorum-sensing
mechanism is likely to involve multiple distinct clones.
Understanding the details of how the memory and ef-
fector cells pools are controlled in a multiclonal setting
remains an open question.

VI. REPERTOIRES

A. Size of immune repertoires

For the adaptive immune system to protect us against
all the different pathogens we may encounter, including
ones that may not exist when we are born, we need a
large set of different immune receptors.

There are of the order of 4 · 1011 T cells circulating in
the human body [142], and of the same order of B cells
[143], each expressing a single type of receptor to a first
approximation [144, 145]. However, T and B cells di-
vide, meaning that many cells can carry the exact same
receptor, defining a “clonotype”. The repertoire size, or
number of clonotypes, is therefore smaller than the num-
ber of cells. Early work [146] based on a subset of the
repertoire gave an estimate of ∼ 106 unique β chains in
one human individual.

However, these estimates were indirect, and have been
updated recently thanks to the advent of repertoire
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high-throughput sequencing (RepSeq) techniques in 2009
[147–149], discussed in a number of recent reviews [150–
155]. This method, which we briefly discuss in sec-
tion XII F, allows one to obtain the sequences of a non-
exhaustive but fairly substantial portion of all receptors
in a biological sample. As different technologies have
been emerging, the need for standarisation of RepSeq
data reporting has appeared, and the Adaptive Immune
Receptor Repertoire (AIRR) community [156] has been
organizing meetings and producing web-based and jour-
nal publications to promote data reporting unification.

RepSeq experiments on human blood samples, com-
bined with statistical extrapolation estimators, report
unique TCRβ numbers ranging from 4× 106 [148] (using
Fisher’s Poisson abundance model [157]) to the order of
108 [158] (using the Chao2 estimator [159]). For BCR
heavy chains, estimates obtained with the Poisson abun-
dance model yields 1-2 · 109 [160]. One should take all
these empirical estimate with great caution, as they make
unverified, and probably wrong, assumptions about the
shape of the clonotype abundance distribution when do-
ing the extrapolation from small blood samples to the
entire organism (more on that in Sec. VI D). Theoretical
estimates based on population dynamics models assum-
ing that naive cells divide little or not at all logically
give much higher estimates, closer to the number of cells
itself, 1010 − 1011 [161, 162].

How large is large enough? De Boer and Perelson [17]
proposed that the minimal repertoire size is ultimately
determined by self-tolerance. We revisit their argument
in the light of modern estimates, with simplified nota-
tions, starting with the easier case of B-cells. B-cells
interact directly with antigens, unlike T-cells that inter-
act with short peptide fragments presented on the multi-
histocompatibility complex (MHC). Call p� 1 the prob-
ability that a randomly chosen receptor recognizes a ran-
domly chosen epitope. During the self-tolerance selection
process, the initially generated repertoire of size R0 is re-
duced to R, R = fR0, where f is fraction of receptors
that survive negative selection, i.e. that do not recognize
any self-epitope, so that

f = (1− p)n ≈ e−pn, (43)

where n ∼ 105-106 is the number of self-epitopes (in hu-
mans). The probability that an epitope escapes the im-
mune system is then given by

pe = (1− p)R ≈ e−pR. (44)

This gives the repertoire size R = −(1/p) ln pe as well as
the pre-selection repertoire size

R0 = −(1/p)epn ln pe. (45)

Assuming that evolution has optimized the recognition
probability p so as to minimize R0, solving for ∂R0/∂p
an optimal p∗ = 1/n, and an optimal repertoire size

R∗ = R0f∗ = −n ln pe, (46)
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FIG. 10. The minimal repertoire size is set by the
number of self-antigens through negative selection. A
two-dimentional cartoon of the recognition “shape space”, an
abstract space which summarizes the main bio-chemical prop-
erties of antigen-receptor binding into a unique space [33].
Antigen-receptor pairs that are close are likely to bind and
trigger an immune response, while distant pairs do not in-
teract. Each expressed receptor of the repertoire covers a
ball of cross-reactivity where antigens are recognized by that
receptor. Negative selection ensures that self-antigens (red
crosses) are not included in any of the cross-reactivity balls
of the repertoire. To cover shape space efficiently with that
constraint, the repertoire size (number of balls) must scale
with the number of self-antigens to avoid.

with an optimal selected fraction f∗ = exp(−1) ≈ 0.37.
This estimate suggests that the number of self-epitopes

is the main determinant of the minimal repertoire size,
with which it scales linearly. Another prediction is that
the recognition probability should be inversely propor-
tional to the number of self-epitopes. We can intuitively
understand this result by thinking about the repertoire
as a covering problem: viewing the set of epitopes recog-
nized by a single receptor as a ball in an abstract pheno-
typic space, how many such balls does one need to cover
the entire space of foreign epitopes, while avoiding a fi-
nite number of self-epitopes? The simple argument given
above, as well as the schematic of Fig. 10, tells us that
the volume of each ball, p, should be inversely propor-
tional to the number of self-epitopes, n, implying in turn
that their number (R) should scale with n.

Empirical estimates suggest p ∼ 10−5 and n ∼ 105 −
106 [17], consistent with the theoretical prediction p ∼
1/n. The prediction of f ≈ 37% of cells passing nega-
tive selection is consistent with recent experimental es-
timates 25% − 45% [163]. The predicted B cell receptor
diversity crucially depends on pe, which is hard to es-
timate. De Boer and Perelson estimated that 99% of
antigens, presenting each 10 epitopes, were recognized
by at least one antibody of the immune system. This
implies p10

e ∼ 10−2, and R∗ ∼ 5 · 104 − −5 · 105, which
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is much smaller than current experimental estimates of
BCR diversity (∼ 109).

These estimates become a bit more involved for
TCR since epitopes are presented by the Multi-
Histocompatibility Complexes (MHCs), which translates
into an additional level of sampling. As already men-
tioned in previous sections, there are 2 types of MHCs
relevant to adaptive immunity: MHC type I complexes
present peptides from inside the cell to CD8+ (also called
killer) T-cells, whose goal is to kill infected or cancerous
cells; MHC type II complexes present peptides from out-
side the cell to CD4+ (helper) T-cells whose role is to
stimulate B-cells during affinity maturation process (see
section below).

Each epitope, or peptide derived from the antigen of
interest (self or foreign) must both be presented by one
of the m = 6 MHC genes for each MHC type, and be
recognized by one of the R TCR expressed in the body.
This implies that the probability of escape reads:

pe = (1−q+q(1−p)R)m ≈ exp
[
−mq

(
1− e−pR

)]
, (47)

where q � 1 is the fraction of peptides that can be pre-
sented by a given MHC molecule. Eq. 43 is still valid,
with n being the total number of possible MHC-self-
peptide complexes. The repertoire size is then given by
R0 = −(epn/p) ln[1 + (ln pe/mq)], and the optimal size is
obtained through ∂R0/∂p:

R∗ = −n ln

(
1 +

ln pe
mq

)
(48)

with p∗ = 1/n and f∗ = exp(−1). Thus, the scaling and
selection probability are predicted to be the same as for
B cells.

The probability of presenting a given peptide on MHC
class I complexes is relatively well known: deep learn-
ing algorithms have been very succesful in building algo-
rithms that predict which peptide is likely to be pre-
sented. These methods are implemented in software
packages such as netMHC [40, 164], which account for
known biological features to guide the learning. The
same prediction task has been implemented for MHC
class II [165], but the prediction is much harder, partly
because unlike MHC class I presented peptides, which
have a relatiely fixed length of 9-11 amino acids, MHC
class II presented peptides have varying length, from 13
to 25. More data than is currently available is needed
to successfully train the neural networks, and to improve
prediction. The models predict that about 1% of pep-
tides are presented by any given particular MHC allele,
i.e. q = 0.01.

The number of MHC-self-peptide complexes is given
by n = qmnp, where np is the number of peptides in
the human proteome. Each individual has 6 MHC alleles
for each class, i.e. m = 6. np is roughly the number of
proteins, ∼ 3 · 104, times their average length, ∼ 400, i.e.
np ∼ 107, and n ∼ 6 · 105. The recognition probability,
p, has been estimated to be in the range 10−4-10−6 [166,

167]. These numbers are consistent with the theory p ∼
1/n. The fraction of negatively selected cells, predicted
to be f∗ ≈ 37% by the theory, is estimated to fall in the
range 20-50% [168]. As for B cells, predicting the size
of the repertoire is hard without a good estimate of pe,
but current estimates of R = 108-1010 are probably much
larger than predicted by (48) regardless of the estimate
of pe.

In summary, these theoretical estimates still seem to
be relevant today for the relationship between recognition
probability, p, and number of self-epitopes, n, both for T
and B cells. Recent estimates of TCR and BCR diversity,
however, are much larger than predicted by these simple
theories. However appealing, a major limitation of these
estimates and predictions is that Eq. 43 assumes that
each receptor is tested against all possible self-epitopes,
while in practice this is impossible due to the limited
duration of lymphocyte maturation. We will come back
to this point in Section VI C devoted to modeling thymic
selection.

B. Inference of the stochastic repertoire generation
process

Antigen receptors are proteins, which must be encoded
as genes in the DNA. Humans have of the order of 104

protein-coding genes. Directly encoding the whole di-
versity of immune receptor genes (∼ 108 − 1010) in each
genome would make it impossible for the DNA to fit in
the nucleus. The immune system has solved that prob-
lem by stochastically creating receptors in each cell, in a
process called V(D)J recombination that combines com-
binatorics and randomness to generate diversity. B- and
T- cell receptors are made of two chains, light and heavy
for BCR, and α and β for TCR. The genome encodes a
certain number of gene templates, called V, D and J for
the heavy and β chains, and V and J for the light and
α chains. Upon creation of a chain, DNA is edited and
one of each of these gene templates is chosen per recep-
tor. The combinatorics of templates typically results in
∼ 103 different receptors. To obtain the (much larger)
observed diversity, nucleotides are randomly inserted in a
non-templated way and deleted at the junctions between
the V and D and D and J genes (or V and J genes for α
and light chains). This process of generating “junctional
diversity” in fact accounts for most of the diversity of the
repertoire [169, 170].

Characterizing the above described process of receptor
generation in quantitative detail has been made possi-
ble thanks to the development of RepSeq methods (see
Sec. XII F). This can be done using out-of-frame se-
quences (with a frameshift due to the random number
of additions and deletions at the junctions), which are
nonproductive and hence a raw product of recombina-
tion, as they are free of selection effects. These sequences
survive selection because they are in the same cell as an
in-frame sequence. Since each cell has two chromosomes,
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out-of-frame sequences come from cells where the first
rearranged chromosome resulted in an out-of-frame se-
quence and the second rearranged chromosome resulted
in an in-frame sequence. Due to the random insertions
and deletions of nucleotides, it is impossible to reliably
determine how a given receptor was formed (V, D, J as-
signments, as well as distinguishing inserted from tem-
plated nucletoides) from its mere sequence. Instead one
can consider a list of scenarios (which includes V, D and
J gene choice plus a number of insertions and deletions
at each of the junctions) and sum over them weighted
by their probabilities as determined self-consistently us-
ing a probabilistic model. Concretely, in the case of the
simpler α or light chains, the probability of a given re-
combination scenario r is:

Prearr(r) = P (V, J)P (delV |V )P (delJ |J)P (insV J),
(49)

where delV and delJ denote the number of deletions at
the V and J ends, and insV J is the list of inserted nu-
cleotides. A similar expression can be written for the β
or heavy chains by adding the D gene and the related
deletions and insertions. The model is the most general
factorizable distribution that is consistent with the data
and the known biological constraints (such as the relative
positioning of the genes in the genome). The overall gen-
eration probability of a given sequence s is obtained by
summing of the probabilities of all scenarios that could
have given rise to this sequence:

Pgen(s) =
∑
r→s

Prearr(r). (50)

The learning of the model parameters, encoded in the
probability distributions in the factorized form (49), is
performed by maximizing the likelihood of the sequences,
using the Expectation-Maximization algorithm to deal
with the sum over the hidden variable r (see Sec. XII E 1
for details about Maximum Likelihood and Expectation-
Maximization).

This inference procedure has been applied to variety of
immune receptors and species, TCR β [169] and α [171]
chains, BCR heavy [170] and light chains [172] in humans,
as well as TCRβ in mouse [173] and BCR heavy chains in
trout [174]. It is implemented in the IGoR software [175]
which can be used to learn additional models from other
species and locus combinations. IGoR can also be used to
generate synthetic sequences from the Pgen distribution,
and to estimate Pgen(s) of an arbitrary nucleotide se-
quence s. Another method, OLGA [176], was designed to
estimate the probability of amino-acid sequences, using
dynamic programming to deal with the enormous sums
involving the enumeration of all possible nucleotide vari-
ants. Other methods relying on hidden Markov models
(see Sec. XII E 1), were also proposed to handle the high
dimensionality of hidden variables [177–180].

Repertoires generated in silico using the learned model
confirm that the inference is able to call the correct re-
combination scenario in at best ∼ 25% of cases, making

the deterministic annotation of sequences impossible and
necessitating a probabilistic inference approach. A per-
haps counterintuitive consequence is that the model pa-
rameters can be inferred with arbitrary accuracy despite
our inability to annotate any sequence reliably.

The results of the inference show that the probability
of generation of receptors is incredibly reproducible be-
tween individuals of the same species. The distribution
is dominated by insertions and deletions, whereas gene
choice contributes relatively little to the overall probabil-
ity. Among the features of V(D)J recombation, the gene
choice distribution varies the most between unrelated in-
dividuals [169], even when corrected for single nucleotide
polymorphisms (SNP) in V, D and J alleles [181]. As
far as can be determined, the generations of the α and
β chains are largely independent, and the overall gener-
ation probability of a receptor is well approximated by
the product of the generation of its two chains [145]. Al-
though no similar analysis has been performed for BCR,
it is likely that the formation of its two chains are also
independent.

Although these recombination models ignore selection
effects, to be discussed in the section below, it is a good
predictor of the abundance of particular TCRβ in a hu-
man population [176], and it has been used to detect
signatures of immune responses as deviations from this
baseline distribution [182, 183].

C. Thymic selection and central tolerance

After the receptors are generated, they undergo an ini-
tial selection step, known as thymic selection in T-cells.
A similar process called central tolerance occurs in B-
cells maturation [163], but let us focus on T-cell for con-
creteness. For a more comprehensive survey of models
of thymic selection, we refer readers to the review by A.
Yates [168], and focus here on recent development involv-
ing quorum sensing and data-driven models of sequence
specific selection.

T-cells mature in the thymus, an organ that con-
tains only proteins that are native to the host organ-
ism, termed self-proteins. The newly generated receptors
are expressed on cell surfaces and their binding proper-
ties are tested against the peptides from the self-proteins,
presented by the MHC complexes. If the receptor fails
to bind any self-peptide, even weakly, it will probably
fail to bind any protein and the cell carrying these re-
ceptors is discarded – a process called positive selection
which removes ∼ 80% of immature cells. Conversely, if
a receptor binds any one self-protein too strongly, it is
also discarded as a result of negative selection, since it
is likely to bind self-proteins later on and trigger auto-
immune diseases. Negative selection was at the core of
the argument for the optimal recognition probability and
repertoire size presented in Sec. VI A, and it is estimated
to remove 50% − 80% of cells. The detailed process of
T cell selection, complete with the timing of the α and
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FIG. 11. Thymic selection. A cartoon representation of
the basic processes that take the cells from the bone marrow
to the thymic cortex and medulla and finally lead to the gen-
eration of functional naive CD4+ and CD8+ T-cells that are
exported to the periphery. The duration of the processes is
not drawn to scale – it is meant solely as an indication of
temporal order and overlap.

β chain recombination events, is summarized in Fig. 11.
During positive selection, cells with TCR that recognize
peptides presented by the MHC class I commit to be-
coming CD8+ cells, whose main function is to kill in-
fected cells, while cells with MHC class II TCR specificity
become CD4+ cells, whose main function is to help B
cells in their affinity maturation, and to regulate the im-
mune response. There are about 4 times as many CD4+
cells as CD8+ cells. A small subclass of CD4+ T cells,
called regulatory T cells (Tregs), actually suppress the
immune response, and play an essential role to prevent
auto-immunity [184]. Tregs are selected for higher affini-
ties to self-epitopes than regular T cells, which allows
them to selectively suppress immune responses to self-
antigens, although the picture seem to be quite complex
(see [185]).

To be able to ensure self tolerance, each receptor
should in principle be tested against all possible self-
epitope, which would take an impractically long time. In
practice, experiments suggest that each T cell may en-
counter around 500 antigen presenting cells [186], while
theoretical arguments estimate the number of presented
self peptides around a few thousands [32] (these numbers
are not inconsistent because each antigen-presenting cell
may present many different peptides in single encounter
with a T cell). These numbers are much lower than the
estimated diversity of presentable self peptide-MHC com-
plexes, 5 · 105 − 5 · 106 (see Sec. VI A). Calling x the
fraction of presented self peptides during negative selec-
tion, the probability that none of the selected TCR are
self-reactive is (1− p)RNx, which quickly goes to 0 as R
becomes even moderately large, even if p scales as 1/N .

A recently proposed solution to this problem is to as-
sume that a minimal number t of TCR must recognize
a peptide to trigger an immune response [32]. By virtue
of the law of large numbers, the number of T cells re-
sponding to a self-peptide is distributed as a Gaussian
with mean and variance = Rp(1− x), while the number
of T cells responding to a foreign peptide is of mean and
variance = Rp. Good discrimination is achieved when

the two distributions are well separated, giving the con-
dition Rpx2 � 1, with an optimal discrimination thresh-
old t∗ = Rp(1− x/2) in the limit x� 1. This condition
is barely satisfied by x = 10−2, R = 109 and p = 10−5,
for which the optimal threshold for the number of TCR
involved is t∗ ∼ 104. This argument suggests another,
stricter lower bound on the diversity R of the T cell reper-
toire that is necessary to make such a collective decision.
It also implies a “quorum sensing” mechanism by which
responding T cells have a way of estimating how many
other cells are involved in order to commit to a response.
Recent work suggests that such quorum sensing does oc-
cur locally, probably using cytokine signaling [86].

To model thymic selection in more quantitative detail,
a common strategy has been to use additive models of
binding free energy similar to (9) [29, 30, 35]. In these
models, the only receptors that survive are those whose
maximal affinity E∗ to any self peptide falls within a
range (Ep, En) corresponding to the positive and nega-
tive selection thresholds. This condition can be mapped
onto an extreme value statistics problem, allowing for a
statistical mechanics treatment [31]. Under this frame-
work, it was shown that the sequence composition of neg-
atively selected TCR was biased towards weakly binding
residues [29], and the theory was subsequently applied to
explain clinical data on “elite controllers” of HIV express-
ing a particular type of MHC class I molecule, HLA-B27
[187]. A similar theory was used to study the sensitivity
of TCR that target tumor cells [30]. The parameters of
these models are not inferred empirically, but are instead
picked from popular but unrealistic interaction potentials
between amino acids such as the Miyazawa-Jernigan ma-
trix [28]. Yet many conclusions of these studies are rela-
tively insensitive to the details of the interaction matrices
in the extreme value statistics regime.

Statistical inference methods based on immune reper-
toire sequencing can also be used to estimate the prob-
ability that a particular receptor passes selection based
on its sequence. We can define a selection factor corre-
sponding to the ratio of probabilities to find a sequence
in a selected repertoire, Psel(s), relative to its probability
in the unselected repertoire, as given by the recombina-
tion model Pgen(s): Q(s) = Psel(s)/Pgen(s). In practice,
it is impossible to evaluate Psel(s) directly, as the num-
ber of possible sequences to be considered is too large,
spanning more than 20 orders of magnitude in genera-
tion probabilities. However, simplifying assumptions can
be made on the form of Q(s). Specifically, Elhanati et
al [188] considered:

Q(s) = q(L)q(V, J)
L∏
i=1

qi|L(ai), (51)

where (a1, a2, . . . , aL) is the amino-acid sequence of the
Complementarity Determining Region 3 (CDR3, which
forms a loop important for antigen recognition, and cov-
ers the most variable part of the receptor ranging from
the end of the V to the beginning of the J segments).
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Selection is assumed to act independently on the length
of the CDR3 region q(L), the V gene, q(V ), and the
J gene, q(J). The D gene is not taken into account
seperately, but selection on amino acids in the CDR3
is considered explicitly. The parameters of the model
are inferred by maximizing the likelihood using Expec-
tation Maximization (Sec. XII E 1). This approach has
been applied to the initial selection process of β-chain se-
quences [188], α-chain sequences [171], and BCR heavy
chain [170] and light chain [172] sequences. For many
of these cases, the Q(s) selection factors did not dif-
fer substantially from individual to individual. Instead,
they reflected an global selection for general biophysical
and biochemical features of amino acids (suggesting pos-
itive selection for proper protein function), rather than
individual-specific removals in the repertoire caused by
negative selection. Similar observations were made for
BCR by direct comparison of pre-mature and mature
repertoires [189]. Modeling negative selection is much
harder, as it requires to learn the “holes” that selection
pokes into the repertoire, whose post-selection landscape
looks like a dense golf course. A simple way to model
negative selection is to remove a random fraction 1−q of
the sequences from the selected repertoire, boosting the
likelihood of surviving ones by a factor 1/q [190]. In prac-
tice, in simulations one can use a hashing function, which
associates a quasi-random number to each sequence, and
select sequences whose hashing number falls below a cho-
sen threshold, so that selection is reproducible, yet ag-
nostic to the features of the sequences.

Note that models of the form (51) are not restricted
to thymic selection, and can be used to describe the
sequence-wide selection pressure during any process, by
comparing the initial distribution before selection to the
final distribution after selection, as was for instance done
to characterize responsive receptors to yellow fever vac-
cination [183]. For instance, different T cell subsets (e.g.
CD4+ and CD8+ cells), different BCR isotypes, in dif-
ferent organs or environments, are probably character-
ized by distinct selective pressure, each of which could
be modeled using similar Q(s) factors.

D. Diversity and the clone size distribution

The distributions of TCR and BCR span a very large
space, and are highly skewed. It is often useful to sum-
marize these distributions by a single summary statistics
that quantifies their diversity. Diversity measures in the
context of immune repertoires have been thoroughly dis-
cussed in a recent review [162]. Diversity is important
for understanding how well our immune repertoire pre-
pares us against a wide range of pathogenic threats. As
we will see, diversity measures are deeply linked with the
distribution of sizes of immune clones (number of cells
with the same receptor), which contains important infor-
mation about the dynamics of immune cells in response
to environmental challenges (see Sec. VII). In addition,

it determines the amount of overlap one expects between
repertoires of distinct individual, and underlies the con-
cept of “public repertoire” shared by all individuals (see
Sec. VI E). All these aspects can be formalized within
the common langage of statistical mechanics through the
definition of a density of state, which we introduce below.

The most general family of diversity measures for a
distribution p(s) is given by Renyi entropies:

Hβ =
1

1− β
ln

[∑
s

p(s)β

]
. (52)

This definition reduces to the Shannon entropy for β = 1,
H1 = −

∑
s p(s) ln p(s) (see Sec. XII E 5), to the total

number of receptors for β = 0, R = exp(H0), and to the
probability of drawing the same receptor twice with re-
placement for β = 2, exp(−H2) =

∑
s p(s)

2, also equal to
the inverse of the the Simpson index. More generally, the
family Hβ recapitulates the entire clone size distribution,
defined in its cumulative form as the number G(E) of re-
ceptor sequences with − ln p(s) < E, through a Laplace
transform:

Hβ =
1

1− β
ln

[∫
dG(E) e−βE

]
. (53)

Note that G(E) is formally equivalent to a cumulative
density of states in statistical physics. E = − ln p is
sometimes called the “surprise” and is also formally sim-
ilar to an “energy” by analogy with Boltzmann’s law,
p ∼ exp(−E), making β analogous to an inverse tem-
perature. The mapping between G(E) and Hβ is for-
mally analogous to the equivalence of the canonical and
micro-canonical ensembles, and is amenable to a statis-
tical physics analysis [191]. The lower the temperature
(the higher the β), the more the Rényi entropy concen-
trates on low-energy, high probability sequences.
G(E) can also be interpreted as the rank (ordered from

most probable to least probable) of sequences with prob-
ability p = e−E . The distribution of clone sizes is often
presented in terms of a clone-size frequency rank distri-
bution, where clones are ranked ordered by their sizes,
and their normalized frequency is plotted as a decreasing
function of its rank. G(E) precisely encodes this rank-
frequency relation.

It is important to distinguish between the poten-
tial diversity, corresponding to a theoretical distribution
Pgen(s) or Psel(s), and the realized diversity, correspond-
ing to the actual distribution of a finite number of recep-
tors in a particular sample, p(s) = n(s)/Ntot, where n(s)
is the number of molecules or cells with receptor sequence
s, and Ntot =

∑
s p(s).

Let us start with the potential diversity derived from
the probability distribution Pgen(s) (see Sec. VI B). For
human TCR β, the total number of possible sequences,
eH0 , is infinite for all practical purposes (> 1039 [162]), as
it is larger than the total number of TCRβ receptors hav-
ing ever been produced by a human being. For this rea-
son, it makes more sense to compare Shannon entropies.
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FIG. 12. Distribution of clone sizes follow power laws.
Cumulative distribution G(p) of clone frequencies p of unfrac-
tionned TCR β sequences sampled from the blood of 6 human
donors [171]. The dashed line represents slope −1.

These can be computed using (53), where G(E) is evalu-
ated from the probability density distribution of E among
randomly drawn sequences according to p(s), ρ(E) =

(dG/dE)e−E , so that G(E) =
∫ E

0
dE′ ρ(E′) exp(−E′).

Entropy estimates for both nucleotide and amino acid
sequences are reported in [176]. Human nucletoide TCR
β diversity is H1 ∼ 44 bits (bits refer to ln(2) units)
for nucletoides and 30 bits for amino-acids, TCR α di-
vesity is ∼ 30 bits for nucleotides and 25 bits for amino
acids. The BCR heavy chain entropy is 67 bits for nu-
cleotides and 53 for amino acids. These numbers are very
large. If the distribution were uniform, that would cor-
respond to 255 ≈ 3.6 · 1016 distinct amino acid TCRαβ
sequences. Because the distribution is non-uniform, the
pooled repertoire of all humans having ever lived do not
exhaust the potential diversity. As noted before, most
this diversity is due to random insertions and deletions.

Thymic selection and central tolerance effectively re-
duce these potential diversities in Psel(s), by around 9
bits for TCRβ [188], 4 bits for TCRα [171], and 12 bits
for BCR heavy chain [170], but the corresponding diver-
sity number remain very high. This diversity loss does
not mean that e.g. 2−13 ≈ 10−4 of TCR must be dis-
carded; the probability of thymic selection Q(s) is in fact
correlated with generation probability Pgen(s), meaning
that diversity is reduced by selecting already likely se-
quences.

Let us now turn to the realized diversity in a sample
or an individual. This diversity is best described by the
whole clone-size distribution encoded by G(E). Based on
recent high-throughput sequencing experiments, the dis-
tributions are often long-tailed, spanning several orders
of magnitude (see Fig. 12) [162, 192–194]. These tails
seem to be mostly due to the memory fraction of the
repertoire [195]. Initial worries that these long tails may

arise from noise is the Polymerase Chain Reaction, which
amplifies differences exponentially [196], were put to rest
thanks to the introduction of unique molecular barcodes
associated to each initial mRNA molecule [154, 197, 198].
Specifically, the clone size distribution follows a power-
law:

G(E) ∼ eβ̂E ∼ 1

pβ̂
, (54)

with β ≤ 1 but close to 1. The probability distribution
of clone frequencies,

ρ(p) = −dG
dp
∼ 1

p1+β̂
, (55)

is also a power law of exponent slightly below 2. Another
way to look at the distribution is to consider the inverse
relationship,

p ∼ 1

G1/β̂
, (56)

which also follows a power law, called Zipf’s law in this

particular context when its exponent β̂−1 is close to 1.
Since G is the rank of the clone (from most frequent to
least frequent), this relation is called the rank-frequency
relationship.

Because of these long tails and limited sampling, very
few of the diversity measures can be estimated reliably.
One way to overcome these issues is to build a statisti-
cal model that is then parametrised by the experimental
data. In Sec. VI A we already mentioned Fisher’s Pois-
son abundance model and the Chao estimators, which
use this idea. More sophisticated methods have been
proposed for immune repertoire, e.g. using Expectation
Maximization (see Sec. XII E 3) [199] or using rarefac-
tion curves [200], but all these methods are susceptible
to huge errors when the clone size distribution follows
a power law [201]. We expect the reported numbers to
grossly underestimate the true diversity of both BCR and
TCR. To make progress, models of lymphocyte popula-
tion dynamics should be leveraged to reliably extrapolate
the tails of clone-size distributions. We will discuss some
of these models in Sec. VII.

E. Repertoire sharing

Receptor sharing is at the heart of the public vs private
debate in immunology. Public receptors are those shared
between individuals in a given cohort, while private are
ones that are seen only in individuals. If one studies a
group of individuals with a specific condition (e.g. cy-
tomegalovirus or CMV [204] or Ankylosing Spondylitis
[205]), receptors that are shared between these people
can be expected to be linked to a disease. This justi-
fies the search and investigation of “public” sequences.
Both humans and mice do share a non-negligible numbers
of receptors in functional repertoires, regardless of their
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FIG. 13. Overlap of immune repertoires between in-
dividuals. A. The amount of shared lymphocyte receptors
(TCR β chain) between individuals is consistent with pure
chance [190] (data from [202]). B. To explain that observa-
tion, a simple model of optimal immune coverage of pathogens
[203] predicts that even very similar immune environments ex-
perienced by two individuals (top) can lead to very different
(and peaked) distributions of protections (bottom).

lifestyles, environmental factors and family ties. How-
ever, receptors are also expected to be shared by chance,
because some sequences are likely to recombine indepen-
dently in different individuals [188, 206–208]. One can
try to correct for this convergent recombination by using
an outgroup — a group of individuals that are as simi-
lar to the condition-specific group but do not have this
condition — and identify sequences shared more in the
studied group than in the control group, as was done for
CMV [204]. Alternatively, one can use the knowledge of
immune repertoire diversity encoded in Pgen(s) to esti-
mate our null expectation.

All sharing properties are recapitulated by the cumula-
tive density of states G(E). Given n independent reper-
toires of sizes N1, . . . , Nn, the expected number of se-
quences shared by exactly m repertoires, Mm, is given
by the following generating function [190]:

g(x) =
n∑

m=0

Mmx
m (57)

=

∫ +∞

0

dG(E)
n∏
i=1

[
e−Nie

−E
+
(

1− e−Nie
−E
)
x
]

For example, for n = 2, in the limit of small samples,
N1,2e

−E � 1, the expected number of shared sequences
is

M2 ≈N1N2

∫
dG(E) e−2E

≈N1N2

∑
s

p(s)2 = N1N2e
−H2 ,

(58)

reducing to simple biased birthday problem related to
Simpson’s diversity and thus Rényi entropy of order 2.
More generally, sharing between m small samples is gov-
erned by

∫
dG(E) e−mE and to Rényi entropies of order

m. The ensemble of sequences shared between m samples
thus corresponds to sampling the generation probability
at temperature 1/m, focusing on more and more likely
sequences as m increases.

This calculation shows that in such large ensembles of
cells as the B or T cell repertoire, which contain upward
of 108 unique receptors, we expect the most common re-
ceptors with a high probability to be independently gen-
erated multiple times in different people. The number
of shared TCRβ sequences among sampled repertoires
from a cohort of 658 human donors [204] was well pre-
dicted by the model in Eq. 57. By itself, the generation
probability Pgen was enough to build a classifier that can
determine whether a given sequence will be shared by a
minimal number of people, with a > 95% accuracy for
m > 10. This analysis also brings our attention to the
definition of public repertoires. A receptor that is shared
between m = 2 and m = 1000 people has a very dif-
ferent notion of publicness. For this reason it is better
to talk about degrees of publicness. In addition, sharing
and publicness depends very sensitively on the collected
sample size Ni. A reasonable choice for a single defini-
tion of receptor publicness could that the sequence must
be present on average once in each individual, implying
Pgen(s) > 1/R.

Interestingly, the theory can also identify receptors
that are shared for other reasons than sheer chance.
These receptors have a high propensity to be shared, but
a relatively low generation probability. The discrepancy
between chance prediction and observed sharing was used
to discover shared T cell clones in identical twins [171], to
find candidate TCR sequences associated with conditions
such as CMV or diabetes without a control group [183],
or to assess the public BCR response to vaccination in
trout [174].

Identifying common, even unusual receptors does not
necessarily mean they are responding to the same anti-
gen or pathogen, and even when it does it does not tell
us what the target antigen is. As discussed in Sec. II D,
immune response is a complex phenomenon that involves
the binding different epitopes to immune receptors, fol-
lowed by signal propagation, cell commitment, and cell-
cell communication through messenger molecules. Yet
tools based on the statistical expectations of an unbi-
ased repertoire allow us to identify deviations from this
baseline, and propose candidate responding receptor se-
quences to be tested in other experiments.

F. Optimal receptor distribution

In Sec. VI A we discussed theoretical arguments for
an optimal repertoire size, but recent data suggests that
actual repertoire sizes are much bigger than these theo-
retical predictions. However, as stressed in Sec. VI D, the
distribution of receptors is itself highly skewed, suggest-
ing that the relative abundance of receptor types, rather
than their absolute number, is an important factor of
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repertoire design. Can we find an optimization principle
over the composition of the repertoire? Take a distribu-
tion Qa of antigens to be recognized, where a lives in a
theoretical high-dimensional “shape space” encompass-
ing both antigens and receptors, and in which proximity
reflects receptor-ligand affinity [33, 209], through a recog-
nition or “cross-reactivity” matrix far between antigen a
and receptor r which encodes the probability that a ran-
dom encounter between the two results in an immune
response. For a given distribution of receptors, Pr. The
expected cost of an infection linked to a is a decreasing
function c(·) of the probability that a chance encounter
with a receptor is successful,

∑
r farPr, so that the ex-

pected cost for a random infection reads [210]:

C({Pr}, {Qa}) =
∑
a

Qac

(∑
r

farPr

)
. (59)

Minimizing that cost with respect to the receptor dis-
tribution {Pr} gives an interesting multi-peak structure
(Fig. 13B). Because of the degeneracy of recognition al-
lowed by cross-reactivity, similarly well protecting reper-
toires in different individuals may exist, even if they sam-
ple essentially the same pathogenic environment (Figure
13B). As a result, we should not be surprised by great dif-
ferences at the phenotypic level, let alone at the sequence
level, when looking at repertoires responding to specific
threats. In other words, even if convergent selection is at
play, each immune repertoire may find a different molec-
ular solution to it, which may explain the observation
that most repertoire sharing seem to occur by chance.

G. Repertoire response to an immune challenge

RepSeq technologies allow one to track changes in
the repertoire in time and in response to environmen-
tal changes, infections, or vaccinations. In many animal
models such as mice or fish, it is generally not possible
to sample the repertoire in the same individuals. In-
stead, the repertoires of distinct but isogenic individu-
als are sampled at the different times before and after
an immune challenge. By construction, this strategy re-
stricts the analysis to public features of the repertoire re-
sponse. To identify common sequences features of reper-
toires that responded to a particular challenge, machine
learning techniques based on low-level features [211] or
support vector machines [212] have been used in mice to
classify responding repertoires. Enrichment of particular
V classes and sequences features have also been reported
in the BCR repertoires of trout following immunization
[174, 213].

In humans, the BCR response to influenza vaccination
[197, 214], BCR and TCR response to varicella-zoster
vaccination [215, 216], and the TCR response to yel-
low fever vaccination (a model for an acute infection)
[217, 218] have been studied at the repertoire level us-
ing RepSeq. These studies are mostly descriptive, but

they pave the way towards a better characterization of
the specificity, reproducibility, and publicness of the im-
mune response at the repertoire level. A common obser-
vation is that the response is mostly private, although
responding clones are more shared than would expected
by chance. Responding sequences also tend to be clus-
tered in sequence space [218]. This clustering gives a
criterion for identifying responding sequences in a sin-
gle repertoire snapshot, based on the density of similar
sequences (differing by at most one amino acid) in the
repertoire, relative to this density expected by the re-
combination model,

∑
s′,|s−s′|≤1 Pgen(s′) [183].

VII. LYMPHOCYTE POPULATION DYNAMICS

T and B cells are organized in clones of cells that
express the same immune receptor. These clones grow
and decay as individual cells divide or die either sponta-
neously or in response to external signals — e.g. an anti-
gen recognition event triggering cell proliferation, or cell-
cell communication through messenger molecules called
cytokines. The correct way to approach and to model
these complex lymphocyte dynamics, as well as their im-
plication for experimental observables such as clone size
distributions or clone expansion, is still a largely open
question. There is a vast body of literature on model-
ing lymphocyte dynamics for broad subpopulations with
no clonal information, using models ordinary differential
equations. Ref. [120] provides a useful entry point into
that literature. Here we will focus on stochastic models
population dynamics, where the identities and sizes of in-
dividual lymphocyte clones are tracked. This approach
is in line with recent developments in high-throughput
repertoire sequencing (Sec. VI), which allows for such
a fine-grain description of population dynamics, and for
which much work remains to be done, both experimen-
tally and theoretically. While progress on this topic is
still in its infancy, it promises to give us better insight
into the collective decision-making and dynamics of pop-
ulations of immune cells, and to extract important in vivo
parameters from data, at a moment when most studies
are based on cultured cells or mouse models.

We also briefly review the application of differential
equation models to HIV dynamics, in what constitutes
perhaps the most successful application of modeling to
translational immunology.

A. Neutral dynamics

Let us fist consider a simple stochastic model of reper-
toire evolution in the absence of any antigenic prolifera-
tion. Such a model is relevant for the naive pool, which
is often believed to be unaffected by external stimuli (al-
though this is also debated, see below), but can also serve
as a “neutral” baseline against which to compare other
dynamics or longitudinal data. While some of the results

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 28, 2019. ; https://doi.org/10.1101/696567doi: bioRxiv preprint 

https://doi.org/10.1101/696567


38

discussed in this section were presented in [194], here we
expand on them and add a few original results, notably
on the establishment of the steady state, and on estimates
of the total number of clones.

In this simple model, new clones of size C come out
of the thymus (for T cells) or bone marrow (for B cells)
with rate θC , so that the total cell output θ =

∑
C CθC .

Then each cell can divide with rate ν, and die with rate
µ > ν.

The total number of cells Ctot(t) follows the simple
differential equation:

dCtot

dt
= θ − (µ− ν)C. (60)

This simple equation is at the basis of many studies aim-
ing at quantifying lymphocyte population dynamics, us-
ing experiments with isotope labeling [219, 220] or other
markers of cell divisions [221]. When thymic output, di-
vision and death rates are constant, Eq. 60 is solved by
(assuming no cell at t = 0):

Ctot(t) =
θ

µ− ν

(
1− e−t(µ−ν)

)
. (61)

At steady state, the total number of lymphocytes Ctot =
θ/(µ−ν) reflects the balance between thymic output, cell
division and death. It is believed that the division and
death rates ajust themselves so as to keep Ctot constant,
a process called homeostasis. For T cells, θ ∼ 106/day
for mice, and θ ∼ 108/day for humans, although that
number varies with age. Taking Ctot ∼ 1011, this gives
an effective decay time of (µ− ν)−1 ∼ 1, 000 days, which
is consistent with lifetime estimates of T cells in human
using deuterium water [220].

However, these numbers are not informative about the
repertoire structure and its clone size distribution. These
calculations are also unable to disentangle division and
death, lumped in the single parameter µ − ν. The ex-
pected number of clones of size C, NC(t), is governed by
the following equations [193]:

dNC
dt

=ν((C − 1)NC−1 − CNC)

+ µ((C + 1)NC+1 − CNC) + θC

(62)

At steady state, dNC/dt = 0, the solution for C >
max{C : θC > 0} is a power-law of exponent 1 with
an exponential cutoff:

NC ∼
1

C

(
ν

µ

)C
. (63)

When birth and death are balanced, ν ∼ µ, the expo-
nential cutoff disappears. Comparing to the power law
Eq. 55 in the distribution of frequencies ρ(p) with the cor-
respondance NC = Ntotρ(p = C/Ctot), this model would

predict a exponent β̂ = 0, which is not supported by
repertoire data on unsorted or memory cells. This sug-
gests that the dynamics of the memory repertoire cannot

be simply neutral as modeled by Eq. 62, but must be
affected by selection, such as expansions events following
antigen recognition, as we will see in the next section.

The dynamics of Eq. 62 can in fact be solved analyti-
cally using generating functions and the method of char-
acteristics [222]. Assuming for simplicity that clones have
initial size 1, θC = θδC,1, we obtain (see Sec. XII D 3):

NC(t) =
θ

ν

1

C

(
ν

µ

)C(
1− e−t(µ−ν)

1− (ν/µ)e−t(µ−ν)

)C
. (64)

This relation is still a power law with an exponential cut-
off. The power law exponent remains 1 at all times, but
the cut-off gets larger and larger as the system reaches
steady state. The total number of clones, Ntot(t), then
evolves according to:

Ntot(t) =
θ

ν
ln

(
µ− νe−t(µ−ν)

µ− ν

)
, (65)

and the total number of cells, Ctot(t) =
∑
C CNC(t) fol-

lows Eq. 61. At steady-state, the total number of clones,
Ntot = (θ/ν) ln[µ/(µ − ν)] depends on both the division
and death rates, and not just their difference. In the limit
of small division rate, ν � µ, which is often assumed for
naive cells, we get Ntot = θ/µ ≈ Ctot. Conversely, in
the limit µ − ν � µ, one has Ntot ∼ Ctotε ln(1/ε) with
ε = (µ − ν)/µ, meaning that the number of clones may
be arbitrarily smaller than the number of cells. Start-
ing with initial clone sizes of k0 does not substantially
affect this picture, with Ntot ∼ (Hk0/k0)Ctot (where
Hn =

∑n
i=1 1/i) in the limit ν � µ, and with unchanged

scaling Ntot ∼ ε ln(1/ε)Ctot in the limit µ − ν � µ (see
Sec. XII D 3).

These models can be refined by accounting for con-
vergent recombination, by which clones sizes can also be
increased by thymic exports that have the exact same
sequence, which happens with probability Pgen(s) for a
particular sequence s. With this correction, Zheng and
collaborators [223] found fair agreement between the re-
sults of a neutral model with a source Eq. 62 and the bulk
distribution of clone frequencies observed in the naive
repertoire of mice. However, they also found many out-
liers, i.e. large naive clones that cannot be explained
by the neutral assumption. A major difficulty of such a
comparison is that, as we already mentioned in Sec. VI D,
the clone frequency distribution of the full repertoire is
heavy-tailed. Any small contamination of non-naive cells
into the studied repertoire is likely to introduce spurious
outliers in the distribution, confounding the analysis.

B. A note about “neutral processes”

In this review we discuss four different types of pro-
cesses that are referred to as neutral in different do-
mains: (i) the neutral model of population genetics (see
section XII C 8), (ii) the neutral clone size distribution
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Neutral model NC Comment Eq.

Lymphocyte dynamics ∼ (µ/ν)C/C Source Eq. 63

Population genetics ∼ 1/C Fixed pop. size Eq. 141

Yule process ∼ 1/C1+ρ Expanding pop. Eq. 207

TABLE I. Summary of different neutral models discussed in
the review, with their clone size distributions. ν < µ refer to
the division and death rates respectively, and ρ = 1/(1− α),
where α the probability of mutation upon division in the Yule
process.

model (see section VII A), (iii) the Yule-Simon process of
speciation (see section XII D 5) and (iv) the neutral eco-
logical model (see section XII D 1). Since these models
are often confused with one another, sometimes simply
for semantic reasons, otherwise because many of them
give power law distributions for some observable, we
thought it is pedagogical to discuss how they are dif-
ferent and summarize the exponents they give and what
kind of distributions they predict.

Many of these models predict a power law in the distri-
bution of clone or species frequencies, but details differ.
Table VII B gives a summary of these distributions and
differences between the model assumptions.

Neutral models of ecology come in different flavours
[224], but the simplest one is essentially equivalent to
Eq. 62, and the corresponding clone size distribution,
called the species abundance distribution in that context,
has long been known as Fisher’s logseries [157], althouth
Fisher derived it through purely statistical means using
unjustified assumptions.

The neutral model of population genetics is similar to
the neutral model of Eq. 63, with a major difference:
the population size Ctot is fixed. Most often, novel types
arise from mutations arising in existing types. In popula-
tion genetics the “site-frequency spectrum” corresponds
to the distribution of allele frequencies, and is thus the
equivalent of the clone size distribution NC . In the
neutral model, the site-frequency spectrum is a straight
power law of exponent −1. The difference with the result
of Eq. 63, beyond the absence of an exponential cutoff,
is that mutants that reach the (fixed) population size
Ctot become the wildtype, and are thus removed from
the dynamics of mutants, while in lymphocyte dynamics
no single clone ever takes over the whole population.

The Yule process is a model of an ever expanding pop-
ulation with mutations. It assumes that individuals of
all types divide with rate µ, with a mutation probability
α that generates new types. The crucial difference with
Eq. 63, beyond the absence of death, is that the rate of
novely increases linearly with the population size. Also,
the population expands exponentially, and the clone size
distribution only reaches a quasi steady state, after renor-
malizing the total population size, Ctot. The renormal-
ized size distribution asymptotically follows a power law
of exponent −2 in the limit α � 1. Although this ex-
ponent is tantalizing close to those observed in data,

the assumption that new types arise with a rate pro-
portional to the population size is incompatible with the
biology of T cells, as new clones originate from the thy-
mus, and not from already circulating cells. On the other
hand, the Yule process may be appropriate for modeling
population-wide affinity maturation of B cells, as their
receptors hypermutate upon expansion.

C. Population dynamics model with external
signals

To explain the power laws observed in the clone size
distribution from sequenced repertoires, one needs to go
beyond neutral models and introduce external signals af-
fecting the division and death rates — or fitness — of cells
as a function of their phenotypic state or of their immune
receptor. Several models of clonal dynamics have been
proposed to describe the growth and decline of clones in
various populations (see section XII D 1 for a general dis-
cussion of competition models). We will not describe all
of these models, but try and give the reader an idea of
their general features. The key ingredient is that cells di-
vide in response to antigenic stimulation, which depends
on the concentration or frequency of available antigens
that are susceptible to be recognized. Cells in a clone ex-
pressing receptor r die with constant rate µ as in Eq. 62,
but they divide with clone-specific rate

νr ({Qa}, {Cr′}) = ν
∑
a

Qafr,aA

(∑
r′

Cr′fr′,a

)
, (66)

where fr,a is the cross-reactivity function between an
antigen and a receptor, Qa the frequency of antigen a,
and A(x) is a decreasing function describing the avail-
ability of a given antigen as it is being bound by other
receptors than r; for example, A(x) = (1 + ε)/(1 + εx)2

with ε setting the strength of competition. In this model,
receptors interact only indirectly through this competi-
tion factor.

As a historical note, models with direct interactions be-
tween receptors, namely antibodies binding to each other,
were once proposed as a way to generate interesting dy-
namics on so-called idiotypic networks [225]. While id-
iotypic networks were often used to explain phenomena
in the 1980’s, and became very popular with physicists
because of their link to network theory and the physics of
disordered systems [209], it is not currently considered a
dominant paradigm in immunology (and already was not
by the time Ref. [209] was written, as discussed therein),
as its predictions can be explained by clonal selection
theory alone without invoking additional elements.

In the linear noise approximation, the size of the clone
of cells expressing receptor r is described by a stochastic
differential equation:

dCr
dt

= [νr ({Qa}, {Cr′})− µ]Cr + ξr(t), (67)
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with 〈ξi(t)ξi(t′)〉 = (νr ({Qa}, {Cr′}) + µ)Crδ(t−t′) with
Itô’s convention. This general form of the model can de-
scribe a wide variety of situations. It can be used as a
model for the naive T cell repertoire, where Qa is the
distribution of self-antigens for which T cells compete
for survival cues. Such models of competitive exclusion
[226] have been studied and used to explain biological
facts for both T- [227] and B cells [228] repertoires, such
as the fact that a larger diversity is beneficial in terms of
overall repertoire fitness. Interestingly, the same dynam-
ical equation emerges as a way to approach an optimal
repertoire [210], as defined in Sec. VI F.

Eq. 67 can also be used to model lymphocyte popula-
tion dynamics in response to transient antigenic stim-
ulation. Antigens appear with some rate s, and de-
cay as they are being cleared by the immune system as
Qa(t) = Q0

ae
−λ(t−ta), where ta is the time at which anti-

gen a appeared in the population. In this context, the
antigen is not limiting, and is fully available, A(x) = 1.
When λ is very large compared to µ and ν, each clone
experiences a series of short spikes of expansion of mag-
nitude exp(ν〈Q0〉/λ) with rate sp, where p is the proba-
bility that far = 1 for a random choice of a and r (and
far = 0 with probability 1 − p, in an all-or-nothing ap-
proximation). With the change of variable x = lnC, each
expansion event causes an average jump ∆x = ν〈Q0〉/λ.

In Ref. [193], expansion events were assumed to be
both small and frequent compared to other time scales,
which led to an effective diffusion equation for x. Here,
as an original result of this review, we present the so-
lution to the general process. A more detailed solution
using Laplace transforms is presented in Sec. XII D 4).
The density of clones with logarithmic size x, ρ(x, t) =
(dC/dx)NC=ex(t) = exNex(t), follows the simple jump
process with constant negative drift:

∂ρ

∂t
= µ

∂ρ

∂x
+ sp [ρ(x−∆x)− ρ(x)] + θ̃(x). (68)

where θ̃(x) = exθ(C = ex) is the density rate of new
clones entering the population with initial logarithmic
size x. Assuming a power law Ansatz for the clone size
distribution,

NC ∝
1

C1+α
, (69)

translates into exponential decay in x, ρ(x) = ρ0e
−αx,

giving the consistency equation for α:

µα+ sp [1− exp(α∆x)] = 0. (70)

The total numbers of cells and clones can be calculated
at steady state (see Eqs. 204,205 in Sec. XII D 4), and
read in the case of fixed introduction size θC = θδC,C0 :

Ctot =
θ ln(C0)

sp∆x− µ
, Ntot =

θ(C0 − 1)

sp(e∆x − 1)− µ
. (71)

If we assume many small expansion events, ∆x � 1,
expanding the exponential at second order allows us to
recover te power-law exponent of [193]:

α =
µ− sp∆x
sp∆x2/2

, (72)

where the numerator is the net decay rate of the clone size
obtained from the difference between death and expan-
sion, while the denominator corresponds to an effective
diffusion coefficient stemming from the random arrival of
expansion events.

The result of Eq. 69 suggests that a wide range of
models with clone-dependent, random expansion or selec-
tion events produce power laws with arbitray exponents,
in agrement with the data on memory or unfractioned
lymphocyte repertoires. To distinguish between differ-
ent types of dynamics, more details of the dynamics of
individual infection events, as well as of the kinetics of
unstimulated clones should be studied in terms of their
impact on the clone size distribution.

The hypothesis that the expansion factor ∆x is con-
stant, or at least does not depend on the clone size,
is questionable. For instance, in secondary immune re-
sponses, the expanded cells already have a memory phe-
notype, and these cells tend to expand less than naive
cells upon a primary infection. In addition, the amount
of inflammatory signals that promote expansion should
in general depend on the number of cells involved in the
response. From a design perspective, it would seem ben-
eficial not to expand clones that are already big, as the
organism is already well protected against the pathogens
that these clones are specific to. The optimal expansion
strategy upon each pathogen encounter can be calculated
within the simplified framework described in Sec. VI F.
Using Eq. 59 with a logarithmic cost c(x) = − ln(x) and
a uniquely specific Kernel far = δa,r, combined with
Bayesian prediction theory, the optimal dynamics can be
shown to approximately follow [229]:

dCr
dt

= χ
∑
i∈Er

δ(t− ti)− τ−1
m (Cr − χθa), (73)

where τm = 2τ/(χ−1Ctot − 1) (with τ the effective
timescale of the pathogen dynamics), Er is the set of in-
fection events i occuring at time ti in response to which
lymphocytes carrying receptor r expand, and χ is a scal-
ing parameter setting the total number of lympthocytes.
The main difference between these and previously con-
sidered dynamics is that the growth of Cr is not exponen-
tial, meaning that regulation or homeostasis mechanisms
must exist to tune the magnitude of the expansion as
a function of the size of the antigen-specific repertoire
subset.

So far we have assumed that selection manifests itself
at the level of clones: all cells in the same clone has the
same average growth rate. However, selection could be
cell dependent, which is the case if cells respond differ-
ently to non-antigenic stimulation signals, such as cy-
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tokines. Growing experimental evidence shows the het-
erogenous response to cytokines, due to differential ex-
pression of cytokine receptors, signalling molecules and
their diffusion. Models with a cell-dependent fitness do
not give power law behaviour, but do produce long tails
[193]. With the current experimental cut-offs, it may
not be possible to discriminate between clone-specific
and cell-specific fitness models using repertoire data only.
Further studies with longitudinal tracking of clone sizes
may help settle these questions.

D. In host HIV dynamics.

Perelson and collaborators [120, 230] considered a
modified SIS model of an HIV infection. This is one
of the most influential examples of how computational
models influenced medicine. It was used to predict the
effects of anti-viral drugs on HIV: reverse transcriptase
(RT) which blocks the ability of HIV to infect a cell, and
protease inhibitors (PI) that result in the production of
non-infectious viruses. Target cells T , that correspond
mainly to CD4+ T-cells, become infected (I) at rate β,
are born with rate α and die with rate µ. Infected cells
die at rate ν, but they also help the virus (V ) reproduce
and produce p new virions that are cleared with rate c.

dT

dt
= α− µT − βIS, dI

dt
= βV T − νI, dV

dt
= pI − cV.

To study the effect of an antiviral drug, the virus equa-
tions are modified to account for two viral species: non-
infectious viruses (VNI) and infectious viruses (VI):

dVI

dt
= (1− εPI)pI − cVI,

dVNI

dt
= εPIpI − cVNI,

where β = 1− εRT and 0 < εPI < 1 and 0 < εRT < 1 are
efficacies of RT and PI drugs. The total viral populations
is held constant VNI + VI = V = const. For εPI = 1 and
εRT = 1, assuming T = const, the total viral load will
decay according to [120, 230]:

V (t) = V (t = 0)e−ct +
cV (t = 0)

c− ν
× (74)[

cV (t = 0)

c− ν
{e−νt − e−ct} − νte−ct

]
.

This decay was fit to data from an HIV-infected patient
on anti-viral therapy by adjusting the c and ν param-
eters using least-squares regression, showing very good
agreement [231]. Explaining viral dynamics in the case
of combination therapy (tri-cocktails) requires introduc-
ing long-lived infected cells that act as a secondary vi-
ral source [232]. Fitting these more complex, yet still
extremely simple models to data, allowed Perelson and
collaborators to estimate the half-lives of the different
species in Eq. 74. This in turn made it possible to ef-
fectively administer a tri-therapy cocktail treatment in
intervals that made it very hard for the virus to escape.
This extremely simple calculation saved lives.
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FIG. 14. Affinity maturation in germinal centers. Naive
B-cells get recruited into germinal centers where they become
activated and acquire somatic hypermutations upon prolif-
eration in the dark zone. This produces cells with different
BCRs. If the BCR manages to get expressed on the cell sur-
face, it moves to the light zone to undergo selection for binding
to antigen presented on follicular dendritic cells (FDC). Cells
that bind strongly internalize the antigen and present them
to helper T-cells. They undergo a second selection step where
they compete to helper T-cell signals. The sucessful cells can
undergo another round of affinity maturation by returning
into the dark zone to somatically hypermutate, or they can
leave the germinal center as a memory B-cell or an antibody
secreting plasma cell.

VIII. AFFINITY MATURATION

Upon antigenic stimulation, B-cell receptors acquire
somatic hypermutations (SHM) that can help them ex-
plore the binding landscape. Based on high-throughput
repertoire sequencing data, combinations of clustering
and tree building methods [233, 234] have been proposed
to characterize lineages. Since affinity maturation is a
fascinating example of a Darwinian evolutionary process,
a lot of effort is going into extracting the details of the
evolutionary processes from data, along with more the-
oretical efforts. We very briefly review tree building,
clustering and lineage reconstruction approaches that
are available in different software in section XII C 11.
A recent review more thoroughly sumarizes these at-
tempts [235], arguing for methods departing from the tra-
ditional assumptions of population genetics, and tailor-
made for the hypersomatic mutation scenario. BCR
repertoire sequencing provides large amounts of data that
allow software packages like Immcantation [234, 236–
240], Partis [179] (see section XII C 11) SPURF [241] or
IGoR [175, 233] to learn hypermutaiton models (as de-
scribed below), and understand the evolutionary process.
As mentioned in section XII C 11 the problem of lineage
reconstruction is quite general to many areas in immunol-
ogy. Incorporating the observation that more abundant
clones are likely to have more offspring allows for recon-
structing B-cell lineage ancestries from germinal center
imaging experiments [242].
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Affinity maturation is a sped-up Darwinian evolution
process. Upon recognizing an antigen even with low affin-
ity [243], naive B-cells migrate to germinal centers (GC)
in lymph nodes and about 3 days after antigen injec-
tion the germinal center reaction starts [244], initially
dividing without hypermutations (see section V D 1) for
about 7 days and reaching a population size of ∼ 1500
cells [243]. About a week after the infection starts, they
first enter the dark zone region of the germinal center,
where the Activation-induced cytidine deaminase (AID)
enzyme introduces hypermutations as the cells continue
to divide.

A. Modeling the hypermutation process

Repertoire sequencing analysis of unselected muta-
tions [170, 175, 234] has shown that AID acts highly
non-uniformly, with hypermutation hotspots and strong
context dependent motifs. The difficulty in learning
these models stems from eliminating selection that acted
on memory sequences. A 5-mer model, called S5F,
was learned from synonymous mutations (that are in
principle free of selection) from long heavy chain se-
quences [234]. Only half of possible 5-mers were ob-
served from data with synonymous mutations, the re-
maining ones were inferred by averaging over related
observed pentamers. Alternatively, out-of-frame mem-
ory sequences were used to learn heavy V and J seg-
ment di- and tri-nucleotide context dependent hypermu-
tation models from low throughput sequencing experi-
ments [245].

The S5F model learns the probability Pmut(~π) of
mutating the central position of a 5-mer motif ~π =
(π−2, . . . , π2) by counting occurences of synonymous mu-
tations in this motif centered at position i along the se-
quences ~σj of a large dataset. Because only synonymous
mutations must be taken into account, ad hoc heuris-
tic normalization rules were used. In practice, mutation
rates are given by:

Pmut(~π) = µ
m~π∑
~π′ m~π′

(75)

with µ an adjustable baseline mutation rate (not learned
within S5F), and

m~π =
1∑

j,π′ C
j
~π′

∑
j

Cj~π/B
j
~π∑

~π′ C
j
~π′/B

j
~π′

∑
~π′

Cj~π′ (76)

is the expected number of mutations of each 5-mer in a
sequence. This number is obtained by normalizing for
being synonymous in each sequence, and then averaging
over sequences weighted by their number of synonymous
mutations. In that expression, Cj~π is the observed number
of synonymous mutations in sequence ~σj in motif ~π, and
Bj~π is a background normalization:

Cj~π =
∑
i

I~τj (i, ~π, σ
j
i ), Bj~π =

∑
i,b

s~πb I~τj (i, ~π, b) (77)

where: ~τ j is the germline (unmutated) ancestor of ~σj ;
I~τj (i, ~π, b) is an indicator function that is equal to 1 if
~τ j matches π over the position range (i − 2, . . . , i + 2),

and τ ji → b is a synonymous mutation; finally s~πb =
N~π
b /
∑
b′ 6=π0

N~π
b and s~ππ0

= 0, where N~π
b is the total num-

ber of synonymous mutations to b observed in 5-mer mo-
tifs ~π across all sequences in the training dataset.

The S5F model provide a profile of hypermutation hot
and cold spots in the absence of selection, which is widely
used for analyzing BCR data. In particular, it can used
as a baseline for quantifying selection from synonymous
mutations [246, 247]. Note that a 5-mer model was also
learned from VH and JH genes sequences in rearrange-
ments engineered not to be productive, in both the heavy
and light chains of mouse, without having to use the trick
of using synonymous mutations [239].

To avoid for over-fitting, one can further assume that
the impact of the motif on mutability is additive. This
strategy was applied to non-productive heavy-chain se-
quences in humans [175]. Mutability of (2m + 1)-mer
motifs ~π is given by:

Pmut =
µ exp(

∑m
i=−m e(πi))

1 + µ exp(
∑m
i=−m e(πi))

, (78)

where (π−m, ..., πm) is the 2m + 1-mer sequence con-
text around the mutation i, and e(πi) are the in-
ferred elements of the Position-Weight Matrix (PWM),
learned within the IGoR framework [175] (see Sec. VI B)
using the Expectation-Maximization algorithm (see
Sec. XII E 1).

The actual hypermutation process is yet more compli-
cated than captured by all these models. It has been
pointed out that because of the context dependence of
mutations, the order in which they appear matters. Since
considering all possible histories is computationally not
feasible, Feng et al proposed to Gibbs sample the order-
ings to learn a hypermutation model that was validated
on simulated data [248]. More importantly, hypermuta-
tions are not independent of each other, and tend to clus-
ter along the sequence [175]. Hypermutations result from
a lesion of DNA followed by error-prone DNA repair over
extended regions (∼ 20 nucleotide) of the sequence [249].
These events may induce several simultaneous mutations
at close-by positions along the sequence. It also sug-
gests that context can influence the mutation rate over
fairly large distances, since the erroneous repair can occur
far from the original damage causing the lesion. Finally,
context models cannot explain all of the variance of hy-
permutation rates, suggesting that other factors, such as
length dependence, may be at play.

B. Cycles of selection

After acquiring hypermutations B-cells pass to the
light zone of the germinal center where they undergo
the selection step of Darwinian evolution. In this step
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a B-cell receptor must bind the antigen presented on a
follicular dendritic cell (FDC) strongly enough for the B-
cell to internalize the antigen and present them to helper
T-cells. B-cells compete for binding of their pMHC to
these helper T-cells that give them an essential survival
signal. Therefore each B-cell passes a two-fold selection
step: selection for recognizing an antigen, and selection
for competitive binding to a helper T-cell. Binding to
T-cells is specific and depends on the peptide presented
on the MHC. B-cells that have a higher affinity for the
antigen, have a larger internalization rate and a larger
probability to succesfuly solicit T-cell help. Helper T-cell
stimulation is essential for survival. One unverified hy-
pothesis is that helper T-cells that have previously been
trained in the thymus against self-proteins, now discrim-
inate against hypermuations that lead to self-reactive B-
cells. B-cells that do not receive a survival signal die.

Theoretical work [250, 251] that was later verified by
experiments has shown [252] show that a single cycle of
passing through the light and dark zones is not enough
to generate the numbers of observed high affinity B-cells.
This leads to a hypothesis called recycling where ∼ 90%
of B-cells go back to the dark zone. At the end of the
affinity maturation process, B-cells increase their affin-
ity to the antigen by ∼ 1000 fold [251, 253] (or even
∼ 10000 in rabbits [254]) and the B-cell population is al-
ways oligoclonal [255], with a large diversity of different
B-cell receptors [256]. Interestingly, a germinal center is
binary: either it produces many high-affinity cells, or it
fails to produce high-affinity B-cells [257].

The details of the heterogeneity of GC have been
discovered through so-called brainbow experiments [255,
258], in which individual B-cells were permanently tagged
during BCR acquisition with one of 10 possible combina-
tions of four different colored fluorescent proteins. This
technique combined with imaging allowed for multicolor
fate mapping of a cell’s progeny since all cells that come
from the same ancestral cell have the same color. By in-
jecting cells in germinal centers with different dyes and
tracking their movement in mice, Victora et al [255] have
shown that in one lymphnode there are many germinal
centers active at the same time, producing different di-
versities of cells. Most GCs probed at both 6 and 15 days
showed a lot of different colored clusters, with lower esti-
mates of ∼ 50 clones per GC, going up to hundreds. By
delaying tag formation until the cells are in the GC, se-
lection in GCs was shown to keep multicolored clusters,
showing that diversity of lineages is always maintained
even if a certain dominance of one specific lineage (typ-
ically less than 40% of all cells belong to the dominant
lineage) is observed at later times. Notably the hetero-
geneity was huge: some GC had one lineage making up
to 80% of cells, others as little as ∼ 20%) two weeks af-
ter the infection. The rate of diversity loss was also very
heterogenous: some GCs converged to a single lineage
within a few days, and others took over two weeks, or
never converged. Even in adoptive transfer experiments
(see section V), where high affinity clones were intro-

duced and the mouse was challenged with either bacteria
or virus antigens, the GCs showed great heterogeneity re-
gardless of the type of antigen - from nearly monoclonal
to ones with an effectively neutral distribution of lineage
diversity. The GCs expressing one lineage can be traced
back to one single ancestral BCR (with possible SHM)
that expands in a clonal burst over a short period of time,
leading to a loss of diversity. Interestingly, the affinity of
BCRs coming from GCs with varying levels of lineage
diversity is similar. The oligoclonality of antibody reper-
toires is also confirmed by RepSeq experiments that show
that antibodies responding to a specific antigen found at
physiologically relevant concentrations can have between
3− 147 distinct CDR3s [259].

C. Evolution of broadly neutralizing antibodies

Many pathogens such as viruses (influenza, VIH) come
in a variety of strains. Typically, antibodies mature to
recognize just one type of strain, by targeting easily ac-
cessible epitopes on the surface of its proteins. How-
ever, viruses can often easily escape immunity afforded
by these antibodies by mutating these epitopes, with lit-
tle fitness cost. Epitopes that are more conserved (i.e.
in which mutations carry a significant fitness cost to
the virus) would be better targets, but they are usually
harder to access by antibodies, as viruses have evolved to
hide those conserved regions. To mature antibodies that
bind strongly to more than one strain (called broadly
neutralizing antibodies — BnAbs), the immune system
needs to be trained with different antigens from different
strains. In the context of a vaccination strategy, a cru-
cial question is in what antigens to present, and in what
order.

To address this question in the context of HIV, Wang
et al [260] simulated different temporal immunization
schemes, by considering three antigens (wildtype HIV
antigen and 2 mutants) and modelling their interaction
with antibodies using a BCR-antigen binding model such
as described in section II D. The virus was modeled as
consisting of a conserved part, in which mutations are
deleterious, and a variable part. The three considered
immunization schedules were: all three variants together
(scheme 1), WT with mutant 1 at the same time, fol-
lowed by mutant 2 (scheme 2), WT followed by mutant
1 followed by mutant 2 (scheme 3). Running these sim-
ulations many times, they looked at the antibodies that
come out of these in silico germinal centers and scaned
them against a standard panel of antigens that are used
in affinity maturation experiments. The breadth of each
antibody is defined by how many different test antigens
it recognizes. Scheme 1 does not produce any broadly
neutralizing antibodies (bnAbs). In fact, it hardly pro-
duces any germinal centers that have any output as B
cells die quickly during the process. The frustration of
not being able to discriminate between conserved and
non-conserved residues results to a situation where the
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antibodies are not really selected since a BCR is likely
seeing very different antigen in each round of selection.
Scheme 2 does produce bnAbs, but with very low prob-
ability. This is likely what happens during a normal in-
fection because you get infected with a single strain that
later diversifies. In this case, the affinity maturation pro-
cess in the first round does produce binders to the con-
served residues, breaking the frustration. Finally, scheme
3 produces bnAbs with high probability (∼ 69%). The
sequential application allows the evolving BCR to focus
on the only non-moving part of the target — the con-
served residues. These predictions have been tested ex-
perimentally, showing that mice that were sequentially
immunized focus their immune response.

There are effectively two parameters that govern the
B-cell germinal center distribution: the probability of
surviving selection Ps and the probability of mutation
µ. With probability Ps(1 − µ) the existing B-cells will
expand, with probability Psµ it will mutate, and with
probability 1 − Ps is will die. Wang et al [260] suggest
this system is optimally frustrated and the probability of
survival puts the system in a special regime: too strin-
gent selection (small Ps will kill all cells), while too le-
nient selection (large Ps) will fill the germinal centers
with existing cells, since µ is small. So only intermediate
levels of Ps lead to mutant cells surviving, allowing for
many rounds of selection that results in acquiring many
mutations that give large breadth. Support for this inter-
mediate level selection comes from simulations that show
that intermediate antigen numbers result in the largest
number of mutations in a BCR. However experimental
validation is still lacking.

Repeated antigen exposure helps increase the affinity
of cells through selection, as in Darwinian evolution. In
addition, new naive cells are recruited, adding novelty in
the selection process other than through mutation. Mu-
rugan et al [261] compared the impact of selecting naive
clones to that of producing new mutants by SHM. Look-
ing at the response of BCR to the malaria parasite in hu-
mans coupled with string models of affinity maturaion,
they showed that antigens with low complexity are much
more efficient in generating good binders by means of
SHM affinity maturation compared to high complexity
antigens, which rely on recruitment of new naive cells.
Both routes (SHM and selecting naive cells) where ob-
served experimentally. Influenza vaccine studies show
that, upon secondary immunization (booster vaccines),
∼ 7% of BCR contained no SHM [262] (although these
experiments showed strong clonal dominance with ∼ 10%
of clones representing ∼ 90% of sequences [259]). The
model of Murugan et al [261] predicts that long expo-
sure to small amounts of antigen leads to selecting for
antibodies with a lot of SHM, whereas short exposure
to high antigen concentrations results in selection on ex-
isting naive cell variation, which is confirmed in exper-
iments. These results, which hold for relatively short
timescales (∼ few months), are consistent with the ar-
gument of Wang et al [260] in the case of chronic in-

fections. Interestingly, both Murugan et al [261] and
Neu et al [262] experimentally found that the majority
of SHM do not necessarily improve antigen binding, and
that both routes can lead to equally high affinity mu-
tants, which supports the heterogeneity observed by Tas
et al [255] in the brainbow experiments. Yet, it is still
not clear why some individuals fail to produce any good
binding antibodies to the very strong antigenic challenge
of malaria.

Additionally, the BCR repertoire changes with age,
with both positive and negative selection acting differ-
ently in older people [263], producing longer CDR3s that
are more promiscious and likely to bind self-proteins.
The rate of observed BCRs with SHM also changes from
infancy to adulthood [264]. In influenza vaccine stud-
ies [262], people born before 1977 show less inter clonal
diversity but achieve the same affinity as people born af-
ter 1977. Adaptation via the SHM route is less likely in
older people, and they are more likely to use their larger
existing memory pools than younger people whose anti-
bodies acquire a lot of SHM. As a result, the antibodies
of the older group target a conserved part (the stalk)
of the influenza protein as do BnAbs, whereas younger
people’s antibodies target the head (aiming for a strain-
specific antibody). Younger people can produce BnAbs
when hit with a strong challenge (vaccine combined with
a pandemic), as predicted by the analysis of Wang et
al [260], but the response to subsequent infections is still
specific. In summary, these results highlight the com-
plexity of BCR maturation, which involves both naive
cells (with no SHM) and highly mutated cells. The de-
tails of the response depend on the dose concentration
and timing, past infections, age and antigen complexity.

D. Population genetics approaches to affinity
maturation

1. Evolutionary analysis of repertoire dynamics

Recent RepSeq data was used to quantify the evolu-
tionary regime of in-host HIV evolution [265] and in re-
sponse to influenza vaccines [266]. The flu vaccine is
a model of an acute infection, which occurs on short
timescales. BCRs from 9 timepoint blood samples, be-
fore and after the infection over the course of ∼ 2 weeks,
resulted in very skewed lineage trees and a U-shaped site-
frequency spectrum (SFS). SFS corresponds to the dis-
tribution of frequencies of mutations in a population, and
its shape is often informative about the underlying evo-
lutionary process (see section XII C 8). U-shaped SFS,
as observed in BCR lineages after vaccination, are char-
acteristic of strong selection. However, 3 out 5 of the
strongly selected BCRs recognized neither the flu vaccine
epitope nor the full virus, suggesting bystander evolution,
by which non-responsive clonotypes expand in response
to a multitude of signals. This could be a mechanism
for upkeeping memory clones between infections with the
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same or similar pathogens.
Skewed trees and U-shaped SFS were also observed in

the BCR lineages of HIV-infected indivuals [265]. How-
ever, the same observations were made in out-of-frame
sequences of healthy individuals. This is not surprising
because the repertoires of healthy people are under con-
stant selection, and out-of-frame sequences evolve in cells
with functional receptors, and their evolution reflects the
hitchhiking and selection on the whole cell. However, a
finer analysis exploiting the dynamic trends of synony-
mous versus non-synonymous mutations is able to dis-
tinguish selection due to the chronic HIV infection from
overall selection patterns. More interestingly, it finds
that the CDR3 region of the BCR of untreated HIV carri-
ers evolves according to a regime known as “clonal inter-
ference” (see section XII C 9). In that regime, several new
beneficial mutations arise at similar times and compete
with each other. This competition slows down adapta-
tion, as only one the beneficial mutations can survive.
This analysis is based on estimating the probability that
a (beneficial) mutation first rises to a threshold frequency
x, but then is driven to extinction by a competing mu-
tation, H(x, xi) = G(0|x)G(x|xi), where G(x|y), called a
propagator is the probability of ever reaching x starting
at y, and xi is the initial frequency of the mutant. Both
H(x, xi) and G(x|xi) can be estimated from the data and
for various models of evolution. Neutral models cannot
explain empirical observation, and neither does a sim-
ple model of selection with a fitness advantage. Instead,
data can be fit by a model of varying selection (see sec-
tion XII C 5), where the fitness advantage fluctuates as
competing mutants come and go.

Analysis of phylogentic trees build from RepSeq data
from HIV patients combined with S5F hypermutation
models [240] also led to identifying the constraints on
BCR adaptation [267]. Ancestral sequences in lineages
are more likely to mutate their CDR3s than the frame-
work (FWR). The propensity of a given residue to mutate
was decreased more in framework (FWR) regions than in
CDR3s, but in both cases a decrease in mutability was
much more likely than an increase. Although most of the
constraints on the residue to mutate in CDR3 that are
under strong positive selection to increase their binding
affinity, come from nonsynonymous mutations, in all re-
gions up to 21% of loss in residue mutability was caused
by synonymous mutations, which are the result of neu-
tral evolution. These results also point to a slow down in
adaptation from clonal interference, as expected in the
clonal interference regime.

2. Models of co-evolution of phenotypic traits

The fitness function for the co-evolution between HIV
and BCR depends on the ability of the BCRs to recog-
nize the virus, which is a (possibly nonlinear) function of
the binding affinity. By focusing on a single antibody lin-
eage and a viral population, Nourmohammad et al [268]

derived an effective stochastic equation for the rescaled
mean binding energy ε between antibodies and viral epi-
topes:

dε

dt
= −2 [θA + θV (NA/NV )] ε (79)

+sAσA − sV σV +
√
σA +NA/NV σV ξε,

where σi are the variances of the binding energy across
the viral and antibody populations, θi, si and Ni are the
mutation, selection coefficients and population sizes of
antibodies (i = A) and viruses (i = V ); ξε is Gaussian
noise and times is measured in units of antibody coa-
lescence time. This equation was derived by assuming
a linear relationship between binding energy and fitness,
and using a additive string model of binding energy as
a function of genotype (see section II D 2). The approx-
imate method to get from the evolutionary dynamics,
which are defined on the genotype, to an effective equa-
tion for the phenotype (binding energy), is described in
a simpler context in XII C 10.

Intuitively, in general mutations on both antibodies
and viruses reduce recognition. On the other hand, anti-
body diversity (σA) increases binding energy by selecting
the best binders, while virus diversity (σV ) decreases it
by selecting the best escapers on the viral side of co-
evolution. The same formalism can be applied to the
evolution of BnAbs, which target epitopes on the con-
served regions of the virus. In that context, the equa-
tions simplify to θV = 0 and σV = 0, because the viral
epitope is constant.

However, tracking the binding energy is not alone a
good signature of co-evolution. Time-shifted statistics,
such as the time delayed viral fitness (see Fig. 15), can
be used to identify strongly co-evolving populations. The
time delayed viral fitness is defined by the interaction
between the viral population at time t, with distribu-
tion yγ(t) of genotypes γ, and a population of antibodies
α taken at a later time t + τ distributed according to
xα(t+τ): FV,τ (t) ∼ −sV (t)

∑
αγ Eαγy

γ(t)xα(t+τ), where
Eαγ is the binding energy from the string model between
antibody α and viral epitope γ. Note that same-time fit-
ness FV,0 is equivalent to −ε up to a selectivity constant.

If the selective effects on the phenotype are compara-
ble in the two populations, sAθA ≈ sV θV , the current
virus has highest fitness against antibodies from the near
past since it has acquired mutations to escape them, and
smaller fitness against antibodies from the future, which
have caught up with these escape mutations (Fig. 15).
For long times, mutations randomize the genome and
Fτ (t → ∞) = 0. If the selection pressure of viruses is
larger than that of the antibody sV θV � sAθA, the virus
is effectively evolving against a neutral antibody popu-
lation. It still has a high fitness against previously seen
antibodies, and genome randomization decreases its fit-
ness advantage against future antibodies, but without a
penalty.

The left slope of the time-shifted viral fitness quanti-
fies the adaptation of the viral population to the exist-
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FIG. 15. Time delayed viral fitness. Adapted from Nour-
mohammad et al [268]. Viruses have a positve fitness against
antibodies from the past, and a negative fitness again anti-
bodies from the future. The slope of the current viral fit-
ness coming from past antibodies is equal to the fitness flux
φV (t) – a measure of adaptation to existing antibody pop-
ulations, and the slope of the current viral fitness coming
from future antibodies is equal to the transfer flux TA→V (t)
that describes the pressure on the viral population from the
adaptating antibody population. The blue line describes a
co-adapting population, sAθA ≈ sV θV , the red line describes
a virus evolving effectively without antibody selection pres-
sure, sV θV >> sAθA and the green line is a regime of much
stronger antibody adaptation, sV θ< < sAθA.

ing antibody population and defines the a “fitness flux”
∂τFV,τ (t − τ)|τ=0− = φV (t) =

∑
γ ∂yγFV (t)(dyγ(t)/dt).

The right slope measures the pressure on the viral popu-
lation from the adapting antibody population, which de-
fines the transfer flux of fitness from antibodies to viruses
∂τFV,τ |τ=0+ = TA→V (t) =

∑
α ∂xαFV (t)(dxα(t))/dt).

At stationarity both fluxes sum to zero, and the deriva-
tive is continuous, as in Fig. 15.

The characteristic S-curve shown for sAθA ≈ sV θV is
indicative of two competing populations. Neutralization
measurements [269–272] show that viruses are more resis-
tant to past antibodies and more susceptible to future an-
tibodies, which results in the S-curved time delayed viral
fitness [268]. Interestingly, Blanquart and Gandon [269]
also showed that antibodies that evolved in one HIV pos-
itive patient are better at targeting the virus found in an-
other person than this person’s current antibodies. This
result remains unexplained.

While this analysis only involves a single antibody
lineage, in germinal centers multiple lineages can com-
pete with each other. Extending their analysis based on

the dynamics of quantitative traits, Nourmohammad et
al [268] considered the competition of different lineages
during affinity maturation. The change in the frequency
of a given antibody lineage (each composed of many geno-
types α) of size NC

A in the population ρc =
∑
α∈C x

α is

driven by its mean fitness FCA compared to the mean fit-
ness of antibody lineages FA =

∑
C F

C
A ρ

C :

dρC

dt
=
(
FCA − FA

)
ρC +

√
ρC(1− ρC)

NA
ξC , (80)

where ξC is a Gaussian white noise. The lineage fitness is
an average of the genotype Aα fitnesses fαC(t) that make
up the lineage C, weighted by their frequencies in that
lineage xαC(t), FCA =

∑
α f

α
C(t)xαC(t). The mean fitness

of a lineage depends on the genotypes within this lineage
and also on the frequency of virus yγ through fαC(t).

The probability of fixation PCfix of lineage C is not only
a function of the mean fitness advantage and population
size, as in Eq. 114 (Sec. XII C 4), but also of the ability
of the population within the linage to adapt. Its value is
given by:

PCfix/P
0
fix ≈ 1 + 〈NA

(
FCA (t = 0)− FA(t = 0)

)
〉+ (81)

N2
A

3
〈φCA(t = 0)− φA(t = 0)〉

−NANV 〈|T CV→A(t = 0)| − |TV→A(t = 0)|〉,

where P 0
fix = ρC(t = 0) is the neutral fixation probability,

and where φCA and T CV→A are the antibody counterpart
of φV and TA→V for a specific lineage, and φA and TV→A
their average over lineages. The first corrective term is
standard and comes from the mean fitness advantage.
The second corrective term accounts for the adaptation
of each lineage in response to selection of antibodies for
viral recognition within lineages. The third corrective
term corresponds to the adaptation or escape capability
of the viral population and its effect of the lineage.

For typical antibodies targeting a variable region of the
virus, a broad viral diversity is detrimental as it allows
the viral population to escape immunity (large T CV→A.
For BnAbs, which bind to constant regions of the virus,
this effect disappears. In fact the effect is the opposite:
higher diversity increases the probability of BnAb fix-
ation compared to a non-BnAbs antibody, whereas at
low viral diversity the probability of fixation of both a
non-BnAb and BnAbs is the same. This argument was
proposed to explain why BnAbs show up later in the in-
fection when the viral diversity is large.

IX. POPULATION DYNAMICS OF
PATHOGENS AND HOSTS
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A. Viral fitness models

The immune system of a population of hosts defines
a fitness landscape F in which viruses evolve. Models
have been developed to describe how this immune pres-
sure shapes the evolution of both flu [273] and HIV [274–
276] at the population level. Viruses are usually taken to
evolve according to traditional population genetics mod-
els.

This formalism can be used to draw short term pre-
dictions about the future fate of existing strains, e.g.
of circulating influenza over the course of a year. Viral
populations are subject to stochastic Wright-Fisher dy-
namics, but once they reach large enough numbers they
grow exponentially following the fitness function (see sec-
tion XII C 3). In that deterministic stage, the size of a
given viral strain α, Xα(t) grows (or decreases) according
to the fitness it experiences:

Xα(t+ ∆t) = Xα(t) exp(Fα∆t). (82)

Alternatively, one can consider the longer-term
prevalance of particular strains of very diverse viruses
such as HIV across many hosts, and use that to infer the
fitness landscape of the virus. To do this, we can assume
that the population reaches an “equilibrium” as the re-
sult of many mutations and fixation events across time
in the entire population of viruses and hosts. The prob-
ability of finding a given viral strain is then assumed to
follow Boltzmann’s law:

pα ≈ exp(βFα), (83)

where β plays the role of an inverse temperature set-
ting the tension between entropy from mutations, or
genetic drift, and the fitness advantage. One possibil-
ity is to make use of the equilibrium assumption and
learn the fitness Hamiltonian directly from existing viral
data. This has been done for the Gag envelope protein of
HIV [274] using maximum entropy approaches (see sec-
tion XII E 1), such that the probability of seeing a given
HIV strain α defined by its amino acid sequence ~σ, is
pα = p(~σ) = Z−1 exp(

∑
hiσi +

∑
i,j Ji,jσiσj), where hi

define single-site fields that constrain the probability of
observing the wildtype amino acid at a given site i, and
Jij are interaction terms between amino acids (assuming
a binary representation of the virus with σi = 1 denot-
ing the consensus amino acid and σi = 0 a mutation
at time i). Such models have been inferred from mul-
tiple sequence alignment of the protein, and then used
to evolve in silico viral proteins in a population of host
individuals [274, 276], using quasi-species equations in-
troduced by Eigen [277, 278], to make predictions about
HIV evolution.

Instead of learning the fitness directly from the se-
quence data, another strategy is to derive the fitness of
each strain by decomposing it into two components

Fα(t) = F ag
α (t) + F stability

α , (84)

where the F ag
α (t) is due to the antigenic component of

the immune pressure exerted by the on the virus, and
F stability
α encodes the fact that mutations that change

the ability of the protein to fold should be detrimental
to fitness. The fitness due to folding depends on the free
energy of foldingG, assuming a two state thermodynamic
model of folding [279]:

F stability
α ∼ (1 + exp[(Gα − Ḡ/G0)])−1, (85)

where Ḡ and G0 set the energy scale and are learned from
data. Similarly, the antigenic component of the fitness is
taken to be a sigmoidal function of the binding affinity
H:

F ag
α ∼ (1 + exp[(Hα − H̄/H0)])−1, (86)

where again Ḡ and G0 set the energy scale and are
learned from data. These constants are learned from
data assuming that non-epitope mutations in the virus
decrease protein stability, whereas epitope mutations de-
crease binding affinity. This approach was applied to
influenza by  Luksza and Lässig [273]. The antigenic com-
ponent F ag was inferred from ferret blood titers, in which
sera of blood from ferrets are challenged with differ-
ent viral strains and their antibody response measured.
To gain precision, the growth prediction of Eq. 82 were
considered at the level of clades rather than individual
strains by summing over all strains in each clade. In the
next section we will see how this model could be used to
predict the upcoming dominant strain of influenza.

B. Co-evolution between host and pathogen
populations

The adaptive immune system of hosts also evolves un-
der the selective pressure of the antigenic environment,
by expanding immune receptors that led to successful
recognition. The antigens and the immune systems of in-
dividuals in a population engage on an arms race, where
one forces the evolution of the other. The interaction be-
tween the immune system and different viruses takes on
different forms. While HIV strains undergo very dynamic
in-host evolution [270] experiencing many mutations and
strong selection accompanied by clonal interference [280],
the influenza virus evolves more slowly, and at scale of
the whole population of hosts, with few mutations in the
same host. We have discussed HIV evolutionary models
in section VIII. Here we turn to the effects of population
level co-evolution on immune repertoires, characteristic
of viruses such as influenza.

This is currently an emerging field. Most of the treat-
ments of immune systems so far have been coarse-grained
and reduced to the effective selective pressure they exert
on pathogens. This pressure is seen on antigenic maps,
which place pathogens in a common space according to
the similarity of the immune response to them (measured
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in the sera of ferrets). In practice, antigenic maps are pro-
duced using dimensionality reduction algorithms to re-
duce the response to a two dimensional manifold. These
methods have been extremely useful in tracking influenza
evolution [281] and show that single point mutations can
result in a completely new response (new faraway clus-
ter), while some multiple mutations do not change the
type of response (same cluster).

However, the link between the molecular interaction
between immune receptor (both BCR and TCR, as intro-
duced in section II D 2), and the these phenotypic maps
remains to be explored. An outstanding question is what
evolutionary constraints these molecular details impose.
For example, is the order of mutations important, and are
all the mutations independent? Deep mutational scan-
ning experimental techniques exist now to both find the
best binding proteins in multiple rounds of selection ex-
periments, and to map out the spectrum of possible so-
lutions.

Recently researchers have very successfully predicted
short-term flu evolution [273, 282]. There are two suc-
cessful types of models in this class. The first uses the
diversity of existing strains and extrapolates the tree
branches that have recently expanded to predict the dom-
inant strains in the near future [282]. This approach
makes use of the coalescence framework described in sec-
tion XII C 7 and since it relies mainly on evolutionary
properties, can easily be extended to other globally evolv-
ing viruses. The main idea is to statistically infer the
characteristics of the evolutionary process from the ex-
isting influenza trees, with no reference to the immune
system. The second [273] is based on molecular informa-
tion about the influenza antigen [281, 283] and identify-
ing successful mutations. In practice these are stochastic
models that assess the probability of future strains. This
method incorporates an effective treatment of the im-
mune system, based on the response of ferret serum to flu
strains, as explained in the previous section. In practice
this treatment ranks influenza strains by the strength of
serum response, but has no information about the molec-
ular basis of the response, potential overlap for similar
strains and its evolution. It then builds a fitness model,
where the future frequency of a given viral strain depends
on its structural stability and ability to escape the im-
mune system. The details of these interaction models
are learned from data using advanced statistical infer-
ence techniques. The second method relies much more
on biophysical details and is therefore in principle more
adapted to influenza, although the approach has been ex-
tended to predict the evolution of tumorous clones [39] as
a function of their immunogenicity score (see Sec. II D 4).
Despite their differences both approaches are similar in
style: they rely on recent evolutionary traces (from the
last couple of months) to predict the dominant strain up
to a year in advance. From the evolutionary perspec-
tive both models encode the idea of clonal interference
between viral strains (see section XII C 9).

Another theoretical approach to the viral-immune

co-evolution problem is based on Susceptible-Infected-
Recovered (SIR) Models. These models have been used
for a long time to look at epidemic spreading within pop-
ulations [120, 284]. Many of these approaches are based
on simulating sets of nonlinear equations. Originally
these models were used to study slowly evolving viruses,
such as measles [284]. However recently, they have been
tied with viral fitness models that account for the evo-
lution of the virus. We already discussed one type of
these models, for in-host evolution of HIV in section VII.
Influenza, unlike HIV that evolves within the host or-
ganism, evolves mainly at the level of a population. Re-
cent models [285, 286] of influenza evolution combine
traditional SIR approaches with data-derived knowledge
about flu strain evolution. Specifically, in Yan et al. [286],
the model is of the form given by Eqs. 170-172 for each
antigenic strain a, with the Susceptible equation solved
explicitly, Sα ≈ exp(−

∑
α′ Kαα′Rα′), where Sα and Rα

are the fractions of individuals who are susceptible and
recovered from (and thus immune to) strain α, respec-

tively. Kαα′ = e−|α−α
′|/d defines a cross-reactivity Ker-

nel of range d, where distances correspond to the number
of mutations in an infinite-genome model. This equa-
tion means that individual who are outside of the cross-
reactivity range of the recovered individuals are suscep-
tible to be infected by a given strain.

Within this setup, a mutation in the virus introduces
a new strain α′ that increases its distance to all exist-
ing strains by one. In a perturbative limit, this muta-
tion increases fitness by a fixed and constant amount
s ∝ d−1. This situation can be mapped onto a fitness
wave model where many beneficial mutations compete
against each other [287] (see section XII C 9). In the fit-
ness wave description, the viral population has a distri-
bution of fitnesses and reproduces according to that fit-
ness. The dynamics are dominated by events happening
at the stochastic nose of the distribution, i.e. strains with
the the largest fitness fm. The beneficial mutations that
govern the future fate of the population all occur at that
stochastic nose, with rate r ∼ fm/ ln(fm/µ), where µ is
the mutation rate.

The cumulative effect of these stochastic beneficial
mutations at the nose can be described by an effective
Langevin equation:

dfm

dt
=

sfm
ln(fm/µ)

− Itot + sξ(t), (87)

where ξ(t) is a Gaussian white noise of amplitude
〈ξ(t)ξ(t′)〉 = rδ(t − t′), and where the negative fitness
term −Itot comes from the population of immune sys-
tems catching up with the viral strains in the bulk of
the distribution, decreasing the fitnesses of all existing
strains. This Langevin description makes it possible to
estimate the rate of “speciation”, whereby two mutant
strains at the nose escape the influence of the current
immune systems in different way, creating two indepen-
dently evolving antigenic niches which separate once their
genetic distance reaches at least ∼ d, rsp ∼ re−d/q, where
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q = fn/s is the typical number of beneficial mutations
that strains at the fitness nose accumulate relative to the
rest of the population.

These arguments can be used to explain the deep splits
in flu strain topologies that have been observed in data
and simulated using similar types of equations [288, 289].
In other words, the traveling wave picture also explains
how influenza can constantly escape the immune system
without continuous accumulation of genetic diversity.

Rouzine and Rozhnova [285] applied a similar mapping
onto a fitness wave description, but in a one-dimensional
antigenic space. They used the predictions of their con-
tinuous traveling wave framework to estimate an anti-
genic mutation rate of µ ∼ 3 · 10−5 per transmission
event and predict the cross-immunity distance of d ∼ 15
nucleotide substitutions that agrees well with indepen-
dent estimates.

While these models give general insights and scal-
ing laws to understand viral-immune co-evolution, they
ignore the specific molecular details and mechanisms
of immunity. As more data becomes available about
the specific interactions between immune cells and viral
strains, it may be possible to combine these approaches
with data-driven models of immune repertoires and viral
genomes, and to use them to make specific predictions
about the fate of particular viral strains and their rela-
tion to immune repertoires of hosts.

X. DISCUSSION

Despite the length of this review, there are many sub-
jects we did not touch upon that definitely fall into the
global topic of quantitative immunology. Some of these,
like the whole area of transcriptomics [290] applied to im-
munology, are new and while the methodology is quan-
titative, the current experiments are only just starting
to give quantitative models of the immune system that
can be linked with a physical understanding (although
things are moving so fast that by the time this review is
published, this sentence may be obsolete). We also did
not go into the methodology of certain analysis or theo-
retical approaches that are widely used, such as machine
learning [291] or stochastic gene expression and biochem-
ical regulation [292, 293], because detailed reviews for
the physics audience exist for these topics. We refer the
curious reader to these papers for the necessary back-
ground. Lastly, we only briefly mention some amazing
experimental advances, such as imaging [252] since they
are currently in the process of being used to verify quan-
titative models. We hope we have managed to give the
idea of a vibrant and multi-direction field. We also note
that we made presentation choices, which were not easy,
because many of the presented topics are linked to other
ones. These links will surely become better explored in
the coming years as solid experimental quantification and
validation of theoretical models becomes the norm.

XI. GLOSSARY

Immunology can be painful at time for physicists
because of its “jargon”. To help with accessibility,
we try not to focus on specific molecules, but some-
times we need to. So here we give a brief overview
of the main players and rules of the game for the im-
mune system, and also other molecules that are men-
tioned in the text. For an introduction to immunol-
ogy, we strongly recommend reading “Your Amazing
Immune System” courtesy of the European Federation
Immunological Society http://www.oegai.org/oegai/
2-PDF/AmazingImmuneSystem.pdf [294]. After this first
glance, we recommend the short but illuminating book
“How the immune system works” by physicist Lauren
Sompayrac [1].

• Adaptive Immune Response – a response of the or-
ganism to specific pathogens that changes in the
lifetime of each individual. It is based on lympho-
cytes (T and B-cells) recognizing pathogens, pro-
liferating and then keeping a subset of cells called
memory cells that are adapted to previously en-
countered pathogens. Recognition involves interac-
tions with many components of the innate immune
system (e. g. antigen presenting cells, cytokines)
and well as with different cells of the adaptive im-
mune system. Adaptive immune systems first ap-
peared in jawed vertebrates.

• Innate Immune Response – the innate immune re-
sponse involves non-specific types of defense, from
physical and chemical barriers (e.g. skin, clotting,
scratching) to cells and molecules that recognize
non-specific pathogenic patterns, such as proteins
of the bacterial cell envelope (LPS - lipopolysaccha-
rides). The innate immune system is evolutionary
older than the adaptive one and is found in plants,
insects, funghi, as well as vertebrates.

• Cytokines - small protein secreted by leukocytes to
enforce cell-to-cell communications in the immune
system. Examples of specific cytokines mentioned
in the text: IL-2 is a key anti-apoptotic cytokine
for T cells as well as an activation cytokine for reg-
ulatory T cells; IL-7 is an hematopoietic growth
(anti-apoptosis, pro-proliferation) factor for lym-
phocytes.

• Interleukins (IL): cytokines historically thought to
be produced by leukocytes.

• Leukocytes: the white blood cells of the immune
system. These include lymphocytes (B, NK or T
cells), granulocytes, monocytes and macrophages
(see Fig. 9).

• TCR: T cell receptor, the main receptor on the sur-
face of T cells that recognizes pMHC as a ligand for
T cell activation.
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• BCR: B cell receptor, the main receptor on the
surface of Bcells that recognizes membrane-bound
molecules as ligands for B cell activation.

• Antigen: biomolecules that trigger an adaptive im-
mune responses. Antigens can be proteins that
are recognized by antibodies (B-cell mediated re-
sponses) or short peptides that are loaded onto
MHC (T-cell mediated responses).

• Epitope: part or whole of the antigen that the im-
mune receptor bind to. For B cells, part of the
protein that the B cell receptor bind to. For T
cells, this corresponds to the peptide loaded by the
MHC.

• APC (antigen presenting cells) – dendritic cells
and macrophages. Surveilling cells that internalize
molecules and cells from tissues and present them
on their MHC type II to T-cells.

• MHC: major histocompatibility complex; its main
function is to ”present” short peptides, as antigen
for T cells. It comes in three types, but two of them
are more relevant for the purposes of this review:
type I and type II. Type I MHC are expressed on
most cells in the body, presenting random bits of
protein fragments found in that cell – this informs
the surveilling cells if the MHC presenting cell is
healthy or not. Type II MHC are expressed only
on specialized cells (antigen presenting cells) and
carry information about the cellular environment
(whether there is an infection in a given tissue).

• CD8(+) (killer) T-cell – a type of T-cell identified
by its CD8 marker involved in interactions with
MHC type I presenting cells. These T-cells trig-
ger apoptosis (kill by forcing the cells to kill them-
selves) the infected cells.

• CD4(+) (helper) T-cell – a type of T-cell identified
by its CD4 marker involved in interactions with
MHC type II presenting cells that present peptides
from antigens they engulfed. These T-cells produce
cytokines and help orchestrate the response of other
immune cells (e.g. B-cells, killer T-cells).

• pMHC: a complex of a short peptide (p) and MHC
that constitutes a ligand for TCR. Depending on
the nature of the embedded peptide, a pMHC can
be agonistic (triggering an immune response), an-
tagonistic (extinguishing an immune response) or
null. Such hierarchy often lines up with self/non-
self discrimination.

• Somatic (hyper)mutation: genetic alteration ac-
quired by a cell that occurs in body cells
(somaplasm) and that can be passed to the progeny
of the mutated cell in the course of cell division; one
of the driver for antibody maturation in B cells, and
for repertoire generation in T cells.

• Germline mutation: genetic alteration that occur
in the gamete-producing cells (sperm and eggs)

• VDJ recombination – a DNA editing process that
creates T- and B-cell receptors (see section VI B for
details).

• Ig class – B-cells can express different types of con-
stant regions of their receptors coupled to the same
variable region. Throughout their lifetime, they
can change (albeit in a specific order) which gene
they express – this is called class switching. The
expressed constant region gene determines the so-
called class of the B-cell and antibody. The differ-
ent genes are aligned in the immunoglobulin locus,
and after the B-cell moves on the next class, pre-
vious classes get deleted. For example the µ and
δ genes are first in the heavy chain locus and they
lead to the expression of IgM and IgD chains, both
of which are expressed on naive cells. The order of
the remaining classes for the heavy locus is IgG3,
IgG1, IgA1, IgG2, IgG4, IgE, IgA2. Class switch-
ing is regulated by cytokines, through regulation of
gene regulation (see sections IV B and V A).

XII. METHODS

This section is devoted to introducing or expanding
the more technical details of methods relevant to quan-
titative immunology. These methods and concepts may
be of different kinds. Some pertain directly to the bio-
physics of immunology and the molecular details of bind-
ing between receptors and cognate ligands. Some may be
classical tools from other fields, from statistical learning
to population genetics, but which carry some conceptual
similarity with approaches from statistical physics. The
presented methods are almost always cited in the con-
text of recent work in physical or quantitative immunol-
ogy. While they are often not established concepts of
immunology, we believe that they might play an increas-
ing role in its future development, with more and more
imports from other fields.

A. Physical kinetics

1. Diffusion-limited reaction rate

To compute the association rates of 2 of two molecules
(Ligand and Receptor), let’s place ourselves in the ref-
erence frame of the receptor, so that the receptor is
immobile, but the ligand diffuses with coefficient D =
DLigand+DReceptor. The spatial distribution of the ligand
concentration CLigand(~r, t) at steady state obeys Fick’s
law:

∇2C(~r) = 0, (88)
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with boundary conditons C(~r, t)
r→∞−−−→ CLigand and

C(r = R) = 0, where R = RReceptor + RLigand is the
sum of the receptor and ligand radii (each modeled by
a sphere). Because of spherical symmetry, C(~r) = C(r),
we can consider only the radial part of the Laplacian in
spherical coordinates

∂

∂r

(
r2 ∂C

∂r

)
= 0,

and the steady-state solution is:

C(r) = CLigand

(
1− R

r

)
.

The flux of ligands jLigand onto the receptor sphere is

jLigand(r = R) = D∇C =
DC∞R

r2
=
DC∞
R

,

and integrating over the sphere surface one can compute
total flux:

Φcollision =

∮
~jLigand(r = R)d~S (89)

= 4πR2DCLigand

R
= 4πDCLigandR.

The total number of collisions per unit time is
4π (RLigand +RReceptor) (DLigand +DReceptor)CLigand and
the rate of diffusion-limited interactions between recep-
tors and ligands kcollision = Φcollision/Cligand is:

kcollision = 4π (RLigand +RReceptor) (DLigand +DReceptor) .
(90)

2. The rates of dissociation between two biomolecules

The physical chemistry of dissociation of two
biomolecules can be modelled in two steps: a slow one
that corresponds the breakage of chemical bonds between
molecules, and a fast one that corresponds to the rushing
in of the solvent. Estimating the rate of dissociation koff

thus corresponds to estimating the slow step, which is
truly driven by the quantum physics of bond breakage.
The rate is then encapsulated by the frequency of bond
vibration (kBT/~ ≈ 1012s−1) multiplied by the proba-
bility of of successfully dissociating the molecular pair
(exp (−∆Goff/(kBT ))). This bond-breakage free energy
sums up the contribution of all the bonds (electrostatic
interactions, hydrophobic bonds, Van der Waals forces,
hydrogen-bonds etc.) holding a molecular complex to-
gether: it could be computed from purely quantum con-
siderations, independently of the context in which the
pair is considered (solvated in the intercellular medium,
embedded in the plasma membrane, in vacuum etc.).
Yet, this remains a tricky proposition as small errors in
estimating the bond energies will yield to exponentially-
inaccurate estimates of koff .

3. The formation of ligand-receptor pairs: equilibrium and
kinetics

Once association and dissociation rates are avail-
able, estimating the kinetics of formation of the ligand-
receptor pairs is done by considering the reaction:

Ligand + Receptor
kon−−⇀↽−−
koff

Complex, (91)

and integrating the equation:

d[Complex]

dt
= kon[Ligand][Receptor] (92)

−koff [Complex].

We have three species whose kinetics we are estimating,
and two conservation laws (for the ligand and for the
receptor), hence the reaction coordinate for this reaction
is one-dimensional and can be solved analytically. We
call the complex concentration x = [Complex]”

dx

dt
= kon(Ltotal − x)(Rtotal − x)− koffx, (93)

where Ltotal is the total ligand concetration, free and
complexed, and Rtotal is the total receptor concentration.
In steady state (for t→∞) we have dx/dt = 0 and

(Ltotal − x)(Rtotal − x)

x
=
koff

kon
= KD, (94)

which has two formal solutions

x± =
1

2

(
Ltotal +Rtotal +KD (95)

±
√

(Ltotal +Rtotal +KD)2 − 4LtotalRtotal

)
of which only x− is physical and satisfies x <
Ltotal, Rtotal.

The kinetics of relaxation

dx

dt
= kon(x− x−)(x− x+), (96)

can also be integrated:

x(t) =
x− − ax+e

−kreactiont

1− ae−kreactiont
, (97)

where the characteristic rate for the reaction is:
kreaction = kon

√
(Ltotal +Rtotal +KD)2 − 4LtotalRtotal,

and a is a constant depending on the initial condition.
In the limit of a few receptors Rtotal � KD, Ltotal, the

expression simplifies to x = LtotalRtotal/(Ltotal + KD)
and kreaction = konLtot + koff . Three regimes can be con-
sidered:

• When the ligand exists in high concentration, L�
KD and x = Rtotal, the system relaxes and fluctu-
ates with a characteristic rate kreaction = konLtotal.
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• When the ligand is sparse and in limited amount,
Ltotal � KD, few complexes form, x ≈
LtotalRtotal/KD, and the system relaxes and fluc-
tuates with a characteristic rate koff .

• When [Ligand] ≈ KD, half of the receptors are oc-
cupied and half are free of ligands, x = Rtotal/2;
this is the mid-point of the dose response when one
assess receptor occupancy against increasing con-
centrations of ligands.

B. Gene regulation

1. Basic model

In the simplest quantitative model of gene regulation,
we can write the deterministic dynamics of gene tran-
scription and translation as:

d

dt
[mRNA] = pmRNA − γmRNA[mRNA] (98)

d

dt
[protein] = pprotein[mRNA]− γprotein[protein],

where pi are the production rates and γi the degradation
rates of the molecules, for i = protein,mRNA. Since
transcription and degradation rates for mRNA are of-
ten larger than translation and degradation rates for the
protein, timescale separation leads to

d

dt
[protein] = pprotein

pmRNA

γmRNA
− γprotein[protein]. (99)

At steady state:

[protein] =
pmRNApprotein

γmRNAγprotein
. (100)

This straightforward expression can become arbitrarily
complicated. Both the production and degradation rates
of mRNA and proteins of interest can be complex func-
tions of the signalling response, and post-translational
modifications and regulated degradation can also hap-
pen.

In simplest case, these rates can be approximated as
constants, when adiabatic conditions apply such that sig-
nalling responses and cytokine production and consump-
tion occur on timescales much shorter or much longer
then gene regulation. Including positive feedback loops
produces more interesting dynamical behaviour, espe-
cially when the reinforcement is through mutltimerized
transcription factors that introduce additional nonlinear-
ities.

2. Auto-amplification with a single transcription factor

A simple feedback loop corresponds to the case when
the rate of transcription of a protein species present in

the cell at concentration [protein] = X is a dose response
of the X itself (e.g. when X is a transcription factor that
binds to the promoter region of the gene for X). Then
the dynamic equation for X is:

d[X]

dt
= k

[X]

[X] +K
− γ[X], (101)

where k is the maximum production rate, K the concen-
tration of protein X at half-maximum expression, and γ
is a degradation rate (we have used the separation of time
scales to eliminate the mRNA stage, as in the previous
paragraph). This equation has one fixed point X = 0
for k/γ < 0, and Xequilibrium = k/γ −K, for k/γ > K.
A simple stability analysis around that non trivial fixed
point, taking [X] = Xequilibrium + ε,

dε

dt
=
γ2

k

(
K − k

γ

)
ε, (102)

shows negative restoring force (K − k/γ < 0), meaning
that all fluctuations get quenched and the fixed point is
stable.

3. Auto-amplification with multiple transcription factors

The complexity and relevance of the auto-amplification
gene regulatory circuit becomes more relevant when the
expression of gene X is regulated by two transcription
factors TF1 and TF2, i.e. both transcription factors need
to bind to the promoter region of gene X to elicit its
transcription. We can compute the state of the promoter
using classical tools of statistical mechanics. The pro-
moter for gene X can exist in four possible states with
the related probabilities: unoccupied promoter (p0), TF1

only (p1), TF2 only (p2), and both (p12), with

p0 =
1

Z
, p1 =

[TF1]

K1
, p2 =

[TF2]

K2
, p12 =

[TF1][TF2]

K ′1K
′
2

,

(103)
with the partition function:

Z = 1 +
[TF1]

K1
+

[TF2]

K2
+

[TF1][TF2]

K ′1K
′
2

, (104)

where [TF1] and [TF2] denote concentrations of the
two transcription factors and K1 = c0 exp(∆G1/RT ),
K2 = c0 exp(∆G2/RT ), K ′1 = c0 exp(∆G′1/RT ) and
K ′2 = exp(∆G′2/RT ) their equilibrium binding constants
related to the free energies of binding individually (non-
primed) and cooperatively (primed) to the promoter
binding sites.

When the cooperative binding of transcription factors
binding to the promoter region is usually thermodynam-
ically favored, K ′1 �= K1 and K ′1 � K2, the partition
function simplifies to Z ≈ 1 + [TF1][TF2]/(K ′1K

′
2).

A common case if when [TF1] = [TF2] = [TF ] and
gene X is transcribed upon homodimerization of a tran-
scription factor in its promoter region (then K ′i = K ′).
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FIG. 16. Bistable auto regulation of a gene. Shown are
the production and degradation rates of as a function of the
protein concentration X, Eq. 106. The intersections of the
curves define three fixed points: two stable ones (0 and X+),
and one unstable one (X−).

The probabilities of the promoter to be unoccupied (tran-
scribed at a basal level for auto-activation), poff = p0,
and to be occupied (transcribed at an enhanced level for
auto-activation), pon = p12 are:

pon =
[TF ]2

[TF ]2 +K ′2
, poff = 1− pon (105)

This form of regulation, which follows a Hill function
(with Hill coefficient h = 2), introduces a nonlinearity in
the production of X that is of critical relevance in cell
differentiation. For auto-activation by homodimers, the
dynamic equation for the regulation of X is:

d[X]

dt
= k

[X]2

[X]2 +K2
− γ[X], (106)

where k and γ are production and degradation rates for
X respectively.

As in the non cooperative case, this dynamical system
has a single fixed point if k/γ < K: [X] = 0. But for
k/γ > K, it has three fixed points at 0, X− and X+.
The stability of these solutions can be deduced graph-
ically (see section V A for details): X− is an unstable
fixed point and 0 and X+ are stable fixed points. Hence,
this simple system of gene regulation will generate two
types of cells: cells that do not express X, and cells that
express a high level of X. We see many examples of such
bimodal distributions in expression of transcription fac-
tors, cytokines and surface markers in cells of the immune
system (see section V A).

C. Population dynamics, genetics

To study the somatic evolution of immune clones and
cell types it is useful to summarize some basic results

from population genetics. The material in this section
can be found in many evolution and population text-
books [295, 296]. To describe the evolution of a mutat-
ing population, one typically considers a background of
genetically identical individuals (or cells, in the context
of lymphocyte population dynamics). Each one of these
individuals can acquire a mutation with rate µ, which
starts a new mutant subpopulation. Each individual in
both the ancestral and the mutant subpopulations can
die or reproduce in each generation, and mutants carry-
ing non-neutral amino acid substitutions have a different
(higher for beneficial and lower for deleterious mutations)
growth rates. Since it is more likely that a mutation will
confer a disadvantage than an advantage, most mutants
are deleterious. But as we shall see, even beneficial mu-
tations are not necessarily destined to succeed and ul-
timately the fate of most mutants is to die. Out of the
lucky few that establish subpopulations of significant fre-
quency, some will completely take over the population —
they will fix. In this section we calculate the probabili-
ties for fates of mutant subpopulations in the simplified
case, compared to somatic evolution of immune reper-
toires, when there are no sources of new clones other
than mutations.

1. Deterministic mutation-selection balance

Let us start with a situation where two subpopula-
tions exist, the ancestral clone of size n2 individuals
and a mutant clone of size n1 individuals. The sub-
populations grow (which accounts for both reproduction
and death) with rates γ1 and γ2, respectively, where
gi = ri − f(n1, n2) is the balance of growth rate ri and
a death rate f(n1, n2. Individuals also mutate from the
ancestral population to the mutant one with rate µ1 and
mutate back with rate µ2:

dn1

dt
= µ2n2 − µ1n1 + g1(n1, n2)n1 (107)

dn2

dt
= µ1n1 − µ2n2 + g2(n1, n2)n2. (108)

We also assume, as is often the case in population genet-
ics models that the population size is constant, N = n1 +
n2 = const, which sets f(n1, n2) = (r1n1 +r2n2)/N . The
constant population size constraint means that knowing
n the size of both subpopulations is completely deter-
mined by the fraction of individuals in the ancestral pop-
ulation x = n1/n, which follows:

dx

dt
= µ2 − (µ1 + µ2)x+ sx(1− x), (109)

where the selection coefficient s = r1 − r2 describes how
much faster (or slower if s < 0) the ancestral population
grows compared to the mutant subpopulation.

At steady state, in the absence of mutations µ1 = µ2 =
0, either the ancestral subpopulation fixes, x∗ = 1 for
s > 0, or the mutant one x∗ = 0 for s < 0. In the
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absence of selection but with mutations, the relative ra-
tio of the mutation rates determines the fraction of each
subpopulation, x∗ = µ1/(µ1 + µ2). With both mutation
and selection a mutation-selection balance is established
(for s < 0) at x∗ = (1/2)(1 + 2µ/|s| −

√
4(µ/s)2 + 1)

for µ1 = µ2 = µ. When mutations are rare compared to
the fitness advantage, |s| � µ, this balance simplifies to
x∗ ≈ µ/|s|.

2. Genetic drift

In order to observe a situation described by the de-
terministic equations in Eq. 109, the mutant population
needs to grow to a sizeable fraction of the population.
However, every mutant appears first in only one individ-
ual and undergoes a subsequent random walk of repro-
duction and death, which means that the most likely fate
is for it go immediately extinct. This makes the effect of
small number noise coming from finite population sizes,
called genetic drift in population genetics, relevant. We
can explore this effect considering a population that pro-
duces only neutral mutants (meaning all mutants grow
at the same rate as the ancestor), and keeping the pop-
ulation size fixed to N individuals. If we focus on one
individual at some initial time, and follow its offspring,
at very long times only two outcome are possible. Either
its offspring have taken over the whole population, or
the lineage has gone completely extinct. Since we start
with N individuals, the probability of taking over is 1/N .
The argument generalizes to a subpopulation of size n:
the probability that one of its members has taken over
the population is n/N .

3. Wright-Fisher model

While we cannot calculate deterministically the fate
of any particular mutant individual, we can calculate
the probability of the evolution of the ancestral and mu-
tant fractions, assuming two subpopulations and a con-
stant population size as we did in subsection XII C 1.
Two models, the Wright-Fisher and the Moran mod-
els, each with slightly different setups, describe the neu-
tral evolution of populations. The Wright-Fisher model
assumes discrete, non-overlapping generations: at each
generation, individuals from the previous generation are
cleared, a new sample ofN individuals is drawn, each new
individual picking an ancestor from the previous genera-
tion with probability 1/N . Following a subpopulation of
size n in the parent generation, the probability that their
offspring comprise m individuals is given by the transi-
tion probability:

Pn→m =

(
N

m

)( n
N

)m (
1− n

N

)N−m
. (110)

The probability distribution for the size of that subpop-
ulation evolves according to the recursion: Pt+1(m) =

∑
n Pn→mPt(n), where t labels generations.
Within this model the mean frequency of the subpop-

ulation does not change with the time
∑
n nPn(t) =

〈n(t)〉 = 〈n(t+ 1)〉. Since the binomial distribution
for large N becomes Gaussian, the evolutionary trajec-
tory of the number of individuals in each subpopulation
size is well described by a random walk: n(t + 1) ≈
n(t) + η(t)

√
n(t)(1− n(t)/N), with η(t) normally dis-

tributed.
The Wright-Fisher model can be generalized to include

selection. The probability to pick a given member i of
the parent generation depends on its selective advantage
or disadvantage si, as (1/N)(1 + si)/(1 + s̄), with s̄ =
(1/N)

∑
i si.

In the case of two subpopulations, wildtype (of size
n2 = N − n) and mutant (of size n1 = n), with selec-
tive (dis-)advantage s for the mutant, Eq. is modified to:

Pn→m =
(
N
m

)
pm(1−p)N−m, with p = (n/N)(1+s)/(1+s̄)

and s̄ = 1 + sn/N . For large populations, this leads to a
biased random walk:

n(t+1) ≈ n(t)+sn(t)

(
1− n(t)

N

)
+η(t)

√
n(t)

(
1− n(t)

N

)
,

(111)
whose determistic part reproduces Eq. 109 in the absence
of mutations.

4. Probability of extinction

We can calculate the probability of extinction of the
mutant subpopulation in the setup of two populations
we have described until now. This limit corresponds to
a small mutation rate: each subpopulation can fix or go
extinct before a new mutation appears. While many im-
munological situations (e.g. affinity maturation) may not
be in that regime, it is an important result to know. The
probability that a subpopulation of size n goes extinct,
q(n), requires knowing the probability that all their off-
spring, calculated within the Wright-Fisher model, will
go extinct:

q(n) =
N∑
m=0

(
N

m

)
pm(1− p)N−mq(i), (112)

given a selective advantage s for the population. For
large N the binomial distribution is peaked, and we can
Taylor expand q(i) around n, q(i) ≈ q(n)+(i−n)q′(n)+
1
2 (i− n)2q′′(n), which results in:

0 = sn
(

1− n

N

)
q′(n) +

1

2
n
(

1− n

N

)
q′′(n). (113)

Solving for the extinction probability with boundary con-
ditions q(n = 0) = 1 (an extinct subpopulation remains
extinct) and q(n = N) = 0 (a fixed population cannot

go extinct) yields q(n) = 1− 1−e−sn
1−e−sN . The probability of
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fixation is then:

Pfix = 1− q(n) =
1− e−sn

1− e−sN
. (114)

If s = 0 we recover the result in subsection XII C 2.

In the limit of strong positive selection (Ns � 1, but
s � 1) the probability that a founder mutant (n = 1)
fixes is proportional to the selection strength Pfix ≈ s, if
the initial population is one individual, or more generally
Pfix ≈ ks, if the initial population is small k � 1/s in-
dividuals. On the other hand Pfix ≈ 1 for large founder
populations k � 1/s. This defines a threshold of 1/s
individuals to ensure the survival of the subpopulation.
For weak selection pressures |Ns| � 1, the probability
of fixation is equal to the frequency of individuals in the
population and is independent of s, Pfix ≈ n/N , making
this regime effectively neutral. Lastly, for strongly dele-
terious mutations, sN � −1, the probability of fixation
is non-zero Pfix ≈ es(N−n), but is exponentially small.

5. Moran model, continuous limit, and time varying
selection

The above results can also be obtained considering a
diffusion process in the number of individuals in the sub-
population. To do this, we use the Moran model, in
which at each time step we choose one individual to die
and one to reproduce (it can be the same individual),
ensuring the population size is kept fixed. This implies
overlapping generations, and the typical generation time
is of order N time steps.

Assume a wildtype population of size N − n and a
mutant population of size n. The probability of having
n at time step i is given by:

pn(i) = pn+1(i− 1)
n+ 1

N

N − (n+ 1)

N
(115)

+pn−1(i− 1)
n− 1

N

N − (n− 1)

N

+pn(i− 1)

[( n
N

)2

+

(
N − n
N

)2
]
,

where the first term describes killing one dominant allele
and reproducing a mutant, the second one reproducing a
dominant allele and killing a mutant, and the last term
describes the two possibilities of killing and reproducing
the same allele. In the limit of large population sizes,
rescaling time by the typical generation N , t = i/N ,
so that pn(i) − pn(i − 1) = (1/N)∂tpn(t), and Taylor
expanding in x = n/N :

∂p(x, t)

∂t
=

1

2N

∂2

∂x2
[x(1− x)p(x, t)] . (116)

Mutation and selection can be added following a similar

derivation and contribute in a mean “drift”:

∂p(x, t)

∂t
=

1

2N

∂2

∂x2
[x(1− x)p(x, t)]

− ∂

∂x
[(sx(1− x) + µ2 − (µ1 + µ2)x) p(x, t)] .

(117)

This Fokker-Planck equation is the stochastic version of
109, with effective diffusion coefficient x(1−x)/2N . This
expression is also consistent with the random walk ap-
proximation of the Wright-Fisher model (111), meaning
that the two models are equivalent in that continuous
limit.

Eq. 117 has a general solution in terms of Gegenbauer
polynomials. At steady state, assuming µ1 = µ2 =
µ for simplicity it takes the form p(x) = Z−1[x(1 −
x)]Nµ−1eNsx, where Z is a normalization factor. We
can reinterpret it as a Boltzmann distribution, p(x) =
Z−1p0(x)eNsx, where each mutant individual gives an

energy gain −s, and p0(x) = [x(1− x)]
Nµ−1

is the neu-
tral distribution in the absence of selection.

Since Eq. 117 is a one dimensional diffusion equa-
tion, the probability of fixation is calculated from the
backward equation for reaching the absorbing barrier at
x = 1. This calculation gives the same result as Eq. 114.

To model the fluctuations of the environment, we can
consider a time varying selection pressure s(t) = s0 +
σ(t) with mean s0 and random white noise fluctuations
〈σ(t)σ(t′)〉 = δ(t − t′)Ω around this mean [297]. The
probability p(y, x, t) that the wildtype, starting at initial
frequency y at time t = 0, reaches frequency at least x
by time t is given by the backwards equation:

∂tp(y, x, t) = v(y)∂yp(y, x, t) +D(y)∂2
yp(y, x, t), (118)

where

v(y) = s0y(1− y) + Ωy(1− y)(1− 2y), (119)

and where the diffusion term cumulates genetic drift and
fitness fluctuations:

D(y) =
1

2N
y(1− y) + Ωy2(1− y2). (120)

With the boundary conditions p(y ≥ x, x, t) = 1 and
p(y = 0, x, t) = 0, the probability of ever reaching fre-
quency x is:

p(y, x, t→∞) =
1− | 1−y/α+

1−y/α− |
λ

1− | 1−x/α+

1−x/α− |
λ
, (121)

where α± = 1
2

[
1±

√
1 + 2/NΩ

]
and λ =

s0/(Ω
√

1 + 2/NΩ). For x = 1 we recover the fixa-
tion probability reported in Takahata et al [297], and for
Ω → 0 we recover the result for constant fitness (114),
Pfix = (1− e−s0Ny)/(1− e−s0N ).
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For more than two genotypes [298], Eq. 117 generalizes
to an equation for a vector ~x = (x1, ..., xK−1) of linearly

independent genotype frequencies (xK = 1−
∑K−1
α xα):

∂p(~x, t)

∂t
=
∑
α,β

{
− ∂

∂xα
[
mα(~x) + Cαβ(~x)sβ(~x)

]
+

+
1

2N

∂2

∂xαxβ
Cαβ(~x)

}
p(~x, t), (122)

where the covariance matrices are:

Cαβ(~x) =
{ −xαxβ if α 6= β

xα(1− xα) if α = β
, (123)

the mutation coefficients ma(~x) =
∑
β(µβ→αx

β −
µα→βx

α) and the selection coefficient is the relative
growth rate of genotype β compared to a reference geno-
type sα = fβ − f ref .

6. Branching processes

Branching processes are useful for tracking the fate
of the offspring of a individual through time. We will
first introduce it in the context of the Moran model, and
then present its more standard applications. Assuming
birth (with rate 1 + s) and death (with rate 1) as the
only possibly processes, we can track the evolution of
the probability of having 1 individual at time 0 and n at
time t. This probability satisfies a recursion that can be
obtained by considering the possible events occuring in
the first time step, between times 0 and dt = 1/N [287,
299]:

p(1, n, t) =
1

N

(
1− 1

N

)
δn,0

+
1

N

(
1− 1

N

)
(1 + s)p(2, n, t− dt)+

+

[
1− 1

N

(
1− 1

N

)
(2 + s)

]
p(1, n, t− dt),

(124)

The first term corresponds to the lineage going extinct
between times 0 and dt — and remaining extinct until t.
The second term corresponds to a division of the initial
individual between times t = 0 and dt, and the lineage
then reaching size n from size 2 in the remaining time,
t− dt. The last term corresponds to no change at all.

The next step, which characterizes the branching pro-
cess approach, is to assume that the outcome of a lin-
eage can be deduced from the outcome of each of the
descendants of the first division, taken independently:
p(2, n, t) ≈

∑n
m=0 p(1,m, t)p(1, n−m, t), which assumes

that once one individual gives birth to two, the births
in these lineages happen independently. This approxi-
mation is valid as long as n � N . Then the recursion
becomes in the continuous time limit:

∂p(1, n)

∂t
= δn,0+(1+s)

n∑
m=0

p(1,m)p(1, n−m)−(2+s)p(1, n),

(125)

Defining the generation function G(z, t) =∑∞
n=0 p(1, n, t)z

n we obtain:

∂G(z)

∂t
= 1 + (1 + s)G2(z)− (2 + s)G(z), (126)

which is solved with boundary conditions G(z = 1) = 1
and G(z, t0) = z:

G(z, t) =
(z − 1)(1− est) + zs

(z − 1)(1− (1 + s)est) + zs)
. (127)

For s = 0 (no selection), we obtain G(z) = 1− 1
1+(1−z)−1 ,

whose series expansion yields p(1, n = 0, t) = t/(1 + t)
and p(1, n, t) = tn−1/(1 + t)n+1 for n ≥ 1.

For arbitrary s the mean number of individuals at time
t is 〈n〉 = ∂zG(z)|z=1 = est.The probability of going
extinct at time t is

G(z = 0) = p(1, n = 0, t) =
est − 1

(1 + s)est − 1
, (128)

which goes to 1− s for s > 0 at t→∞. We thus recover
the result that the fixation probability goes to s, as ob-
tained previously in the strong positive selection limit. In
that limit, by the time the mutant escapes genetic drift,
for n� 1/s, its population size is still small compared to
the total population size n � N , making the branching
process approximation appropriate.

While we have illustrated branching processes in the
context of a Moran model of evolution, branching pro-
cesses are ubiquitous and used in a variety of contexts.
One of the simplest branching process is defined in dis-
crete time, where at each step a individual can di-
vide with probability p, or not divide with probability
1−p [121, 299, 300]. A recursion relation for the generat-
ing function of the total number of individuals n in a lin-
eage at time t (past and present), G(z, t) =

∑
n p(n, t)z

n,
can be written following similar arguments as above:

G(z, t) = zpG2(z, t− 1) + (1− p)z. (129)

This recursion equation is solved for t→∞ by:

G(z, t→∞) =
1−

√
1− z24p(1− p)

2pz
, (130)

which has a critical point as p → 1/2 [300], when the
average number of offspring equals 1. Rewriting the gen-
erating function as a series we recover the probability of
the total number of individuals (which must be even)

P2k =
1

2

Γ(k − 1/2)

Γ(1/2)Γ(k + 1)

(4p(1− p))k

2p
, (131)

For p < 1/2, Pk is a decaying exponential as expected,
and for p = 1/2 it decays as a power-law Pk ∼ k−3/2.
Note that this class of critical branching processes has
been used to explain power laws in the distribution of
activity in neural networks [301].
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7. Coalescence process

As seen when calculating fixation probabilities, it is
often useful to think about evolutionary processes back-
wards in time. This is the basic idea behind a coalescence
approach, which can be formalised using branching pro-
cesses in the context of the Wright-Fisher model. Here we
give just some basic intuition about how thinking back
in time about the history of coalescing sequences in lin-
eages can be useful when studying affinity maturation
processes, or tracing phenotypic lineages. W will present
the coalescence process in a neutral evolutionary frame-
work. As before the neutral framework provides us with a
null model in the case affinity maturation where selection
is important, but it may also be useful in immunological
phenotyping. The coalescence approach does not con-
cern itself with mutations, but simply tracks genealogies.
Mutations can later be added to an existing genealogy
(tree).

We consider two individuals and ask how long ago they
shared a common ancestor. If one individual has a given
parent, the probability that the second cell has the same
parent, given there are N cells, is 1/N . The probability
that they do not have the same parent is 1 − 1/N . Fol-
lowing this reasoning, the probability that they have the
same parent t generations ago, but not during the t − 1
generations is

P [T2 = t] = [1− 1/N ]
t−1

1/N ≈ 1/Ne−t/N , (132)

where we have expanded for large N and T2 stands for
time to mean recent common ancestor (MRCA). The
mean time for two cells to coalesce is simply the mean
expectation time of this distribution

〈T2〉 =

∫ ∞
0

dtt/Ne−tN = N. (133)

The mean time for two cells to coalescence is equal to the
population size, in units of generation time. More gen-
erally, the probability that k cells do not share the same
parent is Pdiff = [1− 1/N ] [1− 2/N ] ... [1− (k − 1)/N ] ≈
1−

(
k
2

)
N−1. The probability that at least two cells have

the same parent (or coalescence in our backwards pic-

ture) is then Pc = 1 − Pdiff =
(
k
2

)
N−1. If N � k then

the probability that more than two cells share the same
parent in a single generation can be neglected and we
will assume that in each generation only two cells will
share a parent. The distribution of times until the first
coalescence is:

P [1st coalescence at time t] = [1− Pc]t−1
Pc (134)

≈ Pce−Pct =

(
k

2

)
1

N
e−(k2)t/N .

After a coalescent event, there are k − 1 individuals left,
and the process can be repeated until the whole genealog-
ical tree is reconstructed. The coalescence probability
completely determines the statistics of the topology of

the tree and the branch lengths in a neutral process.
Once the branch lengths (times between each coalescence
events) have been determined, neutral mutations are dis-
tributed randomly along the branch with some rate, so
that their number on each branch follows a Poisson distri-
bution. Specificially, the number of mutations π between
two individuals, also called pairwise heterozygocity, is
given by:

P (π|t) = e−2µnt
[2µt]

π

π!
(135)

for coalescence time t and per-generation mutation rate
µ (the total time is 2t because it adds the two branches
of length t from the common ancestor). Of course, all of
this breaks down in the presence of selection.

Thus, the coalescence probability determines the ge-
netic diversity within a population. The distribution of
π in the population can be obtained by integrating over
the coalescence time (132),

P (π) =

∫ ∞
0

dt

[
1

N
e−t/N

] [
e−2µt [2µt]

π

π!

]
=

1

1 + θ

[
θ

1 + θ

]π
,

(136)
where θ = 2µN = 〈π〉. Thus, in principle, in the regime
of neutrality, characterizing the distribution of the mean
mutational distance should allow us to read off the mu-
tation rate.

Departures from the Poisson distribution is one of the
signatures of selection. In the presence of selection, the
distribution of branch lengths depends on the details of
the type of selection we are studying. If we do think
about affinity maturation (where selection plays an im-
portant role), we see that cells undergo bursts of selec-
tion in the germinal centers, followed by periods outside
of the germinal centers. Two cells sampled at the same
time from the blood may therefore have very different re-
cent histories and using their mutation distance to infer
a mean mutation rate would be misleading.

8. Site frequency spectra and tree balancing

Another statistics that is easy to calculate within the
neutral model, and can thus be used as a null model to
compare to data, is the site frequency spectrum (SFS).
The SFS is the number of individuals in the population
(in our case cells) that have a mutation at a given po-
sition in the aligned sequence with respect to the domi-
nant base pair in the most recent common ancestor, and
presents it as a histogram: (n1, n2, ...., nN−1), where n1

is the number of mutations present in a single cell, n2

is the number number of mutations present in two cells,
etc. Sites that are not polymorphic (all have the same
base pair) do not contribute to the spectrum as they coin-
cide with the most recent common ancestor of the whole
population. However a mutation at a site that is close
to fixation will contribute to the spectrum, although this
mutation now dominates the population. In absence of
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information about the most recent common ancestor, in
population genetics the mutation is often called with re-
spect to the outgroup. In the case of B-cell receptors, a
good estimate can be the infered from the best alignment
to the V, D, and J germline sequences.

We can estimate the SFS for a neutrally evolving pop-
ulation of constant size N within the Moran model. In
the continuous time limit, the mean number of mutations
shared by k individuals evolves according to (for k > 1):

dnk
dt

=
(k + 1)(N − k − 1)

N
nk+1 +

(k − 1)(N − k + 1)

N
nk−1

− 2
k(N − k)

N
nk = Jk−1 − Jk,

(137)

with

Jk = [k(N − k)/N ]nk − [(k + 1)(N − k − 1)/N ]nk+1

(138)
the “current” of mutations across subpopulation sizes.
The first term corresponds to death event occuring in
the subpopulation of size k + 1 carrying the mutation
of interest, and the second term to birth events in the
subpopulation of size k− 1. New mutation always starts
with one individual, so that

dn1

dt
=

2(N − 2)

N
n2 − 2

(N − 1)

N
n1 + µ, (139)

where µ is the mutation rate. At steady state the current
is constant and equal to Jk = J1 = µ/N , because each
new mutation has a probability 1/N to fix, resulting in
a current µ/N of mutations traveling from from size 1 to
N . This implies:

nk =
(k − 1)(N − k + 1)

k(N − k)
nk−1 −

µ

k(N − k)
, (140)

which is solved by

nk = µ/k. (141)

The SFS can also be calculated approximately in models
with selection, but still with fixed population sizes, so we
do not recall these results here [302].

Another feature that can be used to identify selection
through departure from the neutral model is how bal-
anced lineage trees are. Intuitively, a neutral process does
not favor adding a new mutation to any of the branches,
hence the resulting trees should be symmetric and bal-
anced. A process with selection will preferentially grow
the favoured parts of the tree, resulting in some long
branches, and other short ones. In the neutral model,
the number of leaves n in a sublineage at generation t,
follows the distribution pt(n), which satisfies the recur-
sion:

pt(n) =

(
1− n

t− 1

)
pt−1(n) +

n− 1

t− 1
pt−1(n− 1). (142)

The sublineage of interest can add one leave by reproduc-
ing, with probability proportional to its size n, (second
term), or not (first term). Solving by recursion gives a
uniform branch length distribution pt(n) = 1/(n− 1).

9. Clonal interference

Another concept from population genetics that has
been shown to be relevant in BCR affinity maturation
is clonal interference, which we discussed in more detail
in section VIII. Here we recall the back-of-the envelope
arguments of Desai and Fisher [287] to show on a more
classical example why clonal interference slows down the
rate of adaptation.

Given a population size N and mutation rate µ, a mu-
tation occurs in any individual with rate Nµ, so the time
between mutations is (Nµ)−1. Most of these mutations
go extinct due to genetic drift. In the strong selection
regime, a mutation survives genetic drift with probabil-
ity s. Thus, when mutations are rare, the average time
for a new mutation to occur and fix is (Nµs)−1, and the
rate of adaptation is given by vrare = Nµs2.

However fixation itself may take time, and the above
picture breaks down when mutations are no longer rare,
i.e. when the typical time between succesful mutation be-
comes smaller or of the same magnitude as the time for
it to fix. After the subpopulation carrying the mutation
overcomes genetic drift which results in an initial popu-
lation size of 1/s, we can consider that the subpopulation
grows deterministically with rate s, n(t) ∼ (1/s)est. The
mutation will fix when n(t) = N , which gives the fixa-
tion time tfix = (1/s) lnNs. Mutation are no longer rare
when (Nµs)−1 ∼ 1/s lnNs, or Nµ ∼ (lnNs)−1.

In that regime, many mutants can co-exist at the same
time, and new mutations can appear in existing mutants
before these have time to fix. Mutants existing at the
same time will have different growth rates, depending on
the number of mutations they have acquired, even if we
assume for simplicity that all mutations give the same fit-
ness advantage. The whole population can be described
by a fitness distribution and we can notice that the fate
of a mutation in the bulk of this distribution (a subpop-
ulation that was created some time ago) is different that
at its nose (a recently created subpopulation). The nose
subpopulations are small and susceptible to genetic drift.
The bulk subpopulations have more individuals and grow
deterministically, but are subject to nonlinear effects of
competition between individuals. We can consider these
two subpopulations separately and then “stitch” the two
solutions.

The individuals at the nose of the fitness distribution
have a fitness advantage, lets call it qs, meaning that they
have q mutations, each confering an advtantage s, com-
pared to the bulk of the distribution. The time needed
for an even fitter individual (with fitness (q + 1)s) to
appear is given by τ that satifies

∫ τ
0
dtµnnose(t)qs = 1,

where nnose(t) = 1/(qs)eqst is the number of individuals
at the nose of the fitness distribution, following the same
arguments as for the rare mutation case. In the limit of
eqsτ � 1, one gets:

τ = 1/(qs) ln (qs/µ). (143)

Every time that a new fitter class is added to the distri-
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bution, the mean of the distribution also increases. After
qτ , the old nose of the distribution will become the mean
(note that the individuals that are less fit than the mean
go extinct deterministically). The populations in fitness
class q grow as qs, so in class q− 1 they grow as (q− 1)s,
etc. A lineage originating at the nose grows to dominate
the population qτ later, while progressively losing its fit-
ness advantage. By the time it dominates the population,
its relative fitness advantage is zero. On average, it will
have grown at rate qs/2. This gives the consistency equa-
tion (1/qs)eqst/2 = N , with t = qτ . This gives a second
estimate of the establishment time:

τ =
2

q2s
lnNqs. (144)

Equating Eq. 143 and Eq. 144, we find the average rate
at which the population grows:

q =
2 lnNqs

ln (Nq/µ)
. (145)

We can solve this implicit equation approximately assum-
ing that q is not too big and neglecting the ln q terms:

q =
2 lnNs

ln (N/µ)
. (146)

The rate of adaptation in the regime of multiple compet-
ing mutations is then:

vCI =
s

τ
=
s2 lnNs

ln s/µ
. (147)

This rate scales with the logarithm of the population
size, vCI ∼ lnN , much slower than in the rare muta-
tion regime vrare ∼ N . The clonal interference regime
is not only a regime in which there are many compet-
ing mutations, but a regime where new mutations arise
on the background of still relatively low frequency mu-
tations, forming competing lineages. The distinction be-
tween competition of different clones and clonal interfer-
ence is especially important in affinity maturation, where
the competition in germinal centers could be between
very different clones (which is not clonal interference), or
between clones with similar histories, in which case it is
clonal interference.

10. Quantitative traits

While models of population genetics are often defined
in the space of genotypes or alleles, what is often mea-
sured in the resulting phenotype, which is a (possibly
nonlinear) function of the genotype. For instance, for
lymphocyte receptors, the relevant phenotype may be de-
fined as the binding affinity to epitopes of interest.

A projection of a description in phenotypic space,
where mutations occur independently at all loci i along
the genome, results in an effective description in pheno-
typic space, which is useful because selection occurs at

the phenotypic level and we often do not have access to
the genotype–phenotype map. Given a fraction xα of
the population carrying allele α, the population mean
and variance of a phenotype E is:

Γ = 〈E〉 =
1

N

N∑
α=1

Eαxα ≈
∫
dEEw(E) (148)

∆ = 〈E2〉 − 〈E〉2 ≈
∫
dE(E − Γ)2w(E),

where N is the population size, and w(E) is the distri-
bution of this trait in the population.

One can derive an effective equation for the joint evo-
lution of the mean phenotype and its variance [298]:

∂

∂t
Q(Γ,∆, t) =

[
− ∂

∂Γ

(
dΓmut

dt
+
dΓsel

dt

)
(149)

− ∂

∂∆

(
d∆mut

dt
+
d∆sel

dt

)
+

1

2N

(
∂2

∂Γ2
CΓΓ +

∂2

∂∆2
C∆∆

)]
Q(Γ,∆, t),

where we calculate the drift and diffusion terms below.

First lets focus on the diffusion terms, which corre-
spond to genetic drift are are independent of selection:

CΓΓ =
∑
α,β

∂Γ

∂xα
∂Γ

∂xβ
Cαβ (150)

=
∑
α

E2
αx

α(1− xα)−
∑
α6=β

EαEβx
αxβ

= 〈E2〉 − 〈E〉2 = ∆,

where we have used the definitions of the covariance ma-
trices in high dimensional space from Eq. 123. Similarly

C∆∆ =
∑
α,β

∂∆

∂xα
∂∆

∂xβ
Cαβ = 〈(E − Γ)4〉 −∆2 ≈ 2∆2,

(151)
where in the last step we have assumed w(E) is ap-
proximately Gaussian. A similar calculation shows that
C∆Γ = 〈(E − Γ)3〉 ≈ 0 with the Gaussian assumption.

To compute the drift terms, which arise from selec-
tive effects, we need to specificy how fitness and phe-
notype are related. For simplicity, let us assume that
fitness of each individual is a quadratic function of the
phenotype (or expand fitness close to its peak at E∗),
f(E) = −c0(E −E∗)2, where c0 is a prefactor that mea-
sures the width of the fitness peak. The mean fitness is
then:

F (Γ,∆) =
N∑
α

fαxα = −c0
N∑
α

(Eα − E∗)2xα (152)

= −c0
[
∆ + (Γ− E∗)2

]
.
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The change in the mean phenotype Γ due to selection is:

dΓsel

dt
=

d

dt

∫
dEEw(E) =

∫
dEE(

dw(E)

dt
) (153)

=

∫
dEE (f(E)− F )w(E)

= −c0
(
(E − E∗)2 −∆− (Γ− E∗)2

)
w(E)

= −2c0∆(Γ− E∗).

Since (by analogy with Eq. 122) dΓsel

dt = CΓΓsΓ, using
Eq. 150 we can verify that the selection coefficient is sΓ =
∂
∂ΓF (Γ,∆) = −2c0(Γ− E∗).

In principle we can calculate the change in the mean

variance due to selection in the same way d∆sel

dt =
d
dt

∫
dE(E − Γ)2w(E) assuming a peaked phenotype dis-

tribution, but in practice its easier to use the analogy
with Eq. 122 and Eq. 151:

d∆sel

dt
=

∂

∂Γ
F (Γ,∆) ≈ −2c0∆2. (154)

To consider the changes of Γ and ∆ due to mutations
we have to write down a more detailed genotype model
since mutations act on base pairs. If each locus can take
a WT value (σi = 0) or mutant value (σi = 1), each lin-
early additive phenotype (for simplicity) E (for example

binding energy) can be written as Eα =
∑L
i E

α
i σi, where

Eαi is a given sites contribution to the overall phenotype.
We have Γ = (1/N)

∑
i,αE

α
i σ

α
i x

α and:

dΓmut

dt
=

1

N

∑
i,α

∂Γ

∂σαi

dσαi
dt

= (155)

= −
∑
α,i

xαEαi µ(2σαi − 1) = −2µ(Γ− Γ0),

where Γ0 = (1/2)
∑
iE

i is a phenotype average.
Similarly, the variance defined in Eq. 148 is also a sum

over sites, and the change in the variance due to muta-
tions is:

d∆mut

dt
=
∑
i,α

∂∆

∂σαi

dσαi
dt
≈ −4µ(∆− E2

0) (156)

where E2
0 = (1/4)

∑
iE

2
i .

Now we have all the elements, the effective diffusion
equation (149) in phenotypic space reads:

∂Q(Γ,∆, t)

∂t
=

1

2N

[ ∂2

∂Γ2
∆ +

∂2

∂∆2

(
2∆2

) ]
Q(Γ,∆, t)

+
[
2c0∆

∂

∂Γ
(Γ− E∗) + 2c0

∂

∂∆
∆2
]
Q(Γ,∆, t)

+
[
2µ

∂

∂Γ
(Γ− Γ0) + 4µ

∂

∂∆

(
∆2 − E2

0

) ]
Q(Γ,∆, t).

(157)

The stochastic equation for the evolution of the mean
phenotype can then be read off as:

Γ

∂t
= −2µ (Γ− Γ0) + ∆∂ΓF +

√
∆

N
ξΓ, (158)

where the first term describes mutations, the second
term selection and ∂ΓF = −2c0(Γ − E∗(t)) and ξΓ is
a normalized Gaussian white noise. E∗(t) can be a
time dependent moving fitness maximum. An analo-
gous equation holds for ∆. Assuming that ∆ changes
on much faster timescales than Γ, it can be replaced
by its mean, and the steady state solution has a Boltz-
mann form Qeq(t) = Z−1Q0(Γ)e−2NF (Γ), where as before

Q0(Γ) ∼ exp
[
− 1

2
(Γ−Γ0)2

〈∆〉/(4N)

]
) is the distribution with no

selection.
In a time dependent environment the peak of the distri-

bution also changes with time according to a prescribed
model. The population tries to track the fitness peak,
without really ever reaching it. From the physical point
of view, the system is maintained out of equilibrium. In a
changing fitness landscape, where the population history
is described by a sequence of phenotypic trait measure-
ment (Γ0, ....ΓM ) over time (t0, ..., tM ) the fitness flux of
a population history Φ [303] describes a cumulative se-
lective effect of phenotypic trait changes:

Φ =

M∑
i=1

δΓi∂ΓiF (Γi, ti) 6= F (ΓM , tM )−F (Γ0, t0). (159)

The lack of equality holds in general because F also has
an explicit time dependency. One can show that this dis-
crepancy is formally equivalent to dissipation in thermal
systems, and can be related to the entropy production:

〈2NΦ〉 = KL(P|PT ) + boundary terms, (160)

where PT is the probability of the forward trajectory and
PT of the backward trajectory and the Kullback-Leibler
divergence is defined in Eq. 227. This dissipation has
been called “fitness flux” in the context of population
genetics.

These kinds of phenotypic trait models have been used
as starting points for studying co-evolution as we de-
scribe in section VIII. The main difference is that the
fitness objective E∗ is itself a function of the composi-
tion of the population with which the initial population
evolves. That other population is also subject to selec-
tion and drift and evolves stochastically, giving rise to
coupled equations [268].

11. Lineage reconstruction

Lineage reconstruction is a necessary first step in
both BCR evolutionary analysis and phenotypic track-
ing. While many software methods exist to reconstruct
lineages for evolutionary problems, they are not always
well adapted for immunological data. Nevertheless they
are often used, and more adapted methods are usually
built upon classical ones, so here we provide a general
overview of these existing approaches.

The first problem in reconstructing lineages requires
taking the sequence data and identifying clusters of se-
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quences that share a common ancestor, and therefore be-
long to the same lineage. A classical strategy to cluster
datapoints is single-linkage clustering, which builds hi-
erarchical clusters by iteratively merging pairs together
[304]. The Partis software [180] uses a likelihood ra-
tio test to decide if a give set of sequences σ1, σ2, ..., σN
can be grouped as descending from one ancestor or not.
Specifically Partis uses a Hidden Markov Model (HMM)
based method to annotate each nucleotide in a specific
BCR sequence as coming from a given a set of hidden
states corresponding to V, D or J genomic template, or
from a set of exponentially distributed non-templated in-
sertions. The sum over paths determines the probability
P (σi) for each sequence. The same procedure repeated
for a set of N sequences, results in the total probability
of a common scenario for these sequences P (σ1, .., σN ). If
the likelihood ratio P (σ1, .., σN )/ΠN

i=1P (σi) > threshold,
one concludes that the sequences originate from a com-
mon recombination. Partis starts with pairs of sequences,
keeping the cluster with the largest likelihood ratio, and
then adding new members to the cluster based on the
same test. In practice, to speed up the algorithm Partis
does not test all possible pairs but creates initial subsets
of data with low Hamming distances. Joining a cluster
is irreversible, which can lead to errors in clustering.

Once a lineage is defined, annotation softwares such
as Partis [179] or IGoR [175] can be used to propose the
naive root of the tree.

This problem alone is simpler than finding the whole
tree genealogy, known as the topology of the tree or the
branching pattern, because part of the sequence is tem-
plated by the V, D, and J genes (see Sec. VI B). There are
two main classes of methods for tree topology reconstruc-
tion: maximum parsimony and maximum likelihood. Let
us first explain why it is practically impossible to exhaus-
tively sample all tree topologies, and then explain the
differences in the two approaches.

We will use the example of binary trees — trees in
which each node gives rise to only two branches — since
essentially all loopless trees can be cast into a binary
form by adding branches of zero length. Starting from
the simplest unrooted tree of two leaves connected by
one branch, and adding new leaves one at a time, it is
simple to convince oneself that in each step we add 1
leave, 1 internal node and 2 edges, such that a tree with
N leaves has N − 2 internal nodes and 2N − 3 edges
(or branches). Adding the Nth leave (N − 1→ N) adds
2N−5 topologies, such that the number of unrooted tree
topologies with N leaves TN , is TN = (2N − 5)TN−1,
which can be recursively solved to give TN = (2N − 5)!!.
For rooted trees, the number of rooted topologies with N
leaves is given by TN+1 in terms of the number of non-
rooted tree topologies, since it just requires adding a root
to the existing unrooted tree topologies.

The goal of tree reconstruction is to find the topology
that is consistent with the data. For a tree with N = 10
leaves, that means exploring TN ∼ 106 trees and for N =
50, TN ∼ 1076 trees, which is prohibitively large. BCR

clusters often have hundreds of leaves.
There are two ways of determining distance between

two node sequences along an edge of a tree: one is to
calculate the Hamming distance by simply counting the
number of single nucleotide differences between two se-
quences hj , the other is to use the estimated time be-
tween two mutations tj . The number of mutations in a
given time tj is distributed according to a Poisson dis-

tribution of mean µtj : P (hj) =
µtj
hj !
e−µtj . The branch

length refers to the time between two nodes. The tree
length is defined as the total number of substitutions,
htot =

∑
branches hj , and is not equal to the sum of

branch lengths. Maximum parsimony methods use Ham-
ming distance to define distances on trees, which requires
knowing the identity of all the internal nodes and the
tree topology, whereas maximum likelihood sums over
possibilities for the sequences on the internal nodes, but
requires a mutational model.

The maximum parsimony approach is easy to formu-
late: for a given topology, it assigns internal nodes so as
to minimize htot. It then selects topologies with mini-
mal htot. The parsimony scores differ from 0 (when all
the leaves are the same) to NL (when all the leaves are
different, which essentially means this position carries no
information). There are (2N − 5)!! topologies to scan
so many trees have the same htot, including at its mini-
mum. Therefore there is often a large family of most par-
simonious trees. Apart from the practical problems, the
assumptions behind the evolutionary model in this ap-
proach are not clear [305]. In practice, the reconstructed
trees match the true structure if there is little variation in
the internal nodes. The main advantage is that it embod-
ies the basic intuition for reconstructing the phylogeny.

In the maximum likelihood method, given an over-
all lineage age T and tree topology, the likelihood is
given by a specific mutation model by varying the branch
lengths tj . Within the independent site assumption,
the likelihood factorizes over sites and the log-likelihood

` =
∑L
r=1 ln `r independently traces the evolution of each

site r. Thus the following equations apply to a single site,
but generalize readily to many sites. The probability of
mutating the base pair from xi into xj between nodes i
and j, is defined as Pxi,xj (tj). For instance, this proba-
bility can take the following form, although many others
are possible:

Pxi,xj (tj) = e−µtjδxi,xj + (1− e−µtj )πxj , (161)

where πx (with
∑
x πx = 1) describes the probability that

a mutation results in base pair x, and is equal to 1/4
for the unbiased 4-base pair model, and tj is the branch
length (time between nodes i and j). The first term cor-
responds to no mutation, and the second to a mutation
(including one into the same base pair). This formulation
guarantees detailed balance: πxPxy(t) = πyPyx(t) for all
t.

We can now build the likelihood recursively, assuming
a fixed root identity 0, with sequences denotes as x0 that
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are not fixed. First consider a tree made of a root and
two branches of length t1 and t2 leading to leaves 1 and
2, whose identity x1 and x2 is known. The likelihood of
this tree is:

L =
∑
x0

πx0
Px0x1

(t1)Px0x2
(t2). (162)

We can now add an internal node 4 to the tree, descend-
ing from 0 and ancestor of 1 and 2, and a leave 3 de-
scending from 0:

L =
∑
x0

∑
x4

πx0Px0x4(t4)Px0x3(t3)Px4x1(t1)Px4x2(t2) =

=
∑
x0

πx0
Px0x3

(t3)
∑
x4

Px0x4
(t4)L4(x4), (163)

where L4(x0) = Px4x1
(t1)Px4x2

. This recursive form al-
lows for efficient calculation of likelihood by successively
joining roots of trees into a new root. Formally, joining
root j and k into common parent i:

Li(xi) =

∑
xj

Pxixj (tj)Lj(xj)

[∑
xk

Pxixk(tk)Lk(xk)

]
,

(164)
Leaves are initialized to Lj(xj) = 1, and the final results
is given by:

L =
∑
x0

πx0
L0(x0). (165)

Given a fixed topology, we can now maximize the likeli-
hood L over the set of intermediate branch lengths {tj},
which results in a score for each topology. The topol-
ogy T with the best best ranking score, is the most
likely topology (similarly to the maximum parsimony ap-
proach).

Existing maximum likelihood methods use the inde-
pendent site assumption to decrease computational time.
Many methods also assume homogeneous mutation rates
across sites and the reversibility of the evolutionary
process. The GTRGAMMA substitution model of the
RAxML software [306] uses gamma-distributed mutation
rates for different base pairs, and IgPhyML [307] encodes
a non-reversible mutation model that effectively accounts
for the context dependence of mutations (although in a
site-independent setup).

Davidsen and Matsen [308] compared maximum likeli-
hood and maximum parsimony methods for BCR lineage
reconstruction. They concluded that an improved and in-
formed maximum parsimony method outperforms classic
maximum likelihood.

12. Population growth rates

Another way to study the evolution of populations is to
study dynamics that maximize the long term growth rate

of the population given a fixed environment [309, 310]:

Λ(dynamics, environment) = lim
T→∞

1

T

∑
t=0

ln(Nt), (166)

where Nt is the population size at a given time, whose
evolution is driven by the dynamics. One needs to spec-
ify classes of evolutionary dynamics to consider, and the
class of interactions it has with the environment. The
framework is clearly very general, and reduces to a con-
strained optimization problem. The main conceptual dif-
ference with population genetics models studied in this
section is that populations cannot go extinct, and all
possible variants are represented. Populations are in a
regime where fast growth governs evolution. Alternative
approaches could consider optimal strategies for avoiding
extinction [311], by minimizing the probability of extinc-
tion, Pext, whose form depends on the problem consid-
ered.

D. Ecological models

Population of lymphocytes interact with other through
signaling, competition for resources, cytokines, or anti-
gens. For this reason, concepts and mathematical models
from ecology are often useful to describe their dynamics.

1. Generalized Lotka–Volterra models

Ecological generalized Lotka-Volterra models [312–
314] describe the co-habitation of multiple species in
the same environment and account for their interactions,
both direct (one species needs another to reproduce) and
indirect (through competition for external resources). In
general these models have the form:

dxi
dt

= xi [α(~x,~c)− β(~x,~c)] , (167)

where xi is the frequency of a given species, ci are exter-
nal factors such as nutrients α(~x,~c) is the growth rate
and β(~x,~c) the death rate with ~x = (x1, x2, . . .) and
~c = (c1, c2, . . .). The form of the dependence of the
growth rate on the different species and external factors
determines the non-linearity of the problem. This is usu-
ally encoded by an interaction matrix between species.
Models where the growth and death rates are the same
for all species are called neutral. Often one introduces
a carrying capacity which is a form of non-linearity that
describes competition for resources.

This formulation of the model is very general and the
solution depends on the specific assumptions. In gen-
eral these models are solved numerically, and the results
depend on the numerical values of the parameters that
are often not known with great certainty. These mod-
els are often used to ask questions about the coexistence
of different species, as well as speciation itself — why
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are ecological environments with different species stable?
Since we often do not have experimental information to
parametrize the interaction matrix, random matrix mod-
els have been succesfully used to effectively describe the
interactions [315]. In this approach one uses the fact
that within a family of random matrices (i.e. matrices
whose elements are chosen from the same distribution)
the eigenvalues of these matrices are the same. Near
the fixed point, the stability of the system is explored
by linearizing the system of equations in Eq. 167, and
the eigenvalues of this linearized matrix determine the
stability fo the ecosystem:

dxi
dt

= −xi + ε
∑
j

Kijxj(t), (168)

where ε is the interaction strength and K is a random
interaction matrix. As a result the stability of the sys-
tem does not depend on the realization of the interaction
matrix, just on its statistics. For the matrix to be stable,
all the eigenvalues of K, λi have to satisfy ελi ≤ 1, which
is fulfilled in the largest eigenvalue satisfies λmax < 1/ε.
In the case of Gaussian random matrices, the properties
are determined by their first two moments and a strong
transition occurs for N →∞ where the system is stable
for ε < 1/

√
2 and otherwise unstable. This result holds

only if the connectivity scales with the size of the system.

Incidentlly, random matrix theory also has been used
when looking at covariances in sequence variation (see
section XII E 6). The general idea is that beyond the
first couple of eigenvalues of the covariance matrix of
amino acid variability (which often stems from phyloge-
netic bias), eigenvalues are well approximated by a ran-
dom matrix. For R×C Gaussian random matrices, where
the elements Kij are chosen from a Gaussian distribution
with mean 0 and variance σ, the density of eigenvalues
of the covariance matrix Y = 〈KKT 〉/R is given by the
Marchenko-Pastur distribution [316]:

ρ(x) =
1

2πσ2

√
(θ+ − x)(x− θ−)

θx
, (169)

where θ = C/R and θ± = σ2(1±
√
θ).

2. Susceptible-Infected-Recovered (SIR) Models

Susceptible-Infected-Recovered (SIR) models are used
to study the spread of epidemics at the population level.
An SIR model considers three possible kinds of individu-
als: ones that are susceptible to the infection (S), infected
(I) and recovered (R) and therefore usually immune. The
simplest SIR model assumes that the birth-death of the
host individuals happens on slower timescales than the
spread of the epidemic itself. This model is a good de-
scription of measles and other infections by slowly evolv-

ing pathogens.

dS

dt
= −βIS, (170)

dI

dt
= βIS − νI = xI, (171)

dR

dt
= νR, (172)

where β is an effective infection rate, ν is the rate of re-
covery, and ν(βS/ν − 1) = x defines an effective growth
rate, or fitness of the host population. Within this for-
mulation no one can die. Since ∂tS + ∂tI + ∂tR = 0, the
total population size is constant, N = S + I +R =const.
The typical recovery time is Tr = ν−1 and the typical
timescale for a infected-susceptible individual interaction
is Tinf = β−1, meaning that an infected individual man-
ages to infect R0 = Tr/Tinf = β/ν individuals before
recovering. R0 is also called the infection radius or basic
reproduction number.

Using Eqs. 170-172, we find S = S(t =
0)e−R0(R−R(t=0). At infinite time (t → ∞, I = 0), the
number of recovered individuals reads:

R∞ = N − S(t = 0)e−R0(R∞−R(t=0)), (173)

which means that at an end of an epidemic there are
still susceptible individuals. From Eq. 171 we find that
S(t = 0)R0 > 1, leads to ∂tI > 0 and an exponen-
tially growing infection (i.e. epidemic outbreak), whereas
S(t = 0)R0 < 1 leads to ∂tI < 0 and quenching of the
infection. Since these equations are deterministic, the
initial condition determines the infection spread for all
times. The effective number of susceptible individuals
that can propagate the infection determines its future.

SIR equations can be extended to account for host
birth (with rate α) and death (with rate µ), that lead
to equations of the form:

dS

dt
= α− µS − βIS, (174)

dI

dt
= βIS − νI − µI = xI, (175)

dR

dt
= νR− µR, (176)

with two stable steady state solution: pathogen
free, (S, I,R) = (α/µ, 0, 0); and permanent infection,
(S, I,R) = ((ν + µ)/β, (µ/β)(R0 − 1), (γ/β)(R0 − 1)),
where R0 = βα/ (µ(µ+ ν)) is the infection radius. For
R0 ≤ 1, the system evolves towards the pathogen-free
solution, while for R0 ≥ 1 the permanently infected so-
lution is reached.

The basic SIR model can be made more complicated in
many different ways. One other variation called the SIS
(Susceptible – Infected – Susceptible) model describes a
situation where an infected individual does not have long
lasting immunity. This model is inspired by influenza,
where the virus mutates fast enough that a past infec-
tion does not necessarily guarantee immunity (although
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current models of influenza account for more detailed de-
scriptions of cross-reactivity – see section IX). The model
just has two states:

dS

dt
= −βIS + νI, (177)

dI

dt
= βIS − νI = xI. (178)

Using S = N−I, we obtain a single differential equation:

dI

dt
= (βN − ν)I − βI2, (179)

which has two fixed points I = 0 for R0 = (β/ν)N < 1
and I = (βN−ν)/β for R0 > 1. The second fixed results
from the solution:

I(t) =
(βN − ν)

β

1

1 + ( (βN−ν)
βI0

− 1)e(ν−βN)(t−t0)
. (180)

We note that the SIR equations (Eqs. 170-172) differ
in its assumptions from the two species Lotka-Volterra
equations (see section XII D 1) between and a host and a
pathogen. Specifically, SIR equations do not assume that
everyone can get infected, while Lotka-Volterra equations
do. However, generalized Lotka-Volterra equations can
easily be modified to account for different subclasses of
hosts. Lotka-Volterra equations on the other hand do
explicitly model the viral population, and allow for host-
pathogen oscillations that SIR models do not, and they
do do not assume a constant population size. Notably,
the SIS equations (Eq. 177) are a two-species realization
of Lotka-Volterra dynamics, with the additional assump-
tion for constant population size.

In section VII we describe equations that model the
in-host evolution during HIV infections. They are very
similar in spirit to SIS equations which explicitly consider
viral dynamics.

3. Solution of stochastic population dynamics with a source

Here we present the calculations leading the results
presented in Sec. VII, some of which are original to this
review. To solve Eq. 62, we define the generating func-
tions:

G(x) =
+∞∑
C=1

NCx
C , (181)

Θ(x) =
+∞∑
C=1

θCx
C . (182)

The time evolution of the population is then governed
by:

dG(x)

dt
= Θ(x)−µN1 +(νx2 +µ−(µ+ν)x)G′(x). (183)

At steady state, we have:

G′(x) =
Θ(1)−Θ(x)

(ν − µx)(1− x)
, (184)

where we have used the balance between birth and death
of clones dG(1)/dt = Θ(1) − νN1 = 0. Using (Θ(1) −
Θ(x))/(1−x) =

∑
C>0 θc

∑C−1
i=0 xi, and expaning 1/(ν−

µx) = (1/ν)
∑∞
j=0(µ/ν)jxj , we obtain:

NC =
1

µ− ν
1

C

{(
ν

µ

)C C−1∑
k=1

θk

[(µ
ν

)k
− 1

]

+
∞∑
k=C

θk

[
1−

(
ν

µ

)C]}
,

(185)

which reduces to

NC =
θ

ν

1

C

(
ν

µ

)C
(186)

in the simple case θC = θδC,1. The total number of clones
reads:

Ntot = G(1) =
1

µ− ν
∑
k

θk


k∑

C=1

1−
(
ν
µ

)C
C

+

[(µ
ν

)k
− 1

] ∞∑
C=k+1

(
ν

µ

)C
1

C

}
,

(187)

and

Ntot = (θ/ν) ln[1/(1− ν/µ)] (188)

for θC = θδC,1. In the limit of rare divisions ν � µ, only
clone sizes below the initial clone size, C ≤ k, contribute,
so that

Ntot =

∑
k θkHk

µ
= Ctot

∑
kHkθk∑
k kθk

, (189)

where Hk =
∑k
i=1 1/i are harmonic numbers. In the

opposite limit of division balancing death, µ − ν � µ,
the long tail of the second sum dominates:

Ntot =
ln(1/ε)

∑
k kθk

µ
= Ctotε ln(1/ε), (190)

with ε = (µ− ν)/µ.
Eq. 183 can be solved out of steady state with the

method of characteristics. Defining F (x) = G(x)−G(1)
and making the change of variable y = ln[(x−µ/ν)/(x−
1)]/(µ− ν), this equation reduces to:(

∂

∂t
− ∂

∂y

)
F = Θ(x)−Θ(1). (191)
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This equation can be solved in absence of a source term
(Θ = 0): F0(x, t) = A(t + y), with A(y) = F0(x, 0),
yielding:

F0(x, t) = F0

(
µ/ν − (x− µ/ν)/(x− 1)et(µ−ν)

1− (x− µ/ν)/(x− 1)et(µ−ν)
, 0

)
(192)

Starting with a single clone of size s at t = 0, G0(x, 0) =
xs and F0(x, 0) = xs − 1, the coefficients of the solution
G0(x, t) to the homogeneous equation (Eq. 191 with Θ =
0) give Green’s function, defined as the probability that
the clone starting at size s at t = 0 has size C at a later
time t, G0(x, t) =

∑
C P (C, t|s, 0)xC . Expanding (192)

in x, one obtains:

P (C, t|s, 0) = g(C, s, t) =
rC

(1− rz)C+s

×
min(C,s)∑
n=1

(
s

n

)(
C − 1

n− 1

)
rn(1− r−1)2nzn(1− z)s+C−2n,

(193)

with the shorthands z = e−t(µ−ν), r = ν/µ. The combi-
natorial factor in the sum comes from counting the num-
ber of ways there are to choose s − n factors of order
0 in x,

(
s
n

)
, and n factors of order (j1, . . . , jn) so that∑n

i=1 ji = C,
(
C−1
n−1

)
, in a series expansion of the form

[a+ b((cx) + (cx)2 + (cx)3 + . . .)]s = [a+ bcx/(1− cx)]s

to which (192) can be reduced.

We can now use Green’s function to calculate the dy-
namics of the distribution with an abitrary initial condi-
tion:

NC(t) =
∑
k

Nk(0)g(C, k, t)+

∫ t

0

dt′
∑
k

θk(t′)g(C, k, t−t′).

(194)
In the case of an empty immune system at t = 0, NC(0) =
0, and constant thymic output θk, we get:

NC(t) =
rC

µ− ν
∑
k

θk

min(C,k)∑
n=1

(
k

n

)(
C − 1

n− 1

)
rn(1− r−1)2n

n

× [znF1(n, 2n− k − C,C + k, 1 + n, z, rz)]
1
e−t(µ−ν) ,

(195)

where F1 is the Appell hypergeometric function of two
variables, and where we made the change of variable
z = e−(t−t′)(µ−ν) to carry out the integral in (194). This
equation simplifies greatly for θk = θδk,1:

NC(t) =
1

ν

rC

C

(
1− e−t(µ−ν)

1− re−t(µ−ν)

)C
. (196)

4. Solution to foward jump process with opposing drift and
source

Consider the process described by (68) generalized to
an arbitrary distribution of jumps:

∂ρ

∂t
= µ

∂ρ

∂x
+

∫ ∞
0

dy J(y) [ρ(x− y)− ρ(x)]+ θ̃(x), (197)

where absorbing boundary condition at x = 0. where
J(y)dy is the rate (per unit time) of jumps of size between
y and y + dy. This equation can be solved exactly by
considering the Laplace transform of ρ:

ρ̂(k, t) =

∫ ∞
0

dx e−kxρ(x, t), (198)

which satisfies:

∂ρ̂

∂t
= µ(ρ(0, t) + kρ̂(k, t)) + (Ĵ(k)− Ĵ(0))ρ̂(k, t) + θ̂(k),

(199)

where Ĵ(k) and ρ̂(k) are the Laplace transforms for J

and θ̃. The steady state solution is:

ρ̂(k) =
θ̂(k)− µρ(0)

Ĵ(k)− Ĵ(0) + µk
. (200)

To get a physical solution, a pole at k = 0 cannot exist, so
that the total number of clones ρ̂(0) is well defined. This

is satisfied for µρ(0) = θ̂(0), which is simply the condition

that the rate of birth of new clones, θ̂(0) be balanced by
the rate of death, µρ(0). Then solution becomes

ρ̂(k) =
θ̂(k)− θ̂(0)

Ĵ(k)− Ĵ(0) + µk
. (201)

To understand the behaviour of ρ(x) at large x, we have
to examine poles for negative k, k = −α, which satisfy
the condition: ∫ ∞

0

dx J(x)(eαx − 1) = µα. (202)

The left-hand side has derivative ν̄ ≡
∫
dx J(x)x with

respect to k0, which is the average growth rate of a clone.
To guarantee that all clones eventually go extinct, that
number must be smaller than µ. Therefore (202) has
only one solution α > 0. At large x the behaviour is
dominated by that pole, ρ̂(k) ∼ 1/(k+α), yielding ρ(x) ∼
e−αx and:

NC ∼
1

C1+α
. (203)

The total numbers of clones and cells read:

Ntot = ρ̂(0) =

∫∞
0
dx θ(x)x∫∞

0
dx J(x)x− µ

, (204)

Ctot = ρ̂(−1) =

∫∞
0
dx θ(x)(ex − 1)∫∞

0
dx J(x)(ex − 1)− µ

. (205)
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In the specific case of fixed-size jump, J(x) = spδ(x−
∆x), we get back (70) and (71). Eq. 202 simplifies in
the limit of many very small jumps, corresponding to
Jtot ≡

∫∞
0
dx J(x)→∞ while keeping the average effect

of jumps, ν̄ < µ, as well as its second moment, Γ =∫∞
0
dx J(x)x2, finite, meaning that the average jump size

〈∆x〉 = ν/Jtot goes to zero. Expanding (202) at small x,
we get:

α = 2
µ− ν̄

Γ
. (206)

which gives back (72) in the case of fixed-size jumps.

5. The Yule process

The Yule-Simon [317, 318] process is another type of
“neutral” process that is characterized by a distribution
with power long tails, which in its tail is reminiscent of
Zipf’s law (see section VII B). The model was initially
formulated to describe the distribution of biological gen-
era. It was later adapted in network science and is known
under the name of preferential attachement, or the rich-
get-richer model. In general it is a realization of a birth-
death process, where the birth coefficient is proportional
to the number of individuals. In the model, new individ-
uals are added at each time step. With probability α, the
new individual gets a mutation (or undergoes a specia-
tion event if we think about species), and with probability
1 − α the new individual’s type is chosen among all the
possible ancestors, i.e. proportionaly to the abundance
of each type.

The probability that the rank of an individual is k
results in a power law distribution at large C:

NC
Ctot

=
α

2− α
Γ(C)Γ(ρ+ 1)

Γ(C + ρ+ 1)
∼ 1

Cρ+1
, (207)

where Γ(x) denotes a gamma function, and ρ = 1/(1−α).
A precise derivation of (207) can be found in [318], but

the power-law behaviour can be understood intuitively
in a continous approximation. Assume that the rate of
division is µ, so that there are Ctot = eµt individual at
time t, starting from a single individual at time t = 0.
The rate of new emergence of new mutants is αµeµt, so

that at time t there are n(t) =
∫ t

0
dt′αµeµt

′
= α(eµt −

1) new types. The key point is that the abundance of
a mutant is an exponentially increasing function of its
age. A mutant that arose at t′ has size C = eµ(1−α)(t−t′)

at time t. n(t′) can thus be viewed as the rank of the
mutant, ordered by increasing frequency. The abundance
of the mutant arising at time t′, of rank n = n(t′) is, at
time t:

C =
eµ(1−α)t

(1 + n/α)(1−α)
∼ 1

n1−α , (208)

where the approximation is only valid at large n. We
recognize Zipf’s law (56), which implies a power law in
the clone size distribution according to (55):

NC ∼
1

C1+1/(1−α)
=

1

Cρ+1
. (209)

E. Inference

Here we introduce basic concepts and methods for
constructing models and inferring their parameters from
data. These approaches are becoming increasingly im-
portant as large datasets are being produced by high-
throughput methods, from imaging to sequencing. Some
of these methods have been used in only a few appli-
cations in computational immunology, but we anticipate
that their usage will become widespread in future studies.

1. Probabilistic inference, maximum likelihood and
Bayesian statistics

Often, empirical data originates from a stochastic pro-
cess. The first source of variability, which is present in
almost any measurement, is experimental noise, which
is random. In many cases related to biological systems,
from gene expression to cell signaling and random recom-
bination of DNA, the underlying processes are intrinsi-
cally stochastic, and so are the models that must describe
them.

Let us assume that a model can be encapsulated into a
probability distribution for observations P (x|θ), where x
is the empirical data, and θ the set of parameters defining
the model. In many cases, the data can be decomposed
into a set of independent datapoints, x = (x1, . . . , xN ),
so that the probability distribution factorizes over these
observations:

P (x|θ) =
N∏
i=1

P (xi|θ). (210)

This probability is called the likelihood (of the data given
the model). Because of its often multiplicative form, it
is common to consider instead its logarithm, the log-
likelihood L(x|θ), which is additive, or its normalized

variant `(x|θ) = (1/N)
∑N
i=1 lnP (xi|θ). One can think

of xi as a sequence, for instance of an immune receptor
or of a pathogen; a fluorescence signal coming from flow
cytometry or single-cell microscopy imaging; an abun-
dance of RNA transcripts for gene expression, or of se-
quencing reads of immune receptors when estimating the
abundance of lymphocyte clones. The models may be
statistical models for the occurence of a particular data
point, or stochastic dynamical models of the process.

A popular way to infer the parameters θ = (θ1, . . . , θK)
of a model is to find those that maximize the likehood of
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the data:

θ∗(x) = arg max
θ

P (x|θ). (211)

This estimate of the parameters is called the maximum
likelihood estimator, and it can be shown to be unbiased
and optimal in the limit of large numbers of observation,
in the sense that it saturates the Cramer-Rao bound. The
Cramer-Rao bound gives a lower bound on the variance
of unbiased estimators of a fixed and deterministic pa-
rameter. In practice, this implies that the fluctuations of
the estimator around its true value, θ∗(x) − θ are given
by a multivariate Gaussian distribution of mean 0 and
co-variance I−1/N , with:

Iab(θ) =
∑
x

P (x|θ)∂ lnP (x|θ)
∂θa∂θb

(212)

is called the Fisher information matrix.

When one has information about the process and its
parameters independently of the data, through a prior
belief in the distribution of θ, Pprior(θ), this information
can be combined with the data using Bayes rules:

P (θ|x) =
P (x|θ)Pprior(θ)

P (x)
. (213)

This expression defines the posterior distribution of pa-
rameters, given the data. For instance, some param-
eters may have been measured with some uncertainty,
which can be modelled using a Gaussian distribution
Pprior(θi) = (1/

√
2πσ2

i ) exp[−(θi−θi,meas)
2/σ2

i ], or there
exists natural physiological range for them. A uniform
prior, Pprior =const, amounts to considering the likeli-
hood alone. Also note that in the limit of large datasets,
N � 1, the log-likelihood dominates over the logarithm
of the prior, which becomes negligible. In that case, the
posterior over possible parameters, P (θ|x), is given by
a Gaussian distribution over θ with mean θ∗ and covari-
ance given by the same Fisher information matrix I−1/N .
This means that the Bayesian fluctuations, which corre-
spond to our uncertainty about the true values of the
parameters, match the fluctuations of the error we make
when picking the maximum-likelihood estimate.

Using Eq. 213, one can either consider the full range of
acceptable parameter values from the posterior, by e.g.
sampling from it. Alternatively, one can take its maxi-
mum, θ∗ = arg maxθ P (θ|x), called the maximum a pos-
teriori estimator. In the limit of large N , that estimator
is equivalent to the maximum likelihood estimator.

We now turn to two simple examples of inference prob-
lems for which the maximum likelihood estimator recov-
ers an intuitive answer. First consider linear regression.
Suppose we have data points (x1, . . . , xN ) taken at times
(t1, . . . , tN ), which we want to fit with a linear model,
x = θ1 + θ2t. Implicitly, we must assume that the data is
noisy, otherwise a fit would not be necessary. Assuming

Gaussian noise, the stochastic model reads:

P (x|θ) =
N∏
i=1

1√
2πσ2

e−(xi−θ1−θ2ti)2/2σ2

=
1

(2πσ2)N/2
exp

[
− 1

2σ2

N∑
i=1

(xi − θ1 − θ2ti)
2

]
(214)

where σ is the amplitude of the noise. Examining this
expression, one can see maximizing the likelihood corre-

sponds to minimizing the mean squared error,
∑N
i=1(xi−

θ1 − θ2ti)
2, which is the standard way to do linear fit.

This argument generalizes to any fit of a parametrized
function, assuming Gaussian distributed noise.

The second example is estimating frequencies from a
finite set of outcomes. For concreteness, let us assume
that we want to describe the probability of finding a par-
ticular nucleotide, x =A,C,G,T, at a particular location
in a genomic sequence. The parameters of the model are
the frequencies of A, C, and G, denoted θ1, θ2, θ3, while
the frequency of T is 1− θ1− θ2− θ3. The probability of
observing a certain set of observations x = (x1, . . . , xN )
is given by:

P (x|θ) = θnA1 θnC2 θnG3 (1− θ1 − θ2 − θ3)nT (215)

where nA =
∑
i=1 δxi,A and similarly for the other nu-

cleotides. Maximizing the likelihood with respect to
the parameters yields the intuitive counting estimator:
θ∗1 = nA/(nA+nC+nG+nT ), and similarly for the other
nucleotides. Note that this argument holds for sequences
of nucleotides rather than single nucleotides, provided
that the underlying probabilistic model assumes that the
choices of nucletoides at each position along the sequence
are independent of each other.

2. Model selection

The maximum likelihood and Bayesian rules outlined
above assume that the class of models, if not its param-
eters, are known, but this is not always the case. For
instance, we may have competing hypotheses between
different models, or we may consider models of increas-
ing complexity. For instance, in the example of linear
regression, we may want to know whether the data is not
better explained by a quadratic model x = θ1+θ2t+θ3t

2.
Comparing the likelihood directly always favors models
with more parameters, which can in turn lead to overly
complex models with the risk of overfitting the data. We
need a way to compare models with different structures
and numbers of parameters.

The general approach to compare two model A and B,
described by probabilities P (x|θA, A) and P (σ|θB , B), is
to evaluate the overall probability of the data given each
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model, by integrating the over the parameters:

P (x|A) =

∫
dKAθAPA(x|θA)Pprior(θA|A) (216)

P (x|B) =

∫
dKBθBPB(x|θB)Pprior(θB |B). (217)

The relative probabilities of each model is then evaluated
by Bayes’s rule:

P (A|x) =
P (x|A)Pprior(A)

P (x|A)Pprior(A) + P (x|B)Pprior(B)
. (218)

In the limit of large N , PA(x|θA) (and the same for
B) is very peaked around its maximum likelihood value,
with Gaussian fluctuations around that peak given by
the Fisher Information matrix IA:

PA(x|θA) ≈ P (x|θ∗A)e−N(θA−θ∗A)IA(θA−θ∗A)/2. (219)

By the saddle-point approximation we obtain:

P (x|A) ≈
√

(2π/N)KA/det(IA)PA(x|θ∗A)Pprior(θ
∗
A|A).

(220)
If we replace this expression into Eq. 216, and focus
on two terms that do not depend on our prior assump-
tions, we see two terms: the maximized likelihood for
each model PA(x|θ∗A), which quantifies the quality of the

fit, and “parsimony” term
√

(2π/N)KA/det(IA), which
quantifies the volume of parameters that are consistent
with each model. As evident for this expression of the
parsimony, the more parameters, the smaller that volume
will be.

The ratio of probabilities in (216) between A and B
is sometimes called Bayes’s factor, while the ratio of the
parsimony terms is called Occam’s factor. If we expand
the logarithm of (216) in o(ln(N)) using (220), we obtain,
up to a −2 factor, the so called Bayesian Information
Criterion (BIC):

− 2 lnP (A|x) ≈ KA ln(N)− 2N`(x|θ∗A) ≡ BIC(A).
(221)

The BIC is a popular score for comparing models, and
can be intuitively understood as a correction to the like-
lihood by a term that penalizes large numbers of parame-
ters. In the large N limit, Eq. 218 tells us that the model
with the smallest BIC is more likely to be correct. An-
other popular score is the Akaike information criterion
(AIC), defined as 2K − 2N`(x|θ∗), which puts a smaller
penalty on the number of parameters.

Applications of model selection criterion have been nu-
merous in computational immunology, see e.g. [78, 97,
200, 233, 319].

3. Expectation-Maximization

Some models are better defined in terms of variables
that are not accessible to the observer. If we call those

hidden variables h, and x the visible variables, then the
likelihood of the data can be expressed as the sum over
the hidden variables:

P (x|θ) =
∑
h

P (x,h|θ) =
N∏
i=1

∑
hi

P (xi, hi|θ). (222)

Expectation-Maximization (EM) consists of maximizing
P (x|θ) iteratively. Starting with a guess θt, one can write
a pseudo log-likelihood:

L̃(x|θ) =
N∑
i=1

∑
hi

P (hi|xi, θt) lnP (xi, hi|θ), (223)

which is essentially an average of the log-likelihood of the
full model (i.e. including the hidden variables), weighted
by the posterior distribution of the hidden variable hi
under the current model θt. In an iteration step, one sets
θt+1 = arg maxθ L̃(x|θ). As this scheme is iterated, θt
converges to a maximum of the true likelihood P (x|θ).

Expectation-maximization has notably been used in
the inference of generation model for antigen-specific
lymphocyte receptors (TCR and BCR), in Refs. [169,
170, 178, 188].

4. Hidden Markov models

Hidden Markov models (HMM) are models with a hid-
den variable h which is the trajectory of a Markov pro-
cess, h = (hx)x=1,...,L:

P (h) = p1(h1)
L∏
j=2

w(hj |hj−1). (224)

The visible variable x, is also a vector of size L, whose
elements xj are called ’emissions’ and are drawn ac-
cording to the value of the hidden variable according

to the emission probabilities P (x|h) =
∏L
j=1 ej(xj |hj).

A key feature of HMM is that high-dimensional sums
over h = (h1, . . . , hL) can be performed recursively us-
ing technique which is equivalent to the transfer matrix
technique in statistical physics. For instance, the forward
algorithm allows one to calculate P (x), which requires to
sum over all possible trajectories of the hidden variable.
This is done by defining zj(hj) = P (x1, . . . , xj , hj) and
using the recursive equation:

zj(hj) =
∑
hj−1

ej(xj |hj)wj(hj |hj−1)zj−1(hj−1). (225)

The probability P (x) = P (x1, . . . , xL) is then obtained
as
∑
hL
zL(hL). A similar trick allows one to calculate

any marginal of the model, e.g. P (xj) or correlation
functions. Combining these recursions with EM defines
a powerful algorithm for learning the parameters of the
model, θ = {wj(·|·), ej(·|·)}, called the Baum-Welch al-
gorithm.
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HMM have been applied to model BCR and TCR an-
notation to the germline in various software, e.g. SODA
[177], Partis [179], and repgenhmm [320].

5. Information theory

The entropy of a probability distribution P (x) is de-
fined as:

S[P ] = −
∑
x

P (x) lnP (x). (226)

It quantifies the randomness of the distribution, and is
maximum for a uniform distribution (and zero for per-
fectly peaked one). For this reason is is often used as a
measure of diversity. Unlike all other diversity measures,
it is additive, meaning that the entropy of a joint distri-
bution of two independent variables (P (x), Q(y)) is given
by S[P ] + S[Q].

The entropy is the building block for several
information-theoretic measures. The Kullback-Leibler
divergence or relative entropy, defined as

KL(P‖Q) =
∑
x

P (x) ln
P (x)

Q(x)
, (227)

is used a distance measure between probability distribu-
tions (although not a metric in the mathematical sense
because of its asymmetry). Another popular measure is
the mutual information between two variables x and
y:

I(x, y) = S[P (x)]−S[P (x|y)] =
∑
x,y

P (x, y) ln
P (x, y)

P (x)P (y)
.

(228)
It quantifies how much the knowledge of y reduces the
entropy of x, and vice-versa since it is symmetric in x
and y. It is often used as a non-parametric measure of
correlations between two variables.

6. Maximum entropy models

When the underlying mechanisms that give rise to
the data are not known, it can be useful to define phe-
nomenological models based on the observables that are
deemed important. A convenient way to do this is to
infer maximum entropy models [321], which are proba-
bilistic models P (x) of maximum entropy S[P ] subject
to the constraint that they agree with the data on a
choice of key mean observables Oa(x):

∑
x P (x)Oa(x) =

(1/N)
∑N
i=1Oa(xi). It can be shown that the distribu-

tion takes an exponential form:

P (x) =
1

Z
exp

(∑
a

θaOa(x)

)
, (229)

where θa are Lagrange multipliers that must be adjusted
to satisfy the constraints, and Z is a normalization con-
stant. It turns out that maximizing the likelihood of a
dataset (x1, . . . , xN ) under Eq. 229 over the model pa-
rameters (θa) is equivalent to satisfying the constraint
over the mean observables. The inference procedure is
computationally hard, and is usually performed using a
combination of Monte Carlo sampling methods and gra-
dient descent, or mean-field techniques [322]. Often, the
observables are taken to be marginals of variables of in-
terest, as well as pairwise of higher-order correlations be-
tween them. The resulting models then fall into classes
of inverse statistical physics models, such as disordered
Ising or Potts models [323].

7. Machine learning and Neural networks

Modern machine learning techniques are increasingly
popular in computational immunology, and are antici-
pated to become even more popular in the near future.
We refer the reader to Ref. [324] for a review of machine
learning methods aimed at physicists.

The best established use of deep neural networks in im-
munology is for predicting peptide-MHC binding through
a set of tools call netMHC [40, 164]. More traditional
machine learning approaches have been used to compare
and characterize immune repertoires [211, 212].

Current efforts aim at predicting TCR-antigen bind-
ing using machine learning techniques [24–26], although
the amount of data necessary to obtain truly predictive
models is probably still insufficient at this stage.

F. High-throughput repertoire sequencing

The variable region of an antigen receptor chain is
about 400 bp long. The sequencing challenge is to cap-
ture the whole region in one read. Modern methods
of high-throughput genomic or metagenomic sequencing
use shotgun sequencing which breaks the genome of in-
terest into short fragments and after sequencing pastes
the reads together by putting together overlapping reads
with the help of a reference guiding template. Since
Repertoire Sequencing (RepSeq) focusses on highly vari-
able regions which includes non-templated insertions and
deletions, the sequence must be acquired in one read.
Read lengths required for TCR sequences are typically
shorter (∼ 100 − 150bp) since short fragments of V and
J genes are enough to distinguish different V genes with
the help of known genomic templates. However, since
B-cells carry a large number of hypermutations in the
V gene, sequencing of longer fragments (∼ 600bp) that
encompass explicitly most of the V gene is necessary.

Different methods have been developed for sequenc-
ing DNA and mRNA. In general, the protocols start
with isolating the mRNA or DNA of the cells of interest
(BCR, TCR, in subsets of cells of interest sorted using
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FACS). The mRNA product is then reverse transcribed
onto cDNA and barcoded, sometimes with unique molec-
ular identifier (UMI), and amplified by Polymerase Chain
Reaction (PCR) before sequencing. Different techniques
exist for PCR amplification that either add primer spe-
cific sites or multiple primers. Rapid amplification of
cDNA ends (RACE) is one of the most common tech-
niques, which is based on adding a linker with a primer
binding site to a conserved region, on the 5’ end of the V
gene where no constant template is available (unlike on
the 3’ end). In DNA sequencing multiple primers that
target specific regions of the DNA, introducing a primer
specific amplification bias that can be controlled for by
spiking in known sequences.

Protocols based on sequencing directly DNA have the
advantage that the experiments is free of mRNA expres-
sion bias. However, currently mRNA based technologies
are able to reliably report sequence counts thanks to the
use of UMI barcoding techniques that are still being de-
veloped for DNA sequencing. The difficulty with using
UMIs in the DNA protocol lies in introducing the barcode
before the original sequence is amplified. In the mRNA
protocole the barcode is introduced during the initial re-
verse transcription of mRNA into cDNA for every RNA
molecule. The barcoded sequence is then purified and
the whole product is amplified by PCR. For DNA an
additional ligation step is needed, in which the DNA is
cut close to the region of interest (keeping in mind that
the sequenced lengths is short). Ligation is not an effi-
cient reaction. This approach is simple when many gene
copies are available in a sample, but this is not the case
in immune repertoire sequencing. Alternatively, the bar-
code could be added in the first PCR cycle. The product
then needs to be well purified making show no barcode
carrying primers are left, at the same time making sure
that the barcoded sequences is not lost due to its low
fraction compared to non-barcoded sequences, which re-
mains technically tricky.

The above procedures sequence the chains of TCR or
BCR repertoire in bulk, leaving no possibility to figure
out the pairing of alpha and beta, or light and heavy
chains in the same cell. Naturally, this limits the discus-
sions of repertoire diversity, and more importantly at-
tempts to link sequence to a functional phenotype. Re-
cently these limitations have been overcome by the de-
velopment of single cell repseq sequencing, where the
PCR reaction is performed either in wells [325] or in
droplets [326–328]. Alternatively, a computational ap-

proach that exploits the statistics of co-occurence of the
rare events partitioning the chains separately into wells
is used to identify pairs of TCR sequences that come
from the same cell from bulk DNA sequencing experi-
ments [329]. The results of these analysis show that the
pairing of alpha-beta chains is largely independent for
TCR [145, 328], so the results of bulk analysis for diver-
sity hold. However the affinity and functional properties
of the BCR and TCR need to be estimated at the level
of the whole receptor.

Lastly, novel high-throughput single-cell barcoded
mRNA technologies [223] are promising to change the
field of immune repertoire sequencing, providing paired
chain reads in large numbers. These technologies are
very similar to those used in 5’RACE with UMI. Droplet
based platforms allow in principle for large numbers of
cells (up to 80 000 per chip) to be analyzed at the same
time, although these numbers are still much smaller than
the 106 cells in bulk experiments. Given that clones have
very low frequencies in bulk experiments (possibly down
to a single cell out of 1011), sampling of the order of 104

does not guarantee reproducible experiments. Addition-
ally the cost remains high, at about 1 USD per cell. At
the moment of writing, the first analyses based on this
technology are still underway.
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How many TCR clonotypes does a body maintain? J.
Theor. Biol. 389:214–224.

[162] Mora T, Walczak A (2018) in Syst. Immunol., eds Das
JD, Jayaprakash C (CRC Press), pp 185–199.

[163] Wardemann H, et al. (2003) Predominant Autoantibody
Production by Early Human B Cell Precursors. Science
(80-. ). 301:1374–1377.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 28, 2019. ; https://doi.org/10.1101/696567doi: bioRxiv preprint 

https://doi.org/10.1101/696567


75

[164] Lauemøller SL, et al. (2003) Sensitive quantitative pre-
dictions of peptide-MHC binding by a Query by Com-
mittee ’ artificial neural network approach. Tissue Anti-
gens 62:378–384.

[165] Jensen KK, et al. (2018) Improved methods for predict-
ing peptide binding affinity to MHC class II molecules.
Immunology 154:394–406.

[166] Moon JJ, et al. (2007) Naive CD4+ T Cell Frequency
Varies for Different Epitopes and Predicts Repertoire
Diversity and Response Magnitude. Immunity 27:203–
213.

[167] Jenkins MK, Moon JJ (2012) The role of naive {T}
cell precursor frequency and recruitment in dictating
immune response magnitude. J. Immunol. 188:4135–
4140.

[168] Yates AJ (2014) Theories and quantification of thymic
selection. Front. Immunol. 5:13.

[169] Murugan A, Mora T, Walczak AM, Callan CG (2012)
Statistical inference of the generation probability of T-
cell receptors from sequence repertoires. Proc. Natl.
Acad. Sci. 109:16161–16166.

[170] Elhanati Y, et al. (2015) Inferring processes underlying
B-cell repertoire diversity. Philos Trans R Soc Lond, B,
Biol Sci 370:20140243.

[171] Pogorelyy MV, et al. (2017) Method for identification of
condition-associated public antigen receptor sequences.
arXiv:1709.09703.

[172] Toledano A, et al. (2018) Evidence for shaping of light
chain repertoire by structural selection. Front. Im-
munol. 9:1–9.

[173] Sethna Z, et al. (2017) Insights into immune system de-
velopment and function from mouse T-cell repertoires.
Proc. Natl. Acad. Sci. 114:2253–2258.

[174] Magadan S, et al. (2018) Origin of Public Memory B
Cell Clones in Fish After Antiviral Vaccination. Front.
Immunol. 9:2115.

[175] Marcou Q, Mora T, Walczak AM (2018) High-
throughput immune repertoire analysis with IGoR. Nat.
Commun. 9:561.

[176] Sethna Z, Elhanati Y, Callan CG, Walczak AM, Mora
T (2019) OLGA: fast computation of generation prob-
abilities of B- and T-cell receptor amino acid sequences
and motifs. Bioinformatics btz035.

[177] Munshaw S, Kepler TB (2010) SoDA2: a Hid-
den Markov Model approach for identification of im-
munoglobulin rearrangements. Bioinformatics 26:867–
72.

[178] Elhanati Y, Marcou Q, Mora T, Walczak AM (2015)
repgenHMM: a dynamic programming tool to infer the
rules of immune receptor generation from sequence data.
bioRxiv In press:1–9.

[179] Ralph DK, Matsen FA (2016) Consistency of VDJ Rear-
rangement and Substitution Parameters Enables Accu-
rate B Cell Receptor Sequence Annotation. PLoS Com-
put. Biol. 12:1–25.

[180] Ralph DK, Matsen FA (2016) Likelihood-Based Infer-
ence of B Cell Clonal Families. PLoS Comput. Biol.
12:1–28.

[181] Wang Y, et al. (2011) Genomic screening by 454 py-
rosequencing identifies a new human IGHV gene and
sixteen other new IGHV allelic variants. Immunogenet-
ics 63:259–265.

[182] Pogorelyy MV, et al. (2018) Method for identification of
condition-associated public antigen receptor sequences.

Elife 7:1–13.
[183] Pogorelyy MV, et al. (2018) Detecting T-cell recep-

tors involved in immune responses from single repertoire
snapshots. arXiv:1807.08833.

[184] Wing K, Sakaguchi S (2010) Regulatory T cells exert
checks and balances on self tolerance and autoimmunity.
Nat. Immunol. 11:7–13.

[185] Bains I, van Santen HM, Seddon B, Yates AJ (2013)
Models of Self-Peptide Sampling by Developing T Cells
Identify Candidate Mechanisms of Thymic Selection.
PLoS Comput. Biol. 9.

[186] Le Borgne M, et al. (2009) The impact of negative
selection on thymocyte migration in the medulla. Nat.
Immunol. 10:823–830.

[187] Kosmrlj A, et al. (2010) Effects of thymic selection of
the T-cell repertoire on HLA class I-associated control
of HIV infection. Nature 465:350–354.

[188] Elhanati Y, Murugan A, Callan CG, Mora T, Walczak
AM (2014) Quantifying selection in immune receptor
repertoires. Proc. Natl. Acad. Sci. 111:9875–9880.

[189] Kaplinsky J, et al. (2014) Antibody repertoire deep se-
quencing reveals antigen-independent selection in ma-
turing B cells. Proc. Natl. Acad. Sci. 111:E2622–9.

[190] Elhanati Y, Sethna Z, Callan CG, Mora T, Walczak
AM (2018) Predicting the spectrum of TCR repertoire
sharing with a data-driven model of recombination. Im-
munol Rev 284:167–179.

[191] Mora T, Walczak AM (2016) Renyi entropy, abundance
distribution and the equivalence of ensembles. Phys Rev
E 95:052418.

[192] Mora T, Walczak AM, Bialek W, Callan CG (2010)
Maximum entropy models for antibody diversity. Proc.
Natl. Acad. Sci. 107:5405–5410.

[193] Desponds J, Mora T, Aleksandra W (2016) Fluctuat-
ing fitness shapes the clone size distribution of immune
repertoires. Proc Natl Acad Sci USA 113:274.

[194] Desponds J, Mayer A, Mora T, Walczak AM (2017)
Population dynamics of immune repertoires. pp 1–9.

[195] Greef PCD, et al. (2019) The naive T-cell receptor
repertoire has an extremely broad distribution of clone
sizes. bioRxiv.

[196] Best K, Oakes T, Heather JM, Shawe-Taylor J, Chain
B (2015) Computational analysis of stochastic hetero-
geneity in PCR amplification efficiency revealed by sin-
gle molecule barcoding. Sci. Rep. 5:14629.

[197] Vollmers C, Sit RV, Weinstein Ja, Dekker CL, Quake
SR (2013) Genetic measurement of memory B-cell recall
using antibody repertoire sequencing. Proc. Natl. Acad.
Sci. 110:13463–8.

[198] Shugay M, et al. (2014) Towards error-free profiling of
immune repertoires. Nat. Methods 11:653–5.

[199] Kaplinsky J, Arnaout R (2016) Robust estimates
of overall immune-repertoire diversity from high-
throughput measurements on samples. Nat. Commun.
7:11881.

[200] Laydon DJ, Bangham CRM, Asquith B, Crm B (2015)
Estimating T-cell repertoire diversity: limitations of
classical estimators and a new approach. Philos Trans
R Soc Lond, B, Biol Sci 370:20140291.

[201] Haegeman B, et al. (2013) Robust estimation of mi-
crobial diversity in theory and in practice. ISME J.
7:1092–1101.

[202] Emerson RO, et al. (2017) Immunosequencing identi-
fies signatures of cytomegalovirus exposure history and

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 28, 2019. ; https://doi.org/10.1101/696567doi: bioRxiv preprint 

https://doi.org/10.1101/696567


76

HLA-mediated effects on the T cell repertoire. Nat.
Genet. 49:659–665.

[203] Mayer A, Balasubramanian V, Mora T, Walczak AM
(2015) How a well-adapted immune system is organized.
Proceedings of the National Academy of Sciences USA
pp 1–15.

[204] Emerson RO, et al. (2017) Immunosequencing identi-
fies signatures of cytomegalovirus exposure history and
HLA-mediated effects on the T cell repertoire. Nat.
Genet. 49:659–665.

[205] Faham M, et al. (2017) Discovery of T Cell Re-
ceptor β Motifs Specific to HLAB27Positive Ankylos-
ing Spondylitis by Deep Repertoire Sequence Analysis.
Arthritis Rheumatol. 69:774–784.

[206] Venturi V, et al. (2006) Sharing of T cell receptors
in antigen-specific responses is driven by convergent re-
combination. Proc. Natl. Acad. Sci. 103:18691–18696.

[207] Venturi V, et al. (2011) A mechanism for TCR shar-
ing between T cell subsets and individuals revealed by
pyrosequencing. J. Immunol. 186:4285–4294.

[208] Madi A, et al. (2014) T-cell receptor repertoires share a
restricted set of public and abundant CDR3 sequences
that are associated with self-related immunity. Genome
Res. 24:1603–12.

[209] Perelson A, Weisbuch G (1997) Immunology for physi-
cists. Reviews of Modern Physics 69:1219–1268.

[210] Mayer A, Balasubramanian V, Mora T, Walczak AM
(2015) How a well-adapted immune system is organized.
Proc. Natl. Acad. Sci. 112:5950–5955.

[211] Thomas N, et al. (2014) Tracking global changes in-
duced in the CD4 T-cell receptor repertoire by immu-
nization with a complex antigen using short stretches of
CDR3 protein sequence. Bioinformatics 30:3181–3188.

[212] Cinelli M, et al. (2017) Feature selection using a one
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